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ABSTRACT Reinforcement Learning is at the core of a recent revolution in Artificial Intelligence.
Simultaneously, we are witnessing the emergence of a new field: QuantumMachine Learning. In the context
of these two major developments, this work addresses the interplay between Quantum Computing and
Reinforcement Learning. Learning by interaction is possible in the quantum setting using the concept of orac-
ulization of environments. The paper extends previous oracular instances to address more general stochastic
environments. In this setting, we developed a novel quantum algorithm for near-optimal decision-making
based on the Reinforcement Learning paradigm known as Sparse Sampling. The proposed algorithm exhibits
a quadratic speedup compared to its classical counterpart. To the best of the authors’ knowledge, this is
the first quantum planning algorithm exhibiting a time complexity independent of the number of states of
the environment, which makes it suitable for large state space environments, where planning is otherwise
intractable.

INDEX TERMS Quantum computation, quantum reinforcement learning, sparse sampling.

I. INTRODUCTION
In Reinforcement Learning (RL), an agent interacts with
the surrounding environment, to maximize its cumulative
reward in expectation, due to the stochastic nature of the
environment [1], as depicted in Figure 1.

In the context of planning, a RL agent has full
knowledge about the dynamics of the environment, thus
exploiting this information to reach the optimal policy π∗.
Typically, Dynamic Programming methods [2] like Policy
Iteration [3] are used to solve this problem. On the other
hand, in Model-Free RL the agent learns purely by trial
and error, typically resorting to sampling techniques. Since
the environment is unknown to the agent, the latter faces
a dilemma known as the exploration-exploitation trade-off.
It must carefully balance its actions to keep learning about
the environment (exploration) as well as performing increas-
ingly more precise actions based on the gathered information
(exploitation). The main advantage of model-based RL is the
fact of being sample efficient, which makes it quite attractive
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FIGURE 1. Agent-Environment Paradigm: Learning by interaction.

in practice. However, there is a critical problem for the appli-
cation of this method to real-world problems: the complexity
in scaling planning to large state space Markov Decision
Processes (MDP), which becomes intractable as it requires
performing dynamic programming over exponentially large
trees. One way to circumvent this problem is to construct
approximate versions of the planning tree. In [4], the authors
proved that iterating over a set of sampled states, i.e., cov-
ering only a vanishing fraction of the full look-ahead tree,
is sufficient to compute near-optimal actions. The authors
developed an algorithm, known as Sparse Sampling, that con-
structs a look-ahead tree iteratively by sampling every possi-
ble action of the MDP, at every state generated according to
the underlying environment dynamics. An ε-approximation
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(see Equation 2, below) of the optimal action to take at the
initial state, can be derived from the expected reward of some
policy π , also known as the value-function, V , compared with
the optimal value function, V ∗, by expanding the look-ahead
tree to a given horizon, h, with bounded complexity,

O
(
h|A|
ε

hlog( h
ε
)
)

(1)

|V π (s)− V ∗(s)| ≤ ε, ∀ s ∈ S (2)

where S is the state space, A is the action space, h is the hori-
zon and ε is the approximation error. The algorithm exhibits
a linear dependence on the number of possible actions, |A|,
and an exponential dependence on the horizon. However,
it shows no dependence on the total number of states of
the environment. This constitutes the main advantage with
respect to other planning algorithms since environments with
large state-spaces can be addressed smoothly. Algorithms like
sparse sampling which avoid a state space dependence, are
suitable for exploration in a quantum framework as well.

Thus, building on the classical sparse sampling approach,
this article addresses the following research question:
Is it possible to design a sample-based quantum algorithm

for planning that shows no dependence on the state space of
a given MDP?

This kind of classical algorithms relies on the assumption
of reasonably well constructed simulated environments [5].
If the latter does not capture the real environment dynam-
ics, then the action suggested by the agent will not corre-
spond to the optimal action to take in the real environment.
In this work, we take one step further and enforce the sim-
ulated environment to be fully quantized, a notion that first
appeared in [6], [7], allowing a quantum agent to act in its
environment according to the laws of quantum mechanics.
Based on this interaction we prove that a quantum version of
the sparse sampling algorithm produces near-optimal actions
with quadratically less computational effort when compared
to its classical counterpart.

The main contributions of this paper are:
• A novel quantum tree-based, sparse sampling inspired
algorithm for RL within generalized stochastic environ-
ments, and exhibiting a quadratic speedup compared to
its classical counterpart.

• Development of an upper bound on the size of the search
space, demonstrating the algorithm independence on the
environment’s total number of states.

• Development of an upper bound on the sample size
required to make an ε-optimal decision, which sustains
the aforementioned quadratic speedup.

The rest of the paper is organized as follows. Section II
reviews the state of the art of quantum-enhanced RL.
In Section III we construct quantum oracular instances of
MDP’s to both deterministic and stochastic environments.
In Section IV we propose a quantum version of the sparse
sampling algorithm and in Section V its complexity is ana-
lyzed. Section VI empirically analyses the performance of

the proposed quantum algorithm, executing a small MDP in
IBM’s quantum simulator. Finally, Section VII concludes and
proposes topics for further research.

