
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Vítor Emanuel Gonçalves Fernandes

Integration of time in a
quantum process algebra

December 2019

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Vítor Emanuel Gonçalves Fernandes

Integration of time in a
quantum process algebra

Master dissertation
Master Degree in Computer Science

Dissertation supervised by
Luís Barbosa
Renato Neves

December 2019

i

DIREITOS DE AUTOR E CONDIÇÕES DE UTILIZAÇÃO DO TRABALHO POR TERCEIROS

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas
as regras e boas práticas internacionalmente aceites, no que concerne aos direitos de autor
e direitos conexos.

Assim, o presente trabalho pode ser utilizado nos termos previstos na licença abaixo
indicada. Caso o utilizador necessite de permissão para poder fazer um uso do trabalho
em condições não previstas no licenciamento indicado, deverá contactar o autor, através do
RepositóriUM da Universidade do Minho.

A C K N O W L E D G E M E N T S

I want to thanks my parents and my brothers for the support given during this time.
A special thanks to my co-supervisor Renato Neves, for having the patience to teach me

and guide me throughout this MSc dissertation. Also to my supervisor Luis Barbosa, that
helped me in critical moments.

At last, thanks to all my colleagues and friends.
This MSc project was funded by the SmartEGOV project (NORTE-01-0145-FEDER-000037)

supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the
PORTUGAL 2020 Partnership Agreement, through the European Regional Development
Fund (EEDF). Part of the results were framed within the KLEE project (POCI-01-0145-
FEDER-030947 - PTDC/CCI-COM/30947/2017), funded by ERDF through the Operational
Programme for Competitiveness and Internationalisation, COMPETE2020 Programme and
by National Funds through the Portuguese funding agency, FCT

iii

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I
have not used plagiarism or any form of undue use of information or falsification of results
along the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the
University of Minho.

A B S T R A C T

Process algebras are mathematical structures used in Computer Science to study, model,
and verify concurrent systems. Essentially, a process algebra consists of a language (used
to specify a system that one wishes to study), a semantic domain to interpret the language
(which allows the interpretation and the study of the system) and a set of axioms related
to the language operators (which facilitates the derivation of properties of the system be-
ing studied). These basic ingredients make process algebras powerful tools, with many
applications in the development of concurrent systems and many successful stories in in-
dustry, Bunte et al. (2019); Groote and Mousavi (2014). The three classical examples of a
process algebra are: CCS introduced by Robin Milner, ACP introduced by Jan Bergstra and
Jan Willem Klop, and CSP introduced by Tony Hoare. Of the three, the first stands out
because of its main goal to isolate and study the elementary principles of communication
and concurrency.

The development of Quantum Mechanics supports the design of computational systems
ruled by quantum laws, which, in the context of certain problems, perform significantly
better than any classical computational system. This is exemplified with Shor and Grover
algorithms, respectively used in the factorization of integers and in unstructured searching.
Moreover, Quantum computing has applications in the communications area, having as
main examples the quantum teleportation protocol and the BB84 communication protocol.
However, due to their high sensitivity to noise, quantum computers have a very limited
memory space, and therefore they usually integrate a QRAM architecture: essentially, a net-
work of classical computers that process and manage a general task list, invoking quantum
computers only when high-cost computational tasks arise. This highlights the importance
of extending the theory of process algebras to the quantum domain. In fact, some quantum
process algebras were already proposed in last years: examples include qCCS, developed
by Mingsheng Ying et al based on CCS, and the CQP algebra, introduced by Simon Gay and
Rajagopal Nagarajan. Related to qCCS, a typing system was developed, where the typable
processes are exactly the valid qCCS processes.

Current quantum process algebras assume the existence of an ideal quantum system,
i.e. a quantum system immune to noise. In contrast, the aim of this dissertation is to
study and develop a quantum process algebra in which this assumption is discarded. More
specifically, we do not assume that a quantum state can be stored indefinitely, it may become
corrupted over time, or in other words, have a limited time of coherence. For that goal, 1)
we developed a new quantum process algebra that merges the strengths of qCCS and CQP,

v

in particular, recursion, memory allocation, and a typing system, so that we can study
complex quantum systems that integrate the QRAM architecture; 2) we extended the new
process algebra with a notion of time so that we could study its effects on quantum states;
and 3) we developed a number of case studies, via the mentioned extension, in which
the coherence time of quantum systems has a central role. This includes, for example, a
simplified version of the IBM Cloud, which provides access to a quantum computer via web.

Keywords: Concurrency, process algebra, quantum, time, CCS, qCCS, TCCS, TqCCS

R E S U M O

Álgebras de processos são estruturas matemáticas usadas em Ciências da Computação para
o estudo, modelação, e verificação de sistemas concorrentes. Essencialmente, uma álgebra
de processos é composta por uma linguagem (usada para especificar o sistema que se
deseja estudar), um domínio semântico para interpretação dessa linguagem (o que per-
mite interpretar e estudar o sistema) e um conjunto de axiomas relativos aos operadores
da linguagem (o que facilita a derivação de propriedades do sistema em estudo). Estes
ingredientes básicos tornam as álgebras de processos ferramentas poderosas, com várias
aplicações no desenvolvimento de sistemas concorrentes e várias histórias de sucesso na
indústria, Bunte et al. (2019); Groote and Mousavi (2014). Os três exemplos clássicos de
álgebras de processos são: CCS introduzida por Robin Milner, ACP introduzida por Jan
Bergstra e Jan Willem Klop, e CSP introduzida por Tony Hoare. Das três, destaca-se a
primeira como sendo aquela cujo objectivo principal é isolar e estudar os princípios ele-
mentares da comunicação e da concurrência.

O desenvolvimento da Mecânica Quântica, permitiu conceber sistemas de computação
regidos pelas leis quânticas, que, no contexto de certos problemas, têm um desempenho sig-
nificativamente melhor que qualquer sistema computacional clássico. Isto é exemplificado
com os algoritmos de Shor e de Grover, usados respectivamente na factorização de inteiros
e em procuras não estruturadas. Para além disso, a computação quântica tem aplicações na
área da comunicação, tendo como exemplos principais o protocolo de teletransporte quân-
tico e o protocolo de comunicação BB84. No entanto devido à sua elevada sensibilidade ao
ruído, os computadores quânticos têm um espaço de memória bastante limitado, e portanto
costumam integrar uma arquitectura QRAM, em que uma rede de computadores clássicos
processam e gerem uma lista geral de tarefas, invocando o computador quântico apenas
quando surgem certas tarefas de elevado custo computacional. Isto sublinha a importância
de estender a teoria das álgebras de processos ao domínio quântico. De facto, algumas
álgebras de processos quânticos já foram propostas nos últimos anos: exemplos incluem
qCCS, desenvolvida por Mingsheng Ying et al e que tem por base CCS, e a álgebra CQP,
introduzida por Simon Gay e Rajagopal Nagarajan. Relacionado com qCCS, um sistema de
tipos foi desenvolvido, onde os processos tipados são exatamente os processos válidos em
qCCS.

As actuais álgebras de processos quânticos assumem a existência de um sistema quântico
ideal, i.e. um sistema quântico insensível ao ruído. Em contraste, o objectivo deste trabalho
é o estudo e desenvolvimento de uma álgebra de processos quânticos em que esta assunção

vii

seja descartada. Mais especificamente, não assumimos que um estado quântico possa ser
guardado indefinidamente, mas que possa tornar-se corrompido ao longo do tempo, ou
por outras palavras, que tenha um tempo limitado de coerência. Para tal, 1) desenvolve-
mos uma nova álgebra de processos quânticos que reúne diversos pontos fortes de qCCS e
CQP, em particular recursividade, alocação de memória, e sistemas de tipagem, para que
possamos estudar sistemas quânticos complexos e que integrem uma arquitectura QRAM;
2) estendemos a nova álgebra de processos com uma noção de tempo para podermos es-
tudar o efeito deste sobre os estados quânticos; e 3) desenvolvemos uma série de casos de
estudo, através da extensão referida, em que o tempo de coerência dos estados quânticos
tem um papel central. Isto inclui, por exemplo, uma versão simplificada da IBM Cloud, que
providencia acesso a um computador quântico via web.

Palavras-chave: Concurrência, álgebra de processos, quântica, tempo, CCS, qCCS, TCCS,
TqCCS

C O N T E N T S

1 introduction 1

1.1 Motivation 1

1.2 Contributions 1

1.3 Document structure 2

2 a brief introduction to process algebra 3

2.1 Basic notions of concurrency 3

2.2 A bird’s eye view of process algebra 4

2.3 The Calculus of Communicating Systems 6

3 timed process algebras 21

3.1 Motivation and context 21

3.2 Basic concepts 21

3.3 Timed Calculus of Communicating Systems 23

4 when quantum computing enters into the scene 31

4.1 Quantum computing in a nutshell 31

4.2 A survey of quantum process algebras 41

4.3 Quantum Calculus of Communicating Systems 41

4.4 A typing system for qCCS 49

4.5 Comparison between CCS and qCCS 54

5 timed qccs 57

5.1 Motivation and context 57

5.2 Quantum CCS with measurement operations and classical control 58

5.3 Timed Quantum CCS 72

5.4 TqCCS vs qCCS vs CQP 86

6 conclusions and future work 88

6.1 Conclusion 88

6.2 Future Work 89

L I S T O F F I G U R E S

Figure 1 Automaton of P1 5

Figure 2 Notion of a CCS process 6

Figure 3 Coffee Addict process 7

Figure 4 Coffee or Tea Machine process 7

Figure 5 Computer Scientist and Coffee Machine processes 8

Figure 6 Computer Scientist and Coffee Machine processes in parallel 8

Figure 7 Computer Scientists and Coffee Machine parallel process 9

Figure 8 Computer Scientists and Coffee Machine restricted parallel process 9

Figure 9 CA automaton 12

Figure 10 A|P automaton 15

Figure 11 A|Q automaton 15

Figure 12 Automaton of P 17

Figure 13 Automaton of Q 17

Figure 14 Automaton of A 19

Figure 15 Automaton of P 19

Figure 16 Two-phase scheme 22

Figure 17 Measure scheme 38

Figure 18 Scheme of a quantum random number generator 65

L I S T O F TA B L E S

Table 1 SOS rules of CCS 13

Table 2 SOS for Timed CCS 27

Table 3 qCCS SOS rules 45

Table 4 Typing rules for quantum processes 50

Table 5 CCS vs qCCS syntax 54

Table 6 CCS vs qCCS operational semantics 56

Table 7 Remaining rules for the typing system 60

Table 8 Temporal choices for the quantum process algebra 72

Table 9 SOS rules for TqCCS 76

Table 10 TqCCS typing rules 78

Table 13 qCCS vs CQP 86

Table 14 qCCS vs CQP vs TqCCS 86

1

I N T R O D U C T I O N

1.1 motivation

Process algebras are used to study, model and verify concurrent systems, and have success-
ful case-studies in industry, Bunte et al. (2019); Groote and Mousavi (2014). There are three
classical examples of a process algebra: CCS developed by Robin Milner, ACP developed
by Jan Bergstra and Jan Willem Klop, and CSP developed by Tony Hoare. Of the three, we
highlight the first as the one that aims to isolate and study the elementary principles of
communication and concurrency.

It is well known that quantum technologies can have, in a very near future, a great
impact in our society even if Quantum Mechanics, as an area, only appeared in the last
century. As examples of this, we have the algorithms of Shor and Grove: the first provides
an exponential speedup in integer factorization; the second performs rapid searches on non-
structured data. Process algebras for quantum computational systems were introduced in
the past: qCCS, Ying et al. (2009), and CQP, Gay and Nagarajan (2006), are the two main
examples. The first was developed by Mingsheng Ying et al and it is based on CCS; the
second was developed by Simon Gay and Rajagopal Nagarajan.

The introduction of temporal notions into a quantum process algebra is important, be-
cause nowadays the quantum computers that exist are faulty, i.e. the qubits are not immune
to noise and they have a certain amount of time in which the operations occur without the
introduction of noise.

This dissertation has the goal to describe the introduction of a notion of time into a
new quantum process algebra that joins the positive aspects of qCCS and CQP. We also
developed a number of case studies to see the theory developed in action.

1.2 contributions

To develop our theory we studied a quantum process algebra, more concretely a quantum
version of CCS that only takes into account quantum variables, known as qCCS, Ying et al.
(2009). For this quantum process algebra, we developed a typing system, which allows

1.3. Document structure 2

another tool to assure that the no-cloning theorem is respected and that new properties
can be found, like the weakening property. Moreover, we proved that the typing system
developed has the weakening property. We also proved that the formulas of our typing
system are similar to qCCS processes.

Next, we present another version of qCCS, Feng et al. (2012). This version takes into
consideration classical and quantum variables, which makes possible a QRAM architecture.
Here, we have proved that there still exists a relation between qCCS processes and the
typing system. We also proved that classical and quantum weakening is implicit in our
typing system.

Through examples developed by us, we present limitations of this new version of qCCS.
Moreover, we introduce a new action, named new, and change the semantic rule of the
measurement to overcome the limitations.

Then, we extended qCCS with a temporal dimension and presented its syntax and se-
mantics. Furthermore, we developed a typing system. Finally, we adapted the previous
examples, so that we can see our theory in action.

Summing up, we have contributed to the evolution of quantum process algebras by incor-
porating suitable notions of time. With that, we are capable to control the lifetime of qubits
and see if all the operations are made within the coherence time of qubits.

1.3 document structure

The current dissertation is divided into six chapters. Chapter 1 motivates our work and
summarises its mains contributions. Chapter 2 provides the necessary background, namely
basic notions of concurrency, and a general view of process algebras. We give a particular
focus to one of the classical process algebras: Calculus of Communicating Systems (CCS),
Milner (1989), due to its minimal nature relative to other classic process algebras. Our
overview will be mostly based on Aceto et al. (2005). Chapter 3 provides some general
concepts relative to the introduction of time in process algebras. In particular, it presents
a temporal extension of CCS called Timed CCS. Then, Chapter 4 presents basic notions of
quantum computation and surveys quantum process algebras. Analogously to the previous
chapter, we will give a particular focus to a quantum extension of CCS known as quantum
CCS (in short, qCCS). As a first contribution of this dissertation, it was developed a typing
system for qCCS.

Chapter 5 then details the remaining contributions of our work: as discussed before, it
amounts to the introduction of a quantum process algebra with timing constraints and
associated notions. Finally, Chapter 6 discusses future work and concludes.

2

A B R I E F I N T R O D U C T I O N T O P R O C E S S A L G E B R A

2.1 basic notions of concurrency

The notion of concurrency was popularised in the ninetieth century by new technological
systems, more specifically railroads and telegraphic communications; in the former as a way
to increase the number of trains sharing the same railroad without collisions; in the latter to
efficiently handle multiple transmissions over a given set of wires. Not much time after the
appearance of the first computational devices, concurrency was also popularised within
computer science, and is by now a central concept in the area. The study of concurrent
algorithms started in the sixties with Dijkstra’s pioneer work, Dijkstra (1965).

So, what is concurrency? Concurrency is the ability to perform different tasks at the same
time, providing a way to speed up processes and naturally requiring notions of communica-
tion. A standard view of a concurrent system emphasises the division of the workload into
simple, small tasks, independent of each other, which are then executed in an interleaved
way or simultaneously. Such systems propound thorny challenges: three important cases
are the notion of deadlock (happens when tasks arrive at a given state and cannot proceed),
mutual exclusion (pertains to the exclusive access of an entity to a memory region at a given
time), and starvation (happens when a task, in order to perform an operation, waits ad
infinitum for necessary resources).

Two important features are usually supported by a computational, concurrent system:
one is the ability to interact with the environment and the other is that it must exhibit
infinite behaviour, i.e. it should not stop.

The following simple pseudo-code illustrates these features in tandem:

while(true){

sensor()

analysis(data)

execute()

}

Let us analyse this pseudo-code in detail: first, the while loop mimics a system that never
stops. Then, the sensor() interacts with the environment to collect data to be analysed by

2.2. A bird’s eye view of process algebra 4

different tasks, analysis(data). Finally, the tasks communicate with each other to perform an
action, execute().

2.2 a bird’s eye view of process algebra

In the beginning of the seventies, concurrency theory was limited to the thesis of Petri, Petri
(1962). In the same period of time, there were three central styles of formal reasoning about
computer programs by means of program semantics:

1. Operational semantics, McCarthy (1963)

2. Denotational semantics, Scott and Strachey (1971)

3. Axiomatic semantics, Hoare (1969)

These styles of semantics focused primarily on sequential programming languages. Later
on the scientific community tried to extend them to accommodate a notion of parallelism,
giving rise to three important solutions (currently, known as process algebras): CCS, Milner
(1989), CSP, Hoare (1978), and ACP, Bergstra and Klop (1984). More information about this
topic is available in Baeten (2005).

Briefly, a process algebra is a tool to model concurrency and, as its name suggests, is an
algebra of processes. By analysing these two words individually, process and algebra, we
are able to give a notion of what it is a process algebra. The term process refers to the
computational processing of a program, and in essence is regarded as a (possibly infinite)
sequence of actions. The orderly execution of this possibly infinite sequence of actions is
known as the behaviour of a process. The term algebra is related with the composition of
certain objects according a number of axioms and rules. Therefore, a process algebra is a
set of processes that can be described by a set of algebraic rules.

Recall from the previous section that a concurrent system is composed by small tasks.
These small tasks are processes, and they originate others via composition operators: e.g.
the parallel composition operator (||), the action prefix (.), and the choice operator (+).
Having this in mind, process algebras are used to describe the behaviour of a concurrent
system and allows to reason about it via algebraic concepts.

In concurrency, one key aspect is the communication between processes. Attention on
the next example.

Example 2.2.1. Consider two people negotiating a price for a certain item. The person
number one suggests a price and the person number two hears it and decides if he agrees
or not. In case of agreement, the negotiation is over. Otherwise, this procedure repeats
itself until an agreement is achieved. This interaction between them can be represented by

2.2. A bird’s eye view of process algebra 5

two processes composed in parallel – a line over an action represents the action of talking
and the lack of it represents the action of hearing:

P1 = price.(agree.Deal+ disagree.P1)
P2 = price.(agree.Deal+ disagree.P2)

Negotiation = P1 || P2

The intuitions about process algebra given earlier mentioned the description of processes’
behaviour via algebraic concepts. This is a very important mechanism because it allows
a precise, mathematical comparison of the behaviour of two different processes. Baeten
et al. (2010) says that a process can be viewed as an automaton, and because of that, the
comparison of the behaviour of two different processes can also resort to automata theory.
Briefly, an automaton is composed of a number of states (there are one or more initial states
and one or more final states), a number of transitions and a number of actions that allow to
transit from one state to another state. The behaviour of an automaton is an execution path
of actions that lead from the initial state to a final state, Baeten et al. (2010).

Example 2.2.2. Recall the previous example and the process P1. When an action of P1 is
performed, another process is obtained. As for example, after performing the action price,
a new process (P11) is created.

Next we are going to represent the automaton of P1, where the states of the automaton
are the processes and the transitions between states are the actions.

P1 P11 Deal

price

agree

disagree

Figure 1: Automaton of P1

Now it is necessary to have a tool in order to compare the behaviour of two automata,
expressing in this way a notion of equivalence, Hopcroft et al. (2006). With this notion, two
automata that have the same behaviour will be classified as equivalent. Since processes can
be represented by automata, two processes are equivalent if the behaviour of their automata
is the same. However, this notion of equivalence is not complete, because it lacks the notion
of interaction, that is, it does not take into account the possibility that processes can interact
with one another (for example, when in a parallel composition context). Furthermore, when
we take into consideration the non-deterministic operator it is not possible to distinguish
between a.(P+ Q) and a.P+ a.Q. This will be made clearer in Subsection 2.3.4. To surpass
these faults, another notion of equivalence was suggested: bissimilarity, Blackburn et al.

2.3. The Calculus of Communicating Systems 6

(2002). Here, two automata are said to be equivalent if the behaviour of both can be imitated
in every state that they may reach.

In this work we will focus on the process algebra proposed by Robin Milner, Milner
(1989). Although ACP and CSP are hand to hand with CCS the three classical theories of
process algebra, the choice of the last one is due to its simplicity and restriction to the basic
elements of concurrency. Having said that, in the next section we will outline CCS.

2.3 the calculus of communicating systems

2.3.1 Basic features and key concepts

The Calculus of Communicating Systems, CCS, was introduced by Robin Milner in the
eighties to describe a theory of processes that communicate and interact concurrently with
each other.

A process in CCS can be intuitively seen as a black box with ports, called channels, for
communicating with the external environment. The channels that receive information are
called input channels and the ones that transmit information are called output channels. The
output channels are decorated by a bar over their name to indicate that they are of type
output (e.g: out). Figure 2 presents an example of a CCS process named Black Box where
the channels in and out interact with the external environment.

Black
Boxin out

Figure 2: Notion of a CCS process

The terms in and out are labels, which are used to give names to channels and from now
on will be called actions.

Next, the syntax and the semantics of CCS will be presented.

2.3.2 Syntax

The sentences of CCS are called processes and are formed via different constructors. In
CCS there is a special process, called nil and represented by 0, that mimics the behaviour
of a deadlock. Next, the constructors will be outlined and an example, for each constructor,
provided for a better understanding. The examples provided here are inspired by Aceto
et al. (2005).

The first constructor to be presented is the action prefixing, which is denoted by a point (.).
Look at the next example which mimics the behaviour of a coffee addict.

2.3. The Calculus of Communicating Systems 7

Example 2.3.1. Consider a process CA, which represents a coffee addict with the channels
coin and coffee to communicate with the environment. The process is represented by

CA
de f
= coin.coffee.CA

and can be intuitively seen as in Figure 3:

CAcoin coffee

Figure 3: Coffee Addict process

In an initial state the coffee addict outputs a coin transiting to a state in which the action
to input coffee can be performed. After this action, the process returns to the initial state
where every step, previously outlined, can be realized again. Through this example, it is
noticeable that the sequence in which the actions took place is from left to right and this is
how processes in CCS evolve.

The next constructor is the sum composition operator, denoted by a plus signal (+), and
which represents a non-deterministic choice. This feature is better understood by analysing
the next example.

Example 2.3.2. Consider now a process, CTM, describing a machine that sells coffee and tea
with channels coin, coffee and tea to communicate with the environment. The process is
defined by

CTM
de f
= coin.(coffee.CTM + tea.CTM)

and using the analogy of the black box can be seen as:

CTMcoin
tea

coffee

Figure 4: Coffee or Tea Machine process

Recall from the previous example that a CCS process performs its actions from left to
right. Therefore, the first action to be executed is the input of a coin into the machine
allowing a transition to a state where there are two possible outcomes, coffee or tea. This
state is composed by the sum operator and it is non-deterministic, i.e., for the same input
(coin) there are two outcomes (coffee and tea). This means that the output might differ
for the same input. Independently of the choice, the process transits to its initial state where,
once again, every step can be repeated.

2.3. The Calculus of Communicating Systems 8

The parallel composition operator, denoted by a vertical bar (|), is an important constructor
in CCS because it allows the communication between processes and to concurrently execute
them. Recall from the beginning of this section that there are two types of channel, input
and output, and that each channel is labelled. In order for a communication to occur, the
two channels used in the communication must be complementary, that is, the input and
the output channels must have the same label. This is represented by an invisible action
denoted by τ, which has no complement. See the following example that represents the
interaction between a computer scientist and a coffee machine.

Example 2.3.3. Consider two different processes, CS and CM, where the first represents a
computer scientist with channels pub, coin and coffee and the second a coffee machine
with channels coin and coffee. Both processes are defined as

CS
de f
= pub.coin.coffee.CS

CM
de f
= coin.coffee.CM

and can be represented individually as in Figure 5:

CS

coffee

pub coin CM

coffee

coin

Figure 5: Computer Scientist and Coffee Machine processes

On the left hand side, the computer scientist after producing a publication is going to
spend a coin to obtain a coffee so that he is able to produce another publication. On the
right hand side, the coffee machine requires a coin to output the coffee. When one puts
these processes in parallel, a new one is created:

CM | CS = coin.coffee.CM | pub.coin.coffee.CS

and can be pictorially seen in Figure 6, where the complementary channels are connected:

CS

coffee

pub coin CM

coffee

coin

Figure 6: Computer Scientist and Coffee Machine processes in parallel

In this new process the first action to be executed is the output of a publication, which
shows that processes that are composed through the parallel operator can evolve indepen-
dently of each other.

2.3. The Calculus of Communicating Systems 9

coin.coffee.CM | coin.coffee.CS

The parallel process is now into a state where the computer scientist will give a coin and
the coffee machine will receive it. In this case, the state transition is performed by the action
τ. Next we have the output of coffee by the coffee machine and the input of coffee by the
computer scientist. This situation is similar to the previous one and the transition to the
initial state is performed, again, through a τ action.

The next constructor is the restriction operator which is denoted by \ and has the purpose
of hiding complementary channels of processes in parallel to the exterior environment. See
the following example for a better understanding.

