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Abstract. We define a dynamic logic for QASM (Quantum Assembly)
programming language, a language that requires the handling of quan-
tum and probabilistic information. We provide a syntax and a model to
this logic, providing a probabilistic semantics to the classical part. We
exercise it with the quantum coin toss program.
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1 Introduction

The programming languages, calculi, and logics, developed in the course of
the past 20 years, for quantum computing have been gaining relevance with
the appearance of the first proof-of-concept quantum computers and quan-
tum programming languages. One of such is the Quantum Assembly Language
[CBSG17], the quantum circuit specification language in use in the commercially
available quantum hardware supplied by IBM, the IBM Q platform [ibm18] (a
small example of the language is depicted in Fig. 1).

Fig. 1. Example of the definition of a circuit in the QASM language. On the right side
the visual definition of the circuit and on the left side the correspondent QASM code.

Besides the description of unitary quantum circuits, the language encom-
passes classical control flow instructions, such as measurements, which possess
a probabilistic nature, and if statements. We propose a dynamic logic for this
language exploring two main points of interest: the direct handling of quantum
and probabilistic propositions, and a possible axiomatic semantics.
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2 Quantum Computing

In this section, we introduce quantum computing from a state based perspective
(i.e. by the definition of states, transitions, and acceptance states), as usually
presented in the literature [Deu85]. For a more complete understanding of quan-
tum computing, we recommend the reading of [NC02].

2.1 States

The state space of a quantum system is given by the set of unitary vectors (vec-
tors of norm 1) definable in its respective Hilbert space. The qubit, the quantum
version of the classical bits, consists of a Hilbert space of dimension 2, H2,
with {|0⟩ , |1⟩} as an orthogonal basis. The correspondent state space reads as
follows:

|ψ⟩ = α |0⟩ + β |1⟩ ; |α|2 + |β|2 = 1;λ |ψ⟩ ∼= |ψ⟩ ,λ ∈ C (1)

Quantum systems can be combined, employing the tensor product ⊗. For a
n-qubit system, the set of possible states reads as follows:

n−1⊗

i=0

H2
i (2)

For systems with more than one qubit, one verifies the existence of non-separable
states, i.e. states that cannot be written as states of individual qubits, as for
instance in the following Bell state: |Φ⟩ = 1√

2
(|00⟩ + |11⟩). The latter is the

mathematical expression of the so-called physical phenomenon of entanglement.

2.2 Transitions (programs)

In quantum mechanics, transitions preserve unitarity of states. Hence, programs
correspond to unitary operators (U.U† = I). For a quantum system with n
qubits the signature of the transition operators reads as follows:

U⊗n : H2⊗n → H2⊗n

In quantum computation practice, a rather less abstract notion is used, the so-
called quantum circuits [Deu89], where unitary operators are approximated by
compositions of primitive unitary operators, such as the H, X, Y, or Z gates.

2.3 Acceptance States

Measurements, (mathematically Projϕ, or |ϕ⟩ ⟨ϕ|), can be interpreted as a
method that causes the collapse of superposition states to elements of an
orthogonal basis, (e.g. in the qubit case |0⟩ and |1⟩). An acceptance state is
one where the correct output is obtained upon measurement, with probability1
greater than α.
1 The probability of obtaining ϕ in a measurement is ⟨s|Projϕs⟩ where s is a state and

⟨.|.⟩ is the internal product of the Hilbert space. In equation (1), |α|2 and |β|2, are
the probabilities of obtaining |0⟩ and |1⟩, which is 0.5 in both cases: (

(
1√
2

)2
= 0.5).
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3 A Dynamic Logic for QASM

The QASM programming language is not a pure quantum programming lan-
guage as it involves, measurements, which possess a probabilistic nature, and
classical flow instructions depending on those measurements, requiring the han-
dling of probabilistic and quantum programs. Our approach to this problem is
somehow inspired in the fusion of works of Baltag and Smets [BS04,BBK+14]
for the quantum part and of Kozen [Koz85,Koz81] for the probabilistic part.

3.1 Syntax

As usual in dynamic logic, the syntax is divided into two layers: one of the
programs and one of the formulas. The program’s layer encompasses a frag-
ment of the QASM language, which includes the classical control instructions
(if statements, creation of classical and quantum registers, and measurements of
quantum registers), as well as several standard unitary operations (x, z, h and
cnot gates) (Fig. 2).