II. RELATED WORK
RL is based on the formal problem of MDP’s, which involve
evaluative feedback as well as associativity [1] i.e., select-
ing different actions in response to different situations.
Therefore, the cornerstone of quantum algorithmic structures
applied to the RL framework lies in the quantized formu-
lation of MDP’s. Some authors [8], [9] suggest a quantum
MDP based on the notion of quantum superoperators, which
give the dynamics of each action upon the Hilbert space
describing the state of the MDP. Alternatively, Dunjko et al.
resort to oracularized environments [6]. Given a classical
environment, E , described by the MDP, a unitary quantum
oracle Eq can be seen as a black-box that simulates E . The
oracle allows the quantum algorithm to sample some property
of E , e.g., given a state and an action (or sequence of actions)
obtain some statistics related to the respective reward. Eq has
to be fair, in the sense that it cannot provide more infor-
mation to the quantum algorithm than what E would pro-
vide under classical access. This is guaranteed when Eq is
a reversible realization of E and explains why oracles are
referred to as black boxes: the quantum algorithm has no
access to its inner processing. Dunjko et al. [6] propose an
oracle that encodes the probability that a given sequence
of actions will be rewarded. In this work, we improve the
latter approach by directly encoding expected rewards of
state-action pairs and by addressing stochastic environments,
which mimic more realistic environments and generalize the
former encoding. Exponential speedups in quantum RL have
been demonstrated in the oracularized framework, assuming
the existence of RL environments that can be directly mapped
as instances of well-known quantum problems like Fourier
Sampling [7], [10].

Most quantum-enhanced techniques applied to planning
and RL lie in the (CQ) spectrum of quantum machine learn-
ing [11] i.e., classical data about an agent is encoded and
further processed by a quantum device. Ref [12] propose
a quantum dynamic programming algorithm with quadratic
speedup with respect to the classical counterpart. In [13]
the authors used a Quantum Boltzmann Machine to devise
the optimal policy for a RL agent. In [14], [15] the authors
proved a quantum speedup in a quantized version of the Pro-
jection Simulation algorithm [16] which was recently exper-
imentally tested in a fully tunable integrated nanophotonic
processor [17].

This work can be distinguished from the latter approaches
since it is, to the best of our knowledge, the first quantum
sample-based approach applied to the RL problem. Fur-
thermore, combining a quantum-inspired sparse sampling
approachwith oracularized environments provides a quantum
algorithm for near-optimal planning showing no dependence
on the state space as opposed to previous quantum planning
approaches.
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III. QUANTUM AGENT-ENVIRONMENT INTERFACE
A quantum agent is an entity that has an internal represen-
tation of its current state. Let a classical MDP be given by
M = 〈S,A,P,R, γ 〉, where S is the state space, A is the
action set, P is the state transition probability function, R is
the reward function, and γ ∈ [0, 1) is the optional discount
factor. The role of an agent is to map a state, s ∈ S to a
corresponding action, a ∈ A that it will later perform upon
the environment. Therefore, the quantum agent is interpreted
as a reversible function, f : |s〉 ⊗ |0〉⊗na 7→ |s〉 ⊗ |a〉
that corresponds to any quantum circuit that prepares the
mapping depicted in Figure 2, where ns = O(log2|S|) and
na = O(log2|A|) are the number of qubits required to basis
encode the agents’ state and action, respectively. For the sake
of legibility, the superscripts ⊗ns and ⊗na will be omitted
throughout the text.

FIGURE 2. Quantum agent state preparation.

The power of a quantum agent comes from the fact that
each action it takes can be a uniform superposition over the
action set. The action is superposed by f conditioned on
the state itself allowing the superposition to be over the set
of admissible actions, As, at a given state, that in a general
setting, is different from state to state. Therefore the action
register will be the following superposition state

|as〉 =
1
√
|As|

∑
a∈As

|a〉 (3)

When dealing with environments that have the same num-
ber of actions for each one of its states, the uniform super-
position over the action set can be efficiently implemented
by f . It is simply the tensor product of na Hadamard gates
applied to the action register. The goal of the agent is to find
the optimal mapping, f ∗, that maximizes the reward. This
means that the agent also requires an internal representation
of the reward, whichwill depend on the nature of the quantum
environment itself. In this work we consider the environment
to be generally stochastic, however, we will clarify that deter-
ministic state transitions can still occur given the oracular
formulation proposed.

An environment is formally described in RL by an MDP.
A notion of a quantum MDP already exists [8]. However,
we will follow the approach taken in [6], i.e., we think
of environments as black-boxes with which the quantum
agent interacts. When constructing oraculizations of classi-
cal task environments we need to guarantee that the envi-
ronment does not provide more information concerning the
classical counterpart, which is essentially guaranteed when
there is a reversible version of the classical environment [6].

Furthermore, the oracle will be composed of twomain stages,
one responsible for the state transitions under the respective
dynamics of a given classical environment, T , and another
responsible for assigning to the agent a new reward for the
accomplished transition, R.
The stochastic state transition operator can be realized as

the following mapping:

T : |s〉 ⊗ |a〉 ⊗ |0〉 7→ |s〉 ⊗ |a〉 ⊗
∑
s′∈S

√
Pass′ |s

′
〉 (4)

that prepares the linear combination of possible states,
given a state-action pair weighted by the corresponding
state transition probability Pass′ , via amplitude encoding [18],
s.t,

∑
s′∈S P

a
ss′ = 1. The deterministic case is a special case

where transition probability equals 1 for a single state s′.
Therefore, a deterministic transition step derives from
Equation 4 as

T : |s〉 ⊗ |a〉 ⊗ |0〉 7→ |s〉 ⊗ |a〉 ⊗ |s′〉 (5)

In the context of this work, rewards depend only on the
agent state and are represented by amapping from state-space
to a real number, Rs : S 7→ R. However, other general-
izations, such as transition dependent rewards, Rsa : S ×
A × S 7→ R, can be trivially included in the proposed
approach.