Example 2.3.4. Consider the processes CS and CM previously defined and a new computer
scientist process CS′. By using the parallel operator a new process is defined

CS | CM | CS′

and its representation is in Figure 7:

CS

coffee

pub

coin

CS′

coffee

pub

coin

CM

coffee

coin

Figure 7: Computer Scientists and Coffee Machine parallel process

Through Figure 7 one can see that the complementary ports are all connected to each
other, meaning that the two computer scientists have access to the same coffee machine.
Now consider that the coffee machine is only available to the computer scientist on the left.
To represent this condition using a CCS process one needs to use the restriction operator.
The new process is defined as

(CS | CM)\{coin,coffee} | CS′

and the figure below shows the intuitive representation of this new process:

CS

coffee

pub coin CS′

coffee

pub coinCM

coffee

coin

Figure 8: Computer Scientists and Coffee Machine restricted parallel process

2.3. The Calculus of Communicating Systems 10

As it can be seen in Figure 8 the complementary channels of the coffee machine and the
computer scientist on the left are connected. On the other hand, the computer scientist
on the right does not have any connection to the coffee machine, despite the existence of
complementary channels. This shows that the channels of the coffee machine were hidden
from the computer scientist on the right.

At last, the renaming operator, is a relabelling function. Let us illustrate it via the following
example.

Example 2.3.5. Consider a vending machine that after the input of a coin outputs an item.

VM
de f
=coin.item.VM

Consider now a vending machine that outputs a cookie. Instead of creating a new process,
one can instead use a renaming operator that changes item to cookie.

VM[cookie/item]
de f
=coin.cookie.VM

With this constructor it is possible to create processes were actions have a general mean-
ing. The symbol "/" is used as substitution in this example to mimic a relabelling function
f , presented in Definition 2.3.6.

In the examples above, we saw that processes were identified by names. With this, it is
possible to create recursive processes which enable expressing infinite behaviour.

The presentation of a grammar that describes the syntax of CCS is a good way to sum-
marize all that was said in this subsection; but first let us present the sets used by this
grammar. The set of labels, L, is composed by an infinite set of channel names, A, and of
their complements, Ā.

L = A ∪ Ā

The set of actions, Act, is composed by the set of labels and by the invisible action τ.

Act = L ∪ {τ}

Now, we are able to present the syntax of CCS.

Definition 2.3.6. The collection P and Q of CCS expressions is given by the following gram-
mar:
P, Q ::= K | α.P | ∑i∈IPi | P|Q | P\L | P[f]

where

1. K is a process name in a countably infinite collection K of process names

2.3. The Calculus of Communicating Systems 11

2. α is an action in Act

3. I is an index set

4. L is a set of labels

5. f : Act→ Act is a relabelling function satisfying the following constraints:

f(τ) = τ

f(a) = f(a) for each label a

Although not explicit in the grammar above, CCS supports value passing and if-then-else
clauses. Until here, the processes considered did not exchange data between them; albeit
transmission of data being important for processes that communicate. So, in order to allow
processes to transmit data, CCS was extended with value passing. An example of value
passing is the one-place buffer, sketched in Aceto et al. (2005).

Example 2.3.7. Here is a process that receives a value, increments it, and outputs the result.

P
de f
= in(x).P(x)

P(x)
de f
= out(x+ 1).P

Through the action in(x) the process P will receive a value x that is going to be passed
to P(x). In the latter, x will be increased by one and outputted, out(x+ 1). After this, the
process P is able to receive another value and repeat the same procedure.

Before presenting the if-then-else clauses, we will present the if-clauses, because we aim to
write the former through the latter. Having said that, the if-clauses are written as follows:

if c then P

This means that if the condition c is obeyed then the process P executes.
The if-then-else clauses are represented by the following structure.

if c then P else Q

This means that if the condition c is obeyed then the process P executes otherwise Q will
execute. With this, we can write an if-then-else clause by means of the non-deterministic
operator.

(if c then P) + (if not c then Q)

2.3. The Calculus of Communicating Systems 12

2.3.3 Semantics

The semantics of CCS is given in terms of a Structural Operational Semantics, Milner (1989),
in short SOS. SOS is a set of rules that dictate which are the available transition between
processes.
In this subsection the semantics of CCS will be presented as well as the corresponding
expansion law. We will also formally show that a CCS process can be seen as an automaton,
as stated in the Section 2.2.
In the previous subsection, through the examples provided, we saw that processes in CCS
are composed by actions. We also saw that it is possible to define processes from other
processes, enabling this way the definition of recursive processes. In either way, when an
action of a process is performed a transition to another process happens. This transition
is the same that occur in automata. So, one can infer that CCS processes can be seen as
automata. To clarify this idea consider the following example.

Example 2.3.8. Recall the CCS process of a coffee addict.

CA
de f
= coin.coffee.CA

Through the execution of the action coin the process will transit to a state defined by
another process.

CA′
de f
= coffee.CA

After performing the action coffee the process will return to the initial state.
With this is possible to verify that state transitions are caused by the execution of actions

and that states are definitions of processes. The following automaton mimics the transitions
of the CCS process CA.

CA CA′

coin

coffee

Figure 9: CA automaton

In this automaton, CA is the initial state which transits to CA′ through coin. In CA′ the
transition to the initial state is made through the action coffee imitating in this way the
transitions that are made by the CCS process representing the coffee addict.

It is important to recall the definition of behaviour and what can be done with it. The
behaviour of a process describes the actions that allows the transitions between states and
the order in which they are made. With this, it is possible to give a notion of equivalence

2.3. The Calculus of Communicating Systems 13

between processes and see if they are equal. Since the behaviour of a CCS process is
described by the actions performed and the states that were reached, it may be specified by
automata, in particular, by Labelled Transition Systems, in short LTS.

The definition of LTS and SOS will be given in the next subsection.

LTS and SOS

As mentioned in the previous subsection, a CCS process can be represented by a LTS. The
latter is defined as follows.

Definition 2.3.9. A labelled transition system (LTS) is a triple (Proc,Act,{ a!−→| a ∈ Act}),
where:

1. Proc is a set of states

2. Act is a set of actions

3. a−→⊆ Proc × Proc is a family of transition relations indexed by the actions in a ∈ Act;

To represent the transition relations that were described in the last point of the Definition
2.3.9, we will use the notation s a−→ s′.

Previously, SOS was described as a set of rules that dictates how a process evolves along
its execution. We will now present the rules used by CCS.

Action:
α.P α−→ P

Con:
P

α−→ P′

K
α−→ P′

K
def
= P

Sumj:
Pj

α−→ P′ j

∑i∈I Pi
α−→ P′j

j ∈ I Com1:
P

α−→ P′

P | Q α−→ P′ | Q

Com2:
Q

α−→ Q′

P | Q α−→ P | Q′
Com3:

P
α−→ P′ Q

α−→ Q′

P | Q τ−→ P′ | Q′

Rel:
P

α−→ P′

P[f]
f (α)−−→ P′[f]

Res:
P

α−→ P′

P\L α−→ P′\L
α, α /∈ L

Table 1: SOS rules of CCS

CCS processes can be seen as automata, in particular, as LTSs. With this, a system can
have information about all the transitions that are made. By using the SOS rules, we verify
if the transitions are possible or not. Moreover, by making use of the LTS and the SOS rules,
we can reason about processes. This is why LTS and SOS are important tools in CCS.

2.3. The Calculus of Communicating Systems 14

2.3.4 Behavioural Equivalence

The notion of equivalence between processes requires that we recall the notion of an equiv-
alence relation.

Definition 2.3.10. An equivalence relation R over a set X is a subset of X × X (set of pairs
of elements of X) that satisfies the following constraints:

1. R is reflexive : xRx for each x ∈ X

2. R is symmetric : xRy ⇒ yRx for all x, y ∈ X

3. R is transitive : xRy ∧ yRz ⇒ xRz for all x, y, z ∈ X

Next we will present the notions of Trace Equivalence and Bisimulation (both strong and
weak), which provide different notions of process equivalence.

Trace Equivalence

Before entering in detail some concepts must be reminded.

1. LTS are automata whose transitions are labelled by actions

2. a trace of a process P is a sequence of actions (α1, α2 . . . αk) such that P = P0
α1−→ P1

α2−→ ...
αk−→ Pk

Traces(P) define the collection of traces of P

We already know that a CCS process corresponds to an automaton. Thus, a possible
notion of process equivalence is trace equality: two processes are equivalent if they have
the same set of traces. Unfortunately, there is one key element missing in this notion,
namely interaction. Let us prove that Trace Equivalence is not a suitable notion of process
equivalence via a concrete scenario. Consider three CCS processes defined as follows:

P
de f
= a.(b.P+c.P)

Q
de f
= a.b.Q+a.c.Q
A

de f
=a.c.A

where the processes P and Q have the same trace with different CCS expressions. Through
the usage of the parallel composition operator A | P and A | Q are created. When one calcu-
lates the set of traces of both processes it is obvious that they have a transition by τ first,
where A|P evolves to c.A|(b.P+c.P) but A|Q could transit to c.A|b.Q or c.A|c.Q. Imagine that
the transition is made to c.A|b.Q. In this state, the parallel process has entered in deadlock,
as the channels are not complementary. A deadlock state will also happens to the parallel

2.3. The Calculus of Communicating Systems 15

process A | P if the no-deterministic operator, in P, chose to perform the action b. When one
compares the traces of P and Q, we see that they have equivalent traces. Although, when
they are put in parallel with another process, A, the path to deadlock is different. This
shows that this attempt is incomplete. The automata of A|P, Figure 10, and A|Q, Figure 11,
will be represented for a better understanding of the case presented above.

A|P

A1|P1

deadlock

τ
b

τ

Figure 10: A|P automaton

A|Q

A1|Q1

deadlock

τ

τ

τ

Figure 11: A|Q automaton

In Figure 10 we have an initial state, A | P, that can only transit to the state A1 | P1 through
τ. This new state has two possibilities, one is to return to A | P, by performing the action τ,
and the other is to enter in a deadlock state through the execution of the action b. In Figure
11 the initial state, A | Q, can transit to the state A1 | Q1, by performing the action τ, or to
a deadlock state. If the transition is made to A1 | Q1, then we can only return to the initial
state through τ.

With this, we can take another conclusion.

α.(P+Q) 6= α.P + α.Q

On the left side, the action α is performed and then the choice for the process P or Q is
made. On the right side when the action α is performed one of the processes, P or Q, have
already been chosen.

Strong Bisimulation

The concept of bisimulation first appeared on automata, reason why we are going to con-
sider automata to explain strong and weak bisimulation.

Strong bisimulation relates states (of automata) that through the execution of the same
set of actions achieve equivalent states. That is, the processes should have the same trace
and the states reached by them must be equivalent. In this way, we take into consideration
the interaction between processes. This intuition is formally described as follows.

Definition 2.3.11. A binary relation R over the set of states of an LTS is a bisimulation iff
whenever s1Rs2 and α is an action:

1. if s1
α−→ s′1, then there is a transition s2

α−→ s′2 such that s′1Rs′2

2. if s2
α−→ s′2, then there is a transition s1

α−→ s′1 such that s′1Rs′2

2.3. The Calculus of Communicating Systems 16

When two processes are related by a strong bisimulation they are denoted by P∼Q. The
symbol ∼ denotes the biggest strong bisimulation; its formal definition according to Milner
(1989) is as follows:

Definition 2.3.12. P and Q are strongly equivalent or strongly bisimilar, written P∼Q, if (P,Q) ∈
R for some strong bisimulation R. This may be equivalently expressed as follows:

∼ =
⋃

{ R : R is a strong bisimulation }

Theorem 5.1 in Aceto et al. (2005) presents the properties of ∼ and proves them. Here,
we only present the properties:

Theorem 2.3.13. For all LTSs, the relation ∼ is

1. an equivalence relation

2. the largest strong bisimulation

In the fourth chapter of Milner (1989), Robin Milner presents in Proposition 7 the monoid
laws and in Proposition 8 the static laws. Although both laws show relations between CCS
processes and strong bisimulation, the former focuses on the non-deterministic operator
while the latter focuses on the parallel operator, as well as relabelling and restriction.

One interesting fact is that the relation ∼ is also a congruence, as proved in the fourth
chapter of Milner (1989). A congruence is a property that preserves the relation of two
processes when they are put in a "hole". Intuitively, the concept of "hole" can be seen as an
"incomplete" operator that is waiting to receive a process P to become complete. When the
process P is put in the hole [], denoted by [P], the process P becomes a "subprocess" of [P].

Using the concept of a hole, we are able to define congruence in a formal way:

Definition 2.3.14. R is a congruence if and only if [P]R[Q] holds for all processes P and Q,
such that P∼Q.

Here, we enumerate what needs to be proved for ∼ to be a congruence. For that, assume
that P∼Q. Then we need to show that,

1. α.P∼α.Q

2. P+ R∼Q+ R

3. P | R∼Q | R

4. P[f]∼Q[f]

5. P\L∼Q\L

2.3. The Calculus of Communicating Systems 17

Now, we are going to present a simplified version of the expansion law presented by
Robin Milner in Milner (1989). In a very short way, the expansion law distinguishes the
execution of actions of processes in two: asynchronous and synchronous. The first ones
are actions that processes perform individually whilst the latter represents actions that are
performed by two processes at the same time, which is the case of communication. To
present the expansion law, we are going to consider two processes, as follows:

Proposition 2.3.15. Let P ≡ P1 | P2. Then

P∼ ∑
{

α.(P′1 | P2) : P1
α−→ P′1

}
+ ∑

{
α.(P1 | P′2) : P2

α−→ P′2
}

+

∑
{

τ.(P′1 | P′2) : P1
α−→ P′1, P2

α−→ P′2 or P1
α−→ P′1, P2

α−→ P′2
}

where the first and the second sums are the asynchronous actions and the third sum the
synchronous.

In Milner (1989) there is a step-by-step guide that explains how the expansion law was
obtained.

To give some intuitions on how to apply this notion of bisimulation, we will outline an
exercise presented in Aceto et al. (2005).

Consider the processes P and Q defined as

P
de f
= a.P1 Q

de f
= a.Q1

P1
de f
= b.P+ c.P Q1

de f
= b.Q2 + c.Q

Q2
de f
= a.Q3

Q3
de f
= b.Q+ c.Q2

and also their respective automata.

P P1
a
c

b

Figure 12: Automaton of P

Q Q1 Q2 Q3
a
c

b a
c

b

Figure 13: Automaton of Q

To verify that P∼Q is true we need to recall the definition of strong bisimulation and, for
visual aid, use the automata above as support. Let us begin the verification. Through the
action a the process P transits to P1 and the process Q transits to Q1. Therefore, P and Q are
equivalent if P1 and Q1 are equivalent. Next, through the action b, P1 transits to P and Q1

transits to Q2. So, now we need to check if P and Q2 are equivalent, in order to guarantee
that the pairs P and Q, and P1 and Q1 are equivalent. If one continues this procedure, we will
reach a point where we return to the first step. When this happens we are able to conclude

2.3. The Calculus of Communicating Systems 18

if the processes are strong bisimilar or not. Next, we present all the transitions performed
by the processes P and Q. The symbol ∧ is read as a simple ‘and’.

P
a−→ P1 ∧ Q

a−→ Q1

P1
b−→ P∧ Q1

b−→ Q2

P
a−→ P1 ∧ Q2

a−→ Q3

P1
b−→ P∧ Q3

b−→ Q

P1
c−→ P∧ Q3

c−→ Q2

P1
c−→ P∧ Q1

c−→ Q

After analysing all the states of the two processes we can construct a bisimulation relation
R

R = {(P, Q); (P1, Q1); (P, Q2); (P1, Q3)}

such that P∼Q.
Through this example one can infer that the notion of strong bisimulation, unlike trace

equivalence, takes into account the branching structure between processes.
Although strong bisimulation is a better tool to verify the behaviour of processes than

trace equivalence, it is also very rigid in the sense that the comparison of behaviours is
performed via actions that can be seen. This arises the question "what if processes have
in their composition invisible actions?". To answer this question weak bisimulation was
developed.

Weak Bisimulation

Weak bisimulation, just like strong bisimulation, is another tool for behavioural equivalence.
The difference between both is that weak bisimulation abstracts from invisible actions. The
formal definition of weak bisimulation is as follows:

Definition 2.3.16. A binary relation R over the set of states of an LTS is a weak bisimulation
iff whenever s1Rs2 and α is an action:

1. if s1
α−→ s′1, then there is a transition s2

α
=⇒ s′2 such that s′1Rs′2

2. if s2
α−→ s′2, then there is a transition s1

α
=⇒ s′1 such that s′1Rs′2

The symbol α
=⇒ can be seen as a transition α−→ enveloped by a possible empty sequence of

τ-transitions, represented as follows:

α
=⇒ = (

τ−→)∗
α−→ (

τ−→)∗

2.3. The Calculus of Communicating Systems 19

where (
τ−→)∗ is a possible empty sequence of τ-transitions. When two processes are related

by a weak bisimulation we denote them by P≈Q. Formally,

Definition 2.3.17. P and Q are observation-equivalent or (weakly) bisimilar, written P≈Q, if
(P,Q)∈ R for some (weak) bisimulation R. That is,

≈ =
⋃{R : R is a bisimulation}

Through Theorem 5.2, Aceto et al. (2005) presents the properties of ≈ and indicates how
to prove them. Here, we only present the theorem’s statement:

Theorem 2.3.18. For all LTSs, the relation ≈ is:

1. an equivalence relation

2. the largest weakest bisimulation

Unlike strong bisimulation, weak bisimulation is not a congruence, because of the non-
deterministic operator. In Aceto et al. (2005), is presented an example of why congruence is
not respected on the non-deterministic operator. Now, we will outline an exercise that was
inpired on Aceto et al. (2005).

Consider the processes A and P defined as:

A
de f
=a.0+ τ.A1

A1
de f
=b.0+ τ.A

P
de f
=a.0+ b.0

The automata of both processes are:

A A1

0

a
τ

τ

b

Figure 14: Automaton of A

P 0

a

b

Figure 15: Automaton of P

Now we have to see if the definition stands for these two processes. We follow the same
procedure as in strong bisimulation example.

P
a−→ 0 ∧ A

a
=⇒ 0 (A τ−→ A1

τ−→ A
a−→ 0)

P
b−→ 0 ∧ A1

b
=⇒ 0 (A1

τ−→ A
τ−→ A1

b−→ 0)

2.3. The Calculus of Communicating Systems 20

In the brackets are the transitions that are made through τ.
The relation R is:

R= {(P, A); (P, A1); (0, 0)}

With this, we proved that A≈P.

3

T I M E D P R O C E S S A L G E B R A S

3.1 motivation and context

The notion of time is essential to concurrent systems because is the basis of several syn-
chronization mechanisms, specifically it allows to reason about real-timed systems and
communication protocols (e.g. TCP).

The notion of time that exists in the first process algebras is qualitative, i.e. we know that
an action is going to be performed after another but we do not know the amount of time it
takes to execute the second action. This difference between a qualitative and a quantitative
temporal notion is important when one considers, for example, a protocol communication,
like TCP, in which actions are triggered after some amount of time. Therefore, the intro-
duction of a quantitative notion of time is necessary.

In 1988, G.M. Reed and A.W. Roscoe introduced a quantitative notion of time in CSP and
developed TCSP, Roscoe and Reed (1988). According to Baeten (2005) this was the first
work where a quantitative notion of time was introduced in a process algebra.

In 1990, Wang Yi developed TCCS, Yi (1990), a timed version of CCS, where he presented
a wrong expansion theorem. However, a year later, the same author introduced timed
variables and corrected the expansion theorem, Yi (1991).

In 1991, J.C.M Baeten and J.A. Bergstra developed ACPρ, Baeten and Bergstra (1991),
which is a timed version of ACP.

Other temporal extensions of CSP, CCS, and ACP were made, but here we only refer to
the first works.

3.2 basic concepts

Interestingly, there are several aspects that must be taken into account when extending a
process algebra with a notion of time. This includes:

3.2. Basic concepts 22

1. Time domain

The time domain can be either discrete (e.g: N) or dense (e.g: Q+, R+). The former
is used to describe a discrete evolution of time, and is mainly used to specify dis-
crete systems such as computers. The latter, on the other hand, is used to describe
real-timed systems, such as the measurement of physical properties over time like
radiation, speed, etc.

2. Measurement of time

The measurement of time can be either absolute or relative. In the former there is a
global clock for all processes while in the latter the passage of time is relative to the
previous action executed.

3. Execution sequence

The execution sequence is normally described by the two-phase scheme: there is one
phase where processes performs asynchronous or synchronous actions and another
where processes stop for time to progress. The scheme of the two-phase step from
Nicollin and Sifakis (1992) is depicted in Figure 16.

j

Figure 16: Two-phase scheme

In Figure 16 we have two phases, denoted by ϕ1 and ϕ2. In the first one, processes
execute synchronous and asynchronous actions. In the second one, no action is per-
formed so that time can progress.

4. Introduction of the notion of time at the syntactic and semantic levels

Syntactically, there are some alternatives to implement the passage of time, as shown
in Section 3.5 of Nicollin and Sifakis (1992). One of them is the delay action. The
interested reader can find other cases in Nicollin and Sifakis (1992).

Semantically, one needs to decide if the execution of atomic actions is instantaneous
or has a duration.

3.3. Timed Calculus of Communicating Systems 23

5. Model properties

We need to choose which properties we want the temporal notion to comply. There are
several well-known properties, however we are only going to present the most usual
ones: namely, time determinism, time additivity, maximal progress and persistency.
We will show them by using the mathematical description presented in Nicollin and
Sifakis (1992). Intuitively, the expression P

d−→ P′ reads as "P transits into P′ in d time
units".

• Time Determinism:

∀ P, P′, P′′, d : P d−→ P′ ∧ P
d−→ P′′ ⇒ P′ = P′′

where = is the syntactic equality, and ∧ means "and".

• Time Additivity:

∀ P, P′, d, d′ : (∃P′′ : P d−→ P′′ ∧ P′′
d′−→ P′) ⇔ P

d+d′−−→ P′

• Maximal Progress:

∀ P, P′, Q, d : P τ−→ P′ ⇒ P 6 d−→ Q

• Persistency

∀ P, P′, Q, d, a : P a−→ P′ ∧ P
d−→ Q⇒ ∃P′′ : Q a−→ P′′

where a is an action

Next, we present a temporal extension of CCS.

3.3 timed calculus of communicating systems

As already mentioned, process algebras allow to describe and verify concurrent protocols.
Sometimes, the latter also involve time, a notion which unfortunately is not integrated in
CCS or any other classical process algebra. To overcome this, in 1988 an extended version
of CSP with a temporal notion was presented in Roscoe and Reed (1988). The core feature
of this extension is that it allows to describe processes with a quantitative notion of time.
In what concerns CCS, a first attempt to introduce time was made by Yi (1990). A year
later, the same author extended his previous work with time variables Yi (1991). Timed CCS
supports numerical time domains, such as the set of natural numbers or the set of non-
negative reals. When we chose as time domain the singleton {0}, we obtain the classical
theory of CCS.

The introduction of the passage of time on the syntax is made by time variables and
delay actions. The first ones were introduced in order to have a correct expansion theorem,
allowing the division of a parallel process into its synchronous and asynchronous part. The
interpretation given to time variables is equal to the one of a λ-term. In the latter, λx. f

3.3. Timed Calculus of Communicating Systems 24

is a term that is expecting an input v. When v is received, f [v/x], we substitute every
occurrence of x by v and output the result. Having this in mind, we present three situations
that can happen when using time variables.

• αx@t.P means that a process P is able to receive a message, x, through the channel α

after t units of time. When the message arrives, the process behaves like P[v/x, d/t],
where v is the content of the message received and d is the delay before the message
is available.

• αv@t.P means that a process P is able to send a message, v, through the channel α

after t units of time. When the message is sent, the process behaves like P[d/t], where
d is the delay before the message is sent.

• α@t.P means that an invisible action is going to happen after t units of time. After
that, the process behaves as P[d/t], where d represents the delay before the execution
of the invisible action.

Relatively to the delay actions, they are represented by ε and have the purpose of idling for
a finite amount of time. For example, a process defined as ε(d).P behaves like P after idling
d time units.

In terms of semantics, the atomic actions are performed instantaneously.
Regarding model properties, Timed CCS adopts time determinism, time additivity, max-

imal progress and persistency. Let us now analyse in detail the syntax, semantics and
notions of behavioural equivalence for Timed CCS.

3.3.1 Syntax

The time domain, T , is the set of non-negative real numbers and the set of temporal actions
is δT = {ε(d) | d ∈ T − {0}}. The set of non-negative reals is ranged by c and d and the
set of time variables is ranged by t, u, x, y. Yi (1991) uses time expressions such as t + d
and c ·− d, where ·− is defined by c ·− d = 0 if d ≥ c, otherwise c− d. Recall from CCS that
the set of labels is composed by the set of names and co-names, L=A∪ Ā. We now add to
the set of actions the set δT , yielding Act=L∪ {τ}∪ δT . The actions τ and ε(t) do not have a
complementary name. The syntax of Timed CCS is presented in the following grammar:

E, F::= nil | X | ε(e).E | µ@t.E | E+ F | E | F | E\L | E[S]

where:

1. nil: represents a deadlock state;

2. X: is a set of agent variables;

3.3. Timed Calculus of Communicating Systems 25

3. ε(e).E: is a delay action as described before;

4. µ@t.E: is a time variable as described before,
where µ is a communication channel;

5. E+ F: is the choice composition;

6. E | F: is the parallel composition;

7. E\L: hides all channels names in L;

8. E[S]: corresponds to relabelling of functions;

As one can see via this grammar, the main difference between the syntax of CCS and
Timed CCS is the presence of temporal actions. Another difference, is related with the
choice operator: here, the choice operator, is binary, while in CCS is defined by a sum
indexed by a set of values.

Having in mind λ-calculus, the substitution in Timed CCS is α-conversion, i.e. the bound
variables can be replaced with another variable. Furthermore, Yi (1991) states that he does
not distinguish µ@t.E from µ@u.E[u/t].

To familiarize the reader with the notation of TCCS, let us made an example.