⟨argument⟩ ::= id | id [index]

⟨test⟩ ::= ⟨argument⟩ == ⟨natural number⟩

⟨πq⟩ ::= x qreg id [index] | z qreg id [index] | h qreg id [index]
| cx qreg id [index], qreg id [index] (unitary gates)
| measure qreg id creg id (measurements)
| πq;πq

⟨π⟩ ::= creg id [size] | qreg id [size] (creation of registers)
| if ⟨test⟩ then πq (if statements)
| π;π

⟨p⟩ ::= ⊥ | 0 | 1 | pregisterindex

⟨ϕ⟩ ::= p, f⟨test⟩ = g
)
| P≥rϕ | ⟨π⟩ ϕ | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ

Fig. 2. Formulas layer and programs layer

On the formula side, atomic propositions are pairs
(
p, f⟨test⟩ = g⟨test⟩

)
where

p corresponds to quantum propositions over qubit states and f⟨test⟩ = g cor-
responds to equality expressions over the probability distributions definable on
the possible tests over classical variables. On the quantum side 0 and 1 denote
that 0 or 1 are true upon measurement with 1 as probability, and the pregisterindex
narrows a proposition range to a specific register and qubit, as for instance 0q0,
which means that qubit 0 of register q has value 0. The P≥rϕ modality estab-
lishes restrictions to the probability of propositions for instance P=0.5p. The ⟨π⟩
has the usual meaning of “the proposition ϕ may hold upon the execution of
program π” and the usual minimal set of Boolean connectives is included.
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3.2 Semantics

The semantics of this logic is given in terms of a Labelled transition system
[HM80], defined by a tuple:

M = (G, [[.]] : Ap ∪ Aπ → 2G ∪ G × G) (3)

where G is a set of states and [[.]] a meaning function, from the type of the well-
formed syntactic expressions of propositions (Ap) and programs (Aπ), to the
powerset, and Cartesian product of the set of states, respectively.

3.3 The State Space

A state of a program in the QASM language is defined by its classical and quan-
tum components. Each of such components is divided into one or many indepen-
dent registers, each composed of a set of quantum or classical bits, resulting in
the following state space:

H2 ⊗ . . . ⊗ H2
︸ ︷︷ ︸
quantum register

× . . .

︸ ︷︷ ︸
S

× {0, 1} × . . . × {0, 1}︸ ︷︷ ︸
classical register

× . . .

︸ ︷︷ ︸
C

(4)

On the classic side, we work on a probabilistic setting, due to the existence of
quantum measurements, which work as random assignments. Thus, the set of
possible states corresponds to the distributions definable on the tests2 over the
classical variables. Therefore, a distribution is given by a measure [Koz85] from
the set of tests to the probability interval [0, 1]:

µs : 2C → [0, 1]

However, the actual state in this logic is defined the equality operator over two
measures, so an actual state is characterized as a function with signature:

µs : 2C × 2C → {0, 1}

In conclusion the state space of a QASM program is given by the Cartesian
product of the possible states of the independent quantum and classical registers,
denoted Registers, where in the former the set of states is given by the tensor
product of quantum bits, and in the latter by the possible distributions definable
over the configurations of the classical bits.

G ≡
∏

quantum register∈Registers

⊗
H2⊗reg size ×

∏

classical register∈Registers

22
C×2C

2 Tests correspond to the σ-algebra over the valuation set C. For valuations with a
discrete domain, it corresponds to the powerset 2C . Tests form a Boolean algebra.
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3.4 Propositions

As seen in Sect. 3.1, propositions correspond to a pair of quantum and classical
propositions, where quantum propositions are of type 2S , the powerset of the
quantum state space, and the probabilistic propositions of the type 2C×C , the
pairs of fuzzy predicates3 definable on the state space 2C×C . Therefore, the type
of the global propositions reads as follows:

p : 2S ×
(
2C×C)

Definition 1. Semantics for proposition constructors.

We define projq as the quantum part of a proposition, and projp as the proba-
bilistic part of the proposition.

i. [[1]] = {s| ⟨s|Proj1s⟩ = 1}. Similarly for [[0]].
[[⊥]] − ∅.
[[pregisterindex ] - The set where the proposition p, restricted to a register and a
specific qubit index, holds.

ii. [[(p, f = g)]] = {s|s ∈ [[p]] ∧ f(projp(s)) = g(projp(s))} and projp(s) ∈ C.
iii. [[P≥rϕ]] = {s| ⟨s | Projprojqϕs⟩ ≥ r}.

