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Abstract
In this paper, we propose a generalization for fuzzy graphs in order to model reactive systems with fuzziness. As we will show,
the resulting fuzzy structure, called fuzzy reactive graphs (FRG), is able to model dynamical aspects of some entities which
generally appear in: biology, computer science and some other fields. The dynamical aspect is captured by a transition function
which updates the values of the graph after an edge has been crossed. The update process takes into account aggregation
functions. The paper proposes a notion for bisimulation for such graphs and briefly shows how modal logic can be used to
verify properties of systems modeled with FSGs. The paper closes with a toy example in the field of Biology.

Keywords Fuzzy switch graphs · Fuzzy reactive graphs · Bisimulation · Fuzzy graphs · Fuzzy systems · Reactive systems ·
Biological systems · Synthetic biology

1 Introduction

In the real world, there are state-based systems with fuzzy
behavior in which the transition of one state to another
entails a system reconfiguration. The process of reconfig-
uration is called here reactivity. The concept of reactivity on
state-based transition systems has been introduced by sev-
eral authors, such as: van Benthem (van Benthem 2005),
Areces (Areces et al. 2014, 2015) and Gabbay (Gabbay and
Marcelino 2012, 2009). Some of such reactive models pro-
pose a non-fixed accessibility relation (set of edges) between
states of the systems which vary according to a taken path.

In this paper, we proposemodels which are able to express
the uncertainties (fuzzyness) in systems (biological, com-
putational, etc.); it is called fuzzy reactive graphs (FRG). It

Communicated by Tomas Veloz.

B Regivan Santiago
regivan@dimap.ufrn.br

Manuel A. Martins
martins@ua.pt

Daniel Figueiredo
daniel.figueiredo@ua.pt

1 Departamento de Informática e Matemática Aplicada —
DIMAp, Universidade Federal do Rio Grande do Norte —
UFRN, Natal, Brazil

2 CIDMA and Department of Mathematics, Universidade de
Aveiro, Aveiro, Portugal

extends the notion of fuzzy graphs in the sense that the cross-
ing of an arrow induces an update of the system; namely,
the edges are updated according to an aggregation function
whenever an edge between nodes is crossed. To achieve that,
the model takes into account usual edges (from nodes to
nodes), called first-order edges, as well as non-first-order
edges (called higher-order edges), which are those that con-
nect first-order edges to any kind of edges.

The paper shows the effect of some aggregations on FRGs,
introduces the product of FRGs and proposes a notion of
bisimulation for them. It ends by providing an application
for the biological setting.

The paper is divided into the following sections: Sect.
2 provides some background for this text. Section 3 intro-
duces the notion of fuzzy reactive graphs, shows the effect
of some aggregations on FRGs and provides the product of
FRGs. Section 4 shows a connection between FRGs and
fuzzy graphs. Section 5 provides a logic for FRGs as well
introduces the notion of bisimulation for them. Section 6
shows how FSGs can be used as an alternative to model some
biological systems. Finally, Sect. 7 provides some final com-
ments.

2 Preliminaries

In this section, we introduce few notions related to the fuzzy
framework in order to make this paper self-contained. We
assume some basic knowledge in Fuzzy sets theory.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-020-05353-1&domain=pdf
http://orcid.org/0000-0002-4991-9603
https://orcid.org/0000-0002-5109-8066


6760 R. Santiago et al.

Fig. 1 Fuzzy graph G

Fig. 2 Matrix representation of
G. The blank values means zero

u v w z
u 0.2
v 0.2 0.8 0.01
w 0.4
z

Definition 1 (Beliakov et al. 2007) A fuzzy set A defined on
a set of objects X is represented by a membership function
μA : X → [0, 1], in such a way that for any object x ∈ X ,
the value μA(x) measures the degree of membership of x in
the fuzzy set A. Here, we use the notation gr(x) = g to mean
that g = μA(x).

Definition 2 (Fuzzy Graphs) A fuzzy graph (Lee 2006) is
a structure: G = 〈V , R〉, such that V is a set called set of
vertices and R is a fuzzy binary relation on V ; namely, a
fuzzy set R : V × V → [0, 1].

Fuzzy graphs are represented here by using matrices in
which the rows and columns are labeled by the elements of
V or in a pictorial way.

Example 1 Figure 1 shows a fuzzy graph which will be
used across this paper to illustrate some definitions. The
correspondingmatrix is presented in Fig. 2. For further infor-
mation on fuzzy graphs, see (Lee 2006).

In this work, we will consider more or less accepted
notions of what are fuzzy conjunctions, disjunctions, impli-
cations and negations. The first two are generalized by
T-norms and T-conorms, respectively (Klement et al. 2013),
whereas fuzzy implications and negations has been also
widely studied (Baczyński and Jayaram 2008).

Definition 3 (T-norms and T-conorms: Pinheiro et al. 2018)
A bivariate function, U : [0, 1] × [0, 1] → [0, 1], is called
uninorm if it is isotonic, commutative, associative with a
neutral element e ∈ [0, 1]. If e = 1, thenU is called T-norm
and if e = 0, then U is called T-conorm or S-norm.

Example 2 The functions, TM , SM : [0, 1]2 → [0, 1], s.t.
TM (x, y) = min(x, y) and SM (x, y) = max(x, y) are a T-
norm and T-conorm, respectively. For details, see (Klement
et al. 2013).

Definition 4 (Negations: Pinheiro et al. 2018) A unary oper-
ation, N : [0, 1] → [0, 1], is called fuzzy negation, if it is

antitonic, N (0) = 1 and N (1) = 0. N is strong, whenever
N (N (x)) = x . For any fuzzy negation, N , and functions:
f , fN : [0, 1]n → [0, 1], fN is called the N -dual of f
whenever fN (x1, . . . , xn) = N ( f (N (x1), . . . , N (xn))).

Example 3 The function NG(0) = 1 and NG(x) = 0, when-
ever x > 0 is called Gödel Negation.

Definition 5 (Implications: Baczyński and Jayaram 2008;
Pinheiro et al. 2018; Reiser et al. Oct 2013; Andrade et al.
2014; Pinheiro et al. 2017) A bivariate function, I : [0, 1] ×
[0, 1] → [0, 1], is called fuzzy implication whenever it sat-
isfies the following properties:

1. Corner Condition (CC). I (1, 0) = 0 and I (0, 0) =
I (0, 1) = I (1, 1) = 1,

2. First place antitonicity (FPA). if x ≤ z, then I (x, y) ≥
I (z, y) and

3. Second place isotonicity (SPI). if y ≤ z then I (x, y) ≤
I (x, z).

A fuzzy implication, I , satisfies the order property (OP),
whenever:

x ≤ y implies I (x, y) = 1. (1)

Example 4 Gödel Implication: the function, IG : [0, 1]2 →
[0, 1],

IG(x, y) =
{
1, if x ≤ y
y, otherwise.

With respect to bi-implications, there is no universal
agreement about a fuzzy counterpart. The most well-known
class of fuzzy bi-implications was investigated by Fodor and
Roubens (Fodor and Roubens 1994) who suggested the fol-
lowing definition.

Definition 6 (Bi-implications: Callejas et al. 2012; Clau-
dio Callejas 2013) A bivariate function, B : [0, 1]×[0, 1] →
[0, 1], is called fuzzy bi-implicationwhenever it satisfies the
following properties:

1. B(x, y) = B(y, x)—B-commutativity.
2. B(x, x) = 1—B-identity.
3. B(0, 1) = 0—Corner Condition.
4. If w ≤ x ≤ y ≤ z, then B(w, z) ≤ B(x, y).