Example 3.3.1. Consider a coffee addict. In order to drink a coffee, he needs to insert a coin
in the machine, wait for the machine to prepare the coffee, and then wait some time for the
coffee be at an adequate temperature for drinking. This behaviour can be represented by
the following process in TCCS.

CA
de f
= coin@0.ε(2).co f f ee@3.drink@0.CA

Through this process, the coffee addict does not wait to input a coin in the machine,
coin@0. However, he needs to wait two units of time to have coffee, ε(2). At last, he waits
three more units of time, co f f ee@3, and then he drinks the coffee, drink@0.

3.3.2 Semantics

Before presenting the semantics for Timed CCS, we need to introduce the concept of sort
that is necessary for the parallel composition, Yi (1991). Informally, we can see this concept
as the set of visible actions that a process P can perform within d units of time. Formally:

Definition 3.3.2. Let E be an agent expression containing no free time variable. Given
an assignment function ρ assigning each free agent variable a subset of L, we define
Sort0(E)ρ = ∅ and Sortd(E)ρ to be the least set satisfying:

3.3. Timed Calculus of Communicating Systems 26

Sortd(X)ρ = ρ(X)

Sortd(nil)ρ = ∅

Sortd(α@t.E)ρ = {α}

Sortd(τ@.E)ρ = ∅

Sortd(ε(e).E)ρ = Sortd ·−e(E)ρ

Sortd(E+ F)ρ = Sortd(E)ρ ∪ Sortd(F)ρ

Sortd(E | F)ρ = Sortd(E)ρ ∪ Sortd(F)ρ

Sortd(E\L)ρ = Sortd(P)ρ− {L∪ L}

Sortd(E[S])ρ = {S(α)|α ∈ Sortd(E)ρ}

To simplify the notation, the assignment function ρ will be omitted for an agent P and, as
a consequence, we write Sortd(P).

After these definitions, we are prepared to show the semantics of Timed CCS.
As in CCS, the semantics is given in terms of SOS. Therefore, we present in Table 2 the

transition rules for Timed CCS.

Inaction nil
ε(d)−−→nil

Prefix

µ@t.P
µ−→P[0/t] α@t.P

ε(d)−−→ α@t.P[t + d/t]

ε(d + e).P
ε(d)−−→ ε(e).P

P
ε(d)−−→P′

ε(e).P
ε(d+e)−−−→P′

P
σ−→P′

ε(0).P σ−→P′

Summation

P
µ−→P′

P+ Q
µ−→P′

P
ε(d)−−→P′ Q

ε(d)−−→Q′

P+ Q
ε(d)−−→P′ + Q′

Composition

P
µ−→P′

P | Q µ−→P′
P

α−→P′ Q
α−→Q′

P | Q τ−→P′ | Q′

P
ε(d)−−→P′ Q

ε(d)−−→Q′

P | Q ε(d)−−→P′ | Q′
Sortd(P) ∩ Sortd(Q) = ∅

3.3. Timed Calculus of Communicating Systems 27

Restriction
P

σ−→P′

P\L σ−→P′\L
σ, σ 6∈ L

Relabelling

P
σ−→P′

P[S]
S(σ)−−→P′[S]

Table 2: SOS for Timed CCS

where α ∈ L, µ ∈ L∪ {τ} and σ ∈ Act.
The side-condition Sortd(P) ∩ Sortd(Q) = ∅, in the Composition rule of the Table 2, is

used so that the maximal progression property is satisfied. For a better comprehension
consider the following example shown in Yi (1990).

Example 3.3.3. Consider a parallel process, X | Y, where X
de f
= α.A and Y

de f
= α.B.

The parallel process X | Y transits to A | B through a τ-transition, X | Y τ−→ A | B since X
α−→ A

and Y
α−→ B. However, X | Y is not allowed to idle, X | Y ε(t)−−→ X′ | Y′, for no t because the

side-condition is not obeyed, i.e. Sortt(X) ∩ Sortt(Y) = {α}.

Related to relabelling, its semantics is the same as in CCS.

3.3.3 Behavioural Equivalence

Strong Bisimulation

The definition of strong bisimulation in Timed CCS is the same than the one presented in
CCS. Because of that, we are only going to explore the expansion theorem and the model
properties. The expansion theorem is defined as follows:

Proposition 3.3.4. Let E≡ ∑i∈I ε(ci).µi@xi.Ei and F≡ ∑j∈J ε(dj).νj@yj.Fj. Then

E | F ∼ ∑
µi=νj∈L

ε(max(ci, dj)).τ.(Ei[dj ·− ci/xi] | Fj[ci ·− dj/yj])

+ ∑
i∈I

ε(ci).µi@xi.(Ei | F′) + ∑
j∈J

ε(dj).νj@yj.(E′ | Fj)

where

• F′≡ ∑
j∈J

ε(dj ·− ci ·− xi).νj@yj.{Fj[yj + ((ci + xi) ·− dj)/yj]}

• E′≡ ∑
i∈I

ε(ci ·− dj ·− yj).µi@xi.{Ei[xi + ((dj + yj) ·− ci)/xi]}

In the expression above, the first sum is related to the synchronous part and the re-
maining sums are related to the asynchronous part. In the synchronous part we have the

3.3. Timed Calculus of Communicating Systems 28

condition max(ci, dj) and truncated subtractions. The former is a condition to assure that
a communication can occur. The latter is a consequence of the former because we need to
adjust the process delays. This is necessary for the following reason: since we chose the
biggest delay we need to truncate the subtraction to avoid negative delays.

For a better understanding of the condition max(ci, dj), consider the following process,

ε(2).α@t.P | ε(1).α@t.Q

Now, imagine that one unit of time elapsed. The process transits to a state

ε(1).α@t.P[1 + t/t] | α@t.Q[1 + t/t]

In this state, the process cannot communicate because the action α@t is not available
since it is blocked by ε(1). Therefore, we need to wait another unit of time to unblock
the action α@t and, consequently, be able to perform a communication. By analysing this
simple example, we see that we need to choose the greatest delay to guarantee that the
actions that can communicate do not have any temporal constraint.

Real Time Laws

Recall that Timed CCS has as model properties maximal progression, time determinacy, time
additive and persistency. In Yi (1991) the model properties are written as lemmas and as
strong bisimulation relations. In the latter they are known as Real Time Laws. First we
present the lemmas and later the Real Time Laws.

Lemma 3.3.5. (Maximal Progress)

If P τ−→P′ for some P′, then P
ε(d)−−→P′′ for no d and P′′.

Lemma 3.3.6. (Time Determinacy)

Whenever P
ε(d)−−→P1 and P

ε(d)−−→P2 then P1 = P2, where "=" is the syntactical equality.

Lemma 3.3.7. (Time Additive)

P
ε(c+d)−−−→P2 iff there exists P1 such that P

ε(c)−−→P1 and P1
ε(d)−−→P2.

Lemma 3.3.8. (Persistency)

If P
ε(d)−−→P′ and P

α−→Q for some Q, then P′
α−→Q′ for some Q′

Next we outline the Real Time Laws.

1. Maximal Progress

τ@t.P∼ τ.P[0/t]

τ.P+ε(d).Q∼ τ.P

3.3. Timed Calculus of Communicating Systems 29

2. Time Determinacy

ε(d).(P+ Q)∼ ε(d).P + ε(d).Q

ε(d).(P | Q)∼ ε(d).P | ε(d).Q

3. Time Additive

ε(c + d).P∼ ε(c).ε(d).P

ε(0).P ∼ P

ε(d).nil ∼ nil

4. Persistency

α@t.P+ε(d).α@t.P[t + d/t] ∼ α@t.P

In Timed CCS, just like in CCS, strong bisimulation is a congruence.
To justify the usage of α-conversion, Yi (1991) presents the following proposition:

Proposition 3.3.9 (α-conversion). µ@t.E ∼ µ@u.E[u/t]

Weak Bisimulation

The notion of weak bisimulation relaxes the conditions on invisible actions for CCS and
Timed CCS. In the latter, this notion also relaxes conditions concerning the delay actions. To
see this, let us begin by defining the transitions on which the notion of weak bisimulation
for Timed CCS is based. According to Yi (1991):

Definition 3.3.10.

1. P
α⇒Q if P(τ−→)∗

α−→ (
τ−→)∗Q

2. P
ε(d)⇒ Q if P(τ−→)∗

ε(d1)−−→ (
τ−→)∗ · · · (τ−→)∗

ε(dn)−−→ (
τ−→)∗Q

where d = ∑i≤n di

Here (
τ−→)∗ means that we can have zero or more transitions through τ. With this def-

inition, we can build a labelled transition system (P ,εεε,⇒), where εεε is the set of actions
excluding invisible ones, Yi (1991), and⇒ according to the SOS rules. Then, we are able to
define weak bisimulation as follows:

Definition 3.3.11. A binary relation R⊆P×P is a weak bisimulation if (P, Q)∈R implies
that for all ζ ∈ εεε,

1. ∀P′:P ζ⇒P′ ⊃ ∃Q′:Q ζ⇒Q′ & (P′, Q′)∈ R

2. ∀Q′:Q ζ⇒Q′ ⊃ ∃P′:P ζ⇒P′ & (P′, Q′)∈ R

3.3. Timed Calculus of Communicating Systems 30

where ⊃ is another notation for implication and "&" is read as "and".

With this definition we are able to define weak equivalence between two processes.

Definition 3.3.12. Two processes P and Q are weak equivalent, written P≈Q iff there exists a
weak bisimulation R such that (P, Q)∈R.

Just like in CCS, weak bisimulation is not a congruence, because of the non-deterministic
operator.

4

W H E N Q U A N T U M C O M P U T I N G E N T E R S I N T O T H E S C E N E

4.1 quantum computing in a nutshell

Richard Feynman idealized that to simulate nature we would need a quantum computer.
In 1982 he said that: "Nature isn’t classical, dammit, and if you want to make a simulation
of nature, you’d better make it quantum mechanical, and by golly it’s a wonderful problem,
because it doesn’t look so easy." [Feynman (1982)]

Since then, the interest in quantum computers arose together with the idea of quantum
advantage: i.e. the idea that quantum computers can solve certain tasks much faster than
classical computers. In 1992, David Deutsch and Richard Jozsa developed a quantum al-
gorithm, Deutsch and Jozsa (1992), that indeed showed that quantum computers permit
exponential speedups in certain tasks. In a nutshell, the Deutsch-Jozsa algorithm can verify
if a function is either balanced or constant. In the former, the image has the same number of
zeros and ones, and in the latter, the image is made only of zeros or ones. If one considers
a function from the two-point set to the same set, a classical computer will need to perform
two tests while in a quantum computer one test suffices to have the answer. Although this
algorithm has no practical utility, it showed the remarkable power of quantum computers
for certain tasks.

In 1994 Peter Shor developed an algorithm to efficiently factorize prime numbers on
quantum computers, Shor (1994), which is a very hard task for classical computers. Using
Shor’s algorithm, a factorization of prime numbers that would take years for classical com-
puters, can be achieved in just a few hours on a quantum computer. Clearly, this algorithm
puts in risk the current encryption mechanisms.

In 1996, Knill proposed conventions for quantum pseucode, Knill (1996), and described
the QRAM architecture. The latter establishes a notion of master-slave model between classi-
cal and quantum computers. In this setting the classical computer is the master: it manages
the set of given tasks, selects the ones computationally hard and feeds them to the quantum
computer.

4.1. Quantum computing in a nutshell 32

Also in 1996, Lov Grover developed an algorithm for unstructured search, Grover (1996).
With this, it was proved once again that for same problems, the quantum computer had
better performance than a classical computer.

Twenty-three years later, the fight for quantum advantage still continues. Companies like
IBM, Microsoft and Google are heavily competing for the first working quantum computers.
Moreover, IBM provides cloud services for communication with their quantum computers.

Next, we present some notions related to quantum mechanics. For readers who want to
deepen their knowledge on quantum computation, a good source is Nielsen and Chuang
(2000).

4.1.1 Dirac’s Notation

Dirac, Dirac (1981), created a notation that is used in quantum mechanics: vectors are
written as a ket, |·〉, and the conjugate transpose, denoted as †, of a vector is written as a
bra, 〈·|. Due to their names, this notation is also known as the braket notation.

A ket can be represented by a column vector

|ψ〉 =


c1
...

cn


and the corresponding bra by a line vector of its complex conjugate

〈ψ| = |ψ〉† = [c∗1 · · · c∗n]

where c∗ is the complex conjugate of c.
Using the braket notation, the inner product of two vectors |ψ〉 and |φ〉 is expressed as

〈ψ|φ〉 = [c∗1 · · · c∗n] ·


d1
...

dn

 =
n

∑
i=1

c∗i · di

4.1.2 Hilbert Space

The semantic structure underlying quantum computing and quantum information is that
of an Hilbert space over the complex numbers, C, as discussed in von Neumann and Beyer
(1955).

An Hilbert space, denoted as H, is a vector space with an inner product. The inner
product is a mapping from H × H → C satisfying the following properties, Feng et al.
(2012):

4.1. Quantum computing in a nutshell 33

1. 〈ψ|ψ〉 ≥ 0 for any |ψ〉 ∈ H, with equality iff |ψ〉 = 0

2. 〈φ|ψ〉 = 〈ψ|φ〉∗

3. 〈φ|∑i ci · ψi〉 = ∑i ci · 〈φ|ψi〉

where c ∈ C, c∗ denotes the complex conjugate of c and |ψ〉, |φ〉 are vectors in H. Any two
vectors, |ψ〉 and |φ〉, are orthogonal if their inner product equals zero:

〈ψ|φ〉 = 0

The norm of a vector is:

|||ψ〉|| =
√
〈ψ|ψ〉

When the norm is equal to one the vector is said to be normalized.
An orthonormal basis in an Hilbert space is a set of vectors |i〉 normalized and orthogonal

between them. The dimension of a Hilbert space is the number of vectors that compose a
basis. For example, a Hilbert space over the complex numbers with a basis formed by two
vectors has dimension two. If the basis is formed by n vectors, then the dimension of the
Hilbert space is n, where n is a positive integer.

4.1.3 Tensor Product

The tensor product, denoted by ⊗, is a mathematical operation that concatenates vector
spaces. For example, if one considers a vector space V with dimension n and another
vector space W with dimension m, the tensor product of these two vector spaces, V ⊗W, is
another vector space whose dimension, dim(V ⊗W), is equal to n×m. In this new vector
space, a vector is a linear combination of the tensor product of vectors from V and W,
|v〉 ⊗ |w〉 = |v⊗w〉 = |vw〉. Notably, if |i〉 is a basis in V and |j〉 is a basis in W, then |i⊗ j〉
is a basis for V ⊗W. The tensor product has the following properties, Nielsen and Chuang
(2000):

1. For an arbitrary scalar z and elements |v〉 of V and |w〉 of W,

z(|v〉 ⊗ |w〉) = (z|v〉)⊗ |w〉 = |v〉 ⊗ (z|w〉)

2. For arbitrary |v1〉 and |v2〉 in V and |w〉 in W,

(|v1〉+ |v2〉)⊗ |w〉 = |v1〉 ⊗ |w〉+ |v2〉 ⊗ |w〉

3. For arbitrary |v〉 in V and |w1〉 and |w2〉 in W,

|v〉 ⊗ (|w1〉+ |w2〉) = |v〉 ⊗ |w1〉+ |v〉 ⊗ |w2〉

4.1. Quantum computing in a nutshell 34

The tensor product can also be applied to matrices, where it is known as the Kronecker
product. Consider two matrices, A and B, with dimensions m × n and p × q, respectively.
The Kronecker product of these two matrices is:

A⊗ B =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...
am1 am2 · · · amn

⊗


b11 · · · b1q
...

. . .
...

bp1 · · · bpq

 =

=



a11


b11 · · · b1q
...

. . .
...

bp1 · · · bpq

 · · · a1n


b11 · · · b1q
...

. . .
...

bp1 · · · bpq


...

. . .
...

am1


b11 · · · b1q
...

. . .
...

bp1 · · · bpq

 · · · amn


b11 · · · b1q
...

. . .
...

bp1 · · · bpq




The dimension of the resulting matrix is m× p by n× q.

4.1.4 Qubits

Every physical system that does not interact with the environment, i.e. an isolated system,
is associated with a Hilbert space which represents its state space. A physical system of great
interest to us is the qubit which is represented through a two dimensional Hilbert space, H2.
The set of vectors {|0〉, |1〉} form the so-called computational basis, where

|0〉 =
[

1
0

]
|1〉 =

[
0
1

]

The possible linear combinations of these basis vectors completely describe the state of a
qubit, which in the general case is in superposition:

|ψ〉 = α|0〉+ β|1〉

where α, β ∈ C are known as probability amplitudes and the equation |α|2 + |β|2 = 1
holds. The values |α|2, |β|2 are the probabilities of measuring |0〉 or |1〉, respectively. A

4.1. Quantum computing in a nutshell 35

n-qubit system corresponds to the tensor product of each qubit (seen as an Hilbert space)
presented in the system:

H2n =
n⊗
H2

An example of a n-qubit system is the two-qubit system. Here the Hilbert space is H2×2

and one of the possible basis is the set {|00〉, |01〉, |10〉, |11〉}. A general state is then given
by:

|ψ〉 = α|00〉+ β|01〉+ γ|10〉+ δ|11〉

where α, β, γ, δ ∈ C, |α|2 + |β|2 + |γ|2 + |δ|2 = 1, and |α|2, |β|2, |γ|2 and |δ|2, are the
probabilities of measuring |00〉, |01〉, |10〉 and |11〉, respectively.

The states represented by multiple qubits are denominated either as separable states or as
entangled states. The former can be written as a linear combination of tensor products, like
for example

1√
2
(|0〉+ |1〉)⊗ 1√

2
(|0〉+ |1〉) = 1

2
(|00〉+ |01〉+ |10〉+ |11〉)

while the latter cannot. An example of an entangled state for two-qubit systems is the Bell
state.

|β00〉 =
1√
2
(|00〉+ |11〉)

For two-qubit systems, there are three more Bell states, which are further analyzed in
Nielsen and Chuang (2000).

4.1.5 Unitary Operators

Unitary operators respect the following equation:

U†U = UU† = I

where U† is the conjugate transpose or Hermitian conjugate of the operator U, and I is the
identity operator.

In closed quantum systems, i.e. systems that do not interact with the environment, the
evolution of a state is usually described via the notion of an unitary operator. As an exam-
ple, consider a final state |φ〉 obtained from an initial state |ψ〉 and a unitary operator U by
application U(|ψ〉) = U|ψ〉 = |φ〉.

4.1. Quantum computing in a nutshell 36

Some common unitary operators are the Pauli operators (I, X, Y, Z) and the Hadamard
(H) for single qubits and the controlled-NOT (CNot) for two-qubit systems. On a matrix
representation in the computational basis, these operators are written as:

I =

[
1 0
0 1

]
, X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
,

H =
1√
2

[
1 1
1 −1

]
, CNot =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Next we will show how the single qubit operators affect the general state |ψ〉 = α|0〉+

β|1〉 of a qubit:

I|ψ〉 = α|0〉+ β|1〉

X|ψ〉 = α|1〉+ β|0〉

Y|ψ〉 = iα|1〉 − iβ|0〉

Z|ψ〉 = α|0〉 − β|1〉

H|ψ〉 = 1√
2
[α(|0〉+ |1〉) + β(|0〉 − |1〉)]

Note that the Hadamard operator creates superposition between the states |0〉 and |1〉
when just acting on one of them, for example H|0〉 = 1√

2
(|0〉+ |1〉). Remarkably, it can

also destroy the superposition, since by unitarity HH|0〉 = |0〉. ID Quantique, IDQ (2016),
makes use of this gate to generate random numbers.

The CNot is a two-qubit system whose behaviour is similar to a controller, therefore the
C in CNot. When applying a CNot to a two-qubit system, we consider that the first qubit
is the control qubit and that the second qubit is going to be changed. Therefore, when the
control qubit is zero, the second qubit is not changed. Otherwise, if the control qubit is one,
the second qubit is changed. As an example, consider the effect that a CNot produces on a
general two-qubit state |ψ〉 = α|00〉+ β|01〉+ γ|10〉+ δ|11〉 is as follows:

CNot|ψ〉 = α|00〉+ β|01〉+ γ|11〉+ δ|10〉

Now consider that we have a two-qubit system, |ψ〉 = 1√
2
(|00〉+ |11〉), and we want to

apply a X operator on the first qubit and a Z operator on the second. To do that we make
use of the tensor product.

4.1. Quantum computing in a nutshell 37

X⊗ Z|ψ〉 = (X⊗ Z)
1√
2
(|00〉+ |11〉)

= (X⊗ Z)
1√
2
(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉)

=
1√
2
[(X⊗ Z)|0〉 ⊗ |0〉+ (X⊗ Z)|1〉 ⊗ |1〉]

=
1√
2
[X|0〉 ⊗ Z|0〉+ X|1〉 ⊗ Z|1〉]

=
1√
2
(|10〉 − |01〉)

To simplify this process, one can label the qubits, using letters or numbers, and then put the
label of the qubit that is going to be manipulated as a subscript in the operator, as follows:

X1|ψ〉 = X⊗ I|ψ〉 = 1√
2
(|10〉+ |01〉)

4.1.6 Measurement

Measurement is an action that allow us to see how an isolated system has evolved through
the action of unitary operations. Recall that there is a probability amplitude associated to
each state. When one performs a measurement, the probability of measuring a state in
the basis of the Hilbert space is given by the modulus square of the probability amplitude
associated to this state.

In detail, a measurement is composed by a collection of measurement operators, {Mm},
where m indicates the measurement outcomes that may occur. The measurement operators
must obey the completeness equation:

∑
m

M†
m Mm = I

The probability of m being the measurement outcome of a state |ψ〉 is given by:

p(m) = 〈ψ|M†
m Mm|ψ〉

The state of the system after the measurement is:

Mm|ψ〉√
〈ψ|M†

m Mm|ψ〉

For a better understanding of how measurement works, consider the following example.

4.1. Quantum computing in a nutshell 38

Example 4.1.1. In the next figure we have a two-qubit state |ψ〉 = α|00〉+ β|01〉+ γ|10〉+
δ|11〉 and all the possible outcomes of measuring first the left qubit and then the right qubit.

α|00〉+ β|01〉+ γ|10〉+ δ|11〉

α|00〉+ β|01〉

α|00〉

0
|α|2

|α|2 + |β|2

β|01〉

1
|β|2

|α|2 + |β|2

0|α|2 + |β|2

γ|10〉+ δ|11〉

γ|10〉

0
|γ|2

|γ|2 + |δ|2

δ|11〉

1
|δ|2

|γ|2 + |δ|2

1|γ|2 + |δ|2

Figure 17: Measure scheme

In the Figure 17, in red we have the measurement outcome and in blue the probability of
the measurement outcome. The states presented after the measurement are not normalized.

4.1.7 Density Operators

Another way to represent quantum states is by using density operators or density matrices.
While a pure state |ψ〉 is represented by the state vectors of a system, a density operator,

denoted by ρ, can be written by an ensemble of pure states, {pi, |ψi〉}, just as follows:

ρ = ∑
i

pi|ψi〉〈ψi|

where pi is the probability of being in the ensemble state |ψ〉.
A density operator thus can also represent a mixture of pure states. To distinguish a pure

state from a mixed state, the following criteria must be used:

1. tr(ρ2) = 1 → pure states

2. tr(ρ2) < 1 → mixed states

where tr is the trace function that sums all the diagonal elements of a matrix A

tr(A) =
n

∑
i=1
〈i|A|i〉

in which i denotes a basis vector of A. Another fact about density operators is that one
density operator can represent different state vectors, as shown in the following example.

Example 4.1.2. Consider two different state vectors |ψ〉 = 1√
2
(|0〉+ |1〉) and |φ〉 = −|ψ〉.

Now let us construct the density operator of both state vectors. For |ψ〉 the density operator

4.1. Quantum computing in a nutshell 39

is ρ1 =
1
2
(|0〉〈0|+ |0〉〈1|+ |1〉〈0|+ |1〉〈1|) and for |φ〉 the density operator is ρ2 =

1
2
(|0〉〈0|+

|0〉〈1| + |1〉〈0| + |1〉〈1|). Here, we see that ρ1 = ρ2, which means that two different state
vectors can be represented by the same density operator.

Formally, a density operator is defined as follows, Nielsen and Chuang (2000):

Definition 4.1.3. An operator ρ is the density operator associated to some ensemble {pi, |ψi〉}
iff it satisfies the conditions:

1. tr(ρ) = 1

2. ρ is a positive operator

where a positive operator is an operator with non-negative eigenvalues.

An unitary operator U acts on a density operator ρ as follows:

UρU†

Since a density operator can be written through an ensemble of pure states, we can
represent the action of an unitary operator in terms of an ensemble of pure states

UρU† = U ∑
i

pi|ψi〉〈ψi|U† = ∑
i

piU|ψi〉〈ψi|U†

If we simplify the notation, we obtain

U|ψ〉〈ψ|U†

After a measurement, M†
mρMm the probability of m being the measurement outcome is

given by Nielsen and Chuang (2000):

p(m) = tr(M†
m Mmρ)

The state of the system after the measurement is:

M†
mρMm

tr(M†
m Mmρ)

A quantum system, described by a density operator, can be composed by others small
systems, known as subsystems. In order to describe a subsystem, we need to perform the
partial trace of the density operator, Nielsen and Chuang (2000).