The set of states where quantum proposition component ϕ holds with prob-
ability greater than r.

iv. [[ϕ1 ∧ ϕ2]] = {s|s ∈ [[projq(ϕ1) ∩ projq(ϕ2)]] ∧ s ∈ [[projp(ϕ1) ∩ projp(ϕ2)]]}
v. [[ϕ1 ∨ ϕ2]] = {s|s ∈ [[projq(ϕ1) ∪ projq(ϕ2)]] ∧ s ∈ [[projp(ϕ1) ∪ projp(ϕ2)]]}
vi. [[¬ϕ]] = {s|s /∈ [[projqϕ]] ∧ s /∈ [[projpϕ]]}
vii. [[⟨π⟩ ϕ]] = {s|∃u : (s, u) ∈ [[π]] ∧ u ∈ [[ϕ]]}

The set of states where the proposition ϕ holds upon the execution of program
π.

3.5 Program Semantics

Programs in this logic correspond to deterministic relations between states:

[[.]] : Aπ → G × G (5)

This function denotes an accessibility relation, i.e. directed valid transitions
between pairs of states (source to output), under the action of a given program.

3 A fuzzy predicate corresponds to a measurable function [Koz85] from the set of
states to the probability interval [0, 1], in this case, C → [0, 1]. The fuzzy predicate is
characteristic of a test.
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Definition 2. Semantics for programs (accessibility relation)

p ∈ 2S - any quantum proposition
α ∈ 2C×C - any probabilistic proposition (f⟨test⟩ = g).

(n) Creation of registers (upon a register is created its value is necessarily 0,
both for quantum and the probabilistic parts):
[[creg reg id [size]]] = {(s, u)|s ∈ [[(p,⊥reg id)]] ∧ u ∈ [[(p, freg id=0(u) = 1)]]}
[[qreg reg id [size]]] = {(s, u)|s ∈ [[(⊥reg id,α)]] ∧ u ∈ [[

(
0reg id
0..size−1,α

)
]]}.

Pairs of states where ⊥ holds in the source state and 0 in the output state.
(h) Hadamard operator:

[[h reg id [index]]] =

{(s, u)|s ∈ [[
(
(Pr=pip) ∧ 0reg id

index ,α
)
]] ∨ s ∈ [[

(
(Pr=pip) ∧ 1reg id

index ,α
)
]]

∧u ∈ [[
(
Pr=pi∗0.5(p ∧ 0reg id

index ) ∧ Pr=pi∗0.5(p ∧ 1reg id
index ),α

)
]]}

∪{(s, u)|s ∈ [[
(
Pr=pi∗0.5(p ∧ 0reg id

index ) ∧ Pr=pi∗0.5(p ∧ 1reg id
index ),α

)
]] ∧

(u ∈ [[
(
(Pr=pip) ∧ 0reg id

index ,α
)
]] ∨ u ∈ [[

(
(Pr=pip) ∧ 1reg id

index ,α
)
]])}

Pairs of states defined by either 0 or 1 on the source state and a superposition
of 0 and 1 in the output state, or vice-versa.
(x) X operator:

[[x reg id [index]]] = {(s, u)|s ∈ [[
(
p ∧ 1reg id

index ,α
)
]] ∧ u ∈ [[

(
p ∧ 0reg id

index ,α
)
]]

∨s ∈ [[
(
p ∧ 0reg id

index ,α
)
]] ∧ u ∈ [[

(
p ∧ 1reg id

index ,α
)
]]}

Pairs of states where 0 holds in the source state and 1 in the output state, or
vice-versa (same effect as a classical not gate).
(m) Measure:

[[measure qreg id → creg id]]

= {(s, u)|s ∈ [[

⎛

⎝
2size∧

i

P=pii,Dcreg id(
∧

i

fcreg id==i)

⎞

⎠]]

∧u ∈ [[

(
∨

i

i,
∧

i

fcreg id==i(u) == pi

)
]]}

Pairs of states where the probability distribution of the valuations of a set of
qubits in the source state, is the same as the verified in a set of classical bits in
the output state, where Dcreg id denotes a distribution compatible upon mea-
surement with

∧
i
fcreg id==i ({d|meas◦d = f} where ◦ is the Lebesgue integral)

(;) Sequence
[[π1;π2]] = {(s, u)|∃t(s, t) ∈ [[π1]] ∧ (t, u) ∈ [[π2]]}
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4 An Example: A Quantum Coin Tossing Program

This section, illustrates the logic through the proof of correctness of a simple
quantum program for quantum coin tossing (prepare a qubit in a superposition
state and measure it, obtaining 0 or 1 with equal probability), which translates
into the following QASM program:

OPENQASM 2.0;
include "qelib1.inc";
qreg q[1];
creg c[1];
h q[0];
measure q[0] -> c[0];