Example 5 The function, BZ : [0, 1]2 → [0, 1],

BZ =
{
1, if x = y
min(x, y), otherwise

is a fuzzy bi-implication (Claudio Callejas 2013).
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Proposition 1 Given a T-norm, T , and an implication, I , sat-
isfying (OP), then B(x, y) = T (I (x, y), I (y, x)) is a fuzzy
bi-implication.

Proof 1. B(x, y) = T (I (x, y), I (y, x)) = B(y, x).
2. B(0, 1) = T (I (0, 1), I (1, 0)) = T (1, 0) = 0.

3. B(x, x) = T (I (x, x), I (x, x))
(O P)= T (1, 1) = 1.

4. Suppose w ≤ x ≤ y ≤ z, then B(w, z) =
T (I (w, z), I (z, w))

(O P)=
T (1, I (z, w)) = I (z, w)

(S P I )≤ I (z, x)
(F P A)≤ I (y, x) =

T (1, I (y, x))
(O P)= T (I (x, y), I (y, x)) = B(x, y).

�	

Corollary 1 BG is a bi-implication.

Proof Since IG satisfies (OP), then BG(x, y) = TG(IG(x, y),

IG(y, x)). �	

Definition 7 A structure F = 〈[0, 1], T , S, N , I , B, 0, 1〉,
s.t. T is a T-norm, S is a T-conorm, N a fuzzy negation, I is
a fuzzy implication, and B a fuzzy bi-implication is called
fuzzy semantics (Cruz et al. 2018).

Example 6 (Gödel Semantics)

G = 〈[0, 1], TM , SM , NG , IG , BG , 0, 1〉

Another important fuzzy entity used in this paper is called
aggregation functions or simply aggregation. They gener-
alize the well-known means like arithmetic, weighted and
geometric. T-norms and S-norms are also examples aggrega-
tions.

Definition 8 (Aggregation functions: Beliakov et al. 2007;
Farias et al. 2016; Costa et al. 2018) An n-ary function A :
[0, 1]n → [0, 1] is called an aggregation function or just
aggregation if

1. A is isotonic—i.e., for all i ∈ {1, . . . , n}, if xi ≤ yi , then
A(x1, . . . , xn) ≤ A(y1, . . . , yn).

2. A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1.

Additional examples of aggregations are the projection
functions: π j : A1 × · · · × A j × · · · × An → A j , s.t.
π j (x1, . . . , x j , . . . , xn) = x j , which will be used in this
paper.

Definition 9 An aggregation A is conjunctive if A(x̄)

≤ min(x̄), disjunctive if max(x̄) ≤ A(x̄) and average if
min(x̄) ≤ A(x̄) ≤ max(x̄), for every x̄ ∈ [0, 1]n .

An aggregation A : [0, 1]n → [0, 1] is shift-invariant if,
for all λ ∈ [−1, 1] and for all x̄ ∈ [0, 1]n ,

A(x1 + λ, ..., xn + λ) = A(x1, ..., xn) + λ

whenever (x1 + λ, ..., xn + λ) ∈ [0, 1]n and A(x1, ..., xn) +
λ ∈ [0, 1].
Example 7 T -norms are conjunctive aggregations,
T -conorms are disjunctive, andmeans (arithmetic, geometric
and weighted) are average aggregations.

Definition 10 (Beliakov et al. 2007) An element a ∈]0, 1[
is a zero divisor of an aggregation function A if for all
i ∈ {1, . . . , n}, there exists some x ∈]0, 1]n such that its
ith component is xi = a, and A(x) = 0, i.e., the equality:

A(x1, . . . , xi−1, a, xi+1, . . . , xn) = 0 (2)

holds for some x > 0, with a at any position.

In other words, it is possible to obtain the value 0 even for
inputs which does not contain zero. Moreover, if a is a zero
divisor, then all the values b < 0 are also zero divisors. In
other words, it works like a threshold.

Example 8 The means (arithmetic, weighted and geomet-
ric), T-norms and T-conorms are aggregations. The function:
f (x1, x2) = max(0, x1 + x2 − 1) is an aggregation with
zero divisor a = 0.999, provided that the other component
is sufficiently small (e.g., 0.0005).

* In this work, we will avoid aggregations with zero divi-
sors, since it will induce de disconnection of edges.

3 Fuzzy switch graphs and reactivity

In this section, we introduce a structure which generalizes
the notion of fuzzy graphs (Lee 2004). As we will show, they
are very useful to represent mechanisms like some biological
phenomena.

Definition 11 Let W be a non-empty finite set, whose ele-
ments are called states or worlds, and following recursive
defined family of crisp sets:

{
S0 ⊆ W × W

Sn+1 ⊆ S0 × Sn
(3)

and S = ⋃
i∈N

Si . A fuzzy switch graph (FSG) is a pair M =
〈W , μ : S → [0, 1]〉, where μ : S → [0, 1] is a fuzzy subset
of S. The weighted directed edges, a0 ∈ W × W , are called
first-order arrows, whereas the remaining are called high-
order arrows. We will denote a FSG simply by 〈W , μ〉.
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Table 1 Truth values of propositions on each state

S0 contains the arrows which relate the states in W ,
whereas Si+1 contains the arrows which relates S0 to the
arrows at Si . In the following, we make an abuse of nota-
tion. We use the notation, a0

i , for both: a0
i = (x, y) ∈ S0

and a0
i = (x, y, gr(x, y)) ∈ μ. We assume the first notation

when the context is clear.

Example 9 Suppose we have a set of states W = {u, v, w, z}
together with the relation, S0, given in Table 1.

Make a0
1 = (u, v, 0.2), a0

2 = (v, v, 0.2), a0
3 = (v,w,

0.8), a0
4 = (v, z, 0.01), a0

5 = (w, u, 0.4) ∈ S0. Now, relate
the arrows in S0 and build the second-order arrows in S1

by making: a1
1 = (a0

2 , a0
4 , 0.2), a1

2 = (a0
3 , a0

5 , 0.7) ∈ S1

(c.f. Table 2a). Finally, build the third-order arrow, a2
1 =

(a0
1 , a1

2, 0.1) to relate those in S0 to those in S1 (cf. Table
2b).

The resulting fuzzy switch graph can be pictured as in Fig.
3 which represents a system configuration.

Definition 12 Given two FSGs: M = 〈W , μ〉 and N =
〈W , μ′〉, M is a subgraph (supergraph) of N if μ ⊆ μ′
(μ ⊇ μ′)—i.e., for all a ∈ S, μ(a) ≤ μ′(a) (μ(a) ≥ μ′(a)).

Definition 13 Given two FSGs M = 〈W , μ〉 and M ′ =
〈W , μ′〉, M ′ is a translation of M by λ ∈ [−1, 1] if for
all a ∈ S, s.t. μ(a) > 0, μ′(a) = μ(a) + λ. In this case, M ′
is written as τ(M | λ) = 〈W , τ (μ | λ)〉 (Fig. 4).

3.1 Reconfiguration and reactivity

The reactivity of a system is modeled here in the following
way:

Whenever a first-order arrow is crossed, the fuzzy grade
of its target arrow is updated.