Definition 4.1.4. Let ρ be a density operator of a system composed by two subsystems A
and B, such that ρ = ρA ⊗ ρB. The partial trace over the subsystem B is defined by:

4.1. Quantum computing in a nutshell 40

trB(|a1〉〈a2| ⊗ |b1〉〈b2|) = |a1〉〈a2|tr(|b1〉〈b2|)

where |a1〉 and |a2〉 are any two vectors in the state space of A, and |b1〉 and |b2〉 are any
two vectors in the state space of B.

With this, the notion of reduced density operator will be introduced by an example.

Example 4.1.5. Consider a quantum system composed by two entangled subsystems where
the first qubit represents subsystem A and the second qubit subsystem B:

|Φ+〉 = 1√
2
(|00〉+ |11〉)

The density operator of |Φ+〉 is:

ρ =
1
2
(|00〉〈00|+ |00〉〈11|+ |11〉〈00|+ |11〉〈11|)

In order to obtain the reduced density matrix to the subsystem A we need to perform a
partial trace operation with respect to subsystem B, as follows:

ρA = trB(ρ) =

=
1
2
(|0〉〈0|〈0|0〉+ |0〉〈1|〈0|1〉+ |1〉〈0|〈1|0〉+ |1〉〈1|〈1|1〉) =

=
1
2
(|0〉〈0|+ |1〉〈1|)

With this example we wanted to show how the reduced density operators are calculated
and that when we calculate the reduced density matrix of an entangled state, information
is lost. On the other hand, if the above density operator represented a separable state, no
information would have been lost.

4.1.8 Super-operators

On an isolated system, the evolution of a system can be described by unitary operators.
But is this still valid for open systems? The answer is no. To describe the evolution of an
open system we need to consider super-operators. According to Ying et al. (2009), a "super-
operator on a Hilbert space H is a linear operator ε from the space of linear operators on H
into itself" satisfying the following two conditions:

1. tr[ε(ρ)] ≤ tr(ρ) for each ρ ∈ D(H)

2. Complete positivity: for any extra Hilbert space HR, (IR ⊗ ε)(A) is positive provided
A is a positive operator on HR ⊗H, where IR is the identity operation on HR

4.2. A survey of quantum process algebras 41

where D(H) is the set of partial density operators in H, with a partial density operator
being a positive operator, ρ, with tr(ρ) ≤ 1. When the first clause yields tr[ε(ρ)] = tr(ρ), for
all ρ ∈ D(H), then ε is trace-preserving. Intuitively, a super-operator can be understood as
an operator that acts on density operators.

4.2 a survey of quantum process algebras

Quantum Mechanics is a recent field (it emerged in the beginning of the last century) that
sees the world as a quantization (physical properties, such as energy, are studied via dis-
crete methods). Concurrent Systems and Process Algebra also appeared in the last century
but around the 60s (70s) and they are a field of Computer Science. The first studies sys-
tems that interact with the environment and communicate with other systems. The second
studies concurrent systems in an algebraic way.

It is normal to perform/recreate in a quantum setting what was successful classically
and because of that quantum process algebras were created in the quantum domain as
well. These include CQP (Communicating Quantum Processes, Gay and Nagarajan (2005)),
QPAlg (Quantum Process Algebra, Lalire and Jorrand (2004)) and qCCS (Quantum Calculus
of Communicating Systems, Ying et al. (2009)). CQP gives a formal model to analyse quan-
tum communicating protocols and most of these protocols involve the transmission of both
quantum and classical data. QPAlg aims to study the coordination between classical and
quantum computation. With this description it is possible to see that CQP and QPAlg han-
dle classical information. Because of that, it might be better to call them Hybrid Quantum
Process Algebras, where the word hybrid comes from the fact that they need to interact
with both the quantum and classical worlds. The one that is missing, qCCS, is the one that
is going to be thoroughly analysed in this dissertation. So why did we choose qCCS? qCCS
is a process algebra that only cares about pure quantum processes, discarding everything
that is classical. In addition, qCCS is a quantum version of CCS (the process algebra that
was discussed in the previous chapters). These are the two reasons we chose qCCS.

4.3 quantum calculus of communicating systems

Quantum Calculus of Communicating Systems, Feng et al. (2007), is a process algebra
whose goal is to extend CCS with quantum input/output, quantum operators and mea-
surements. This version takes into account classical and quantum variables. Later on,
Mingsheng Ying et al, Ying et al. (2009), developed a purely quantum version of qCCS, in
order to develop a tool to reason about computation and communication in quantum sys-
tems. Unlike the first version of qCCS, Feng et al. (2007), this one only takes into account

4.3. Quantum Calculus of Communicating Systems 42

quantum variables. In Feng et al. (2012) the two previous versions of qCCS were combined
to develop a version that harbours classical and quantum data.

In this section we will outline the syntax, operational semantics and a notion of be-
havioural equivalence of qCCS, Ying et al. (2009).

4.3.1 Syntax

From now on it will be assumed that Chan is the set of names for quantum channels, Var
is the set of names for quantum variables, τ represents the silent action, H is a Hilbert
space, P is the set of quantum processes and f v(P) is the set of free quantum variables in
a process P ∈ P .

The quantum variables in Var are used to represent quantum systems in the Hilbert space.
For example, if x ∈ Var, then there is a state space for the x-system that is represented by a
finite-dimensional Hilbert space, denoted as Hx. Furthermore, we can have a big quantum
system composed of all the x-systems, defined by:

HX = ⊗
x∈X
Hx

for any X ⊆Var. Note that HVar is a countably infinite-dimensional Hilbert space because
of the tensor products between finite-dimensional Hilbert spaces. In what follows, typically
when we write H we mean HVar.

In P there exists a set of process constant schemes. A process constant scheme has
associated to it a non-negative arity. So, if P is a process constant and x̃ = x1, · · · , xar(P) ∈
Var, then P(x̃) is called a process constant.

Next, the formal syntax of qCCS will be presented. Note that, in Section 4.5 we make a
comparison between CCS and qCCS.

Definition 4.3.1. Quantum processes are defined inductively by the following formation
rules:

1. each process constant A(x̃) is in P and f v(A(x̃)) = {x̃}

2. nil ∈ P and f v(nil) = ∅

3. if P ∈ P , then τ.P ∈ P and f v(τ.P) = f v(P)

4. if P ∈ P , X is a finite subset of Var, and ε is a super-operator on HX, then ε[X].P ∈ P
and f v(ε[X].P) = f v(P) ∪ X

5. if P ∈ P , then c?x.P ∈ P , and f v(c?x.P) = f v(P)− {x}

6. if P ∈ P and x /∈ f v(P), then c!x.P ∈ P , and f v(c!x.P) = f v(P) ∪ {x}

4.3. Quantum Calculus of Communicating Systems 43

7. if P, Q ∈ P , then P+ Q ∈ P and f v(P+ Q) = f v(P) ∪ f v(Q)

8. if P, Q ∈ P and f v(P) ∩ f v(Q) = ∅, then P || Q ∈ P and f v(P || Q) = f v(P) ∪ f v(Q)

9. if P ∈ P and L ⊆ Chan, then P\L ∈ P and f v(P\L) = f v(P)

Note that, every clause in Definition 4.3.1 includes a calculation of quantum free variables.
This is done in order to control the quantum variables that are presented in processes and
in particular to forbid the violation of the no-cloning theorem. This theorem is a restriction
imposed by quantum mechanics that says that it is not possible to clone a state. The
majority of the clauses are mostly identical to the ones in CCS syntax; the only differences
are in clause 4 and in the conditions in clauses 6 (x /∈ f v(P)) and 8 (f v(P) ∩ f v(Q) = ∅).
The first one is new: it allows to perform quantum operations on systems and the others
are related with the no-cloning theorem.

Let us focus on the clauses 5 and 6 concerning the reception and emission of data on
quantum channels, respectively. When receiving information (c?x), the quantum variable
x is eliminated from the set of quantum free variables and becomes bound. On the other
hand, when a quantum variable is sent (c!x), it becomes a free variable because the variable
will be bound by the channel that is going to receive it.

We assume that each process constant has a defining equation:

A(x̃)
de f
=P

where P is a process with f v(P) ⊆ {x̃}.
Another feature presented in qCCS is the substitution of variables names. To perform

this action, caution is needed due the impossibility of cloning states in quantum mechanics.
Mingsheng Ying et al, Ying et al. (2009), define substitution of quantum variables and give
an explanation about it. For those interested, we recommend consulting the op. cit. In this
document, we will only present the final result.

Definition 4.3.2. For any P ∈ P and substitution f , P f is defined recursively as follows:

1. if P is a process constant A(x1, · · · , xn) then

P f = A(f (x1), · · · , f (xn))

2. if P = nil then P f = nil

3. if P = τ.P′ then P f = τ.P′(f)

4. if P = ε[X].P′ then P f = (ε f)[f (X)].P′(f)

5. if P = c?x.P′ then P f = c?y.P′{y/x}(fy), where y /∈ f v(c?x.P′) ∪ f v(P′ f), and fy is the
substitution with fy(y) = y, fy(f−1(y)) = f (y) and fy(z) = f (z) for all z 6= y and
z 6= f−1(y)

4.3. Quantum Calculus of Communicating Systems 44

6. if P = c!x.P′ then P f = c! f (x).P′(f)

7. if P = P1 + P2 then P f = P1(f) + P2(f)

8. if P = P1 || P2 then P f = P1(f) || P2(f)

9. if P = P′\L then P f = P′(f)\L

The clause 5 is the most difficult to understand. Recall that it is not possible to clone,
and through the syntax rules of qCCS, when a channel receives a quantum variable the
latter becomes bounded. Now consider the processes in clause 5. When the substitution
is applied to P, all the occurrences of x in P must be changed to y, in order to respect the
no-cloning theorem. This explains the fact that c?x became c?y and the fact that fy does
not include x. With all this, the new bounded variable became y, and the qCCS syntax is
respected.

4.3.2 Semantics

The operational semantics of qCCS is composed by configurations and transitions between
them labelled by actions. A configuration is a pair 〈P, ρ〉, where P ∈ P is a process and
ρ ∈ D(H) is a partial density operator, which specifies the actual state of the environment.
Here, a partial density operator is a positive operator, ρ, with tr(ρ) ≤ 1. D(H) represents
the set of partial density operators on H. The set of configurations is represented by Con,
and Act is the set of actions composed of

Act = {τ} ∪ Actop ∪ Actcom

where the set of quantum operations is

Actop = {ε[X] : X is a finite subset of Var and ε is a super-operator on HX}

and the set of communication actions is

Actcom = {c?x, c!x : c ∈ Chan and x ∈ Var}

We will also need the following notation:

· for each α ∈ Act, we use cn(α) to stand for the channel name in action α; thus
cn(c?x) = cn(c!x) = c, and cn(τ) = ∅ and cn(ε[X]) = ∅;

· f v(α) is the set of free variables in α; thus, f v(c!x) = {x}, f v(ε[X]) = X and f v(τ) =
f v(c?x) = ∅;

4.3. Quantum Calculus of Communicating Systems 45

· bv(α) is the set of bounded variable in α; thus, bv(c?x) = x and bv(τ) = ∅, bv(ε[X]) =

∅ and bv(c!x) = ∅.

We will next present the operational semantics of qCCS as a transition system (Con, Act,
→), where the transition relation→ is defined by the following rules:

Tau: 〈 τ.P, ρ 〉 τ−→ 〈 P, ρ 〉

Oper: 〈 ε[X].P, ρ 〉 ε[X]−−→ 〈 P, εX(ρ) 〉

Out: 〈 c!x.P, ρ 〉 c!x−−→ 〈 P, ρ 〉

In: 〈 c?x.P, ρ 〉 c?y−−→ 〈 P{y/x} , ρ〉
y /∈ f v(c?x.P)

Sum:

〈 P, ρ 〉 α−→ 〈 P′, ρ′ 〉
〈 P+ Q, ρ 〉 α−→ 〈 P′, ρ′ 〉

Intl1:

〈 P, ρ 〉 c?x−−→ 〈 P′, ρ′ 〉

〈 P || Q, ρ 〉 c?x−−→ 〈 P′ || Q, ρ′ 〉
x /∈ f v(Q)

Intl2:

〈 P, ρ 〉 α−→ 〈 P′, ρ′ 〉
〈 P || Q, ρ 〉 α−→ 〈 P′ || Q, ρ′ 〉

α not input

Res:

〈 P, ρ 〉 α−→ 〈 P′, ρ′ 〉
〈 P\L, ρ 〉 α−→ 〈 P′\L, ρ′ 〉

cn(α) /∈ L

Def:

〈 P{ỹ/x̃}, ρ 〉 α−→ 〈 P′, ρ′ 〉
〈 A(ỹ), ρ 〉 α−→ 〈 P′, ρ′ 〉 A(x̃)

de f
= P

Comm:

〈 P, ρ 〉 c?x−−→ 〈 P′, ρ 〉 〈 Q, ρ 〉 c!x−−→ 〈 Q′, ρ 〉
〈 P || Q, ρ 〉 τ−→ 〈 P′ || Q′, ρ 〉

Table 3: qCCS SOS rules

In Table 3, the symmetric forms of Sum, Intl1, Intl2 and Comm are omitted. Through
the rules Out, In and Comm one can conclude that the density operator information is
exchanged. In the Out rule, unlike the In rule, the x-system is sent through the channel c. In

4.3. Quantum Calculus of Communicating Systems 46

the latter, the x variable refers to the place where the received system will go. Furthermore,
in the In rule, the side condition serves to avoid conflict of names.

The justification for the side conditions in Intl1 and Intl2, and the fact that the Comm
does not have a side condition is presented in Lemma 3.2 of Ying et al. (2009). Moreover,
Section 3.4 of Ying et al. (2009) presents the properties of the transitions defined on Table 3.

4.3.3 Behavioural Equivalence

In CCS, the behavioural equivalence only considers processes. But, the semantics of qCCS
uses pairs made of processes and states, which are denoted as configurations. Therefore
a suitable notion of equivalence must pay attention not merely to processes but also to
configurations. Having that in mind, the notion of strong bisimulation in qCCS, Ying et al.
(2009), is presented next.

Definition 4.3.3. A symmetric relation R ⊆ Con × Con is called a strong bisimulation if
for any 〈P,ρ〉, 〈Q,σ〉 ∈ Con, 〈P,ρ〉R〈Q,σ〉 implies,

1. whenever 〈P, ρ〉 α−→ 〈P′, ρ′〉 and α is not an input, then for some Q′ and σ′, 〈Q, σ〉 α−→
〈Q′, σ′〉 and 〈P′, ρ′〉R〈Q′, σ′〉

2. whenever 〈P, ρ〉 c?x−→ 〈P′, ρ〉 and x /∈ f v(P) ∪ f v(Q), then for some Q′, 〈Q, σ〉 c?x−→ 〈Q′, σ〉
and for all y /∈ f v(P′) ∪ f v(Q′)− {x}, 〈P′{y/x}, ρ〉R〈Q′{y/x}, σ〉

3. whenever 〈Q, σ〉 α−→ 〈Q′, σ′〉 and α is not an input, then for some P′ and σ′, 〈P, ρ〉 α−→
〈P′, ρ′〉 and 〈P′, ρ′〉R〈Q′, σ′〉

4. whenever 〈Q, σ〉 c?x−→ 〈Q′, σ〉 and x /∈ f v(P) ∪ f v(Q), then for some P′, 〈P, ρ〉 c?x−→ 〈P′, ρ〉
and for all y /∈ f v(P′) ∪ f v(Q′)− {x}, 〈P′{y/x}, ρ〉R〈Q′{y/x}, σ〉

In the second and fourth clauses, the condition y /∈ f v(P′) ∪ f v(Q′)− {x} is necessary to
prevent that two different quantum systems become the same.

Definition 4.3.4. For any 〈P, ρ〉,〈Q, σ〉 ∈ Con, we say that 〈P, ρ〉 and 〈Q, σ〉 are strongly
bisimilar, written 〈P, ρ〉 ∼ 〈Q, σ〉, if 〈P, ρ〉R〈Q, σ〉 for some strong bisimulation R; that is,
strong bisimilarity on Con is the greatest strong bisimulation:

∼= ⋃{R : R is a strong bisimulation}

When two processes are in the same environment, we can compare the processes.

Definition 4.3.5. For any quantum processes P, Q ∈ P , we say that P and Q are strongly
bisimilar, written P∼Q, if 〈P, ρ〉∼〈Q, ρ〉 for all ρ ∈ D(H).

4.3. Quantum Calculus of Communicating Systems 47

The proof of this result, as well as the ones that immediatly follow are in Ying et al. (2009).
For a recursive characterization of strong bisimilarity between configurations, the follow-

ing lemma is presented.

Lemma 4.3.6. For any 〈P, ρ〉,〈Q, σ〉 ∈ Con, 〈P, ρ〉 ∼ 〈Q, σ〉 if and only if:

1. whenever 〈P, ρ〉 α−→ 〈P′, ρ′〉 and α is not an input, then for some Q′ and σ′, 〈Q, σ〉 α−→
〈Q′, σ′〉 and 〈P′, ρ′〉 ∼ 〈Q′, σ′〉

2. whenever 〈P, ρ〉 c?x−→ 〈P′, ρ〉 and x /∈ f v(P) ∪ f v(Q), then for some Q′, 〈Q, σ〉 c?x−→ 〈Q′, σ〉
and for all y /∈ f v(P′) ∪ f v(Q′)− {x}, 〈P′{y/x}, ρ〉 ∼ 〈Q′{y/x}, σ〉

and the symmetric forms of 1 and 2

Recalling Definition 4.3.5, we present below the generalization to qCCS of the monoid
and static laws of CCS.

Proposition 4.3.7. For any P, Q, R ∈ P , and K, L ⊆ Chan:

1. P+ Q ∼ Q+ P

2. P+ (Q+ R) ∼ (P+ Q) + R

3. P+ P ∼ P

4. P+ nil ∼ P

5. P || Q ∼ Q || P

6. P || (Q || R) ∼ (P || Q) || R

7. P || nil ∼ P

8. P\L ∼ P if cn(P) ∩ L = ∅, where cn(P) is the set of free channel names in P

9. (P\K)\L ∼ P\(K∪ L)

The expansion law, presented in CCS, can also be generalized here. Recall that this law
tells that we can separate the actions performed synchronously form the ones executed
asynchronously.

Proposition 4.3.8. (Expansion law) For any P, Q ∈ P :

(P || Q)\L ∼∑{α.(P′ || Q)\L : P α−→ P′ and cn(α) /∈ L}

+ ∑{α.(P || Q′)\L : Q α−→ Q′ and cn(α) /∈ L}

∑{τ.(P′ || Q′)\L : P c?x−→ P′ and Q
c!x−→ Q′,

or P c!x−→ P′ and Q
c?x−→ Q′}

4.3. Quantum Calculus of Communicating Systems 48

Next, we see that strong bisimulation is a congruence.

Theorem 4.3.9. 1. If A
de f
= P then A ∼ P

2. If P ∼ Q, then:

(a) τ.P ∼ τ.Q

(b) ε[X].P ∼ ε[X].Q

(c) c!x.P ∼ c!x.Q

(d) c?x.P ∼ c?x.Q

(e) P+ R ∼ Q+ R

(f) P || R ∼ Q || R

(g) P\L ∼ Q\L

Next, we illustrate via an example that if two configurations are related through strong
bisimilarity then the underlying processes have exactly the same transitions.

Example 4.3.10. Consider the following configurations:

〈P, ρ〉; 〈Q, ρ〉; 〈R, ρ〉

where P = c?x.c!x.nil, Q = P+ nil and R = c?x.c!x.τ.nil.
It is easy to see that Q ∼ P, since Q = P+ nil and by the item four in Proposition 4.3.7

P+ nil ∼ P. Therefore Q ∼ P. However, it is not possible to say that P∼R or Q∼R, because
the process R has a transition by τ that it is not presented in P nor Q.

Just as in CCS, the notion of strong bisimulation is too strong and, in particular, it does
not treat invisible action in a suitable way. In order to solve this problem a weaker notion
of equivalence is shown in Ying et al. (2009).

4.3.4 Recursion

Recursion is a very important feature in process algebras because it allows to specify itera-
tive behaviour, such as while-loops. In classical computation recursion is a familiar notion,
but in the quantum context the no-cloning theorem raises precautions. In the following
example, inspired from Ying et al. (2009), we aim to present a problem that can arise when
dealing with recursion in quantum.

Example 4.3.11. Consider the following defining equation that describes a process constant
scheme A(x).

A(x)
de f
= c!x.A(x)

4.4. A typing system for qCCS 49

To see if A(x) is valid let us calculate the free variables.

f v(A(x)) = {x}

f v(c!x.A(x))→ does not respect the qCCS syntax

Recalling the clause four of Definition 4.3.1 it is possible to see that the precondition

x /∈ f v(A(x)) is violated and consequently A(x)
de f
= c!x.A(x) is not valid. Therefore A(x) /∈ P .

Consider now the following defining equation, very similar to the previous but only with
a simple and very important change in the variables on the process constant scheme.

A(y)
de f
= c?x.c!x.A(y)

Calculating the free variables.

f v(A(y)) = {y}

f v(c?x.c!x.A(y)) = f v(c!x.A(y))− {x}

f v(c!x.A(y)) = f v(A(y)) ∪ {x} = {y} ∪ {x} = {x, y}

f v(c!x.A(y))− {x} = {x, y} − {x} = {y} ⊆ f v(A(y)) = {y}

In the third step, the precondition on the fourth clause of Definition 4.3.1 is respected
and the condition of a defining equation is obeyed, therefore the process is valid.

Is important to emphasize that recursion in qCCS is made through defining equations of
processes constant schemes.

4.4 a typing system for qccs

In this section we present a typing system for qCCS developed by us, as the first original
contribution of the disseration. The typing system was inspired by CQP, Gay and Nagarajan
(2006), that is a quantum process algebra which has as a prominent feature a static type
system.

With a typing system we have the capacity to evaluate if the no-cloning theorem is being
respected and if the actions performed throughout the process are well-typed, this is, there
are typing rules that allows to derive the execution of the actions. Furthermore, with a
typing system we have a tool to study typical derivation properties such that the weakening
property.

4.4. A typing system for qCCS 50

The typing system is composed by a set of rules. A rule is composed by premises and a
conclusion. In order to obtain a conclusion, all the corresponding premises must hold. A
rule is represented as follows, Plotkin (1981):

Premises
Conclusion

We will also use the following format, Gay and Nagarajan (2006):

Γ ` P

which reads as follows: the process P is valid and well-typed in environment Γ. The envi-
ronment Γ is a set of variables, and P is to be understood as an (unrestricted) expression
over the grammar underlying the qCCS processes. In the typing system, (Γ, x) is interpreted
as (Γ ∪ {x} ∧ x /∈ Γ). Table 4 presents the typing rules.

(NIL) Γ `nil (CONST)
∆ ⊆ Γ

Γ ` A(∆)

(INV)
Γ `P

Γ ` τ.P (OP)
Γ `P X ⊆ Γ

Γ ` ε[X].P

(IN)
Γ, x `P

Γ\{x} ` c?x.P (OUT)
Γ\{x} `P

Γ, x ` c!x.P

(RES)
Γ `P

Γ `P\L (SUM)
Γ1 `P Γ2 `Q
Γ1 ∪ Γ2 `P+ Q

(COMM)
Γ1 `P Γ2 `Q Γ1 ∩ Γ2 = ∅

Γ1 ∪ Γ2 `P || Q

Table 4: Typing rules for quantum processes

An important result about our typing system is that the weakening rule is admissible in
it. Formally,

Theorem 4.4.1 (Weakening). Assume that Γ ` P. Then it also holds that Γ, x ` P for any
variable x.

Let us prove that our typing system implicitly contains the weakening rule.

Proof. The proof follows by induction on the structure of quantum processes.

1. Starting with the process nil. We assume that Γ ` nil. Then, it follows directly by an
application of the rule (NIL) in Table 4 that Γ, x ` nil.

4.4. A typing system for qCCS 51

2. Next, we consider the constant processes. Assume that Γ ` A(∆). By the rule (CONS)
in Table 4 we have that ∆ ⊆ Γ. Moreover, ∆ ⊆ Γ, x. Therefore, through the application
of the rule (CONS) in Table 4, ∆ ⊆ Γ, x is true and then we obtain Γ, x ` A(∆).

3. We now consider the invisible actions. We assume that Γ ` τ.P, which by the appli-
cation of the rule (INV) in Table 4 implies Γ ` P. By induction we derive Γ, x ` P.
Furthermore, by an application of the rule (INV) in Table 4 we obtain Γ, x ` τ.P.

4. Let us now consider the super-operators actions. We assume that Γ ` ε[X].P, which by
the rule (OP) in Table 4 entails that X ⊆ Γ and Γ ` P. By induction we derive Γ, x ` P,
and as a consequence X ⊆ Γ, x. Moreover, by applying the rule (OP) in Table 4 we
obtain Γ, x ` ε[X].P.

5. Next, consider the case of the input actions. We assume that Γ\{x} ` c?x.P, which
by the rule (IN) in Table 4 implies Γ, x ` P. By induction we derive Γ, x, y ` P.
Furthermore, by applying the rule (IN) in Table 4 we obtain Γ\{x}, y ` c?x.P.

6. We now consider the case of the output actions. We assume that Γ, x ` P. Furthermore,
we want to prove that for every variable y, the condition Γ, x, y ` c!x.P holds. If x = y
we are done, because Γ, x, y = Γ, x, x = Γ, x. Otherwise, if x 6= y, we that Γ, x ` P,
which by the rule (OUT) in Table 4 entails Γ\ ` P. By induction we derive Γ\{x} y ` P.
Moreover, by applying the rule (OUT) we obtain Γ, x, y ` c!x.P.