The reward function operator will use angle encoding [19]
to rotate a single qubit, known as the reward qubit, accord-
ingly to the reward Rs associated to the current state of the
agent:

Rs : |s〉 ⊗ |r〉 7→ |s〉 ⊗ ejRsσ̂y |r〉 (6)

The angle encoding mechanism essentially provides addi-
tion ‘‘for free’’, therefore, ensuring that the agent can repre-
sent the cumulative reward through a sequence of actions.

|ψ〉 = |s〉 ⊗ |a〉

Rs(R2)Rs(R1)|ψ〉 = ejR2σ̂y .ejR1σ̂y |ψ〉 = ej(R1+R2)σ̂y |ψ〉 (7)

However, such free addition comes with a trade-off, i.e.,
the total reward the agent can receive is restricted to the
interval [0, π/2]. Rotation on a qubit is a periodic function,
therefore, outside the interval, we lose information about the
true reward and the agent will not be able to distinguish
one reward sequence from another. Furthermore, rotations are
treated as y-rotations, thus, assuming that the reward qubit is
initialized in the ground state, after a transition step, it will
become

ejRsσ̂y |r〉 =
[
cos(Rs) −sin(Rs)
sin(Rs) cos(Rs)

]
|0〉

=

[
cos(Rs) −sin(Rs)
sin(Rs) cos(Rs)

] [
1
0

]
=

[
cos(Rs)
sin(Rs)

]
= cos(Rs)|0〉 + sin(Rs)|1〉 (8)

The use of the discount factor γ ∈ [0, 1) helps to normalize
the reward achieved.

125418 VOLUME 9, 2021



A. Sequeira et al.: Quantum Tree-Based Planning

FIGURE 3. Evolution of the reward qubit.

Assuming that the environment has access to the maximum
reward possible Rmax , in a single transition step, we know that
with γ ∈ [0, 1):

h−1∑
t=0

γ tRt
Rmax

≤

h−1∑
t=0

γ tRmax
Rmax

≤

h−1∑
t=0

γ t ≤
γ h − 1
γ − 1

(9)

Thus, normalizing the reward to

π

2
(γ − 1)
(γ h − 1)

γ tRt
Rmax

(10)

ensures that for horizon h, the maximum reward collected is
at most π2 as in Equation (11)

h−1∑
t=0

π

2
(γ − 1)
(γ h − 1)

γ tRt
Rmax

≤

h−1∑
t=0

(γ − 1)
(γ h − 1)

γ t ≤
π

2
(11)

At this point, we already have all the ingredients for com-
posing the quantum oracular environment O. Given that the
oracle will interact with different quantum registers at every
time step, that is, will act according to transition step quantum
registers, the oracular environment will be composed of the
product of the two stages mentioned above:

O =
h−1∏
t=0

RtTt (12)

IV. QUANTUM TREE-BASED PLANNING
The goal of a RL agent is to learn how to exploit the envi-
ronment in order to maximize the expected reward. Expec-
tation comes from the stochasticity the environment, traced
back to the recursive relationship of the Bellman expectation
equation [1] following a policy π :

qπ (s, a)

= Eπ
[
Rt+1 + γRt+2 + γ 2 Rt+3 + . . . |St = s,At = a

]
= Eπ [Rt+1 + γ q(St+1,At+1)|St = s,At = a]

= Ras + γ
∑
s′∈S

Pass′
∑
a′∈A

π (a′|s′)qπ (s′, a′) (13)

in which the expectation is revealed by the subsequent steps
rewards weighted by both state transition probabilities and
the policy π .

Using the angle encoding formalism to represent rewards
allows the expected reward associated with a given sequence
of h actions to be encoded as an amplitude. Actually, let
the initial quantum state, including the uniform superposition
over the action setA, be given by the following tensor product:

|ψ0〉 = |s〉 ⊗
1
√
|A|

∑
a∈A

|a〉 ⊗ |0〉 ⊗ |r〉 (14)

Then, a single interaction between the agent and the quan-
tum environment yields

T |ψ0〉 = |s〉 ⊗
1
√
|A|

∑
a∈A

|a〉 ⊗
∑
s′∈S

√
Pass′ |s

′
〉 ⊗ |r〉 = |ψ ′0〉

R|ψ ′0〉 = |s〉 ⊗
1
√
|A|

∑
a∈A

|a〉 ⊗
∑
s′∈S

√
Pass′ |s

′
〉 ⊗ ejRs′ σ̂y |r〉

=

∑
a∈A

∑
s′∈S

1
√
|A|

√
Pass′e

jRs′ σ̂y |s〉 ⊗ |a〉 ⊗ |s′〉 ⊗ |r〉

(15)

which prepares a linear combination between all possible
transition states, weighted by the product of the state tran-
sition probabilities and the respective outcome state rewards.
This reasoning can be extended to allow for h interactions,
i.e., sequences of h actions, by resorting to the quantum
oracular environment O, as given by Equation (12). This is
equivalent to compute a lookahead tree of depth h in super-
position. Figure 4 represents the one-step lookahead tree.

FIGURE 4. One step lookahead tree computed in superposition, created
by oracle calls of T and R.

Let |ψ〉 = O|ψ0〉 be the quantum superposition resulting
from the evaluation of sequences of h actions. The amplitude
of each term of |ψ〉 with |r〉 = |1〉 represents an approx-
imation 1 to the expected reward received by the agent for
the corresponding sequence of h actions. In fact, combining

1It corresponds to an approximation since rewards are encoded as
a y-rotation on a qubit, therefore the expectation will be measured with
respect to a trigonometric parametrization of the reward rather than the actual
true value. However, without loss of generality, we can still distinguish the
expectation of different actions.
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Equation (8) and Equation (15), and thus expanding the rep-
resentation of ejRs′ σ̂y |r〉, yields

R|ψ ′0〉 =
∑
a∈A

∑
s′∈S

1
√
|A|

√
Pass′ |s〉 ⊗ |a〉 ⊗ |s

′
〉 ⊗

⊗ [cos(Rs′ )|0〉 + sin(Rs′ )|1〉] (16)

Equation (16) shows that the expected reward associated
with each sequence of h actions is encoded in the sine term of
the reward qubit, i.e., in the superposition terms with |r〉 = 1.