Figure 5 provides an example of a sequence of config-
urations using the arithmetic mean as aggregation. After
crossing a0

1 = (u, v, 0.2), the arrow a1
2 = (a0

3 , a0
5 , 0.7) is

updated to a1
2 = (a0

3 , a0
5 , 0.33) by using the arithmetic mean

between the grades of a0
1 , a1

2 and a2
1 . A second step, by cross-

ing a0
3 = (v,w, 0.8) updates, in the same manner, the arrow

a0
5 = (w, u, 0.4) to a0

5 = (w, u, 0.4).
The system has a (possibly null) reactivity after a change

of state. Each step produces a new configuration. This new
configuration is defined below:

Definition 14 Given a FSG M = 〈W , μ : S → [0, 1]〉 and
an aggregation function without zero divisors, A : [0, 1]3 →
[0, 1], aFSGbasedon A after crossing afirst-order arrow,

a0
i , is the FSG M

a0i
A = 〈W , μA

a0i
: S → [0, 1]〉 s.t.

μA
a0i

(a) =
{

μ(a), if (a0
i , a) /∈ S

A
(
μ(a0

i ), μ(a0
i , a), μ(a)

)
, otherwise.

(4)

The FSG M
a0i
A = 〈W , μA

a0i
: S → [0, 1]〉 is called recon-

figuration of M , based on A, after crossing a0
i .

It is easy to verify that the FSGs in Fig. 5 satisfy the above
definition.

Since every aggregation function satisfies A(1, . . . , 1) =
1, then the reconfiguration is innocuous whenever the value
of the involved arrows is one.

Proposition 2 If A is a conjunctive (disjunctive) aggregation

and M = 〈W , μ〉 is a FSG, then M
a0i
A is a subgraph (super-

graph) of M.

Proof Case (a0
i , a) /∈ S, then triviallyμA

a0i
(a) ≤ μ(a). Other-

wise, μA
a0i

(a)
def== A(μ(a0

i ), μ(a0
i , a), μ(a)) ≤ min(μ(a0

i ),

μ(a0
i , a), μ(a)) ≤ μ(a). Thedual statement follows straight-

forwardly. �	

Proposition 3 Given two FSGs: M = 〈W , μ〉 and N =
〈W , θ〉 s.t. N = τ(M | λ). If A : [0, 1]3 → [0, 1] is
a shift-invariant aggregation and A(x) + λ ∈ [0, 1], then
N A

a0i
= τ(M A

a0i
| λ).

Proof Suppose that A(μ(a0
i ), μ(a0

i , a), μ(a)) + λ ∈ [0, 1].
Case (a0

i , a) ∈ S, then θ A
a0i

(a)
def== A(θ(a0

i ), θ(a0
i , a),

θ(a))
def== A(μ(a0

i ) + λ,μ(a0
i , a) + λ,μ(a) + λ)

hip==
A(μ(a0

i ), μ(a0
i , a), μ(a))+λ = μA

a0i
(a)+λ

def== τ(μA
a0i

(a) |
λ)(a). Case (a0, a) /∈ S, θ A

a0i
(a)

def== θ(a) = μ(a) + λ =
μA

a0i
(a) + λ = τ(μA

a0i
| λ)(a). Therefore, N A

a0i
= τ(M A

a0i
| λ).

�	

Now, we introduce our notion of reactivity.

Definition 15 Let M = 〈W , μ : S → [0, 1]〉 be a FSG, A
set of aggregation functions and a function Ag : S0 → A.
The pair 〈M, Ag〉 is called fuzzy reactive graph (FRG).

Given a0
i ∈ �, the reconfiguration of 〈M, Ag〉 after

crossing a0
i is the FRG 〈Ma0i , Ag〉, where Ma0i = 〈W , μ

Ag
a0i

:
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Table 2 Relations S1 and S2

(a) (b)

Fig. 3 Graphical representation of the relations in Tables 1 and 2

Fig. 4 Translation of graph of Fig. 3 by λ = 0.05

S → [0, 1]〉 is the FSG s.t.

μ
Ag
a0i

(a)=
{

μ(a), if(a0
i , a) /∈ S

Ag(a0
i )

(
μ(a0

i ),μ(a0
i , a),μ(a)

)
, otherwise.

(5)

Example 10 Let M = 〈W , μ : S → [0, 1]〉 be the FSG
in Fig. 3. Then, S0 = {a0

1 , a0
2 , a0

3 , a0
4 , a0

5}. Making A =
{ari th,max}, Ag(a0

1) = Ag(a0
2) = ari th and Ag(a0

3) =

Ag(a0
4) = Ag(a0

5) = max, the structure 〈M, Ag〉 is a FRG.
Figure 6 contains 〈Ma01 , Ag〉 and 〈Ma03 , Ag〉, respectively.

In this example, the same FSG is updated by different
aggregations (depending on the crossed arrow).

In what follows, we present the Cartesian product for our
graphs. In order to maintain the readability of our exam-
ple, we introduce some notation. The arrows, a ∈ S, will be
denoted in the followingway: (1) first-order arrows from ver-
tex x to vertex y will be denoted by [xy]; second-order arrows
from [uv] to [xy] will be denoted by �[uv][xy]�; and third-
order order from [wz] to �[uv][xy]� as �[wz]�[uv][xy]��.
Product of FSGs

Definition 16 Given two FSGs with disjoint sets of states:
M = 〈W , μ : S → [0, 1]〉 and N = 〈V , κ : T → [0, 1]〉,
the Cartesian product of M and N is the FSG: M × N =
〈W × V , ψ : (W × T ) ∪ (S × V ) → [0, 1]〉, s.t. ψ(w, t) =
κ(t) and ψ(s, v) = μ(s).

Example 11 Let be the FSGs, M and N , in Fig. 7. Figure 8
shows the product M × N .

Observe that the membership function, ψ : (W × T ) ∪
(S × V ) → [0, 1], captures the fuzzy values in Fig. 8. First-
order arrows like: (a, e)

0.7→ (a, f ) and (c, f )
0.8→ (b, f )

are represented by ψ(a, [e f ]) = 0.7 and ψ([cb], f ) = 0.8,
respectively.

Second-order arrows like: [(a, e)(a, f )] 0.3→ [(a, f )(a, e)]
and [(c, f )(b, f )] 0.4→ [(a, f )(b, f )] are represented by
ψ(a, �[e f ][ f e]�) = 0.3 and ψ(�[cb][ab]�, f ) = 0.4.

Fig. 5 Reactivity after crossing
first-order arrows

M
(u,v,0.2)
arith obtained after crossing

(u, v).

(a) First step: Configuration
(b) Second step: Configuration
(M(u,v,0.2)

arith )(v,w,0.8)
arith obtained after

crossing (v, w).
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Fig. 6 Reactivity in Fig. 3 after
crossing first-order arrows a0

1 or
a0
3 , which activates the
aggregations “ari th” and
“max,” respectively

(a) Ma0
1 . (b) Ma0

3 .

Fig. 7 Fuzzy switch graphs M and N , respectively

Fig. 8 Product of M and N

Third-order arrows like: [(a, g)(a, e)] 0.4→ �[(a, e)(a, f )]
[(a, f )(a, e)]� are represented as ψ(a, [ge]�[e f ][ f e]�) =
0.4. Therefore, the graph in Fig. 8 can be functionally
described in the following way. For all w ∈ W and v ∈ V ,

– Firs-order arrows: ψ(w, [e f ]) = 0.7, ψ(w, [ f e]) =
0.5, , ψ(w, [ge]) = 0.2, ψ([ac], v) = ψ([ab], v) = 0.3
and ψ([cb], v) = 0.8.

– Second-order arrows: ψ(w, �[e f ][ f e]�) = 0.3 and
ψ(�[cb][ab], v�) = 0.4.

– Third-order arrows: ψ(w, [ge]�[e f ][ f e]�) = 0.4.