7. Let us now consider the restriction operator. We assume that Γ ` P\L, which by the
rule (RES) in Table 4 implies Γ ` P. By induction we derive Γ, x ` P. Moreover, by
applying the rule (RES) in Table 4 we obtain Γ, x ` P\L.

8. Next, we consider the sum operator. Assume that Γ1 ∪ Γ2 ` P+ Q, so there is ∆1 ` P

and ∆2 ` Q such that ∆1∪∆2 ⊆ Γ1∪ Γ2. We have ∆1∪∆2 ` P+ Q, which implies ∆1 ` P

and ∆2 ` Q. By induction we derive ∆1, x ` P and ∆2 ` Q or ∆1 ` P and ∆2, x ` Q.
By applying the rule (SUM) in Table 4, in both cases, we obtain ∆1 ∪ ∆2, x ` P+ Q.
Moreover, once ∆1 ∪ ∆2 ⊆ Γ1 ∪ Γ2 we have Γ1 ∪ Γ2, x ` P+ Q.

9. At last, we consider the case of the parallel operator. Assume that Γ1 ∪ Γ2 ` P || Q, so
there is ∆1 ` P and ∆2 ` Q such that ∆1 ∪∆2 ⊆ Γ1 ∪ Γ2. We have ∆1 ∪∆2 ` P || Q, which
entails ∆1 ` P, ∆2 ` Q and ∆1 ∩ ∆2 = ∅. By induction we derive ∆1, x ` P and ∆2 ` Q

or ∆1 ` P and ∆2, x ` Q. In both cases of induction the condition ∆1 ∩ ∆2 = ∅ holds,
since when x ∈ ∆1, x /∈ ∆2 and when x ∈ ∆2, x /∈ ∆1. By applying the rule (COMM) in
Table 4, for both cases, we obtain ∆1, x ∪ ∆2 ` P || Q or ∆1 ∪ ∆2, x ` P || Q, respectively.
Moreover, once ∆1 ∪ ∆2 ⊆ Γ1 ∪ Γ2 we have Γ1, x ∪ Γ2 ` P || Q or Γ1 ∪ Γ2, x ` P || Q.

4.4. A typing system for qCCS 52

By extending qCCS with a typing system, we hope to have a relation between qCCS
processes and the formulas of the typing system. For that, we present the next theorem and
prove it.

Theorem 4.4.2. P is a process in qCCS iff Γ ` P for some Γ.

Proof. We will begin by showing the left-to-right implication. To do that, we will need to
strengthen our induction invariant to:

P is a process in qCCS implies that Γ ` P with Γ ⊆ f v(P).

1. We start with P = nil. We assume that nil is a process in qCCS. Applying the rule
(NIL) in Table 4, we derive Γ ` nil for Γ = ∅. Since Γ = ∅, Γ ⊆ f v(nil).

2. Next, we consider P = A(∆). Assume that A(∆) is a process in qCCS. Applying the
rule (CONS) in Table 4, we derive ∆ ` A(∆) with the condition ∆ ⊆ ∆. Moreover,
∆ ⊆ f v(A(∆)), since f v(A(∆)) = ∆.

3. Let us now consider the process τ.P. We assume that τ.P is a process in qCCS. By the
induction hypothesis, Γ ` P with Γ ⊆ f v(P). Applying the rule (INV) in Table 4, we
obtain Γ ` τ.P. Furthermore, Γ ⊆ f v(P) ⊆ f v(τ.P).

4. Consider the process ε[X].P. We assume that ε[X].P is a qCCS process. By the induction
hypothesis, Γ ` P with Γ ⊆ f v(P). Applying the rule (OP) in Table 4, we obtain
Γ ∪ X ` ε[X].P with the condition X ⊆ Γ ∪ X. Since f v(ε[X].P) = f v(P) ∪ X we have
that Γ ∪ X ⊆ f v(P) ∪ X ⊆ f v(ε[X].P).

5. Consider the process c?x.P. We assume that c?x.P is a qCCS process. By the induction
hypothesis, Γ ` P with Γ ⊆ f v(P). Since our typing system admits the weakening
rule, we can weaken Γ ` P to Γ, x ` P. Applying the rule (IN) in Table 4, we obtain
Γ\{x} ` c?x.P. Moreover, Γ\{x} ⊆ f v(P)\{x} ⊆ f v(c?x.P).

6. We now consider the process c!x.P. We assume that c!x.P is a qCCS process if x /∈
f v(P). By the induction hypothesis, Γ ` P with Γ ⊆ f v(P), where x /∈ f v(P) and
consequently x /∈ Γ. Applying the rule (OUT) in Table 4, we obtain Γ, x ` c!x.P.
Moreover, Γ, x ⊆ f v(P) ∪ {x} ⊆ f v(c!x.P).

7. Consider the process P\L. We assume that P\L is a qCCS process. By the induction
hypothesis, Γ ` P with Γ ⊆ f v(P). Applying the rule (RES) in Table 4, we obtain
Γ ` P\L. Moreover Γ ⊆ f v(P) ⊆ f v(P\L).

8. Consider the process P+ Q. We assume that P+ Q is a qCCS process. By the induction
hypothesis, Γ1 ` P with Γ1 ⊆ f v(P) and Γ2 ` Q with Γ2 ⊆ f v(Q). Applying the
rule (SUM) in Table 4 to the previous formulas, we obtain Γ1 ∪ Γ2 ` P+ Q. Moreover
Γ1 ∪ Γ2 ⊆ f v(P) ∪ f v(Q) ⊆ f v(P+ Q).

4.4. A typing system for qCCS 53

9. At last, let us consider the process P || Q. We assume that P || Q is a qCCS process if
f v(P) ∩ f v(Q) = ∅. By induction we derive Γ1 ` P with Γ1 ⊆ f v(P) and Γ2 ` Q with
Γ2 ⊆ f v(Q). Furthermore, since f v(P) ∩ f v(Q) = ∅, Γ1 ⊆ f v(P) and Γ2 ⊆ f v(Q), we
have that Γ1 ∩ Γ2 = ∅. Applying the rule (COMM) in Table 4 to the previous formulas,
we obtain Γ1 ∪ Γ2 ` P || Q. Moreover Γ1 ∪ Γ2 ⊆ f v(P) ∪ f v(Q) ⊆ f v(P || Q).

Now we will show the right-to-left implication. To do that, we need another induction
invariant.

Γ ` P implies a qCCS process P with f v(P) ⊆ Γ.

1. We start with the nil process. We assume that Γ ` nil. By item 1 in Definition 4.3.1,
nil is a qCCS process. Moreover f v(nil) = ∅ ⊆ Γ.

2. Next, we consider the constant processes. We assume that Γ ` A(∆) with ∆ ⊆ Γ. By
item 2 in Definition 4.3.1, A(∆) is a qCCS process. Moreover, f v(A(∆)) = ∆ ⊆ Γ.

3. Consider the invisible prefix. We assume that Γ ` τ.P. The rule (INV) in Table 4

implies Γ ` P. By induction, we derive that P is a qCCS process with f v(P) ⊆ Γ. By
item 3 in Definition 4.3.1, we have that τ.P is a process in qCCS. Moreover f v(τ.P) =
f v(P) ⊆ Γ.

4. Consider now the super-operator prefix. We assume that Γ ` ε[X].P with X ⊆ Γ. The
rule (OP) in Table 4 implies Γ ` P. By induction, we derive that P is a process in qCCS
with f v(P) ⊆ Γ. By item 4 in Definition 4.3.1 we have that ε[X].P is a qCCS process.
Moreover, f v(ε[X].P) = f v(P) ∪ X ⊆ Γ ∪ X ⊆ Γ, since X ⊆ Γ.

5. Next, we consider the input prefix. We assume that Γ ` c?x.P. By the rule (IN) in Table
4 we know that x /∈ Γ. Furthermore, the same rule implies Γ, x ` P. By induction P is
a qCCS process with f v(P) ⊆ Γ ∪ {x}. By item 5 in Definition 4.3.1, c?x.P is a qCCS
process. Moreover, f v(c?x.P) = f v(P)\{x} ⊆ (Γ ∪ {x})\{x} ⊆ Γ.

6. Consider the output prefix. We assume that Γ ` c!x.P. By the rule (OUT) in Table 4

we know that x ∈ Γ. Furthermore, the same rule implies Γ\{x} ` P. By induction
P is a qCCS process with f v(P) ⊆ Γ and x /∈ f v(P) because Γ\{x} ` P. By item
6 in Definition 4.3.1, c!x.P is a qCCS process if x /∈ f v(P). Moreover, f v(c!x.P) =

f v(P) ∪ {x} ⊆ Γ, x ⊆ Γ, since x ∈ Γ.

7. Consider the restriction operator. We assume that Γ ` P\L. The rule (RES) in Table
4 implies Γ ` P. By induction P is a qCCS process with f v(P) ⊆ Γ. By the item 9 in
Definition 4.3.1, P\L is a qCCS process. Moreover f v(P\L) = f v(P) ⊆ Γ.

4.5. Comparison between CCS and qCCS 54

8. Consider the sum operator. We assume that Γ1 ∪ Γ2 ` P+ Q, so there is ∆1 ` P and
∆2 ` Q such that ∆1 ∪ ∆2 ⊆ Γ1 ∪ Γ2. The rule (SUM) in Table 4 implies ∆1 ` P and
∆2 ` Q. By induction P and Q are qCCS processes with f v(P) ⊆ ∆1 and f v(Q) ⊆ ∆2.
By item 7 in Definition 4.3.1 P+ Q is a qCCS process. Moreover f v(P+ Q) = f v(P) ∪
f v(Q) ⊆ ∆1 ∪ ∆2 ⊆ Γ1 ∪ Γ2.

9. At last, consider the parallel operator. We assume that Γ1 ∪ Γ2 ` P || Q, so there is
∆1 ` P and ∆2 ` Q such that ∆1 ∪ ∆2 ⊆ Γ1 ∪ Γ2. The rule (COMM) in Table 4 entails
∆1 ` P, ∆2 ` Q and ∆1 ∩ ∆2 = ∅. By induction P and Q are qCCS processes with
f v(P) ⊆ ∆1 and f v(Q) ⊆ ∆2. Furthermore, f v(P) ∩ f v(Q) = ∅ because ∆1 ∩ ∆2 = ∅.
By item 8 in Definition 4.3.1 P || Q is a qCCS process if f v(P) ∩ f v(Q) = ∅. Moreover,
f v(P || Q) = f v(P) ∪ f v(Q) ⊆ ∆1 ∪ ∆2 ⊆ Γ1 ∪ Γ2.

4.5 comparison between ccs and qccs

In this section we make a comparison between the two process algebras, CCS and qCCS. The
main differences between CCS and qCCS are related to the need to handle quantum data,
more concretely to deal with the no-cloning theorem, the collapse of states when measured
and the application of super-operators on qubits.

In the introduction of CCS we gave an informal view where the processes were repre-
sented by black boxes with ports illustrating the actions they could perform. In qCCS, this
informal view was not given due to the difficulty of representing the states ρ ∈ D(H) that
are associated with processes P ∈ P and the actions of the super-operators on the qubits.
The Table 5 summarises the main differences between CCS and qCCS with respect to syntax.

CCS qCCS
Constant Process K A(x̃)
Nil (Null Process) nil nil

τ.P
Action Prefixing α.P ε[X].P

c!x.P
c?x.P

Choice Operator ∑i∈I Pi P+ Q

Parallel Composition P | Q P || Q
Restriction P\L P\L
Relabelling P[f] P f

Table 5: CCS vs qCCS syntax

4.5. Comparison between CCS and qCCS 55

Before analysing Table 5 it is important to make a remark on the actions that allow
communications between processes. In CCS those actions are denoted by a label, without
specifying a channel name, and communications between processes are performed through
complementary actions (e.g: a and a) . On the other hand, in qCCS the input and output
actions involve a channel name, a symbol (’!’ for output and ’?’ for input) and a value
to be transmitted. With this the communication between processes happens when the
names of the channels are equal and the symbols are different (e.g: c!a and c?a). Constant
processes in CCS have a similar definition to the one in qCCS, as the reader can see in Milner
(1989). The choice operator in CCS is defined by a sum indexed by a set of values while
in qCCS the choice operator is binary. The major distinction is located at action prefixing.
While CCS uses α to represent all the actions that can occur, in qCCS we need to split it
because of the existence of invisible actions, communication actions and super-operators
that acts on qubits. While in CCS the operational semantics only refers to processes, in
qCCS the operational semantics is composed by a pair 〈P, ρ〉, where P ∈ P represents
quantum processes and ρ specifies the current state of the environment. This difference is
made clearer by Table 6, which we analyse next. Moreover, in the first column of the Table
6, if there is only one name it means that the name of the rule is equal in CCS and qCCS.

CCS|qCCS rule names CCS qCCS
Act

α.P α−→ P 〈τ.P, ρ〉 τ−→ 〈P, ρ〉

Choice
Pj

α−→ P′ j

∑i∈I Pi
α−→ P′j

j ∈ I
〈P, ρ〉 α−→ 〈P′, ρ′〉
〈P+ Q, ρ〉 α−→ 〈P′, ρ′〉

Com | (Intl2 and Intl1)
P

α−→ P′

P | Q α−→ P′ | Q
〈P, ρ〉 α−→ 〈P′, ρ′〉

〈P || Q, ρ〉 α−→ 〈P′ || Q, ρ′〉
α is not an input

〈P, ρ〉 c?x−→ 〈P′, ρ′〉
〈P || Q, ρ〉 c?x−→ 〈P′ || Q, ρ′〉

x /∈ f v(Q)

Com3 | Comm
P

α−→ P′ ∧ Q α−→ Q′

P | Q τ−→ P′ | Q′
〈P, ρ〉 c?x−→ 〈P′, ρ〉 〈Q, ρ〉 c!x−→ 〈Q′, ρ〉
〈P || Q, ρ〉 τ−→ 〈P′ || Q′, ρ〉

Res
P

α−→ P′

P\L α−→ P′\L
α, α /∈ L

〈P, ρ〉 α−→ 〈P′, ρ′〉
〈P\L, ρ〉 α−→ 〈P′\L, ρ′〉

cn(α) /∈ L

Rel
P

α−→ P′

P[f]
f (α)−−→ P′[f]

Con | Def
P

α−→ P′

K
α−→ P′

K
def
= P

〈P{ỹ/x̃}, ρ〉 α−→ 〈P′, ρ′〉
〈A(ỹ), ρ〉 α−→ 〈P′, ρ′〉

A(x̃)
de f
= P

4.5. Comparison between CCS and qCCS 56

Oper
〈ε[X].P, ρ〉 ε[X]−−→ 〈P, εX(ρ)〉

Input
〈c?x.P, ρ〉 c?y−→ 〈P{y/x}, ρ〉

y /∈ f v(c?x.P)

Output
〈c!x.P, ρ〉 c!x−→ 〈P, ρ〉

Table 6: CCS vs qCCS operational semantics

The symmetric versions of Com, Com3, Intl2, Comm and Intl1 are not represented in the
table. Note that the transitions in CCS and qCCS are similar, the differences being origi-
nated by the quantum nature of the latter as we can see in Com|Intl1|Intl2, where it is
needed to divide the corresponding rule in two and add side conditions. Another inter-
esting distinction is that in qCCS the rule Rel is not included, as substitution in quantum
computation is not as trivial as in the classical case and, therefore, can not be generalised
as in CCS. At last, the rules Oper, Input and Output are only presented in qCCS due to
reasons that were previously exposed. An important feature of both process algebras is the
notion of behavioural equivalence. CCS developed strong bisimularity and weak bisimu-
larity to see if two or more processes have an equivalent behaviour. In qCCS the notion
of behavioural equivalence is used on configurations and for that reason a new notion of
strong bisimularity was developed for these configurations. Unlike the comparison done at
the levels of syntax and operational semantics, for behavioural equivalence it is not feasible
to establish a direct relation between the methods that Milner (1989) and Ying et al. (2009)
developed. This is because, in the latter we have the notion of configuration that involves a
process and a density operator associated to the process, while in the former we only have
a process. Even knowing that is possible to establish a behavioural equivalence between
two processes in qCCS, we need to assure that the processes have the same density operator
associated to them.

5

T I M E D Q C C S

5.1 motivation and context

In the current days, the quantum process algebras developed - qCCS, CQP, etc... - assume
the existence of a perfect quantum computer, in which qubits are not affected by noise.
However, the quantum computers that exist are all faulty, i.e the qubits are not immune to
noise. Therefore, we need a quantum process algebra that is capable to reason about current
quantum systems. For that, the introduction of temporal notions into the quantum process
algebra is essential, once, among other advantages, it allows to control the coherence time
of qubits.

As in the classical situation, the introduction of time into a quantum process algebra
would also increase the accuracy of the descriptions of communication protocols, such like
the BB84 communication protocol.

In 1978, Tony Hoare developed CSP, Hoare (1978), which was the first of the three im-
portant process algebras. Ten years later, in 1988, G.M. Reed and A.W. Roscoe introduced
temporal notions in CSP, Roscoe and Reed (1988). With the introduction of a quantitative
notion of time, it was possible to increase the accuracy of the descriptions of communication
protocols.

In 2007, Yuan Feng et al developed a first version of qCCS that considered classical and
quantum variables. A year later, in 2008, Mingsheng Ying et al presented a version of qCCS
that only takes into consideration quantum variables. At last, in 2012, Yuan Feng et al
presented another version of qCCS that considers, again, classical and quantum variables.
Ten years passed since the first version of qCCS and we do not know any work related to
the introduction of temporal notions on quantum process algebras.

We now make a walk-through of this chapter.
In order to enable classical communication between quantum and classical computers

(which is needed for the QRAM architecture), we find convenient to consider classical
variables in quantum process algebras. Having said this, we present a version of qCCS
that supports both classical and quantum variables, Feng et al. (2012). We then update our
previously introduced typing system with classical variables as well. After this, we prove

5.2. Quantum CCS with measurement operations and classical control 58

that the extended typing system still has the weakening property and that the updated
version of the Theorem 4.4.2 still holds, i.e. there is an equivalence between qCCS processes
and the typing system developed by us.

After that, we put the new version of qCCS under stress tests: we developed some exam-
ples to see if the new qCCS could encode them successfully. Unfortunately, that was not
verified and we developed a new action. To see if the new action could solve the problem,
we encoded again the examples. The result obtained was satisfactory. With this, we got a
quantum process algebra that fulfil our objectives.

Later on, we introduced a temporal dimension in the quantum process algebra developed.
We present the syntax, the operational semantics and, the typing system developed. We
then rephrase and test the examples.

5.2 quantum ccs with measurement operations and classical control

As mentioned earlier, we will use an extended version of qCCS, namely Feng et al. (2012).
This version extends qCCS with classical variables and measurement operations. This al-
lows sending/receiving classical information, and, in particular, storing results of measure-
ments in classical variables.

Next, we present the syntax and semantics of the operations that extend qCCS with
classical variables and measurement, Feng et al. (2012).

1. c?x.P ∈ P , and qv(c?x.P)=qv(P)

2. c!x.P ∈ P , and qv(c!x.P)=qv(P)

3. M[x̃; r].P ∈ P , and qv(M[x̃; r].P)=qv(P)∪x̃

4. if b then P ∈ P , and qv(if b then P)=qv(P)

In the above formation rules c stands for a classical communication channel. The third
formation rule refers to the measurement of a set of qubits, x̃, whose result is stored in
a classical variable, r. If clauses are now relevant, because we now have at our disposal
classical variables which we can use for tests.

In the rules above, the set of free quantum variables of a process is denoted as qv (previ-
ously it was f v).

Before presenting the operational semantics, we need to make a remark about the spec-
tral decomposition (see Nielsen and Chuang (2000) for details). The spectral decomposition
states that if an operator is diagonalizable then it is a normal operator (AA† = A† A). The
following theorem is proved in Nielsen and Chuang (2000).

Theorem 5.2.1. Any normal operator M on a vector space V is diagonal with respect to
some orthonormal basis for V. Conversely, any diagonalizable operator is normal.

5.2. Quantum CCS with measurement operations and classical control 59

Now, we can present the operational semantics for the previous elements and also the
communication between classical channels.

C-Inp: 〈 c?x.P, ρ 〉 c?r−−→ 〈 P{r/x}, ρ 〉
r ∈ Real

C-Outp: 〈 c!e.P, ρ 〉 c!r−−→ 〈 P, ρ 〉
r = JeK

C-Com:

〈 P1, ρ 〉 c?r−−→ 〈 P′1, ρ 〉 〈 P2, ρ 〉 c!r−−→ 〈 P′2, ρ 〉
〈 P1 || P2, ρ 〉 τ−→ 〈 P′1 || P′2, ρ 〉

Cho:

〈 P, ρ 〉 α−→ µ

〈 if b then P, ρ 〉 α−→ µ
JbK = true

Meas: 〈 M[x̃; r].P, ρ〉 τ−→ ∑i∈I pi〈 P{λi/x}, Ei
x̃ρEi

x̃/pi 〉

where M has the spectral decomposition M = ∑
i∈I

λiEi and pi = tr(Ei
x̃ρ)

The transition system is now a probabilistic transition system, because of the measure-
ment rule. This is because when one performs a measurement, the output of a certain state
is associated with a probability. Note that, after a transition, the right-hand-side becomes a
probabilistic distribution over configurations. Relatively to the operational semantics, there
is some changes from Ying et al. (2009) to Feng et al. (2012). While in the first one, transi-
tions through operators are visible, in the second, they are invisible, i.e. they are represented
as τ-transitions.

In Section 4.4, we introduced a typing system for qCCS that only takes into consideration
quantum variables. Here, we introduce a typing system that considers both quantum and
classical variables, as in the extended version of qCCS, Feng et al. (2012). Thus, environ-
ments Γ will now consist of typed variables, specifically they will be non-repetitive lists
of quantum variables x : Q and classical variables c : C. Moreover, the rules presented in
Section 4.4 can be easily extended to this version of qCCS, where quantum and classical
variables are taken in consideration.

Next, we present the typing rules for the above process operations:
The rules (C-IN) and (C-OUT) in Table 7 represent the input and output of classical

variables, respectively. Moreover, since these two rules are classical, the no-cloning theorem
is not a restriction. Therefore, in the rule (C-OUT), we can make a copy of the classical
variable x and send it. In the rule (C-IN) we could also do the same, but we prefer to expand

5.2. Quantum CCS with measurement operations and classical control 60

(C-IN)
Γ, x : C ` P

Γ ` c?x.P (C-OUT)
Γ, x : C ` P

Γ, x : C ` c!x.P

(IF)
Γ ` P ∆ ` b

Γ, ∆ ` if b then P (MEAS)
Γ, r : C ` P

Γ, x : Q ` M[x; r].P

Table 7: Remaining rules for the typing system

the environment with a new classical variable instead of updating a classical variable. The
rule (IF) merges in the conclusion the two environments of the premises, where Γ denotes
the environment of the process P and ∆ denotes the environment of clause b. Moreover,
the latter is constituted only by classical variables, while the former can have quantum
and classical variables. At last, we have the (MEAS) rule. Here, after performing the
measurement, the variable x : Q is eliminated from the environment and the variable r : C
is added. This last variable stores the measurement result of x : Q, as it happens in qCCS.

In the (COMM) rule of Table 4, the condition Γ1 ∩ Γ2 = ∅ only takes into consideration
the quantum variables. To prevent a situation where two processes want to exchange a
qubit, but they have a common classical variable violating the condition Γ1 ∩ Γ2 = ∅, we
decided to denote the environment of quantum variables by ΓQ, such that ΓQ ⊆ Γ. This
notation is going to be useful for the proofs we are going to make. The rule (COMM) is well
suited for quantum and classical communication because when a classical communication
is performed, the condition ΓQ

1 ∩ ΓQ
2 = ∅ always holds. That is why we did not a rule for

classical communication.
Having introduced the new rules of the typing system, we need to extend the proofs of

the weakening property and the relation between qCCS processes and the typing system in
Section 4.4 into the new setting of classical variables intermixed with quantum ones. In par-
ticular, since we now have classical variables, we will also need to prove that the extended
typing system admits the "classical weakening" property. We will begin by showing this.
Then, we will prove the "quantum weakening" property for the four typing rules presented
above. The proof for the rules in Section 4.4.2 is not going to be detailed because it is very
similar to the one introduced in Section 4.4. Finally, we adapt the Theorem 4.4.2, proving it
for the four typing rules above.

The classical weakening property is formally defined as follows:

Theorem 5.2.2. Assume that Γ ` P. Then, Γ, x : C ` P for any classical variable x.

Proof. The proof follows by induction on structure of quantum processes.

1. Starting with the nil process. We assume that Γ ` nil. It follows by direct application
of the rule (NIL) in Table 4 that Γ, r : C ` nil.

5.2. Quantum CCS with measurement operations and classical control 61

2. Next, we consider the constant processes. We assume that Γ ` A(∆). By the rule
(CONS) in Table 4 we have ∆ ⊆ Γ. Moreover, ∆ ⊆ Γ, r : C for any classical variable r.
By the rule (CONS) in Table 4, ∆ ⊆ Γ, r : C is true and then we obtain Γ, r : C ` A(∆).

3. We now consider the invisible prefix. We assume that Γ ` τ.P, which entails Γ ` P.
By induction, we derive Γ, r : C ` P. Applying the rule (INV) in Table 4, we obtain
Γ, r : C ` τ.P.