The correctness of such program implies the following post-condition:
(
0q0 ∨ 1q0, f⟨c[0]==1⟩(x) = 0.5 ∧ f⟨c[0]==0⟩(x) = 0.5

)
with x ∈ C (6)

where 0 ∨ 1 denotes the quantum qubit q has either, mutually exclusively, the
values 0 or 1, and C = {0, 1}. The fact that post-condition (6) holds upon
the execution of the program qreg q[1]; creg c[1]; h q[0];measure q[0] → c[0] is
expressed through the following formula:

⟨qreg q[1]; creg c[1]; h q[0];measure q[0] → c[0]⟩
(
0q0 ∨ 1q0, f⟨c[0]==1⟩(x) = 0.5

)
∧

(
0q0 ∨ 1q0, f⟨c[0]==0⟩(x) = 0.5

)
with x ∈ C

This is proved by the rules of Definition 2:

Proof.

[[⟨qreg q[1]; creg c[1]; h q[0];measure q[0] → c[0]⟩
(
0q0 ∨ 1q0, f⟨c[0]==1⟩(x) = 0.5 ∧ f⟨c[0]==0⟩(x) = 0.5

)
]]

=
{s|∃u : (s, u) ∈ [[qreg q[1]; creg c[1]; h q[0];measure q[0] → c[0]]]

∧ u ∈ [[
(
0q0 ∨ 1q0, f⟨c[0]==1⟩(projp(u)) = 0.5 ∧ f⟨c[0]==0⟩(projp(u)) = 0.5

)
]]}

with projp(u) ∈ C
= (use of the (;) rule)
{s|∃u : ∃t : (s, t) ∈ [[qreg q[1]; creg c[1]; h q[0]]] ∧ (t, u) ∈ [[measure q[0] → c[0]]]

∧ u ∈ [[
(
0q0 ∨ 1q0, f⟨c[0]==1⟩(projp(u)) == 0.5 ∧ f⟨c[0]==0⟩(projp(u)) = 0.5

)
]]}

= (use of the (m) rule)
{s|∃u : ∃t : (s, t) ∈ [[qreg q[1]; creg c[1]; h q[0]]]

∧ t ∈ [[
(
P=0.50q0, P

=0.51q0,Dc(f⟨c[0]==0⟩ ∧ f⟨c[0]==1⟩)
)
]]
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∧ u ∈ [[
(
0q0 ∨ 1q0, f⟨c[0]==1⟩(projp(u)) == 0.5 ∧ f⟨c[0]==0⟩(projp(u)) = 0.5

)
]]}

= (use of (;) and (h). u can be eliminated because u ∈ [[...]] is true)
{s|∃t : ∃t′ : (s, t′) ∈ [[qreg q[1]; creg c[1]]]

∧
(
t′ ∈ [[

(
0q0,Dc(f⟨c[0]==0⟩ ∧ f⟨c[0]==1⟩

)
]] ∨ t′ ∈ [[

(
1q0,Dc(f⟨c[0]==0⟩ ∧ f⟨c[0]==1⟩

)
]]
)

∧ t ∈ [[
(
P=0.50q0, P

=0.51q0,Dc(f⟨c[0]==0⟩ ∧ f⟨c[0]==1⟩
)
]]}

= (use of (;) and (nreg) rules. t can be eliminated because t ∈ [[...]] is true)
{s|∃t′ : ∃t′′ : (s, t′′) ∈ [[qreg q[1]]] ∧ t′′ ∈ [[(0q0,⊥c)]]

∧
(
t′ ∈ [[

(
0q0,Dc(f⟨c[0]==0⟩ ∧ f⟨c[0]==1⟩

)
]] ∨ t′ ∈ [[

(
1q0,Dc(f⟨c[0]==0⟩ ∧ f⟨c[0]==1⟩

)
]]
)
}

= (use of (;) and (nreg). t’ can be eliminated because t′ ∈ [[...]] is true)
{s| : ∃t′′ : s ∈ [[(⊥q,⊥c)]] ∧ t′′ ∈ [[(0q0,⊥c)]]}
= (t” can be eliminated because t′′ ∈ [[...]] is true)
{s|s ∈ [[(⊥q,⊥c)]]} where s is valid state, finishing the proof. !

5 Conclusions

The paper defined a dynamic logic for a fragment of QASM, combining existent
works on dynamic logics for quantum and probabilistic programs and we proved
the correctness of a quantum coin toss. However, the logic is still work in progress,
being necessary the extension to other examples.
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