Note that for an MDP with initial state s0 ∈ S and
action space A, there is a corresponding quantum state as in
Equation (14) representing the agent, which interacts with the
quantum environment for a given horizon, h. O|ψ0〉 acts in
the corresponding transition step sub-registers, preparing a
superposition state |ψ〉 in which the term with |r〉 = |1〉 and
with the highest amplitude represents the maximum expected
reward. That term is associated with the optimal action to take
at s0.
Therefore the goal is to measure the quantum register

holding the identifier of the first action in the sequence of
actions. Ideally, the quantum state |ψ〉 would collapse into
the term with larger amplitude and |r〉 = |1〉, thus giving
access to the optimal action to take at s0. However, this is
far from guaranteed. If some sequences of actions in the
superposition lead, with high probability, to small or even
null rewarded states, the cosine term of the reward qubit can
be significantly larger than the associated sine term. In other
words, it is possible that some terms with |r〉 = |0〉 in
|ψ〉 have large amplitudes and thus a significant probability
of being measured. These terms do not carry any relevant
information concerning the optimal action and thus, these
measurements should be discarded.

If the environment was deterministic, i.e., each action
possessed a single possible outcome, there wouldn’t be any
expectation and the rewards could be represented using
basis encoding. The Quantum Maximum Finding (QMF)
algorithm [20] could thus be applied and the optimal action
would be measured with high probability [6]. Stochastic
environments, however, explicitly require expectation, i.e.,
weighting rewards by their corresponding state transition
probabilities. Resorting to angle encoding to represent the
expected reward precludes the use of QMF.

Let p be the probability of measuring a ‘‘good’’ term of
the |ψ〉 superposition, i.e., a term with |r〉 = |1〉. p can
be maximized by applying the amplitude amplification algo-
rithm [21], a generalization of Grover’s algorithm [22] to
arbitrary non-uniform superpositions. |ψ〉 can be decom-
posed into the two orthogonal states, |ψgood 〉 and |ψbad 〉,
each representing |ψ〉’s projection onto the subspace with
reward qubit |r〉 = |1〉 and |r〉 = |0〉, respectively. Let the
angle θ between |ψ〉 and |ψbad 〉 be related to the aggregated
amplitude of good states in |ψ〉, such that θ = arcsin(

√
p).

Then, |ψ〉 is given by

|ψ〉 = sin(θ )|ψgood 〉 + cos(θ)|ψbad 〉 (17)

The amplitude amplification algorithm is based on
successive applications of Grover’s operator, G, to the
superposition |ψ〉. Each application of G increases the ampli-
tude of states in |ψgood 〉. After j applications of G the quantum
state will be

|ψ (j)
〉 = sin((2j+ 1)θ )|ψgood 〉 + cos((2j+ 1)θ)|ψbad 〉 (18)

with the probability of measuring a good state changing from
p = sin2(θ ) to p(j) = sin2((2j + 1)θ). If p is known a priori,
or equivalently if θ is known, then j can be set such that
p(j) ≈ 1; This requires j ∝ O( 1

√
p ) applications of G,

resulting on the expected quadratic advantage over a classical
algorithm, which would require O( 1p ) computational steps.

Within the context of this work |ψ〉 is some arbitrary
non-uniform superposition and p is thus unknown. The opti-
mal number of applications of G cannot be precomputed.
Thus, the exponential adaptive search version of the ampli-
tude amplification algorithm, as described in [23], has to
be used. This entails the need for multiple executions of
the fundamental amplitude amplification circuit, each with
a randomly selected number j of applications of G. Such
j’s are randomly selected from a range of possible values
that grows exponentially as the algorithm iterates. This algo-
rithm, referred to as QSearch, has been shown to exhibit the
same computational complexity as the original algorithm,
i.e., O( 1

√
p ), although with larger constants.

On average half of the states in |ψ〉 are ‘‘good’’ states, with
the other half being ‘‘bad’’ states, since each rotation of the
|r〉 qubit results on both a sine and a cosine term (the only
exceptions occurring when the reward is either 0 or Rmax).
If |ψ〉 was a uniform superposition, the probability of mea-
suring a good state would be p = 1

2 , and applying ampli-
tude amplification would not make sense. However, |ψ〉 is
an arbitrary superposition with unknown amplitudes associ-
ated with ‘‘good’’ states; in the general case, it is expected
that p � 1

2 , and amplitude amplification is crucial to make
the probability of measuring a good state close to 1.

The procedure described above results in the measure-
ment of an action, which corresponds to the first action
in a sequence of h actions. The measurement of the quan-
tum register corresponds to sampling that action from a
distribution proportional to each actions’ sequence squared
expected reward. To find the action with maximum expected
reward multiple sampling is performed: the entire procedure
is repeated (sampled)m times. A distributionA over the set A
of possible actions is built, by counting how many times each
action is measured. The optimal action is then selected as

a∗ = argmax
a

A (19)

If we set the horizon to be the effective horizonO( 1
1−γ ) i.e.,

the look-ahead at which the γ -discounted reward is approx-
imately null, then in the limit, m samples will generate the
true distribution for A. Setting m appropriately we can reach
an ε-approximation of the optimal action to take at the initial
state.
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The full quantum tree-based planning is presented
in Algorithm 1.