4. Consider the super-operator prefix. We assume that Γ ` ε[X].P, which entails X ⊆ Γ
and Γ ` P. By induction we derive Γ, r : C ` P, and as a consequence X ⊆ Γ, r : C.
Applying the rule (OP) in Table 4 we obtain Γ, r : C ` ε[X].P.

5. Next, we consider the quantum input prefix. We assume that Γ ` q?x.P, which entails
Γ, x : Q ` P. By induction, we derive Γ, x : Q, r : C ` P. Applying the rule (IN) in
Table 4, we obtain Γ, r : C ` q?x.P.

6. We now consider the quantum output prefix. We assume Γ, x : Q ` q!x.P, which
implies Γ ` P. By induction, we derive Γ, r : C ` P. Applying the rule (OUT) in Table
4, we obtain Γ, x : Q, r : C ` q!x.P.

7. We now consider the restriction operator. We assume Γ ` P\L, which entails Γ ` P.
By induction, we derive Γ, r : C ` P. Applying the rule (RES) in Table 4, we obtain
Γ, r : C ` P\L.

8. Next, we consider the sum operator. We assume Γ1 ∪ Γ2 ` P+ Q, so there is Λ1 ` P

and Λ2 ` Q such that Λ1 ∪ Λ2 ⊆ Γ1 ∪ Γ2. We have Λ1 ∪ Λ2 ` P+ Q, which entails
Λ1 ` P and Λ2 ` Q. By induction, we derive Λ1, r : C ` P and Λ2 ` Q or Λ1 ` P and
Λ2, r : C ` Q. In both cases, applying the rule (SUM) in Table 4, we obtain Λ1 ∪Λ2, r :
C ` P+ Q. Moreover, once Λ1 ∪Λ2 ⊆ Γ1 ∪ Γ2, we have Γ1 ∪ Γ2, r : C ` P+ Q.

9. We now consider the parallel operator. We assume that Γ1 ∪ Γ2 ` P || Q, so there is
Λ1 ` P and Λ2 ` Q such that Λ1 ∪Λ2 ⊆ Γ1 ∪ Γ2. We have Λ1 ∪Λ2 ` P || Q that implies
Λ1 ` P, Λ2 ` Q and ΛQ

1 ∩ΛQ
2 = ∅. By induction, we derive Λ1, r : C ` P and Λ2 ` Q or

Λ1 ` P and Λ2, r : C ` Q, where the condition ΛQ
1 ∩ΛQ

2 = ∅ holds, once no quantum
variable was added to the environment. In both cases, by applying the rule (COMM)
in Table 4, we obtain Λ1 ∪ Λ2, r : C ` P || Q. Moreover, once Λ1 ∪ Λ2 ⊆ Γ1 ∪ Γ2, we
have Γ1 ∪ Γ2, r : C ` P+ Q.

10. We now consider the classic input prefix. We assume that Γ ` c?r.P, which entails
Γ, r : C ` P. By induction, we derive Γ, r : C, s : C ` P. Applying the rule (C-IN) in
Table 7, we obtain Γ, s : C ` c?r.P.

5.2. Quantum CCS with measurement operations and classical control 62

11. Next, we consider the classic output prefix. We assume that Γ, r : C ` c!r.P. We want
to show that for every classical variable s, the condition Γ, r : C, s : C ` c!r.P holds.
If r : C = s : C then we are done because Γ, r : C, s : C = Γ, r : C, r : C = Γ, r : C.
Otherwise, if r : C 6= s : C, then we have Γ, r : C ` c!r.P, which entails Γ, r : C ` P.
By induction, we derive Γ, r : C, s : C ` P. Applying the rule (C-OUT) in Table 7, we
obtain Γ, r : C, s : C ` c!r.P.

12. We now consider the if operator. We assume that Γ, ∆ ` if b then P, so there is Λ1 ` P

and Λ2 ` b such that Λ1, Λ2 ⊆ Γ, ∆. We have Λ1, Λ2 ` if b then P, which entails
Λ1 ` P and Λ2 ` b. By induction, we derive Λ1, r : C ` P and Λ2 ` b or Λ1 ` P and
Λ2, r : C ` b. In both cases, applying the rule (IF) in Table 7, we obtain Λ1, Λ2, r : C `
if b then P. Moreover, once Λ1, Λ2 ⊆ Γ, ∆ we have Γ, ∆, r : C ` if b then P.

13. At last, we consider the measurement prefix. We assume Γ, x : Q ` M[x; r].P, which
entails Γ, r : C ` P. By induction, we derive Γ, r : C, s : C ` P. Applying the rule
(MEAS) in Table 7, we obtain Γ, x : Q, s : C ` M[x, r].P.

Now that we proved Theorem 5.2.2, we can move forward to the admissibility of quantum
weakening, which is formally defined as follows:

Theorem 5.2.3. Assume that Γ ` P. Then, Γ, x : Q ` P for any quantum variable x.

Proof. We will focus only on the rules (C-IN), (C-OUT), (IF) and (MEAS). The proof follows
by induction over structure of quantum processes.

1. Beginning with the measurement prefix. We assume that Γ, x : Q ` M[x; r].P. Moreover,
we want to show that for every quantum variable y, the condition Γ, x : Q, y : Q `
M[x; r].P holds. If x : Q = y : Q, then we are done because Γ, x : Q, y : Q = Γ, x :
Q, x : Q = Γ, x : Q. Otherwise, if x : Q 6= y : Q, we return to the assumption
Γ, x : Q ` M[x, r].P that entails Γ, r : C ` P. By induction, we derive Γ, y : Q, r : C ` P.
Applying the rule (MEAS) in Table 7, we obtain Γ, y : Q, x : Q ` M[x; r].P.

2. Next, we consider the classic input prefix. We assume that Γ ` c?r.P, which entails
that Γ, r : C ` P. By induction, we derive Γ, r : C, x : Q ` P. Applying the rule (C-IN)
in Table 7, we obtain Γ, x : Q ` c?r.P.

3. Let us now consider the classic output prefix. We assume that Γ, r : C ` c!r.P, which
entails that Γ, r : C ` P. By induction, we derive Γ, r : C, x : Q ` P. Applying the rule
(C-OUT) in Table 7, we obtain Γ, r : C, x : Q ` c!r.P.

4. At last, we consider the if operator. We assume that Γ, ∆ ` if b then P, which entails
Γ ` P and ∆ ` b. By induction, we derive Γ, x : Q ` P, once ∆ only considers classical
variables. Applying the rule (IF) in Table 7, we obtain Γ, x : Q, ∆ ` if b then P.

5.2. Quantum CCS with measurement operations and classical control 63

With this, we have proved that our typing system still admits the weakening rule. Now,
we need to extend Theorem 4.4.2 to the setting of classical variables intermixed with quan-
tum ones.

Theorem 5.2.4. P is a process in qCCS iff Γ ` P for some Γ.

Proof. We will begin by showing the left-to-right implication. We will need to strengthen
the induction invariant to:

P is a process in qCCS implies Γ ` P with ΓQ ⊆ qv(P).

1. We start with the measurement prefix. We assume that M[x; r].P is a qCCS process. By
induction, we derive that Γ ` P with ΓQ ⊆ qv(P). By classical weakening we obtain
Γ, r : C ` P. Applying the rule (MEAS) in Table 7, we obtain Γ, x : Q ` M[x; r].P.
Moreover, ΓQ ⊆ ΓQ ∪ {x} ⊆ qv(P) ∪ {x} ⊆ qv(M[x; r].P).

2. Next, we consider the classical input prefix. We assume that c?r.P is a qCCS process.
By induction, we derive Γ ` P with ΓQ ⊆ qv(P). By classical weakening we obtain
Γ, r : C ` P. Applying the rule (C-IN) in Table 7, we obtain Γ ` c?r.P. Moreover,
ΓQ ⊆ qv(P) ⊆ qv(c?r.P).

3. Consider now the classical output prefix. We assume that c!r.P is a qCCS process.
By induction, we derive Γ ` P with ΓQ ⊆ qv(P). By classical weakening we obtain
Γ, r : C ` P. Applying the rule (C-OUT) in Table 7, we obtain Γ, r : C ` c!r.P. Moreover,
ΓQ ⊆ qv(P) ⊆ qv(c!r.P).

4. At last, we consider the if operator. We assume that if b then P is a qCCS process. By
induction, we derive Γ ` P with ΓQ ⊆ qv(P). Applying the rule (IF) in Table 7, we
obtain Γ ` if b then P. Moreover, ΓQ ⊆ qv(P) ⊆ qv(if b then P).

For the converse statement we will use the following induction invariant:

Γ ` P implies a qCCS process P with qv(P) ⊆ Γ.

1. Starting with the measurement prefix. We assume that Γ ` M[x; r].P. This implies
x : Q ∈ Γ and Γ\{x : Q}, r : C ` P. By induction, we derive that P is a qCCS process
with qv(P) ⊆ Γ\{x : Q}. By item 3 in the Enumeration 5.2, M[x; r].P is a qCCS process.
Moreover qv(M[x; r].P) = qv(P) ∪ {x} ⊆ (Γ\{x : Q}) ∪ {x} = Γ.

2. Next, we consider the classical input prefix. We assume that Γ ` c?r.P, which entails
Γ ` P with r : C ∈ Γ. By induction, we derive that P is a qCCS process with qv(P) ⊆ Γ.
By item 1 in Enumeration 5.2, c?r.P is a qCCS process. Moreover, qv(c?r.P) = qv(P) ⊆
Γ.

5.2. Quantum CCS with measurement operations and classical control 64

3. Let us now consider the classical output prefix. We assume that Γ ` c!r.P, in which
r : C ∈ Γ. Moreover, it implies that Γ ` P. By induction, we derive that P is a
qCCS process with qv(P) ⊆ Γ. By item 2 in Enumeration 5.2, c!r.P is a qCCS process.
Moreover, qv(c!r.P) = qv(P) ⊆ Γ.

4. At last, we consider the if operator. We assume that Γ, ∆ ` if b then P, so there is
Λ1 ` P and Λ2 ` b such that Λ1, Λ2 ⊆ Γ, ∆. We have Λ1, Λ2 ` if b then P, which
entails Λ1 ` P and Λ2 ` b. Here, we only care about quantum variables, so Λ2 is
not going to be considered. By induction, we derive that P is a qCCS process with
qv(P) ⊆ Λ1. By item 4 in Enumeration 5.2 if b then P is a qCCS process. Moreover,
qv(if b then P) = qv(P) ⊆ Λ1 ⊆ Γ.

Next, we consider some examples of quantum systems to guide the development of
our work. To make things intuitive, we first consider these examples without taking into
account notions of time, and later on we extend them with timing aspects.

The examples are briefly described as follows.

1. Quantum Random Number Generator

As suggested by the name, this example encodes the generation of random num-
bers obtained by applying quantum effects, such as superposition and the collapse
of a quantum state after measuring it. In particular, the example makes use of an
Hadamard gate to put a qubit into a superposition state, and then measures the re-
sulting qubit.

2. Quantum Cloud

This example mimics the usual interaction pattern between a classical and a quan-
tum computer: in processing a big, complex task the classical computer delegates
computationally hard subtasks to a quantum computer. As an example of a task
delegated to quantum computers, we consider the problem of determining whether
certain functions f : {0, 1}n → {0, 1} are constant or balanced. Deutsch-Jozsa algo-
rithm, Nielsen and Chuang (2000), shows that this task can be performed faster on
quantum computers than on classical ones.

Before presenting the examples in detail, we want to make a remark. With qCCS we
cannot encode problems that potentially have an infinite number of quantum variables.
An example of this situation is the Quantum Random Walks, more concretely, the discrete
version of it. On a discrete quantum random walk, there are two Hilbert spaces to be
considered, the coin space and the position space. Furthermore, we have two operators, C
operator and S operator. The first acts on the coin space and the random movements of the

5.2. Quantum CCS with measurement operations and classical control 65

particle are decided by the results obtained from its application. The second operator acts
on the position space and according to the results obtained from the application of the C
operator, moves the particle. For more information related to quantum random walks see
Kempe (2003). However, when one tries to encode a discrete quantum random walk we
have a number of syntax and semantics restrictions. Related to the syntax, there is the
impossibility to have a process that only sends quantum variables, since we have to respect
the definition of constant processes, presented in Subsection 4.3.1. At the level of semantics,
we have to take into account that the Hilbert space can not be expanded, this is, once we
define an initial Hilbert space we cannot expand or shrink it. This is a setback, because if
we want to expand the Hilbert space position, we need to start from the beginning.

For the quantum random number generator and the quantum cloud examples, we will
consider a QRAM architecture, described in Knill (1996), where a classical computer sends
tasks to the quantum computer solve. Furthermore, throughout the examples, c and d
stands for classical communication channels, while q stands for quantum communication
channels.

5.2.1 Quantum Random Number Generator

Random numbers are used in science, gambling, gaming and in others areas of interest. It
is therefore interesting to encode a method that generates random numbers using quantum
principles. Consider Figure 18, which represents a scheme of a quantum random number
generator used by ID Quantique, IDQ (2016).

Figure 18: Scheme of a quantum random number generator

This scheme assumes a photon emitter, a beam splitter which puts photons into a super-
position state, two detectors to verify the path took by photons and a memory to store the
result of the measurement. When a photon is emitted, it interacts with the beam splitter.
As a result of this interaction, the photon enters into a superposition state where the proba-
bilities of being in path ’0’ or path ’1’ are equal. After the measurement, the superposition

5.2. Quantum CCS with measurement operations and classical control 66

is destroyed. Since the probability of being in path ’0’ or ’1’ is the same, the generation of
random numbers is unbiased.

In the following scenario, we only encode the tasks performed by a quantum computer,
because it is there the most relevant actions for this example occur.

Consider an user that wants to collect random numbers. To do that, he uses a quantum
computer. After the quantum computer receives the task, c?do, the generation of the ran-
dom numbers begins via process Env which sends a qubit to process QC to be manipulated
and measured. After the measurement, the result is saved and sent to the user, who can
continue to collect random numbers or stop.

Next, there is an implementation in qCCS.

QC
de f
= c?do.q?x.H[x].M[x; data].c!data.(c?stop.QC+ d?go.QC1)

QC1
de f
= q?x.H[x].M[x; data].c!data.(c?stop.QC+ d?go.QC1)

Env = q!x.nil

QRNG = QC || Env

Note that it is not possible to have a recursive definition of Env, because the defining
equation, presented in Subsection 4.3.1, would not be obeyed. Thus, only one random
number can be produced. To overcome this problem, we implemented a new action that
creates new qubits on-demand. The new qubits are automatically initialised to |0〉. Before
presenting the details of this new action, let us give the other example, which has a similar
problem.

5.2.2 Untimed Quantum Cloud

At the current state of development, access to quantum computers is typically performed
via the cloud, which implies communication between classical and quantum computers
(e.g, the IBM quantum computer, IBM). Besides that, an order is established. This is, the
classical computer is the master, because it sends a set of instructions to be executed, and
the quantum computer is the slave, once it receives a set of instructions to be performed, as
in the QRAM architecture.

This example illustrates an interaction pattern between a classical and a quantum com-
puter. For this we resorted to the Deutsch algorithm. The Deutsch algorithm is a simple
case of the Deutsch-Jozsa algorithm, Nielsen and Chuang (2000), aiming at verifying if a
Boolean function (f : {0, 1} → {0, 1}) is constant or balanced. A constant function outputs
always ’0’ or ’1’ while a balanced function outputs ’0’ and ’1’ equally. We assume that
the classical computer will send two functions, f and g, to be evaluated by the quantum
computer, where:

5.2. Quantum CCS with measurement operations and classical control 67

f is a constant function, where f (0) = f (1) = 0
g is a balanced function, where g(0) = 0 and g(1) = 1.

The Deutsch algorithm uses an oracle that is going to help us discover if the function is
constant or balanced. Moreover, we have to introduce the notion of register qubits and ancilla
qubits. The first ones have relevant information on them - in this case, the information
presented on them tells us if the function is constant or balanced - while the second ones
are auxiliary qubits used in calculations. With this, the oracle is applied to all the qubits in
the system, but it only performs the following transformation to the register qubits:

|x〉 Oracle−−−→ (−1) f (x)|x〉

where x represents a qubit and f (x) the value of x after applying the function f .
Although the syntax of qCCS does not directly allow it, we assume that in both cases it

is possible to send functions through communication channels.
The functions are sent by the classical computer through the same channel (c! f (u).c!g(v)).

After receiving the functions, the quantum computer analyses them through the process
Deutsch. This process receives four qubits, two for each function. After executing the
procedure of the Deutsch algorithm, the final result is sent to the classical computer (c!r.c!s),
as well as a signal to tell that the algorithm is over (c!done).

Now, we present the definitions of the processes.

User
de f
= c! f (u).c!g(v).c?r.c?s.c?done.nil

QC
de f
= c? f (u).c?g(v).Deutsch

Deutsch
de f
= q?x.q?y.q?a.q?b.X[y, b].H[x, y, a, b].Oracle[x, y, a, b].H[x, a]

.M[x; r].M[a; s].c!r.c!s.c!done.nil

Env = q!x.q!y.q!a.q!b.nil

QRAM = User || QC || Env

Due to reasons presented earlier, the process Env cannot be implemented recursively.

5.2.3 New action

The lack of capacity for generating new qubits recursively, as shown in the two previous
examples, entails the need for creating an action to overcome this gap. Therefore, we now
introduce the action new(x) in qCCS. Following the structure of qCCS, we have:

new(x).P ∈ qProc and qv(new(x).P)=qv(P)\{x}

5.2. Quantum CCS with measurement operations and classical control 68

and

NEW: 〈 new(x).P, ρ 〉 τ−→ 〈 P{y/x}, |0〉y〈0| ⊗ ρ 〉
y is f resh

where to simplify the notation, we write |0〉y〈0| instead of |0〉yy〈0|.
This rule has a side condition to prevent sharing of qubits between different quantum

processes. Consider the following example.

Example 5.2.5. Consider the process P(y)
de f
= new(x).H[x, y].nil, which possesses qubit y.

P(y) is a valid process. However, when we build the transition system, we need to guar-
antee that the qubit created is fresh, due to the side condition on the rule NEW. Otherwise,
if the side condition did not exist, the qubit created could be labelled with an y and, as a
consequence, we would have two qubits with the same assignment.

Moreover, it creates a new qubit in the state |0〉 and expands the density operator ρ in
the configuration accordingly.

In terms of the typing system:

(NEW)
Γ, x : Q ` P

Γ ` new(x).P

This rule tells us that when the action new(x) is performed, in an environment without
the quantum variable x, the environment is updated with a new qubit x. With this, we
guarantee that the no-cloning theorem is obeyed, because we require that the qubit that is
going to be created needs to be fresh.

As we can see, this rule is very similar to the reception of a quantum variable, since
both represent the introduction of a quantum variable in the system. This can be observed
perfectly in the typed system, where the two rules only differ on the name of the action.
However, in terms of the semantics of qCCS, there is a difference on the side conditions
caused by the expansion of the Hilbert space. In the new action, the Hilbert space is ex-
panded and because of that we need to guarantee always a fresh qubit. In the q?x action,
the Hilbert space is not expanded, so it suffices to assure that the new quantum variable is
not present in the process.

One may think that, since we have created an action that generates qubits, we need to
create an action to destroy them. We name that action trash and consider it for future work.

5.2.4 Measurement

In qCCS, according to Feng et al. (2012), after performing a measurement, the collapsed
state stays in the density operator. However, we do not want that, i.e we want to retire the

5.2. Quantum CCS with measurement operations and classical control 69

qubit measured from the density operator. Therefore, we need to change the measurement
rule. In terms of qCCS stays:

MEAS: 〈 M[x; r].P, ρ 〉 τ−→ �i∈I pi•〈 P{ri/x}, trx(ρ) 〉

where I represents the configurations created through the measurement and the notation
trx represents the partial trace presented in Subsection 4.1.7.

As one can see, after the measurement of a state, the collapsed state is removed by using
a partial trace in order of the variables that were measured.

Even knowing that information is lost (it is not possible to rebuild the original state) after
executing a partial trace on entangled states, we decided to continue with this idea, since it
matches what is done in the typing system.

Now, having introduced the new(x) action and changing the semantics of the measure-
ment, we are ready to present the final version of the previous examples.

5.2.5 Quantum Random Number Generator

This example can be simplified thanks to the introduction of the action new(x): all tasks
performed by the quantum computer can now be encoded by a single process, as shown
below.

QRNG
de f
= c?do.new(x).H[x].M[x; data].c!data.QRNG

The transition system is represented below:

〈QRNG, ρ〉
c?do−−→ 〈new(x).H[x].M[x; data].c!data.QRNG, ρ〉

τ−→ 〈H[y].M[y; data].c!data.QRNG, |0〉y〈0| ⊗ ρ〉
τ−→ 〈M[y; data].c!data.QRNG,

1
2
(|0〉y + |1〉y)(〈y0|+ 〈y1|)⊗ ρ〉

τ−→ 1
2
〈c!0.QRNG, ρ〉 � 1

2
〈c!1.QRNG, ρ〉

c!v−→ 1
2
〈QRNG, ρ〉 � 1

2
〈QRNG, ρ〉

Through the transition system one can see the evolution of the density operator through-
out the execution of actions. Moreover, we can see that after the measurement we have
probabilities associated to the configurations.

5.2. Quantum CCS with measurement operations and classical control 70

5.2.6 Quantum Cloud

We now study two versions of the quantum cloud example, which will be more interesting
when time enters into the scene. In the first version, all data was sent to the quantum
computer at once. In the second version, data is divided in two; moreover, the second part
of the data is only sent after receiving the result relative to the first part of the data.

To simplify the representation of density operators, we now use the notation [|ψi〉] =
|ψi〉〈ψi| (this convention is also used in Feng et al. (2012)). Moreover, instead of writing
Op[x].Op[y], we write Op[x, y], where Op denotes a super-operator and x and y are qubits.

The first version is encoded as follows:

User
de f
= c! f (u).c!g(v).c?r.c?s.c?done.nil

QC
de f
= c? f (u).c?g(v).Deutsch

Deutsch
de f
= new(x, y, a, b).X[y, b].H[x, y, a, b].Oracle[x, y, a, b].H[x, a].M[x; r].M[a; s].

c!r.c!s.c!done.nil

QCloud = User || QC

The transition system of the first version is shown below:

〈QCloud, ρ〉
τ−→ 〈c!g(v).c?r.c?s.c?done.nil || c?g(v).Deutsch,ρ〉
τ−→ 〈c?r.c?s.c?done.nil || Deutsch,ρ〉
τ−→ 〈c?r... || X[y, b].H[x, y, a, b]...,|00〉x,y〈00| ⊗ |00〉a,b〈00| ⊗ ρ〉
τ−→ 〈c?r... || H[x, y, a, b].Oracle[x, y, a, b]...,|01〉x,y〈01| ⊗ |01〉a,b〈01| ⊗ ρ〉
τ−→ 〈c?r.c?s.c?done.nil || Oracle[x, y, a, b]H[x, a]...,ρH(x,y) ⊗ ρH(a,b) ⊗ ρ〉
τ−→ 〈c?r.c?s.c?done.nil || H[x, a].M[x; r]...,ρOracle(x,y) ⊗ ρOracle(a,b) ⊗ ρ〉
τ−→ 〈c?r.c?s.c?done.nil || M[x; r].M[a; s]...,ρH(x) ⊗ ρH(a) ⊗ ρ′〉
τ−→ 〈c?r.c?s.c?done.nil || M[a; s].c!0...,ρH(a) ⊗ ρ′〉
τ−→ 〈c?r.c?s.c?done.nil || c!0.c!1.c!done.nil,ρ′〉
τ−→ 〈c?s.c?done.nil || c!1.c!done.nil,ρ′〉
τ−→ 〈c?done.nil || c!done.nil,ρ′〉
τ−→ 〈nil || nil,ρ′〉

where:

ρH(x,y) =
1√
2
[(|0〉x + |1〉x)] ·

1√
2
[(|0〉y]− |1〉y)];

ρH(a,b) =
1√
2
[|0〉a + |1〉a] ·

1√
2
[|0〉b]− |1〉b];

5.2. Quantum CCS with measurement operations and classical control 71

ρOracle(x,y) =
1√
2
[(−1) f (0)|0〉x + (−1) f (1)|1〉x] ·

1√
2
[|0〉y − |1〉y];

ρOracle(a,b) =
1√
2
[(−1) f (0)|0〉a + (−1) f (1)|1〉a] ·

1√
2
[|0〉b − |1〉b];

ρH(x) =
1
2
[((−1) f (0) + (−1) f (1))|0〉x + ((−1) f (0) − (−1) f (1))|1〉x] ·

1√
2
[|0〉y − |1〉y];

ρH(a) =
1
2
[((−1) f (0) + (−1) f (1))|0〉a + ((−1) f (0) − (−1) f (1))|1〉a] ·

1√
2
[|0〉b − |1〉b];

ρ′ =
1√
2
[|0〉y − |1〉y]⊗

1√
2
[|0〉b − |1〉b]⊗ ρ

The encoding of the second version is presented below:

User
de f
= c! f (u).c?r.c!g(v).c?s.nil

QC
de f
= c? f (u).Deutsch

Deutsch
de f
= new(x, y).X[y].H[x, y].Oracle[x, y].H[x].M[x; r].c!s.QC

QCloud = User || QC

The respective transition system is as follows:

〈QCloud, ρ〉
τ−→ 〈c! f (u).c?r.c!g(v).c?s.nil || c? f (u).Deutsch, ρ〉
τ−→ 〈c?r.c!g(v).c?s.nil || Deutsch, ρ〉
τ−→ 〈c?r.c!g(v).c?s.nil || X[y].X[x, y]..., [|00〉xy]⊗ ρ〉
τ−→ 〈c?r.c!g(v).c?s.nil || H[x, y].Oracle[x, y]..., [|01〉xy]⊗ ρ〉
τ−→ 〈c?r.c!g(v).c?s.nil || Oracle[x, y].H[x]..., ρH(x,y) ⊗ ρ〉
τ−→ 〈c?r.c!g(v).c?s.nil || H[x].M[x; r].c!s.QC, ρOracle(x,y) ⊗ ρ〉
τ−→ 〈c?r.c!g(v).c?s.nil || M[x; r].c!s.QC, ρH(x) ⊗ ρy ⊗ ρ〉
τ−→ 〈c?r.c!g(v).c?s.nil || c!0.QC, ρy ⊗ ρ〉
τ−→ 〈c!g(v).c?s.nil || QC, ρy ⊗ ρ〉
τ−→ 〈c?s.nil || Deutsch, ρy ⊗ ρ〉
τ−→ 〈c?r.c!g(v).c?s.nil || X[a].H[x, a]..., [|00〉xa]⊗ ρa ⊗ ρ〉
τ−→ 〈c?s.nil || H[x, a].Oracle[x, a]..., [|01〉xa]⊗ ρy ⊗ ρ〉
τ−→ 〈c?s.nil || Oracle[x, a].H[x]..., ρH(x,a) ⊗ ρy ⊗ ρ〉
τ−→ 〈c?s.nil || H[x].M[x; r].c!s.QC, ρOracle(x,a) ⊗ ρy ⊗ ρ〉
τ−→ 〈c?s.nil || M[x; r].c!s.QC, ρH(x) ⊗ ρa ⊗ ρy ⊗ ρ〉
τ−→ 〈c?s.nil || c!1.QC, ρa ⊗ ρy ⊗ ρ〉
τ−→ 〈nil || QC, ρa ⊗ ρy ⊗ ρ〉

5.3. Timed Quantum CCS 72

As mentioned above, the difference between these examples is more interesting when
time comes to play. Then, we will be able to reason about which example is more efficient
or which one guarantees the coherence of qubits.