Product of FRGs

Definition 17 Given two FRGs with disjoint sets of states
〈M, AgM 〉 and 〈N , AgN 〉 the aggregation functions s.t.
AgM : S0

M → AM and AgN : S0
N → AN , am ∈

AM and an ∈ AN . Let be the aggregation functions
(M, am), (N , an) : [0, 1]3 → [0, 1] s.t. (M, am)(x1, x2, x3)
= am(x1, x2, x3) and (N , an)(x1, x2, x3) = an(x1, x2, x3).
Let be the set AM ⊕AN = {(M, am) : am ∈ AM }∪{(N , an) :
an ∈ AN }, the set of first-order arrows �M×N = {a0

i : a0
i ∈

(W × T 0)∪ (S0 × V )} and the function AgM×N : �M×N →
AM ⊕ AN s.t:

AgM×N (a0
i ) =

{
(N , AgN (t)), if a0

i = (w, t) ∈ W × T 0

(M, AgM (s)), if a0
i = (s, v) ∈ S0 × V .

(6)

The structure 〈M × N , AgM×N 〉 is the product of FRGs
M and N . For simplicity, we also denote this product by:
M × N (assuming that M and N are FRGs).

Proposition 4 Given the product of two FRGs M and N,
M × N, then:

ψ
AgM×N

a0i
(a)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

κ(t), if C1;
μ(s), if C2;
AgN (t)

(
ψ(a0

i ), ψ(a0
i , a), ψ(a)

)
, if C3;

AgM (s)
(
ψ(a0

i ), ψ(a0
i , a), ψ(a)

)
, if C4.

(7)

For C1 : a = (w, t) and (a0
i , a) /∈ (W × T ) ∪ (S × V );

C2 : a = (s, v) and (a0
i , a) /∈ (W × T ) ∪ (S × V ); C3 : a =

(w, t) and (a0
i , a) ∈ (W ×T )∪(S×V ); and C4 : a = (s, v)

and (a0
i , a) ∈ (W × T ) ∪ (S × V ).

Proof – Case (a0
i , a) /∈ (W × T ) ∪ (S × V ),

* Case a = (w, t), ψ
AgM×N

a0i
(a)

def== ψ(a)
def== κ(t).

* Case a = (s, v), ψ
AgM×N

a0i
(a)

def== ψ(a)
def== μ(s).

– Case (a0
i , a) ∈ (W × T ) ∪ (S × V ),
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* Casea = (w, t),ψ
AgM×N

a0i
(a)

def== AgM×N (a0
i )

(
ψ(a0

i ),

ψ(a0
i , a), ψ(a)

)
=

(
N , AgN (t)

)(
ψ(a0

i ), ψ(a0
i , a),

ψ(a)
)

def== AgN (t)
(
ψ(a0

i ), ψ(a0
i , a), ψ(a)

)
.

* Casea = (s, v),ψ
AgM×N

a0i
(a)

def== AgM×N (a0
i )

(
ψ(a0

i ),

ψ(a0
i , a), ψ(a)

)
=

(
M, AgM (s)

)(
ψ(a0

i ), ψ(a0
i , a),

ψ(a)
)

def== AgM (s)
(
ψ(a0

i ), ψ(a0
i , a), ψ(a)

)
.

�	
Notes 1 Although we have introduced FRG in general, dur-
ing the rest of the document, for simplicity, we will consider
FRGs with a single aggregation A and we write A instead of
the unique mapping Ag : S0 → {A}.

4 Connection between FRGs and fuzzy
graphs

A fuzzy reactive graph (FRG)
(
〈W , μ : S → [0, 1]〉, A

)
,

can be transformed in an equivalent fuzzy graph (with no
higher-level arrows).

Definition 18 Given a fuzzy reactive graph,
(
〈W , μ : S →

[0, 1]〉, A
)
, let be the family of admissible fuzzy subsets of

S,	—which is the least set containingμ and such that μ̄ ∈ 	

whenever μ̄ = μ′A
(w,w′) for some μ′ ∈ 	 and (w,w′) ∈ S0

such that μ′(w,w′) > 0. Consider W̃ = {(w,μ) ∈ W × 	}
and R̃ = W̃ × W̃ → [0, 1] such that

R̃
(
(w,μ), (w′, μ′)

) =
{

μ(w,w′), if μ′ = μA
(w,w′)

0, otherwise

The fuzzy graph 〈W̃ , R̃〉 is called the fuzzy graph
induced by M.

Remark 1 The next example is very important, since it illus-
trates how, for some cases, infinite fuzzy graphs can be
represented by equivalent finite fuzzy switch graphs. In this
way, it is possible to obtain a finite representation for a infi-
nite fuzzy graph. Indeed, this can occur due to the choice of
some specific aggregations functions, as shown in Fig. 9.

Example 12 Consider theFSG M in Fig. 7, the secondprojec-
tion, Al(x, y, z) = y, the arithmetic mean, Ar = (x, y, z) =
x + y + z

3
, and the FRGs (M, Al) and (M, Ar ). The respec-

tive induced fuzzy graphs of (M, Al) and (M, Ar ) are in Fig.
9.

Note that the induced fuzzy graph remains finite for the
secondprojectionwhereas becomes infinite for the arithmetic

mean. This process of reducing infinite fuzzy graph to finite
FRG is expected to be studied in future work with detail.

5 A Logic for fuzzy switch graphs

Nowwe have FSGs to model the system configurations, how
do we verify that the modeled system has or does not have a
certain property? Further, is it possible to have a calculus for
that? In what follows, we show how we can use logic with
FSGs.

First, assume that a state u is interpreted as the initial state
of a system and a state w is the state of success. Whenever
the state z is reached, it means that the system almost fails.
The state v is where the system almost always reloads and
tries again.

Now, suppose we have uncertainty degrees relating some
atomic propositions (properties) and the states of the system.
For example, take the atomic propositions: The system suc-
ceed, the system fails, and the system is trying according to
the following table:
meaning, for example, that the “degree of uncertainty that
the system is trying at state u is 0.1”. The truth value of
compound propositions: Conjunctions, disjunctions, condi-
tionals, negations and bi-conditionals can be calculated by
using: T-norms, T-conorms, fuzzy negations, implications
and bi-implications, respectively.

Moreover, on each state,w, it is also possible to verify the
uncertainty degree of propositions like:

“At some next state, s, the proposition ϕ holds” as well
as “In all the next state, s, the proposition ϕ holds.”

In order to show how logic can be used to verify prop-
erties of a FSG, we provide a formal language and a fuzzy
semantics.

5.1 Language

Syntax

Given a set of symbols: Atom Prop, called set of atomic
propositions, the set of formulas is defined by the following
grammar:

ϕ::=p | true | f alse | (¬ϕ) | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) |
(ϕ → ϕ) | (ϕ ↔ ϕ) | (SNext(ϕ)) | (ANext(ϕ)), for p ∈
Atom Prop. 1

A formula that only contains the operators ∨, ∧ and
S_next is called positive formula. The formulas ϕ will be
read in the following way:

1 For clarity, we will omit the external parenthesis whenever it is pos-
sible, e.g. we will write ϕ ∧ ψ instead of (ϕ ∧ ψ).
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Fig. 9 Fuzzy graphs obtained
from (M, Al) and (M, Ar )

Table 3 Truth values of
propositions on each state

u v w z

succ 0.2 0.8 0.3 0.01

fail 0.7 0 0.3 0.99

try 0.1 0.9 0.15 0.2

(¬ϕ) means ϕ is not true
(ϕ ∧ ψ) means ϕ and ψ are true
(ϕ ∨ ψ) means ϕ or ψ is true
(ϕ → ψ) means If ϕ is true, then ψ is true
(ϕ ↔ ψ) means ϕ is true if and only if ψ is true
(SNext(ϕ)) means ϕ is true in some next state
(ANext(ϕ)) means ϕ is true in all next states.