Algorithm 1 Quantum Tree-Based Planning

horizon h, Rmax , samples m;
s← 0, A← [0, . . . , 0];
while s < m do

i← 0;
|si〉 ← |0〉⊗log2|S|, |r〉 ← |0〉;
|ψi〉 ← |si〉 ⊗ |r〉;
while i < h do
|ai〉 ← |0〉⊗log2|A|, |si+1〉 ← |0〉⊗log2|S|;
|ai〉 ← H⊗log2|A||ai〉;
|ψ ′i 〉 ← |ψi〉 ⊗ |ai〉 ⊗ |si+1〉;
|ψ ′′i 〉 ← T (|si〉 ⊗ |ai〉 ⊗ |si+1〉);
|ψi+1〉 ← Rs (|si+1〉 ⊗ |r〉);
i← i+ 1;

end
action← QSearch(|ψh−1〉);
A[action]← A[action]+ 1 ;
s← s+ 1;

end
Return argmax

a
A;

V. COMPLEXITY ANALYSIS
The computational complexity of the proposed algorithm
is determined by the complexity of the exponential search
algorithm and by the number of samples taken, assuming that
the oracles are efficiently built. LetN be the size of the search
space and n the number of marked states. The QSearch algo-

rithm will find a good state in time complexity O(
√

N
n ) [23].

The original Grover’s algorithm assumes a uniform initial
distribution. However, as outlined in [24], the amplitude
amplification subroutine applies to arbitrary superpositions,
whose complexity depends on the average and variance of
the initial amplitude distribution of the marked and unmarked

states. It still requires O(
√

N
n ) iterations, although the suc-

cess probability can be small for certain unfavourable initial
amplitude distributions. We use QSearch as a way to amplify
the probability of measuring a high expected reward action,
given the unknown initial balance betweenmarked/unmarked
states in the case of model-free RL. Moreover, as mentioned
in Section IV to have a certain degree of confidence in the
suggested action, this procedure is repeated m times. There-
fore the complexity of the algorithm becomes

O(m

√
N
n
) (20)

The search space and the number of marked states will
be both dictated by the dynamics of the MDP, which
is completely unknown to the agent. However, without
loss of generality, we can say that in the worst case

the agent will mark a single state, thus maximising
√

N
n .

Characterizing both the size of the search space and
the number of required samples, m, calls for a more
fine-grained analysis which wewill do in Subsection V-A and
Subsection V-B respectively.

A. BOUNDING THE SEARCH SPACE
In a purely deterministic setting, we know that the branching
factor associated with each transition step will be the number
of actions that an agent can take, and so, for a given tree depth,
we have O(|A|h) superposition terms. In a general stochastic
environment, this is not true, given that in the quantum set-
ting, the branching factor will be a function of the number of
actions and the respective number of reachable states, as can
be seen in Figure 4. Let K be a random variable that captures
the branching factor of the environment. We can say that for
a given tree depth, we have bounded search spaceO(K ). The
state transition probability matrix will vary according to the
problem, therefore we give a probabilistic bound for K that
fits generalized environments.

Let ki be a random variable that quantifies the outcome
of some action i.e., the number of reachable states given a
state-action pair. In the simplest case, a deterministic tran-
sition step leads to a single fixed state. On the other side
of the spectrum, a transition step could in principle lead to
every possible state of the environment. However, very few
environments have this feature. An example of this arises in
the well known bandits problem [1]. In this case, a transition
step leads always to every possible state of the environment.
However, interestingly, bandits correspond to a single state
environment. Moreover, in a typical, or realistic stochastic
environment, a transition step will lead to a small subset of
all possible states. This effect can be modelled by a Beta
distribution (see Figure 5) that for a state-action pair generates
an increasingly larger subset of states with exponentially
decaying probability. Let ki be sampled from a Beta distri-
bution Beta(α, β) with α < β,

ki ∼ Beta(α, β) (21)

FIGURE 5. Beta distribution with α = 2 and β = 5.
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The Beta distribution of Figure 5 has expected value

µ = E(x) = 0.2857 (22)

In general, ∀α,β ∈ R, the expected value of Beta(α, β) is

µ =
1

1+ β
α

(23)

In an MDP with |A| possible actions, the one-step looka-
head tree (see Figure 6) generates at most |A| random vari-
ables, ki, i ∈ 1 . . . |A|, each one generating a variable number
of next states accordingly to the Beta distribution.

FIGURE 6. One-step lookahead tree. Nodes in black correspond to states
generated from each random variable ki .

Let K be the sum of all random variables corresponding to
the total number of generated states after a single transition
step, i.e.,

K = k1 + · · · + k|A| =
|A|∑
i=1

ki (24)

Let µ be the expected value of K

µ = E[K ] =
|A|∑
i=1

E[ki] = |A| ∗ E[ki] = |A|
1

1+ β
α

(25)

From the Chernoff bound, the probability of K deviating
from the expected value decays exponentially as

P[K ≥ (1+ δ)µ] ≤ e−
δ2µ
2+δ , δ ≥ 0 (26)

Setting δ = 1+ 2β
α
≥ 0, the probability of K being larger

than the action space itself decreases exponentially with the
dimension of the action space.