5.3 timed quantum ccs

With the introduction of time in classical process algebras, it becomes possible to trigger
actions according to temporal constraints and verify time-based protocols more accurately.
In the quantum setting the existence of actions triggered by time is also important. More-
over, one cannot forget that qubits have a very restricted time limit during which they are
immune to noise. This means that all operations must be performed within this time limit.
So in quantum process algebras, time also plays a key role in ensuring that a protocol or
algorithm behaves as expected.

In the theory developed for us, we designed a typing system that verifies if the no-cloning
theorem is obeyed.

We store the information related to the lifetime of qubits in process configurations, due
to a problem in a rule of the typing system. This choice will be discussed later. Relatively
to the temporal properties, shown in Chapter 3, we present our choices in Table 8.

Time Domain Discrete or Dense
Measurement of Time Absolute
Execution Sequence First phase of the two-phase sequence
Introduction of time Delay action

Model Properties Time determinism
Time additivity

Maximal Progression

Table 8: Temporal choices for the quantum process algebra

Our process algebra is designed to support either a discrete or a dense time domain. In-
dependently of the time domain chosen, our goal is to study the impact that time progres-
sion has in quantum processes. We thus consider that the measurement of time is absolute,
meaning that we assume the existence of a global clock for all processes. In this way, we can
have a better control of the lifetime of qubits. Now, recall the Figure 16 that represents an
execution sequence of two-phases, where in the first phase processes perform synchronous
and asynchronous actions, and in the second phase time elapses. For our theory, we only
want to have the first phase. With this, the configurations are always performing actions
and time is elapsed when a delay occurs. Moreover, after each action the configuration is
updated. The introduction of time is made by a delay action, σ(t), where t denotes the
time delay. Relatively to the model properties, we chose time determinism because we do
not want time to interfere with the non-deterministic operator; time additivity because a

5.3. Timed Quantum CCS 73

configuration must reach the same configuration independently of the delay σ(t) being per-
formed once or n-times σ(ti), where ∑n

i=1 ti = t; maximal progression because information
is transmitted by communication, so the faster communication occurs the faster informa-
tion is transmitted. We did not chose persistency, because "it seems counter-intuitive to not
allow time to change system’s capabilities to perform actions once time is often used as a parameter
to control action executability - as in timeouts" (quote from Nicollin and Sifakis (1992)).

In the following subsections, we will outline the syntax, the operational semantics and
the typing system of our timed-quantum process algebra.

5.3.1 Syntax

We consider as time domain, T , the non-negative real numbers R+
0 . We also consider as

data types Bool for Booleans, the real numbers Real for classical variables, the non-negative
real numbers Real+0 for time delay, and Qbt for qubits. We contemplate the following sets:

• cVar for classical variables (countably infinite)

ranged over by r, s, ...

• qVar for quantum variables (countably infinite)

ranged over by x, y, ...

• Exp for classical data expressions over Real, where cVar ⊆ Exp

ranged over by e, e′, ...

• BExp for Boolean-valued expressions

ranged over by b, b′, ... with the usual Boolean operators: true, false, ¬, ∧, ∨
and→

a Boolean expression is of the form e ./ e′, where e, e′ ∈ Exp and ./∈ {<,>,≤,≥
,=}

• cChan for classical communication channels

ranged over by c, d, ...

• qChan for quantum communication channels

ranged over by q, ...

• Chan = cChan ∪ qChan for communication channels

• C = {c?r, c!r | c ∈ cChan, r ∈ cVar} for classical communication actions

• Q = {q?x, q!x | q ∈ qChan, x ∈ qVar} for quantum communication actions

5.3. Timed Quantum CCS 74

• δT = {σ(t) | t ∈ T − {0}} for time actions

ranged over by t, t′...

• {τ} for invisible actions

• A = C ∪Q ∪ {τ} ∪ δT for actions

We are now ready to present the syntax of Timed Quantum CCS, in short TqCCS.

Definition 5.3.1. The syntax of TqCCS is given by the following grammar:

P,Q::= A(x̃) | nil | τ.P | new(x).P | σ(t).P | ε[X].P | c?r.P | c!r.P | q?x.P | q!x.P | M[x; r].P |
P+ Q | P || Q | P\L | if b then P

where:

1. A(x̃): is the set of constant processes with non-negative arity

2. nil: represents a state with no outgoing transitions

3. τ.P: represents the silent action

4. new(x).P: is the action that creates a new qubit

5. σ(t).P: delays t units of time the execution of a process

6. ε[X].P: can be understood as the action prefixing of CCS and corresponds to the
application of a super-operator to a set of qubits

7. c?r: receives a classical variable

8. c!r: sends a classical variable

9. q?x: receives a quantum variable

10. q!x: sends a quantum variable

11. M[x; r].P: represents the measurement of a quantum variable and the storage of the
measurement result on a classical variable

12. P+ Q: non-deterministic choice operator between processes

13. P || Q: parallel communication of processes

14. P\L: hides all channels names in L

5.3. Timed Quantum CCS 75

15. if b then P: represents an if clause

Here, we only present the formation rule of σ(t).P.

if P∈ P , then σ(t).P∈ P and qv(σ(t).P) = qv(P)

The remaining formation rules are absent, because the formation rule of the new action
was already presented in Subsection 5.2.3 and the other rules are the same as in Feng et al.
(2012).

5.3.2 Operational Semantics

By adding time to the quantum process algebra, we felt the necessity to include the lifetime
of qubits in the configurations. Due to that, the configuration is going to be expanded with
qubits lifetime, denoted generally as tq. Therefore, a configuration is represented as follows:

〈Process; Qubits lifetime; Density Operator〉

For the majority of the qCCS rules previously shown, pure quantum (Section 4.3) and
expanded (Section 5.2), we only need to add qubits lifetime.

Tau: 〈τ.P; tq; ρ〉 τ−→ 〈P; tq; ρ〉

C-Inp: 〈 c?r.P; tq; ρ 〉 c?s−−→ 〈 P{s/r}; tq; ρ 〉

C-Outp: 〈 c!r.P; tq; ρ 〉 c!r−−→ 〈 P; tq; ρ 〉

C-Com:

〈 P1; tq; ρ 〉 c?r−−→ 〈 P′1; tq; ρ 〉 〈 P2; tq; ρ 〉 c!r−−→ 〈 P′2; tq; ρ 〉

〈 P1 || P2; tq; ρ 〉 τ−→ 〈 P′1 || P′2; tq; ρ 〉

Q-Inp: 〈 q?x.P; tq; ρ 〉 q?y−−→ 〈 P{y/x}; tq; ρ 〉
y /∈ qv(q?x.P)

Q-Outp: 〈 q!x.P; tq; ρ 〉 q!x−−→ 〈 P; tq; ρ 〉

Q-Com:

〈 P1; tq; ρ 〉 q?x−−→ 〈 P′1; tq; ρ 〉 〈 P2; tq; ρ 〉 q!x−−→ 〈 P′2; tq; ρ 〉

〈 P1 || P2; tq; ρ 〉 τ−→ 〈 P′1 || P′2; tq; ρ 〉

Oper: 〈 ε[X].P; tq; ρ 〉 τ−→ 〈 P; tq; εX(ρ) 〉

5.3. Timed Quantum CCS 76

Meas: 〈 M[x; r].P; tq, tx; ρ 〉 τ−→ �i∈I pi•〈 P{ri/x}; tq; trx(ρ) 〉

Sum:

〈 P; tq; ρ 〉 α−→ µ

〈P+ Q; tq; ρ〉 α−→ µ

Rel:

〈 P; tq; ρ 〉 α−→ �i∈I pi•〈 Pi; tq; ρi 〉

〈 P[f]; tq; ρ 〉 f (α)−−→ �i∈I pi•〈 Pi[f]; tq; ρi 〉

Res:

〈 P; tq; ρ 〉 α−→ �i∈I pi•〈 Pi; tq; ρi 〉

〈 P\L; tq; ρ 〉 α−→ �i∈I pi•〈 Pi\L; tq; ρi 〉
cn(α) * L

If:

〈 P; tq; ρ 〉 α−→ µ

〈if b then P; tq; ρ〉 α−→ µ
JbK = true

Def:

〈 P{ỹ/x̃}; tq; ρ 〉 α−→ µ

〈A(ỹ); tq; ρ〉 α−→ µ
A(x̃)

de f
=P

New: 〈 new(x).P; tq; ρ〉 τ−→ 〈 P{y/x}; tq, 0y; |0〉y〈0| ⊗ ρ 〉
y is fresh

Inp-Int:

〈 P1; tq; ρ 〉 q?x−−→ 〈 P′1; tq, tx; ρ 〉

〈 P1 || P2; tq; ρ 〉 q?x−−→ 〈 P′1 || P2; tq, tx; ρ 〉
x /∈qv(P2)

New-Int:

〈 P1;tP1 ; tq;ρ 〉 τ−→ 〈 P′1; tP1 ; tq, 0x;|0〉x〈0| ⊗ ρ 〉

〈 P1 || P2;tP1 , tP2 ; tq;ρ 〉 τ−→ 〈 P′1 || P2; tP1 , tP2 ; tq, 0x;|0〉x〈0| ⊗ ρ 〉
x is fresh

Oth-Int:

〈 P1; tq; ρ 〉 α−→ �i∈I pi•〈 P′i; tq; ρi 〉

〈 P1 || P2; tq; ρ 〉 α−→ �i∈I pi•〈 P′i || P2; tq; ρi 〉
α 6= q?x ∧ α 6= new(x)

Wait: 〈 σ(t).P; tq; ρ 〉 τ−→ 〈 P; tq + t; ρ 〉

T-Add: 〈 σ(t + u).P; tq; ρ 〉 τ−→ 〈 σ(u).P, tq + t; ρ 〉

Table 9: SOS rules for TqCCS

5.3. Timed Quantum CCS 77

In Table 9, the symmetric versions of Inp-Int, New-Int, Oth-Int and Sum are not pre-
sented. With the introduction of time on configurations, we need to define what happens
when qubits are exchanged. Reasonably, when a qubit is exchanged, sent or received, all
the information associated to that qubit must follow it. This can be seen in Q-Inp, Q-Outp,
Q-Com and Inp-Int. In New, the time of the qubit created is set to 0, and the state of the
qubit is |0〉. In Wait, we sum t units of time to the lifetime of the qubits. Notice that if
we do not have any qubit in the system and a delay action happens, then the lifetime of
qubits remains unchanged. The side conditions presented in the rules Inp-Int and New-Int
are necessary to prevent the no-cloning theorem. In the former, we need to make sure that
the process P2 does not have the quantum variable x, because we cannot have the same
variable in two different processes. In the latter, we need to assure that the qubit is fresh,
also because we cannot have a variable being shared in different processes.

The rule New-Int tells us that a new qubit can be created if it is fresh in P1 and P1 || P2.
In Oth-Int, we just want to assure that the actions that receives or creates qubits can not be
executed by this rule, once specific rules for them were developed.

Now, we will discuss why the qubits lifetime is presented in the transition system instead
of the typing system. In the former, the quantum system has information of all the transi-
tions between configurations, since we are using a LTS. Therefore, when a qubit is shared,
we have access to the information related with the lifetime of qubits. In the latter, when a
qubit is received, no information related to time is known. That is because, in the typing
system, processes do not know the existence of others processes.

After presenting the syntax, the semantics and justifying why the information related
with time is presented in configurations, we can specify the model properties that we wish
our theory to respect. In this dissertation we will not prove that our process algebra has
desirable model properties. However we would like to present next some of the properties
that we intend to show in the near future.

• Time determinism

If 〈P; tq; ρ〉 τ−→ 〈P1; tq + t; ρ〉 and 〈P; tq; ρ〉 τ−→ 〈P2; tq + t; ρ〉, then 〈P1; tq +

t; ρ〉=〈P2; tq + t; ρ〉

where = is the syntactic equality

• Maximal progress

If 〈P; tq; ρ〉 τ−→ 〈P1; tq; ρ〉 then 〈P; tq; ρ〉6 τ−→〈P2; tq + t; ρ〉

• Time additivity

Described by the rule (T-Add) in Table 9

5.3. Timed Quantum CCS 78

5.3.3 Typing System

Previously, we developed a typing system to verify if the no-cloning theorem was respected
or not. The typing system could not possess any information about the lifetime of qubits,
because when a qubit is received "from the outside" nothing is known of its lifetime. This
particular problem is found in the (Q-IN) rule. In this dissertation, we present instead the
following rules for the typing system of our timed-quantum process algebra.

(NIL) Γ ` nil (CONST)
∆ ⊆ Γ

Γ ` A(∆)

(INV)
Γ ` P

Γ ` τ.P (OP)
Γ ` P X ⊆ ΓQ

Γ ` ε[X].P

(C-OUT)
Γ, r : C ` P

Γ, r : C ` c!r.P (C-IN)
Γ, r : C ` P

Γ ` c?r.P

(Q-IN)
Γ, x : Q ` P

Γ ` q?x.P (Q-OUT)
Γ ` P

Γ, x : Q ` q!x.P

(MEAS)
Γ, r : C ` P

Γ, x : Q ` M[x; r].P (SUM)
Γ1 ` P Γ2 ` Q

Γ1 ∪ Γ2 ` P+ Q

(REL)
Γ ` P

Γ ` P[f] (RES)
Γ ` P

Γ ` P\L

(IF)
Γ ` P ∆ ` b

Γ, ∆ ` if b then P (NEW)
Γ, x : Q ` P

Γ ` new(x).P

(COMM)
Γ1 ` P Γ2 ` Q ΓQ

1 ∩ ΓQ
2 = ∅

Γ1 ∪ Γ2 ` P || Q (WAIT)
Γ ` P

Γ ` σ(t).P

Table 10: TqCCS typing rules

In Section 4.4 we proved that the typing system admits the weakening rule and Theorem
4.4.2. In Section 5.2 we proved that with the addition of classical variables the typing system
still has implicitly the weakening rule, classical and quantum, and that Theorem 7 holds.
Here, we need to prove that the typing system admits the weakening rule for both the
classic and quantum cases, and that there is an equivalence between the processes defined
in Definition 5.3.1 and the rules in Table 10. Actually, we only need to exhibit the proofs for
formulas (NEW) and (WAIT), since the remaining proofs are very similar to the ones done
previously.

5.3. Timed Quantum CCS 79

The classical weakening, in TqCCS, is defined as follows:

Theorem 5.3.2. Assume that Γ ` P. Then Γ, x : C ` P for any classical variable x.

The proof is shown next.

Proof. The proof follows by induction on the structure of quantum processes.

1. We consider the case of the action new. We assume that Γ ` new(x).P, which implies
Γ, x : Q ` P. By induction we derive Γ, x : Q, r : C ` P. Applying the rule (NEW) in
Table 10 we obtain Γ, r : C ` new(x).P.

2. Now, we consider the case of the delay actions. We assume that Γ ` σ(t).P, which
entails Γ ` P. By induction, we derive Γ, r : C ` P. Applying the rule (WAIT) in Table
10 we obtain Γ, r : C ` σ(t).P.

Now, we need to deal with the quantum case. For TqCCS this theorem is as follows:

Theorem 5.3.3. Assume that Γ ` P. Then Γ, x : Q ` P for any quantum variable x.

Proof. The proof follows by induction on the structure of quantum processes.

1. We consider the case of the action new. We assume that Γ ` new(x).P, which implies
Γ, x : Q ` P. By induction we derive Γ, x : Q, y : Q ` P. Applying the rule (NEW) in
Table 10 we obtain Γ, y : Q ` new(x).P.

2. Now, we consider the case of the delay actions. We assume that Γ ` σ(t).P, which
entails Γ ` P. By induction, we derive Γ, x : Q ` P. Applying the rule (WAIT) in Table
10 we obtain Γ, x : Q ` σ(t).P.

We have proved that the quantum weakening is also admitted by our typing system.
Finally, we need to formulate a theorem that establishes a relation between Table 10 and
Table 5.3.1. The theorem is as follows:

Theorem 5.3.4. P is a process in TqCCS iff Γ ` P for some Γ.

Again, we will only show the proof for the formulas (NEW) and (WAIT).

Proof. We begin by showing the left-to-right implication. The induction invariant is as
follows:

P is a process in TqCCS implies that Γ ` P with ΓQ ⊆ qv(P).

5.3. Timed Quantum CCS 80

1. Consider the case of the action new. We assume that new(x).P is a process in TqCCS.
By induction we derive Γ ` P with ΓQ ⊆ qv(P). Applying the rule (NEW) in Table 10

we obtain Γ\{x : Q} ` new(x).P with ΓQ\{x : Q} ⊆ qv(P)\{x} ⊆ qv(new(x).P).

2. Let us now consider the case of the delay action. We assume that σ(t).P is a TqCCS
process. By induction we derive Γ ` P with ΓQ ⊆ qv(P). Applying the rule (WAIT) in
Table 10 we obtain Γ ` σ(t).P with ΓQ ⊆ qv(P) ⊆ qv(σ(t).P).

Let us now show the right-to-left implication. The induction invariant is now:

Γ ` P entails a TqCCS process P with qv(P) ⊆ Γ

1. Consider the action new. We assume Γ ` new(x).P, which entails Γ, x : Q ` P. By in-
duction we derive that P is a process in TqCCS with qv(P) ⊆ Γ, x : Q. By item 4 in Def-
inition 5.3.1 new(x).P is a process in TqCCS. Moreover qv(new(x).P) ⊆ qv(P)\{x} ⊆
Γ\{x}.

2. At last, consider the delay action. We assume Γ ` σ(t).P, which entails Γ ` P. By
induction we derive that P is a process in TqCCS with qv(P) ⊆ Γ. By item 5 in
Definition 5.3.1 σ(t).P is a TqCCS process. Moreover qv(σ(t).P) = qv(P) ⊆ Γ.

5.3.4 Timed Quantum Random Number Generator

In the quantum random number generator, the inclusion of time dimension aims at control-
ling the amount of time the system is collecting data. It also serves to verify if the coherence
time was exceeded or not.

In order to mimic quantum computers producing non-instantaneous computations, we
consider a delay action, which happens before the measurement and after putting a qubit
into superposition. This delay can be seen as the time elapsed from the moment the or-
der do was received until performing the Hadamard operation on the created qubit, H[x].
Furthermore, when the time delay t is big, problems in imperfect quantum systems arose.
Such problems are related to the decoherence of qubits, since they are not kept stable, and
therefore more susceptible to noise.

We now present the corresponding QRNG process:

QRNG
de f
= c?do.new(x).H[x].σ(t).M[x; r].c!r.QRNG

5.3. Timed Quantum CCS 81

Before presenting the transition system, we need to verify that this process does not
violate the no-cloning theorem. Therefore, we need to use the typing system.

∅ ⊆ do : C, r : C
do : C, r : C ` QRNG

do : C, r : C ` c!r.QRNG
x : Q, do : C ` M[x; r].c!r.QRNG

x : Q, do : C ` σ(t).M[x; r].c!r.QRNG x : Q ⊆ {x : Q}
x : Q, do : C ` H[x].σ(t).M[x; r].c!r.QRNG

do : C ` new(x).H[x].σ(t).M[x; r].c!r.QRNG
∅ ` c?do.new(x).H[x].σ(t).M[x; r].c!r.QRNG ∅ ⊆ ∅

∅ ` QRNG

Since the derivation was successful, we conclude that the no-cloning theorem was not
violated. Therefore, the process is valid and its execution be calculated as follows,

〈QRNG; ∅; ρ〉
c?do−−→ 〈new(x).H[x].σ(t).M[x; r].c!r.QRNG; ∅; ρ〉

τ−→ 〈H[x].σ(t).M[x; r].c!r.QRNG; 0y; |0〉y〈0| ⊗ ρ〉
τ−→ 〈σ(t).M[x; r].c!r.QRNG; 0y;

1
2
(|0〉y + |1〉y)(〈y0|+ 〈y0|)⊗ ρ〉

τ−→ 〈M[x; r].c!r.QRNG; ty;
1
2
(|0〉y + |1〉y)(y〈0|+y 〈1|)⊗ ρ〉

τ−→ 1
2
〈c!0.QRNG; ∅; ρ〉 � 1

2
〈c!1.QRNG; ∅; ρ〉

c!v−→ 1
2
〈QRNG; ∅; ρ〉 � 1

2
〈QRNG; ∅; ρ〉

In this transition system we can observe the evolution of the density operator, and how
the qubit lifetime is changed over transitions. We also see that after performing the mea-
surement, two configurations are created, where one represents the measurement result ’0’
and the other ’1’.

The developed syntax and semantics do not consider the application of noise to qubits.
We intend to extend both cases in this direction in the near future.

5.3.5 Timed Quantum Cloud

In the example of the quantum cloud we aim at verifying if the coherence time is exceeded.
Moreover, we want to verify which approach is more efficient - send all the data or split the
data to be sent - and which guarantees the coherence of qubits. To have a fair comparison,
the delay action will be placed before the measurement. This delay action can have the

5.3. Timed Quantum CCS 82

same interpretation as in the previous case. First, we present the version where all data is
set at once.

User
de f
= c! f (u).c!g(v).c?r.c?s.c!done.nil

QC
de f
= c? f (u).c?g(v).Deutsch

Deutsch
de f
= new(x, y, a, b).X[y, b].H[x, y, a, b].Oracle[x, y, a, b].H[x, a].σ(t)

.M[x; r].M[a; s].c!r.c!s.c?done.nil

We now need to verify if the no-cloning theorem is violated or not. We proceed as follows:

...
ΓUser ` User

...
ΓQC ` QC ΓQ

User ∩ ΓQ
QC = ∅

ΓUser ∪ ΓQC ` User||QC

where ΓUser = f (u) : C, g(v) : C and ΓQC = done : C.
The first step introduced the condition ΓQ

User ∩ ΓQ
QC = ∅, which one can see that is obeyed:

ΓQ
User ∩ ΓQ

QC = ∅ ∩∅ = ∅.
Since it is hard to depict the total calculation of the validity of the process above (due

to page size restrictions), we discern the User and QC cases separately. The calculation for
User is as follows:

f (u) : C, g(v) : C, r : C, s : C, done : C ` nil

f (u) : C, g(v) : C, r : C, s : C ` c?done.nil
f (u) : C, g(v) : C, r : C ` c?s.c?done.nil
f (u) : C, g(v) : C ` c?r.c?s.c?done.nil

f (u) : C, g(v) : C ` c!g(v).c?r.c?s.c?done.nil
f (u) : C, g(v) : C ` c! f (u).c!g(v).c?r.c?s.c?done.nil ∅ ⊆ { f (u), g(v)} : C

f (u) : C, g(v) : C ` User

5.3. Timed Quantum CCS 83

In QC we make Ω = f (u) : C, g(v) : C, done : C for simplification. The derivation for QC is
as follows:

y : Q, b : Q, f (u) : C, g(v) : C, r : C, s : C, done : C ` nil

y : Q, b : Q, Ω, r : C, s : C ` c!done.nil
y : Q, b : Q, Ω, r : C, s : C ` c!s.c!done.nil

y : Q, b : Q, Ω, r : C, s : C ` c!r.c!s...
y : Q, a : Q, b : Q; Ω, r : C ` M[a; s].c!r...

x : Q, y : Q, a : Q, b : Q, Ω ` M[x; r].M[a; s]...
x : Q, y : Q, a : Q, b : Q, Ω ` σ(t).M[x; r]... {x, a} : Q ⊆ {x, y, a, b} : Q

x : Q, y : Q, a : Q, b : Q, Ω ` H[x, a].σ(t)... {x, y, a, b} : Q ⊆ {x, y, a, b} : Q
x : Q, y : Q, a : Q, b : Q, Ω ` Oracle[x, y, a, b].H[x, a]... {x, y, a, b} : Q ⊆ {x, y, a, b} : Q
x : Q, y : Q, a : Q, b : Q, Ω ` H[x, y, a, b].Oracle[x, y, a, b]... {y, b} : Q ⊆ {x, y, a, b} : Q

x : Q, y : Q, a : Q, b : Q, Ω ` X[y, b].H[x, y, a, b]...
Ω ` new(x, y, a, b).X[y, b]... ∅ ⊆ { f (u), g(v), done} : C

done : C, f (u) : C, g(v) : C ` Deutsch

done : C, f (u) : C ` c?g(v).Deutsch
done : C ` c? f (u).c?g(v).Deutsch ∅ ⊆ {done} : C

done : C ` QC

Since the derivation was successful, we are able to calculate the execution of the process.