The formal interpretation of such formulas will be given
in Definition 21.

5.2 Semantics

Definition 19 A model is a pair, M = (M, V ), where
V : W × Atom Prop → [0, 1] is a function called fuzzy
valuation and M is a FSG.

Definition 20 Given a model M = (M, V ) and N a sub-
graph of M = (W , μ), we say that N = (N , Ṽ ) is a
submodel of M = (M, V ) whenever, Ṽ (w, p) ≤ V (w, p)

for every state w ∈ W and p ∈ Atom Prop.

A model enables the users to assign the grade of uncer-
tainty that each atomic proposition holds at each state w.
Table 3 shows an example of a fuzzy evaluation V . Now,
starting from a model, the following definition provides an
algorithm which calculates the grade of uncertainty that an
arbitrary formula, ϕ, have at a state w:

Definition 21 Given a model M = (M, V ), an aggregation
function A and a fuzzy semantics: F = 〈[0, 1], T , S, N , I ,
B, 0, 1〉, the grade of uncertainty of a given formula, ϕ, at

state w ∈ W , taking into account M,F and A, denoted by

�M, w �A
F ϕ�,

is recursively calculated in the following way:

– �M, w �A
F p� = V (w, p), for p ∈ Atom Prop.

– �M, w �A
F true� = 1.

– �M, w �A
F f alse� = 0.

– �M, w �A
F ϕ ∧ ψ� = T

(
�M, w �A

F ϕ�, �M, w �A
F ψ�

)
.

– �M, w �A
F ϕ ∨ ψ� = S

(
�M, w �A

F ϕ�, �M, w �A
F ψ�

)
.

– �M, w �A
F ϕ → ψ�=I

(
�M, w �A

F ϕ�,�M, w �A
F ψ�

)
.

– �M, w �A
F ϕ ↔ ψ�=B

(
�M, w �A

F ϕ�,�M, w �A
F ψ�

)
.

– �M, w �A
F ¬ϕ� = N

(
�M, w �A

F ϕ�
)
.

– �M, w �A
F ANext(ϕ)� = T

w′∈S0[w]

(
I
(
μ(w,w′),

�M(w,w′,μ(w,w′))
A , w′ �A

F ϕ�
))

; where M(w,w′,μ(w,w′))
A

= (M (w,w′,μ(w,w′))
A , V ) and S0[w] = {w′ ∈ W :

(w,w′) ∈ S0}.2
– �M, w �A

F SNext(ϕ)� = S
w′∈S0[w]

(
T

(
μ(w,w′),

�M(w,w′,μ(w,w′))
A , w′ �A

F ϕ�
))

.3

2 First, observe that w′ ∈ S0[w] is equivalent to (w,w′) ∈ S0.

The notation T
w′∈S0[w]

(
I
(
μ(w,w′), �M (w,w′,μ(w,w′), w′ � A

F φ)�
))

,

in short T
w′∈S0[w]

( f (w′)) means the iterative application of a

T-norm — which is a binary operation — on f (w′) =
I

(
μ(w,w′), �M (w,w′,μ(w,w′), w′ � A

F ϕ)�

)
, forw′ ∈ S0[w] . That is,

for S0[w] = ∅, T
w′∈S0[w]

( f (w′)) = 1; for S0[w] = {v},
T

w′∈S0[w]
( f (w′)) = f (v); for S0[w] = {v1, v2}, T

w′∈S0[w]
( f (w′)) =

T ( f (v1), f (v2)); for S0[w] = {v1, v2, v3}, T
w′∈S0[w]

( f (w′)) =
T ( f (v1), T ( f (v2), f (v3))) and so on. Note that there is no ambigu-
ity in this notation, since a T-norm is commutative and associative we
do not need to consider an order on S0[w].
3 See the previous footnote.
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Note that this definition generalizes the usual one for
Fuzzy models (Jain et al. 2020) (based on Fuzzy graphs,
with no higher-level edges). Hence, wewrite �M, w′ �F ϕ�,
since aggregations are not considered for fuzzy graphs.

We must highlight, contrary to what happens in the clas-
sic case, the truth of SNext(ϕ) and ANext(ϕ) at a state w

deals with all edges in S0 with source w. The expression:

|[M(w,w′,μ(w,w′))
A , w′ �A

F ϕ|], in this case, represents the
uncertainty degree that: “ϕ holds” at state w′ after the first-
order edge: a0

i = (w,w′, μ(w,w′)) has been crossed and
the FSG M has been updated to MA. In what follows, we
provide an example of how it does work.

Once the user has modeled the reactivity of its system,
by providing a FSG, the verification that his/her system has
some property can be performed in the following way:

Example 13 (Calculus by using the Gödel Semantics) Now,
assuming the values in Table 3, what is the uncertainty at
state v that: “In some next state we have a fail and there is a
next state in which the system succeeds”? The assertion can
be expressed in our formal language as:

SNext(SNext(succ) ∧ f ail) (8)

The grade of uncertainty that the statement (8) holds at
some state of a model will depend on the adopted aggre-
gation for the underlying FSG and the fuzzy semantics in
which the statement is interpreted. For example, based on
the aggregation adopted in Fig. 5: The arithmetical mean,
and assuming the previous T-norms, T-conorms, fuzzy nega-
tions, implications and bi-implications. If (8) is interpreted
in the structure:

FG = 〈[0, 1], TM , SM , NG , IG , BG , 0, 1〉,

then (as we will see) we obtain 0.2 as the uncertainty grade
that (8) holds. This gradewill changewhenever another fuzzy
semantics is provided. In what follows, we present the notion
of fuzzy semantics and show howwe can compute the uncer-
tainty grade for a statement like (8).

Consider the Gödel semantics, FG , and the arithmetic
mean as the aggregation A. Over the FSG in Fig. 3, which we
call M , consider the three atomic propositions: succ, f aill
and tr y, previously described, with evaluation given in Table
3. In what follows, we show how to calculate the uncertainty
degree for two propositions holds in the state v. The first
formula is the previous (8), and the second is: “ANext(succ∨
¬ f ail).”

1. Making ϕ = SNext(succ) ∧ f ail, we have:
�M, v �A

F SNext(ϕ)�
def== SM

[
TM

(
0.2, �M(v,v,0.2)

A , v �A
F ϕ�

)
,

TM

(
0.01, �M(v,z,0.01)

A , z �A
F ϕ�

)
,

TM

(
0.8, �M(v,w,0.8)

A , w �A
F ϕ�

))
= 0.2. In fact,

(a)

min(0.2,min(�M(v,v,0.2)
A , v �A

F SNext(succ)�,

�M(v,v,0.2)
A , v �A

F f ail�) = min
(
0.2,

min(�M(v,v,0.2)
A , v �A

F SNext(succ)�, 0)
) = 0,

(b)

min
(
0.01,

min(�M(v,z,0.01)
A , z �A

F SNext(succ)�,

�M(v,z,0.01)
A , z �A

F f ail�))

= min(0.01,min(0, 0.99)) = 0, and

(c)

min(0.8,min(�M(v,w,0.8)
A , w �A

F SNext(succ)�,

�M(v,w,0.8)
A , w �A

F f ail�)) = min
(
0.8,

min(�M(v,w,0.8)
A , w �A

F SNext(succ)�, 0.3)
)

= min(0.8,min(min(
1.9

3
,

(M(v,w,0.8)
A )

(w,u, 1.93 )

A , u �A
F , succ), 0.3))

= min(0.2, 0.3) = 0.2.