P[K ≥ 2|A|] ≤ e
−

(1+ 2β
α )2|A|(1+ 2β

α )

2+(1+ 2β
α ) (27)

From Equation (27) we conclude that the one-step
look-ahead tree will have more than 2|A| generated states
with a small probability. This decays exponentially with the
size of the action space. Therefore, for a full look-ahead tree
of horizon h, the number of states is bounded by

O
(
2|A|h

)
(28)

The bound in Equation (28) asserts that the size of the
search space in typical environments will be larger than twice
the size of the action space with exponentially decreasing
probability. Specifically, if β ≥ 2α, we can say that the Beta
distribution constitutes a fair model for the number of states
generated given a state-action pair. If the presence of a binary
action MDP, the probability of the search space being larger
than twice the size of the action space will be less than 10%.
However, the probability decreases exponentially with the
cardinality of the action space. For |A| = 4, the probability
decreases to less than 1% which fits in the narrative of large
state-action space MDP’s.

B. BOUNDING THE SAMPLE SIZE
The important question now is to define the optimal number
of samples required for an ε-approximation of the action that
maximizes the expected reward at the initial state. TheWilson
interval [25] gives us an estimate of the number of samples
needed from an arbitrary qubit to get an ε-approximation to
the probability of measuring that qubit in any of the basis
states {|0〉, |1〉}. From [18], we know that the number of
samples necessary for a single qubit is

m ≤ O
(
z2

8ε2
(
√
16ε2 + 1+ 1)

)
(29)

where z is the estimate confidence level.2 We want to find
the approximate probability of measuring an action that leads
to the highest expected reward, which typically is encoded
in more than a single qubit. A single qubit may refer to a
simple binary action MDP. In general, this entails the need
for measuring log|A| qubits. So we can use the single qubit
case to suggest an approximation for the multiple qubit case.
The number of samples needed is bounded by

m ≤ O
(
z2log|A|
8ε2

(
√
16ε2 + 1+ 1)

)
(30)

C. DISCUSSION
From Equation (20) it is known that the complexity of the

proposed algorithm is O(m
√

N
n ).

Combining the previous expression with the bound in the
search space size computed in Subsection V-A, equation 28,
we get

O(m

√
N
n
) ∼ O

m
√
2|A|h

n


thus establishing the independence on the size of the MDP
state space.

By further considering applying the bound onm developed
in Subsection V-B, Equation (30), the overall complexity of
the algorithm is bounded by

O(m

√
N
n
) ≤ O

 z2log|A|
8ε2

(
√
16ε2 + 1+ 1)

√
2|A|h

n

 (31)

2Tabulated value [18]. A z-value of 2.58 corresponds to 99% confidence.
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with probability

e−
(1+ 2β

α )2|A|µ
2+µ (32)

This demonstrates that the quantum algorithm proposed
suggests an ε-optimal action to be taken in any initial state
of a given MDP with quadratically less computational effort
with respect to the original classical Sparse Sampling algo-
rithm. The complexity of the latter classical algorithm is

O
(
h|A|
ε

hlog( h
ε
)
)
, as given by equation 1 and repeated here for

convenience.

VI. NUMERICAL EXPERIMENTS AND RESULTS
The convergence rates of the quantum algorithm pro-
posed here and its classical sparse sampling counterpart
(as described in Figure 1, page 198 of [4]) were empirically
compared, based on the respective query complexities. The
figure of merit used in the comparison is the respective
frequency of selection of the best action as a function of
the number of queries. In the quantum setting, one query
corresponds to one oracle call, as given by equation 20. In the
classical setting, one query corresponds to the evaluation of
the Q-function for a sequence of h actions, where h is the
horizon. In practice, the total number of queries performed
by the classical algorithm is equal to how many times the
condition presented in line 1 of the method EstimateQ ()
evaluates to True (see Figure 1, page 198 of [4]). The fre-
quency of selection of the best action, denoted by a∗ in the
figures below, is the ratio between how many times the best
action was selected and the total number of experiments per-
formed. It is therefore a value in the interval [0, 1]. To iden-
tify the best action, i.e. the action with the larger expected
reward for the given initial state, a brute force algorithm was
executed, which evaluates all possible sequences of actions
and respective outcomes; this is only possible because the
evaluated MDPs (see below) are of moderate size concerning
the number of states and actions. An algorithm is said to
exhibit a better convergence rate if it requires fewer queries
for the same frequency or, conversely, if a larger frequency is
achieved for the same number of queries.

The procedure used to obtain the experimental data for
a given number of queries is described by Algorithm 2.
Note that A is the distribution over the measured actions
for #queries of the MDP (note that execute(#queries) applies
both to the quantum and the classical cases). The action is
then selected from A; if this corresponds to the best action,
then the respective histogram bin is updated. The (normal-
ized) histograms are presented in the next subsections, allow-
ing for a comparison of the quantum and classical algorithms’
query complexities.

Experimental results are presented for three MDPs,
selected to represent problems with different degrees of diffi-
culty in terms of finding the action with the highest expected
reward. Subsection VI-A presents a 2 × 2 stochastic grid
world, whose optimal action exhibits a significantly larger

Algorithm 2 Best Action Frequency for #queries
input: The number of queries: #queries
for #queries do

#BestA = 0;
for #experiments in [1, . . . , NExperiments] do

A = execute (#queries) ;
a = selectAction (A);
if a == BestAction then

#BestA++;
end

end
Hist[#queries] = #BestA/NExperiments;

end

expected reward than alternative actions, therefore being
easy to find. Subsection VI-B presents a randomly generated
sparse MDP: from any state, only a small subset of the
full state space can be reached. Subsection VI-C presents a
randomly generated dense MDP: from any state-action pair
every other state of the environment can be reached. Both the
sparse and dense randomly generated MDP’s have 4 states
and two alternative actions.

All experimental results were obtained using the IBM
Qiskit simulator [26]. All experiments were executed taking
s0 = 0 as the initial state; A discount factor γ = 0.9 was
used and the rewards were normalized as described in Equa-
tion (11). For the sake of clarity and simplicity, the evolution
of the quantum state for a single interaction of the agent with
the oracularized environment is presented only for the grid
world, i.e. the simplest MDP.