〈QCloud; ∅; ρ〉
τ−→ 〈c!g(v).c?r.c?s.c?done.nil || c?g(v).Deutsch; ∅; ρ〉
τ−→ 〈c?r.c?s.c?done.nil || Deutsch; ∅; ρ〉
τ−→ 〈c?r... || X[y, b].H[x, y, a, b]...; 0x, 0y, 0a, 0b; [|00〉x,y]| ⊗ [|00〉a,b]⊗ ρ〉
τ−→ 〈c?r... || H[x, y, a, b].Oracle[x, y, a, b]...; 0x, 0y, 0a, 0b; [|01〉x,y]⊗ [|01〉a,b]⊗ ρ〉
τ−→ 〈c?r.c?s.c?done.nil || Oracle[x, y, a, b].H[x, a]..; 0x, 0y, 0a, 0b; ρH(x,y) ⊗ ρH(a,b) ⊗ ρ〉
τ−→ 〈c?r.c?s.c?done.nil || H[x, a].σ(t)...; 0x, 0y, 0a, 0b; ρOracle(x,y) ⊗ ρOracle(a,b) ⊗ ρ〉
τ−→ 〈c?r.c?s.c?done.nil || σ(t).M[x; r]...; 0x, 0y, 0a, 0b; ρH(x) ⊗ ρH(a) ⊗ ρ′〉
τ−→ 〈c?r.c?s.c?done.nil || M[x; r].M[a; s]...; tx, ty, ta, tb; ρH(x) ⊗ ρH(a) ⊗ ρ′〉
τ−→ 〈c?r.c?s.c?done.nil || M[a; s].c!0...; ty, ta, tb; ρH(a) ⊗ ρ′〉
τ−→ 〈c?r.c?s.c?done.nil || c!0.c!1.c!done.nil; ty, tb; ρ′〉
τ−→ 〈c?s.c?done.nil || c!1.c!done.nil; ty, tb; ρ′〉
τ−→ 〈c?done.nil || c!done.nil; ty, tb; ρ′〉
τ−→ 〈nil || nil; ty, tb; ρ′〉

The density operators are the same as in the untimed example, and thus omitted here.

5.3. Timed Quantum CCS 84

Consider now the second version of this example, in which the data is going to be divided.
The example is encoded as follows:

User
de f
= c! f (u).c?r.c!g(v).c?s.nil

QC
de f
= c? f .Deutsch

Deutsch
de f
= new(x, y).X[y].H[x, y].Oracle[x, y].H[x].σ(t).M[x; r].c!r.QC

Let us now verify if the no-cloning theorem is obeyed.

...
ΓUser ` User

...
ΓQC ` QC ΓQ

User ∩ ΓQ
QC = ∅

ΓUser ∪ ΓQC ` User || QC

where ΓUser = f (u) : C, g(v) : C and ΓQC = ∅. The condition ΓQ
User ∩ ΓQ

QC = ∅ is satisfied,
once ΓQ

User ∩ ΓQ
QC = ∅ ∩∅ = ∅.

Again, the total derivation needs to be split. So, we present first the part related to the
User:

f (u) : C, g(v) : C, r : C, s : C ` nil

f (u) : C, g(v) : Cr : C ` c?s.nil
f (u) : C, g(v) : C, r : C ` c!g(v).c?s.nil
f (u) : C, g(v) : C ` c?r.c!g(v).c?s.nil

f (u) : C, g(v) : C ` c! f (u).c?r.c!g(v).c?s.nil ∅ ⊆ { f (u), g(v)} : C
f (u) : C, g(v) : C ` User

And now the part related to QC:

y : Q, f : C, r : C ` QC

y : Q, f : C, r : C ` c!r.QC
x : Q, y : Q, f : C ` M[x; r].c!r.QC

x : Q, y : Q, f : C ` σ(t).M[x; r]... {x} : Q ⊆ {x, y} : Q
x : Q, y : Q, f : C ` H[x].σ(t)... {x, y} : Q ⊆ {x, y} : Q

x : Q, y : Q, f : C ` Oracle[x, y].H[x]... {x, y} : Q ⊆ {x, y} : Q
x : Q, y : Q, f : C ` H[x, y].Oracle[x, y]... {y} : Q ⊆ {x, y} : Q

x : Q, y : Q, f : C ` X[y].H[x, y]...
f : C ` new(x, y).X[y]... ∅ ⊆ ∅

f : C ` Deutsch

∅ ` c? f .Deutsch
∅ ` c? f .Deutsch ∅ ⊆ ∅

∅ ` QC

5.3. Timed Quantum CCS 85

Once more, the no-cloning theorem is respected. Therefore, the transition system can be
calculated as follows:

〈QCloud; ∅; ρ〉
τ−→ 〈c! f (u).c?r.c!g(v).c?s.nil || c? f (u).Deutsch; ∅; ρ〉
τ−→ 〈c?r.c!g(v).c?s.nil || Deutsch; ∅; ρ〉
τ−→ 〈c?r.c!g(v).c?s.nil || X[y].H[x, y]...; 0x, 0y; [|00〉xy]⊗ ρ〉
τ−→ 〈c?r.c!g(v).c?s.nil || H[x, y].Oracle[x, y]...; 0x, 0y; [|01〉xy]⊗ ρ〉
τ−→ 〈c?r.c!g(v).c?s.nil || Oracle[x, y].H[x]...; 0x, 0y; ρH(x,y) ⊗ ρ〉
τ−→ 〈c?r.c!g(v).c?s.nil || H[x].σ(t).M[x; r].c!s.QC; 0x, 0y; ρOracle(x,y) ⊗ ρ〉
τ−→ 〈c?r.c!g(v).c?s.nil || σ(t).M[x; r].c!s.QC; 0x, 0y; ρH(x) ⊗ ρy ⊗ ρ〉
τ−→ 〈c?r.c!g(v).c?s.nil || M[x; r].c!s.QC; tx, ty; ρH(x) ⊗ ρy ⊗ ρ〉
τ−→ 〈c?r.c!g(v).c?s.nil || c!0.QC; ty; ρy ⊗ ρ〉
τ−→ 〈c!g(v).c?s.nil || c? f (u).Deutsch; t; ty; ρy ⊗ ρ〉
τ−→ 〈c?s.nil || new(x, a).X[a]...; ty; ρy ⊗ ρ〉
τ−→ 〈c?r.c!g(v).c?s.nil || X[a].H[x, a]...; 0x, 0a, ty; [|00〉xa]⊗ ρa ⊗ ρ〉
τ−→ 〈c?s.nil || H[x, a].Oracle[x, a]...; 0x, 0a, ty; [|01〉xa]⊗ ρy ⊗ ρ〉
τ−→ 〈c?s.nil || Oracle[x, a].H[x]...; 0x, 0a, ty; ρH(x,a) ⊗ ρy ⊗ ρ〉
τ−→ 〈c?s.nil || H[x].σ(t).M[x; r].c!s.QC;0x, 0a, ty; ρOracle(x,a) ⊗ ρy ⊗ ρ〉
τ−→ 〈c?s.nil || σ(t).M[x; r].c!s.QC; 0x, 0a, ty; ρH(x) ⊗ ρa ⊗ ρy ⊗ ρ〉
τ−→ 〈c?s.nil || M[x; r].c!s.QC; tx, ta, 2ty; ρH(x) ⊗ ρa ⊗ ρy ⊗ ρ〉
τ−→ 〈c?s.nil || c!1.QC; ta, 2ty; ρa ⊗ ρy ⊗ ρ〉
τ−→ 〈nil || QC; ta, 2ty; ρa ⊗ ρy ⊗ ρ 〉

In both cases, through the typing and transition systems we can see that garbage accu-
mulates along the unfolding of the recursive process. This is caused by the qubits y and a
that are not erased from the density operator, since they are not measured. From that, we
can conclude that a trash action would indeed be useful.

Now that both approaches were presented enriched with temporal dimension, we will
compare them with respect to two aspects: data and qubit decoherence. Let us begin
with data. When data is all sent, the quantum computer only needs to run the Deutsch
algorithm once. We need to keep in mind that the quantum computer puts all the states
into a superposition state, and performs all the calculations needed only once. When data
is split, the quantum computer runs the Deutsch algorithm two times. Therefore, it seems
reasonable to conclude that sending all the data is better, because it exploits the parallelism
naturally inherent in quantum computing. Regarding quantum decoherence, the qubits age
is included in tq, which increases according to delay actions. More concretely, the value t
presented in the delay action represents the time elapsed since the creation of the first qubit
until its measurement. However we cannot predict the amount of time elapsed so, we need

5.4. TqCCS vs qCCS vs CQP 86

to make this experience in a quantum computer. Therefore, the only conclusion that can be
made, is that the qubits lifetime is dependent on the delay t and, the greater the delay t the
greater the chance of the qubits becoming decoherent.

5.4 tqccs vs qccs vs cqp

In this section we make a comparison between our theory, qCCS, Feng et al. (2012), and
CQP, Gay and Nagarajan (2006).

TqCCS is a timed-quantum process algebra based on qCCS, but whose typing system is
based on CQP. We framed our work in two quantum process algebras in order to merge
their best features. First, consider qCCS and CQP.

qCCS CQP
Recursive processes

Labelled Transition System
Transition system

Typing system
Qubit allocation

Table 13: qCCS vs CQP

In Table 13, one can see that qCCS exhibits recursive processes and transitional dynam-
ics. But, it does not allow the expansion of Hilbert space, meaning that the creation of
new qubits is impossible. Because of that, the Hilbert space of a configuration is always
pre-defined. In the same table, one can see that CQP does not have recursion, but a sim-
ple transition system, based on reductions, and a typing system. Moreover, it allows the
creation of new qubits, making the Hilbert space to grow along the computation process.

By analysing the advantages and disadvantages of the previous process algebras, we took
the advantages of qCCS and CQP and merged them to form our theory. With that we were
able to construct a quantum process algebra that allows recursion on processes, the creation
of new qubits and has both typing and transition systems. Having said that, we can now
extend Table 13 with a column for TqCCS.

qCCS CQP TqCCS
Recursive processes × ×

Labelled Transition system × ×
Typing system × ×

Qubit Allocation × ×

Table 14: qCCS vs CQP vs TqCCS

5.4. TqCCS vs qCCS vs CQP 87

The Table 14 shows that TqCCS merges the advantages of qCCS and those of CQP. More-
over, we did not include the transition system of CQP in this table, because we have fol-
lowed the LTS present in qCCS.

6

C O N C L U S I O N S A N D F U T U R E W O R K

6.1 conclusion

The goal of this dissertation was to develop a quantum process algebra with a temporal
notion and a typing system. Through the first feature we intend to verify the lifetime of
qubits, and trigger actions. With the second feature we aim at providing a better control
of the no-cloning theorem, as well as deriving and analysing logical properties such as
weakening.

We started our work by studying the concept of concurrency. We concluded that concur-
rency is very important, because it is inherently present in a myriad of systems and can be
used to improve system’s performance. Next, we studied different process algebras, which
form a standard class of tools for modelling and analysing concurrency. By studying Baeten
et al. (2010), we saw that a process can be seen as an automaton. Among other things, this
allows to use automata theory – and in particular trace equivalence and bisimilarity – to
compare the behaviour of two processes.

Later on, the introduction of a temporal dimension in process algebra was studied. We
saw that in designing a timed process algebra there are multiples choices to be made:
e.g. time domain, measurement of time, execution sequence, introduction of time at the
syntactic level, and model properties. Then, we presented an extension of CCS with timed-
variables and delay actions, Timed CCS, Yi (1991)

Next, an introduction to the basics of quantum mechanics was made, so that the reader
could recall some concepts that are crucial in developing a quantum process algebra - the
no-cloning theorem, density operator, unitary operator, etc. Then, a quantum version of
CCS, qCCS, Ying et al. (2009) was outlined. In the syntax, the set of quantum free variables
was used to prevent the no-cloning theorem. In the semantics, the concept of configuration
was introduced, as composed of a process and a density operator. Here, the creation of
new qubits is not allowed, which is a limitation, but the definition of recursive processes,
making use of process constants, is possible and a great advantage. Having in mind the
typing system of CQP, we introduced a typing system for qCCS. We proved the weakening

6.2. Future Work 89

property. Moreover, we proved that exists an equivalence between qCCS processes and the
ones derived by our typing system.

After, we extended qCCS with classical variables, Feng et al. (2012), and developed two
examples - Quantum Random Number Generator and Quantum Cloud - with the intent
to verify if the extended qCCS was able to codify them. At a first attempt, the result was
bad, because it was impossible to have a recursive definition of the process Env for both
examples. Therefore, inspired by the creation of qubits in CQP, we introduced an action
new(x) in the syntax of qCCS, and changed the measurement rule of the qCCS semantics:
the application of the partial trace to the density operator in the order of the measured
qubits. With this, we were able to encode both examples as desired.

After developing a quantum process algebra with a typing system, we introduced a
temporal dimension, more specifically, a delay action. We called the resulting process
algebra TqCCS. In our process algebra, information related with the lifetime of qubits is
available in the configurations. We also considered timed versions of the aforementioned
examples, in order to study and discuss how our process algebra handles them.

With the development of the typing system, we saw that not all the functionalities of
linear logic were necessary.

As already mentioned, the introduction of time in a quantum process algebra is use-
ful to control the coherence time of qubits, which is critical for the current NISQ (Noisy
Intermediate-Scale Quantum) quantum computing. Furthermore, the presence of a typing
system is useful to verify the no-cloning theorem and meta-logical properties, such as the
result for weakening.

6.2 future work

We intend to explore the following research lines in the near future.

1. Implementation of super-operators that simulate noisy qubits

When the lifetime of qubits is exceeded, they become susceptible to noise. We
wish to extend our timed-quantum process algebra with super-operators to simulate
this scenario. Specifically, we aim to introduce super-operators that make qubits noisy.

2. Expansion Law

One important result in the theory of CCS, Milner (1989), is the expansion law.
It would thus be interesting to develop an analogous expansion law for our timed-
quantum process algebra.

3. Quantum Random Walks

6.2. Future Work 90

Since the Hilbert space can be expanded, via the new action, and contracted, via
measurements, we believe that it is possible to encode quantum random walks with
our quantum process algebra. This would be important because quantum random
walks have many applications, Shenvi et al. (2003); Childs et al. (2003); Ambainis
(2003).

4. Trash

In the Timed Quantum Cloud example we saw that there exists qubits that are
not measured. These qubits are considered garbage once they do not have any utility.
Therefore, the necessity of an erasing action.

5. Experimental results for the Timed Quantum Cloud example

The conclusions drawn from the Timed Quantum Cloud example were purely
based on our calculations and not on experimental evidence. Therefore, it would be
interesting to have experimental results confirming or refuting our conclusions.

6. Integrate qubits lifetime in the typing system

In the current state, the typing system of TqCCS allows us to verify if the no-
cloning theorem is obeyed before making the transition system. With the introduc-
tion of qubits lifetime into the typing system, we would also be able to know if the
coherence time of qubits was, in a certain point of the process, exceeded.

7. Model properties

To go from "we wish that our theory respects" to "our theory respects" we need
to prove the model properties described in the Subsection 5.3.2 for TqCCS.

B I B L I O G R A P H Y

Ibm quantum computing. https://www.ibm.com/quantum-computing/. Accessed: 2019-11-
1.

Id quantique quantum random number generator. https://www.idquantique.com/

random-number-generation/products/quantis-random-number-generator/, 2016. Ac-
cessed: 2019-8-25.

Luca Aceto, Kim G Larsen, and Anna Ingólfsdóttir. An introduction to milner’s ccs. Course
Notes for Semantics and Verification. Constantly under revision. The most recent version is avail-
able at the URL http://www. cs. auc. dk/ luca/SV/Intro21ccs. pdf, BRICS, Department of Com-
puter Science, Aalborg, Denmark, 2005.

Andris Ambainis. Quantum walks and their algorithmic applications. International Journal
of Quantum Information, 1(04):507–518, 2003.

J.C.M. Baeten. A brief history of process algebra. Theoretical Computer Science, 335(2):131

– 146, 2005. ISSN 0304-3975. doi: https://doi.org/10.1016/j.tcs.2004.07.036. URL http:

//www.sciencedirect.com/science/article/pii/S0304397505000307. Process Algebra.

Jos CM Baeten and Jan A Bergstra. Real time process algebra. Formal Aspects of Computing,
3(2):142–188, 1991.

Josephus CM Baeten, Twan Basten, Twan Basten, and MA Reniers. Process algebra: equational
theories of communicating processes, volume 50. Cambridge university press, 2010.

J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication. Infor-
mation and Control, 60(1):109 – 137, 1984. ISSN 0019-9958. doi: https://doi.org/10.
1016/S0019-9958(84)80025-X. URL http://www.sciencedirect.com/science/article/

pii/S001999588480025X.

Patrick Blackburn, Maarten De Rijke, and Yde Venema. Modal Logic: Graph. Darst, vol-
ume 53. Cambridge University Press, 2002.

Olav Bunte, Jan Friso Groote, Jeroen J. A. Keiren, Maurice Laveaux, Thomas Neele, Erik P.
de Vink, Wieger Wesselink, Anton Wijs, and Tim A. C. Willemse. The mcrl2 toolset
for analysing concurrent systems. In Tomáš Vojnar and Lijun Zhang, editors, Tools and
Algorithms for the Construction and Analysis of Systems, pages 21–39, Cham, 2019. Springer
International Publishing.

https://www.ibm.com/quantum-computing/
https://www.idquantique.com/random-number-generation/products/quantis-random-number-generator/
https://www.idquantique.com/random-number-generation/products/quantis-random-number-generator/
http://www.sciencedirect.com/science/article/pii/S0304397505000307
http://www.sciencedirect.com/science/article/pii/S0304397505000307
http://www.sciencedirect.com/science/article/pii/S001999588480025X
http://www.sciencedirect.com/science/article/pii/S001999588480025X

bibliography 92

Andrew M Childs, Richard Cleve, Enrico Deotto, Edward Farhi, Sam Gutmann, and
Daniel A Spielman. Exponential algorithmic speedup by a quantum walk. In Proceed-
ings of the thirty-fifth annual ACM symposium on Theory of computing, pages 59–68. ACM,
2003.

David Deutsch and Richard Jozsa. Rapid solution of problems by quantum computation.
Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 439

(1907):553–558, 1992.

E. W. Dijkstra. Solution of a problem in concurrent programming control. Commun. ACM,
8(9):569–, September 1965. ISSN 0001-0782. doi: 10.1145/365559.365617. URL http:

//doi.acm.org/10.1145/365559.365617.

Paul Adrien Maurice Dirac. The principles of quantum mechanics. Number 27. Oxford univer-
sity press, 1981.

Yuan Feng, Runyao Duan, Zhengfeng Ji, and Mingsheng Ying. Probabilistic bisimulations
for quantum processes. Information and Computation, 205(11):1608–1639, 2007.

Yuan Feng, Runyao Duan, and Mingsheng Ying. Bisimulation for quantum processes. ACM
Transactions on Programming Languages and Systems (TOPLAS), 34(4):17, 2012.

Richard Feynman. Simulating physics with computers, 1982.

Simon J Gay and Rajagopal Nagarajan. Communicating quantum processes. In ACM SIG-
PLAN Notices, volume 40, pages 145–157. ACM, 2005.

Simon J Gay and Rajagopal Nagarajan. Types and typechecking for communicating quan-
tum processes. Mathematical Structures in Computer Science, 16(3):375–406, 2006.

Jan Friso Groote and Mohammad Reza Mousavi. Modeling and Analysis of Communicating
Systems. The MIT Press, 2014. ISBN 0262027712, 9780262027717.

Lov K Grover. A fast quantum mechanical algorithm for database search. arXiv preprint
quant-ph/9605043, 1996.

C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–677, August
1978. ISSN 0001-0782. doi: 10.1145/359576.359585. URL http://doi.acm.org/10.1145/

359576.359585.

Charles Antony Richard Hoare. An axiomatic basis for computer programming. Communi-
cations of the ACM, 12(10):576–580, 1969.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages, and Computation (3rd Edition). Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2006. ISBN 0321455363.

http://doi.acm.org/10.1145/365559.365617
http://doi.acm.org/10.1145/365559.365617
http://doi.acm.org/10.1145/359576.359585
http://doi.acm.org/10.1145/359576.359585

bibliography 93

J Kempe. Quantum random walks: An introductory overview. Contemporary Physics, 44

(4):307–327, Jul 2003. ISSN 1366-5812. doi: 10.1080/00107151031000110776. URL http:

//dx.doi.org/10.1080/00107151031000110776.

Emmanuel Knill. Conventions for quantum pseudocode. Technical report, Los Alamos
National Lab., NM (United States), 1996.

Marie Lalire and Philippe Jorrand. A process algebraic approach to concurrent and dis-
tributed quantum computation: operational semantics. arXiv preprint quant-ph/0407005,
2004.

John McCarthy. A basis for a mathematical theory of computation1). In P. Braffort
and D. Hirschberg, editors, Computer Programming and Formal Systems, volume 35 of
Studies in Logic and the Foundations of Mathematics, pages 33 – 70. Elsevier, 1963. doi:
https://doi.org/10.1016/S0049-237X(08)72018-4. URL http://www.sciencedirect.com/

science/article/pii/S0049237X08720184.

Robin Milner. Communication and concurrency, volume 84. Prentice hall New York etc., 1989.

Xavier Nicollin and Joseph Sifakis. An overview and synthesis on timed process algebras.
In Kim G. Larsen and Arne Skou, editors, Computer Aided Verification, pages 376–398,
Berlin, Heidelberg, 1992. Springer Berlin Heidelberg. ISBN 978-3-540-46763-2.

Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum information.
Cambridge University Press, Cambridge, 2000.

Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, Universität Hamburg, 1962.

Gordon D Plotkin. A structural approach to operational semantics. 1981.

AW Roscoe and GM Reed. A timed model for communicating sequential processes. Theo-
retical Computer Science, 58, 1988.

Dana Scott and C Strachey. Towards a mathematical semantics for computer languages.
Proceedings of the Symposium on Computers and Automata, 21, 01 1971.

Neil Shenvi, Julia Kempe, and K Birgitta Whaley. Quantum random-walk search algorithm.
Physical Review A, 67(5):052307, 2003.

Peter W Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In
Proceedings 35th annual symposium on foundations of computer science, pages 124–134. Ieee,
1994.

John von Neumann and RT Beyer. Mathematical foundations of quantum mechanics. 1955.

http://dx.doi.org/10.1080/00107151031000110776
http://dx.doi.org/10.1080/00107151031000110776
http://www.sciencedirect.com/science/article/pii/S0049237X08720184
http://www.sciencedirect.com/science/article/pii/S0049237X08720184

bibliography 94

Wang Yi. Real-time behaviour of asynchronous agents. In CONCUR ’90, Theories of Concur-
rency: Unification and Extension, Amsterdam, The Netherlands, August 27-30, 1990, Proceed-
ings, pages 502–520, 1990. doi: 10.1007/BFb0039080. URL https://doi.org/10.1007/

BFb0039080.

Wang Yi. CCS + time = an interleaving model for real time systems. In Automata, Languages
and Programming, 18th International Colloquium, ICALP91, Madrid, Spain, July 8-12, 1991,
Proceedings, pages 217–228, 1991. doi: 10.1007/3-540-54233-7_136. URL https://doi.

org/10.1007/3-540-54233-7_136.

Mingsheng Ying, Yuan Feng, Runyao Duan, and Zhengfeng Ji. An algebra of quantum
processes. ACM Transactions on Computational Logic (TOCL), 10(3):19, 2009.

https://doi.org/10.1007/BFb0039080
https://doi.org/10.1007/BFb0039080
https://doi.org/10.1007/3-540-54233-7_136
https://doi.org/10.1007/3-540-54233-7_136

	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Document structure

	2 A brief introduction to process algebra
	2.1 Basic notions of concurrency
	2.2 A bird's eye view of process algebra
	2.3 The Calculus of Communicating Systems

	3 Timed Process Algebras
	3.1 Motivation and context
	3.2 Basic concepts
	3.3 Timed Calculus of Communicating Systems

	4 When quantum computing enters into the scene
	4.1 Quantum computing in a nutshell
	4.2 A survey of quantum process algebras
	4.3 Quantum Calculus of Communicating Systems
	4.4 A typing system for qCCS
	4.5 Comparison between CCS and qCCS

	5 Timed qCCS
	5.1 Motivation and context
	5.2 Quantum CCS with measurement operations and classical control
	5.3 Timed Quantum CCS
	5.4 TqCCS vs qCCS vs CQP

	6 Conclusions and future work
	6.1 Conclusion
	6.2 Future Work