This can be interpreted in the following way:
“The uncertainty degree that from the state v there is a
state x in which: (a) we reach a posterior state such that
the system succeeds and (b) the system fails is 0.2"

2. Similarly, �M, v �A
F ANext(succ ∨ ¬ f ail)� = TM

(
IG(

0.2, �M(v,v,0.2)
A , v �A

F (succ ∨ ¬ f ail)�
)
, IG

(
0.01,

�M(v,z,0.01)
A , z �A

F (succ ∨ ¬ f ail)�
)
,

IG
(
0.8, �M(v,w,0.8)

A , w �A
F (succ ∨ ¬ f ail)�

)) =
min(IG(0.2, (max(0.8, 1)), IG(0.01, (max(0.01, 0)),
IG(0.8,max(0.3, 0)))) = min(1, 1, 0.3) = 0.3.

We can interpret this as:
“0.3 is the grade of uncertainty that all next states of v

are successful states or states with no failure."

Proposition 5 Let N = (N , Ṽ ) be a submodel of M =
(M, V ). Then, �N , w �A

F ϕ� ≤ �M, w �A
F ϕ� for every

positive formula ϕ.

Proof We prove this result by induction over the structure of
positive formulas and due to the increasingness of aggrega-
tions, S-norms and T-norms.
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– It holds for atomic propositions by definition and trivially
for true and f alse.–

�M, w �A
F ϕ ∧ ψ�

= T(�M, w �A
F ϕ�, �M, w �A

F ψ�)

≥ T(�N , w �A
F ϕ�, �N , w �A

F ψ�)

= �N , w �A
F ϕ ∧ ψ�

–

�M, w �A
F ϕ ∨ ψ�

= S(�M, w �A
F ϕ�, �M, w �A

F ψ�)

≥ S(�N , w �A
F ϕ�, �N , w �A

F ψ�)

= �N , w �A
F ϕ ∨ ψ�

–

�M, w �A
F SNext ϕ�

= S
w′∈S0[w]

(
T

(
μM (w,w′), �M, w′ �A

F ϕ�
))

≥ S
w′∈S0[w]

(
T

(
μN (w,w′), �N , w′ �A

F ϕ�
))

= �N , w �A
F SNext ϕ� �	

Definition 22 Given a FRG
(

M, A
)
and a model M =

(M, V ), the pair M̃ =
(
(W̃ , R̃), Ṽ

)
with Ṽ

(
(w,μ), p

) =
V (w, p) is called induced fuzzy model of M by A.

Theorem 1 Given a FRG
(

M, A
)

and a fuzzy model, M =
(M, V ), then �M, w �A

F ϕ� = �M̃, (w,μ) �F ϕ�.

Proof We prove this result by induction over the structure of
formulas.

– It holds for atomic propositions by definition and trivially
for true and f alse.–

�M, w �A
F ϕ ∧ ψ� = T(�M, w �A

F ϕ�, �M, w �A
F ψ�)

= T(�M̃, (w,μ) �F ϕ�, �M̃, (w,μ) �F ψ�)

= �M̃, (w,μ) �F ϕ ∧ ψ�.

–

�M, w �A
F ϕ ∨ ψ� = S(�M, w �A

F ϕ�, �M, w �A
F ψ�)

= S(�M̃, (w,μ) �F ϕ�, �M̃, (w,μ) �F ψ�)

= �M̃, (w,μ) �F ϕ ∨ ψ�.

–

�M, w �A
F ϕ → ψ� = I(�M, w �A

F ϕ�, �M, w �A
F ψ�)

= I(�M̃, (w,μ) �F ϕ�, �M̃, (w,μ) �F ψ�)

= �M̃, (w,μ) �F ϕ → ψ�.

–

�M, w �A
F ϕ ↔ ψ� = B(�M, w �A

F ϕ�, �M, w �A
F ψ�)

= B(�M̃, (w,μ) �F ϕ�, �M̃, (w,μ) �F ψ�)

= �M̃, (w,μ) �F ϕ ↔ ψ�.

–

�M, w �A
F ¬ϕ� = N(�M, w �A

F ϕ�)

= N(�M̃, (w,μ) �F ϕ�) = �M̃, (w,μ) �F ¬ϕ�

–

�M, w �A
F SNext ϕ�

= S
w′∈S0[w]

(
T

(
μ(w,w′), �M(w,w′,μ(w,w′))

A , w′ �A
F ϕ�

))

= S
w′∈S0[w]

(
T

(
μ(w,w′), � ˜

(M(w,w′,μ(w,w′))
A ),

(w′, μA
(w,w′)) �F ϕ�

))
, by I.H.

= S
w′∈S0[w]

(
T

(
μ(w,w′), �M̃, (w′, μA

(w,w′)) �F ϕ�
))

,

since
˜

(M(w,w′,μ(w,w′))
A )

is, by definition, the routed submodel of M̃ at
(w′, μA

(w,w′))

= �M̃, (w,μ) �F SNext ϕ�, by definition.
–

�M, w �A
F ANext ϕ�

= T
w′∈S0[w]

(
I
(
μ(w,w′), �M(w,w′,μ(w,w′))

A w′ �A
F ϕ�

))

= T
w′∈S0[w]

(
I
(
μ(w,w′),

�
˜

(M(w,w′,μ(w,w′))
A ), (w′, μA

(w,w′)) �F ϕ�
))
, by I.H.

= T
w′∈S0[w]

(
I
(
μ(w,w′),

�M̃, (w′, μA
(w,w′)) �F ϕ�

))
, as in previous

= �M̃, (w,μ) �F ANext ϕ�, by definition. �	

5.3 Bisimulation

We introduce a notion of bisimulation for FSGs. This defini-
tion is based on the one by Jain et al. (2020) for fuzzy graphs
(see also Cao et al. 2012).

Notation. Given a relation E ⊆ W × W ′ and w ∈ W ,

E[w] def== {w′ ∈ W ′ : (w,w′) ∈ E} and (w′, w) ∈ E−1 ⇔
(w,w′) ∈ E .
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Definition 23 (Jain et al. 2020) Let M = 〈W , μ〉 and M ′ =
〈W ′, μ′〉 be two fuzzy graphs. A relation E ⊆ W × W ′ is
said to be a bisimulation between the fuzzy models M =
(M, V )and M′ = (M ′, V ′) if, for every (w,w′) ∈ E :

1. V (w, p) = V ′(w′, p) for every p ∈ Atom Prop;
2. for any u ∈ W , μ(w, u) ≤ sup

u′∈E[u]
μ′(w′, u′);

3. for any u′ ∈ W ′, μ′(w′, u′) ≤ sup
u∈E−1[u′]

μ(w, u).

In any case, if E verifies 1 and 2, then it is said that E
simulates M in M ′.

Lemma 1 (Jain et al. 2020) Considering the Gödel seman-
tics, given fuzzy models M = (〈W , μ〉, V

)
and M′ =(〈W ′, μ′〉, V ′), and a bisimulation E ⊆ W × W ′ s.t.

(w,w′) ∈ E. Then, �M′, w′ � ϕ� = �M, w � ϕ� for
every formula ϕ.

Definition 24 Let M = (〈W , μ〉, A
)
, M ′ = (〈W ′, μ′〉, A

)
be two FRGs and E ⊆ W × W ′. Regarding the induced
fuzzy graphs M̃ = 〈W̃ , R̃〉 and M̃ ′ = 〈W̃ ′, R̃′〉, the relation
Ẽ ⊆ W̃ ×W̃ ′ is a generalization of E if

(
(w,μ), (w′, μ′)

) ∈
Ẽ whenever (w,w′) ∈ E .