A. STOCHASTIC GRIDWORLD
The simulated environment corresponds to a 2 × 2 stochas-
tic gridworld MDP, A = {up, down, left, right} 7→
{0, 1, 2, 3}, illustrated in Figure 7. The state space is S =
{s0, s1, s2, s3} 7→ {0, 1, 2, 3} and the per-state reward func-
tion is R(s) ∈ R, ∀s ∈ S as given by Equation (33). The
environment stochasticity comes from the fact that every
action has a probability equal to 0.3 of moving to an adjacent
state, different from the state implied by that action, which is

FIGURE 7. The 2× 2 stochastic gridworld.
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reached with a probability equal to 0.7.

R(s) =


0 s = s0
0 s = s1
−1 s = s2
2 s = s3

(33)

The initial state, after preparing an uniform superposition
over the four possible actions, is as given by Equation (34).

|ψ0〉 = |s0〉 ⊗
1
2
[|up〉 + |down〉 + |left〉 + |right〉]

⊗|0〉 ⊗ |r〉 (34)

Applying the stochastic state transition operator entails:

T |ψ0〉 = |s0〉

⊗[
1
2
|up〉 ⊗ (

√
0.7|s0〉 +

√
0.15|s1〉 +

√
0.15|s2〉)

+
1
2
|down〉 ⊗ (

√
0.7|s2〉 +

√
0.15|s0〉 +

√
0.15|s1〉)

+
1
2
|left〉 ⊗ (

√
0.7|s0〉 +

√
0.15|s1〉 +

√
0.15|s2〉)

+
1
2
|right〉 ⊗ (

√
0.7|s1〉 +

√
0.15|s0〉 +

√
0.15|s2〉)]

⊗|r〉 = |ψ ′0〉 (35)

The action of the reward operator is given by
Equation (36), where η is the reward normalization factor
(see Equation (11)).

R|ψ ′0〉 = |s0〉

⊗[
1
2
|up〉 ⊗ (

√
0.7|s0〉 +

√
0.15|s1〉 +

√
0.15e−jη|s2〉)

+
1
2
|down〉 ⊗ (

√
0.7e−jη|s2〉 +

√
0.15|s0〉 +

√
0.15|s1〉)

+
1
2
|left〉 ⊗ (

√
0.7|s0〉 +

√
0.15|s1〉 +

√
0.15e−jη|s2〉)

+
1
2
|right〉 ⊗ (

√
0.7|s1〉 +

√
0.15|s0〉 +

√
0.15e−jη|s2〉)]

⊗|r〉 = |ψ1〉 (36)

The resulting quantum state can evolve further to deeper
levels of the decision tree, appending the respective time
step quantum registers, up to the pre-established look-ahead
horizon. The amplitude of valid states is then amplified,
increasing the probability of measuring the optimal action to
take at the initial state, i.e., the actionwithmaximum expected
reward. The probability of finding this action is increased by
sampling multiple times, i.e., executing and measuring the
quantum state repeatedly, as discussed in Section V.

Figure 8 depicts the best action selection frequency as
a function of the number of queries for the grid world –
note that the horizontal axis, the number of queries, is on
a logarithmic scale. The quantum algorithm requires much
fewer queries than the classical one and quickly reaches a
threshold on the number of queries upon which the best
action is always selected. The green dashed line presents the
frequency obtained with the classical algorithm as if obtained

FIGURE 8. Gridworld: best action selection frequency as a function of the
number of queries (the horizontal axis is in a log scale).

with the square root of the number of queries that were
required. The similarity between the green dashed line and
the quantum curve is a strong hint that the quantum algorithm
presents a quantum advantage proportional to the square root
of the classical algorithm in terms of the number of queries.

To further demonstrate that the frequency of selection of
the best action for the quantum algorithm increases with the
square root of the number of queries, rather than linearly,
the quantum experimental data were fitted into both a linear
(a∗ = c0 ∗ #q+ c1) and a square root (a∗ = c0 ∗

√
#q+ c1)

model. Figure 9 depicts the quantum experimental data as a
purple solid line, the fitted linear curve as a dashed yellow line
and the fitted SQRT curve as a dashed green line – note that
the horizontal axis follows a linear scale. The SQRT model is
a better fit, as further quantitatively demonstrated by the Root
Mean Squared Error (RMSE) computed for both models.
Note that the fitting suffers from a perturbation introduced
by the fact that the frequency is capped

FIGURE 9. Gridworld: quantum data curve fitting with a∗ = c0 ∗ #q+ c1
and a∗ = c0 ∗

√
#q+ c1 models.

This clearly demonstrates that the plot of Figure 9 clearly
shows that the quantum algorithm selects the best action
more frequently than the classical one for the same number
of queries, up to extreme query rates where both algorithms
select the best action with 100% frequency. This stems from
the fact that the MDP in the study has an optimal action
that is easily distinguished from all other actions. In the
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quantum setting, the choice of normalized reward encoding of
Equation (11) jointly with amplitude amplification enabled,
in this case, a clearer distinction in the expected reward of all
actions. From Figure 9 we can also infer from an analytical
point of view given by the dashed green curve, that a model
with the quadratic number of samples of the classical algo-
rithm, behaves similarly to the quantum algorithm. Addition-
ally, resorting to curve fitting, in Figure 9, it’s demonstrated
that a quadratic model fits the quantum data with a smaller
mean squared error compared to a linear model. This clearly
shows that the quantum data entails a quadratic reduction in
the number of queries, with constant terms, compared to the
classical case.