Definition 25 Given two FRGs M and M ′, a relation E ⊆
W × W ′ is a bisimulation between the fuzzy models M =
〈M, V 〉 and M′ = 〈M ′, V ′〉, if there is a generalization Ẽ
which is a bisimulation between M̃ and M̃′.

Theorem 2 Given two fuzzy reactive graphs M=(〈W ,μ〉,A
)
,

M ′ = (〈W ′, μ′〉, A
)

and a bisimulation E ⊆ W ×
W ′, containing (w,w′), between the fuzzy models M =
(M, V ) and M′ = (M ′, V ). Then, �M′, w′ �A

G ϕ� =
�M, w �A

G ϕ� for every formula ϕ, with G the Gödel seman-
tics.

Proof By Definition 25, Lemma 1 and Theorem 1,

�M′, w′ �A
G ϕ� = �M̃′, (w′, μ′) �G ϕ�

= �M̃, (w,μ) �G ϕ� = �M, w �A
G ϕ�. �	

6 A biological application

In biology, we can find occurrences of reactive behaviors.
For instance, we can mention the case of vaccination and
prodrugs as presented in Figueiredo and Barbosa (2019).
Another is in the Rhesus incompatibility between the fetus
and themother (Megginson et al. 1996). This incompatibility
may occur when the mother is Rhesus negative and the fetus

is Rhesus positive. If the mother’s blood already contacted
withRhesus positive blood, the immune systemof themother
has already developed antibodies against it and her bloodwill
not be compatible with the fetus, since the immune system
will attack the baby. If no contact happened before, the preg-
nancymay expect no complications since no antibodies were
created and the blood of the mother is not expected to contact
with the blood of the fetus till his birth. In other words, the
contact with Rhesus positive alters (or “reconfigures”) the
mother’s immunological system. In what follows, we show
how some biological systems can be modeled by FSGs.

6.1 Circadian rhythm in cyanobacteria

In this example, we consider the system of the circadian
rhythm of a cyanobacteria as described in Chaves and Preto
(2013). In order to explain this example, we present some
background about biologicalmodels for regulatory networks.

A regulatory networks are composed of a set of
components—genes, proteins, mRNA, etc.—along with a
relation of regulation (which can reflect either a positive or
negative regulation). In this context, we say that a component
i positively (respectively, negatively) regulates a component
j if the presence of i induces (respectively, inhibits) the pro-
duction of j . This network of regulations can be studied with
several kinds of models, ranging from ordinary differential
equations (ODE) models (which are the most descriptive)
to Boolean networks (which are graphs only describing the
overall dynamics of the system). For more information, see
(De Jong 2002).

ODE models consider variables, xi , relative to each
component, i . This variable describes the component con-
centration within a cell. Then, a positive regulation of i over
j is described by the differential equation x ′

j = k ji s+(xi ) =
k ji

xn
i

xn
i + θn

ji
and a negative regulation by x ′

j = k ji s−(xi )

with s−(xi ) = 1 − s+(xi ). The thresholds k j i and θ j i are
estimated according to the value chosen for n ∈ N. The com-
plete ODE model has the form x ′ = F(x) is thus obtained
by a system of equations where each equation xi = Fi (x)

is obtained gathering every regulations over i . There, Fi (x)

is described as sums and products of functions s+(x j ) and
s−(x j ), as described before, along with a degradation term
−γi xi .

In Chaves and Preto (2013), the thresholds for a ODE
model were estimated and we can thus present the follow-
ing ODE model for the circadian rhythm system where the
considered components are three phosphorilated forms of
the KaiC protein—s, t and ts—an unphosphorilated form of
KaiC protein—u—and KaiA protein—a.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ′
a = 10

54

x4s + 54
− 0.45xa

x ′
t = 20.51

x4u
x4u + 29.954

x4a
x4a + 104

− 0.24xt

x ′
ts = 10.74

x4t
x4t + 11.424

x4a
x4a + 104

− 0.28xts

x ′
s = 6.61

x4ts
x4ts + 10.164

134

x4a + 134
− 0.081xs

where xu + xs + xt + xts = C , is a constant value.
The use of this kind of model to study biological regula-

tory networks has a drawback: It is difficult to study a system
of nonlinear differential equations. Since, in general, only
simulations can be performed, we can consider a simplifica-
tion of this kind of model by considering n → ∞. In this
context, we observe that the expressions representing posi-
tive regulations are simplified. For an arbitrary variables x
and arbitrary constant θ :

xn

xn + θn
n→∞−−−→

⎧⎪⎨
⎪⎩
1, if x > θ
1
2 , if x = θ

0, if x < θ

In this way, we can think qualitatively about the values of
a variable x . Given some thresholds θ0,...,θp: we can divide
the entire state space in several domains divided by the con-
ditions x = θ0, ..., x = θn , defining hyperplanes. In this way,
within each domain we have a system of linear differential
equations, which can now be solved analytically. Each of this
region can be seen as a qualitative evaluation for the value
of the variables. For instance, if we consider two thresholds
θ0 and θ1 for a variable x , we can say that the concentration
of the respective component is “low” x < θ0, “medium” if
θ0 < x < θ1 and “high” if θ1 < x .

This kind of model is called PWL (PieceWise Linear) and
since the solution of the differential equation within each
domain is analytically solvable, given an initial state, we can
determine the induced flow (trajectory of the solution). In this
way, it is possible to think about transitions between domains
and in concept like adjacency:We say that two n-dimensional
domains are adjacent if they share a (n − 1)-dimensional
boundary. We say that it is possible to move from a domain
“A” to another one “B” when exists a flow guiding us from A
to the boundary with an adjacent domain B, i.e., the solution
of the system of linear ODEs, with respect to time, gives us a
trajectory that leads us from a domain “A” to another domain
“B.” We note that, formally, sometimes it is not possible to
cross the boundaries given the way flows are defined. This
occurs when flows have opposite directions in small neigh-
borhoods of the boundary but, we are not interested in these
cases and we ignore them for now.

With the concept of transition between domain, we can
think of Boolean networks. This kind of model is simply an
oriented graph whose set of nodes correspond to the set of
domains in the respective PWL model. Moreover, the set of
edges is obtained according to the possible moves between
domains, given by the flows. In order to recover the general
dynamics of the biological system, an order is assigned to
the variables and the nodes are labeled by tags like “00,”
meaning that the value of the first two variables is below
the lowest threshold. This order is important for such mod-
els because we need to know which value of the node tag
represents the qualitative concentration of each component.
Classically, tags only contain “0”s – for “low concentration”
—and “1”s—for “high concentration”—and this is the reason
why this kind of model is called Boolean network. However,
the states of such model can be labeled with tag like “23” in
the case that more qualitative intervals are chosen for vari-
ables. For instance, in the “23” case, “2” may mean “high”
and “3” may mean “very high”.

Recalling the example of circadian rhythm in cyanobacte-
ria, the Boolean network obtained is as shown in Fig. 10 with
each of the variables xa , xs , xts and xt . The variable xu was
not considered since it can be replaced byC −(xs +xts +xt ),
for the constant value C introduced before. Also, for the
variables representing the concentration of components, we
consider three values for xa—0 for low, 1 for medium and
2 for high—and two values for xt , xts and xs – 0 for low
and 1 for high. The order for variables is (xa, xt , xts, xs) and
this means that, for instance in state 0011, the concentration
of a and t is low and the concentration of ts and s is high.
Also, at state 1111, the concentration of a is medium while
the concentration of t , ts, and s is high.