B. RANDOM SPARSE MDP
The simulated environment corresponds to a randomized
sparse MDP, with 2 possible actions A = {0, 1}, illustrated
in Figure 10. The state space is S = {0, 1, 2, 3}. The sparsity
of the model comes from the fact that from each state-action
pair, the agent can only reach a subset of the state space. This
makes the model somewhat close to the grid world above,
however, additionally, the expected reward is similar for both
actions, making it more difficult to understand compared to
the previous case.

FIGURE 10. Randomized Sparse MDP with 2 possible actions. Action 0
indicated with purple color and action 1 illustrated with blue color.

FromFigure 11, it can be recognized that the optimal action
frequency decreased compared to the grid world model,
which in fact, shows an increase in the level of difficulty
when solving for the optimal action. Moreover, the quantum
algorithm differs from the classical one, reaching the optimal
action frequency of 1. However, asymptotically, the classical
algorithm eventually reaches the same frequency, but with a
larger number of queries. Additionally, it can be seen that the
quadratic analytical curve seems more close to the quantum
curve. The latter observation is aligned with the hypothesis of
a quadratic reduction in the number of queries.

Once curve fitting is applied as in Figure 12, what can
be observed is a reduction for the mean squared error for
a quadratic model compared to the grid world case. The
quadratic model is closer to the quantum data. The latter
observation is also aligned with the expected behaviour of
the quantum algorithm i.e., given the environment increasing

FIGURE 11. Sparse MDP!: best action selection frequency as a function of
the number of queries – the horizontal axis is in a log scale.

FIGURE 12. Sparse MDP!: quantum data curve fitting with
a∗ = c0 ∗ #q+ c1 and a∗ = c0 ∗

√
#q+ c1 models.

difficulty, the number of queries converges to the quadratic
number of queries needed by the classical algorithm.

C. RANDOM DENSE MDP
The simulated environment corresponds to a randomized
dense MDP, with 2 possible actions A = {0, 1}, as illustrated
in Figure 13. The state space is S = {s0, s1, s2, s3}. The main
difference with respect to the previous model, is the dense
connectivity between all possible states-action pairs, indicat-
ing highly stochastic behaviour within the environment and
the hardness in solving it. Additionally, the expected reward
is similar for both actions, as before.

FIGURE 13. Randomized dense MDP with 2 possible actions. Action 0
indicated with purple color and action 1 illustrated with blue color.

From Figure 14, it can be seen that both classical and
quantum algorithms, as opposed to the previous two cases
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FIGURE 14. Dense MDP!: best action selection frequency as a function of
the number of queries – the horizontal axis is in a log scale.

FIGURE 15. Dense MDP!: quantum data curve fitting with
a∗ = c0 ∗ #q+ c1 and a∗ = c0 ∗

√
#q+ c1 models.

studied, fail to converge to the optimal action frequency of 1,
at least in the same interval of queries. This is explained not
only by the stochastic nature of the environment but as well
by the similarity of actions rewards. Eventually, given enough
queries, both models would achieve an optimal action fre-
quency of 1. However, as before, the quantum algorithm still
shows fewer queries needed for the same frequency. From
the quadratic analytical curve, it can be seen even greater
proximity to the quantum curve.

The curve fitting of Figure 15 clearly shows greater
proximity between a quadratic model fitting quantum data.
Moreover, it can be seen a reduction in the mean squared
error compared to previous models. The latter observa-
tion reinforces the hypothesis posed in Subsection VI-B
i.e., increasing the difficulty of the environment, the number
of queries needed by the quantum algorithm will converge
to the quadratic number of queries needed by the classical
algorithm, with constant terms.

VII. CONCLUSION
This paper proposes a sparse sampling inspired quantum
algorithm that allows an RL-based agent to compute an
ε-optimal action on any given state of a complex stochastic
environment. This is, to the best of the authors’ knowledge,
the first sample-based contribution to quantum Reinforce-
ment Learning.

Moreover, it was shown that the proposed algorithm:
• reaches an ε-optimal action for any state of the MDP
with quadratically less computational effort than its clas-
sical counterpart [4];

• shows no dependence on the size of the MDP’s
state space, enabling it to efficiently deal with large
RL environments.

The latter observation draws the line when comparing with
other planning algorithms, specifically dynamic program-
ming algorithms, which assume complete knowledge of the
environment. The proposed quantum algorithm operates in a
model-free context resorting to a sampling-based approach,
thus dispensing with such complete knowledge.

The optimal number of samples required to compute
ε-optimal actions was derived using a novel statistical
approach. This approach assumes that real-world environ-
ments exhibit some locality, in the sense that the number
of reachable states from any given state-action pair is much
smaller than the total number of states in the MDP. If the
locality assumption does not hold, that is, if the state transi-
tion graph is densely connected, then the quantum algorithm’s
independence on the MDP’s number of states no longer holds
as well.

Additionally, the characterization of the complexity of the
quantum algorithm assumes that the quantum oracles that
model the environment are themselves efficient. This corre-
sponds to the relativized complexity analysis, where quantum
algorithms have access to powerful oracles, whose internal
structure is not examined and assumed to be O(1) [27].
The oracle complexity might in some cases become relevant,
especially due to the cost of loading data from a classical
MDP into a quantum state. This may reduce the algorithms’
advantage.

The search tree is uniformly expanded over the set of possi-
ble actions, corresponding to the agent trying every possible
action in every state in superposition. One interesting topic
for future work would be to further reduce the search space
by exploiting a non-uniform tree expansion. By using a pri-
ori knowledge from the environment, the transition operator
could potentially expand the tree over a subset of prioritized
actions, thus reducing the size of Grover’s algorithm search
space or allowing for larger look-ahead horizons.
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