Given one of these models, it is usual to study asymp-
totic behaviors like steady states of the original ODE model.
These steady states correspond to either stable/unstable equi-
libriumpoints or limit cycles and they are signaled inBoolean
networks by sets of nodes with special properties called
attractors. In Figueiredo and Barbosa (2019), a reactive
modelwas already proposed to improve this search for attrac-
tors. However, in this paper, our approach follows for another
direction with the introduction of fuzziness.

In the Boolean network for the circadian rhythm, edges
represent a possible transition between domains of state
spaces. However, this does not mean that each transition
is equally likely to occur. Indeed, some edges have higher
chance of being crossed than others. Taking the state labeled
by 1001 in Fig. 10, and studying the respective domain of the
corresponding PWLmodel, we can found that edges coming
out from that state have quite different probabilities of being
crossed as shown in Fig. 11. The boundary crossed depends
on the exact trajectory; however, since the model is simpli-
fied and divided by domains, we cannot determine this and
only that probabilities can be computed.
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Fig. 10 Boolean network for
the circadian rhythm of
cyanobacteria

Fig. 11 State 1001 and edges coming out from it

Fig. 12 Fuzzy switch graph of partial Boolean network

At this point, we can think about reactivity. In fact, the
probabilities presented in Fig. 11 can vary taking into account
the previous states. In fact, when one knows the previous
domain can restrict the set of admissible flows to those which
come from the desired domain. In Fig. 12, we can construct
a fuzzy switch graph for the edges where the state 1001 takes
part. In this example, the fuzzy aggregation function consid-
ered is A(a, b, c) = b. The reactivity in this context makes
sense because, provided a set of initial states and restrict-
ing the solutions of differential equations in PWL models to
the one which only consider those initial states, we can see
how the probabilities alter. In these examples, the values for
probabilities were obtained numerically from the model.

We note that we only consider part of the fuzzy switch
graph in order to illustrate the utility of fuzzy switch graphs.
The entire model could be obtained but would be difficult to
include its graphical representation in this paper.

Moreover, this example highlight the convenience of using
a reactive model. Indeed, they naturally fit in the class of
reconfigurable discrete models and, in cases like the one pre-
sented in this example, it can be seen as a discrete abstraction

of hybrid system (system which comprise both continuous
and discrete dynamics). This is, indeed the basis for the work
in Figueiredo and Barbosa (2019).

6.2 Cooperativity of hemoglobin

In a weighted context, we can consider a red blood cell at the
lungs. Hemoglobin in these cells is responsible for deliver-
ing oxygen to cells in the entire body after binding it at the
lungs. Each hemoglobin protein gathers a limited number of
four molecules of oxygen as further shown in Fig. 13. In the
example being presented, an hemoglobin protein collecting
oxygen molecules is considered. While initially the protein
is relatively “uninterested” on oxygen, the scenario changes
after one has been bound and evenmore when the second and
third oxygen molecules are also bind. This process is called
cooperativity (see Chou 1989).

Here, a hemoglobin protein is represented. The protein
bind up to 4 oxygen molecules at an increasing rate, depend-
ing on the number of oxygen that it has already bound.
This is illustrated in Fig. 13 where the only node repre-
sents the hemoglobin protein and the regular edge represent
the action “bind an oxygen molecule.” For this example,
the suitable aggregation function is defined as A(a, b, c) =
min

(
b,

b + c

2

)
.

Thinking of weights as fuzzy rates, the model indicates
that, initially, oxygen molecules are not easily bound, since
the value of the first-order arrow is 0.2. However, after it is
crossed once, its value increases to 0.6 and, after being suc-
cessively crossed, to 0.8 and 0.9. Finally, its value becomes 0,
meaning that it is no more possible for the hemoglobin pro-
tein to bind any other oxygen molecule. This is illustrated in
Fig. 14.

Next, we provide an example of how to use the previously
presented logic to prove properties of the model.
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Fig. 13 Fuzzy switch graph modeling a hemoglobin protein

Considering the Gödel Fuzzy semanticsFG and the FSG,
M , presented in Fig. 13 such that w names its only node. We
now show that

�M, w �A
F SNext true → (SNext (SNext true))� = 1, (9)

what means that it is true that the rate increases after the first
movement.

�M, w �A
F SNext true → (SNext(SNext true))�

= IG
(
�M, w �A

F SNext true�,

� M, w �A
F SNext(SNext true)�

)
= IG

(
min

(
0.2, �M(w,w,0.2)

A , w �A
F true�

)
,

min
(
0.2, �M(w,w,0.2)

A , w �A
F SNext true

)
�
)

= IG

(
min 0.2, 1),min

(
0.2, min

(
0.6,

�
(M(w,w,0.2)

A

)(w,w,0.6)
A , w �A

F true�
)))

= IG

(
0.2,min

(
0.2,min 0.6, 1)

)) = IG(0.2, 0.2) = 1.

Similarly, it can also be computationally verified that for
any valuation, the following formula holds:

M, w �A
F(

SNext (SNext (SNext (SNext(ANext f alse))))
)

(10)

It means that: It is impossible to cross the loop more than
four times, proving that the model is correct with respect to
the fact that the capture of oxygen molecules occurs, at most,
four times.

7 Final remarks

This paper introduces a new fuzzy notion, called fuzzy reac-
tive graphs (FRG), which generalizes the concept of fuzzy
graphs. The model is accompanied with a calculus which
enables the user to verify the grade of uncertainty that some

Fig. 14 Evolution of
hemoglobin protein when
binding oxygen molecules
successively

123



Introducing fuzzy reactive graphs 6773

properties hold in a specific state of the system. As a model,
during our work, fuzzy reactive graphs have shown up to
be especially appropriated to describe dynamics of systems
where the reactive behavior is caused by an unknown cause
or component. Note that, although we do not know the
direct cause for some of behavior, we are still able to model
such system.

Wehave introduced a connection betweenFRGs and fuzzy
graphs which enabled us to define the notion of bisimulation
on FRGs. We point out that it was shown the possibility to
obtain finite FRGs which represents the dynamics of infinite
fuzzy graphs, which highlights the potential of our structures.
Indeed, as future work, some reduction algorithms based on
this should be developed. Also, we intend to introduce a def-
inition of bisimulation for FRGs without the corresponding
definition for fuzzy models. This definition is expected to
match the one for meaningful bisimulations.

We have shown that, in some specific cases, FRGs are
suitable to simplify other mathematical models like PWL,
used to describe biological systems. A further study pro-
viding a comparison between FRGs and other mathematical
tools which capture the notions of dynamics and reactivity is
the subject of future works.

We point out that our approach is fuzzy (which is not prob-
abilistic). However, another approach using Markov chains
and switch graphs can be found in Figueiredo et al. (2019).

Finally, the language presented here could be enriched
with many other operators (e.g., by introducing an interation
operator) as well as it can be straightforwardly generalized to
other fuzzy semantics, i.e., it is parameterized on the choice
of the underlying fuzzy algebra. Indeed, this is still an intro-
ductory paper but our goal is to introduce a more expressive
language for these models as well as a better characteriza-
tion of its expressiveness. Furthermore, a computational tool
to automatically check formulas of this logic is also left as
future work.

Finally, we are working on an appropriate direct defini-
tion of bisimulation for, i.e., without making reference to the
induced fuzzy graphs and on other algebraic construction of
FRGs like: Co-products, Union, Intersection, etc.
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