
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Jaime Pereira Santos

Quantum Random Walks

Simulations and physical realizations

September 2021

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Jaime Pereira Santos

Quantum Random Walks

Simulations and physical realizations

Master dissertation
Integrated Master’s in Physics Engineering

Dissertation supervised by
Luı́s Barbosa
Bruno Chagas

September 2021

C O P Y R I G H T A N D T E R M S O F U S E

This is an academic work that can be used by third parties as long as good practices are
respected as well as internationally accepted rules concerning copyright and related rights.
Thereby, this work can be used under the terms set out in the license below. If one needs
permission to work under a different set of conditions not provided by the indicated license,
one must contact the author, through the University of Minho RepositoriUM.

https://creativecommons.org/licenses/by/4.0/

i

https://creativecommons.org/licenses/by/4.0/

S TAT E M E N T O F I N T E G R I T Y

I hereby declare having conducted this academic work with integrity. I confirm that I have
not used plagiarism or any form of undue use of information or falsification of results along
the process leading to its elaboration. I further declare that I have fully acknowledged the
Code of Ethical Conduct of the University of Minho.

ii

A C K N O W L E D G E M E N T S

I would like to express my gratitude to my supervisor prof. Luı́s Barbosa, for all of the
opportunities, support and patience throughout the entirety of my Masters degree; to my
co-supervisor Bruno Chagas, for the countless hours dedicated to the development of this
dissertation and invaluable advice.

I would also like to thank my family, especially my parents, for their unconditional
support throughout all my life.

A very special thank you to my girlfriend, Cláudia Vieira, for her love and encouragement
and also for keeping me grounded in these trying times.

Finally, this dissertation was financed by the ERDF – European Regional Development
Fund through the Operational Programme for Competitiveness and Internationalization -
COMPETE 2020 Programme and by National Funds through the Portuguese funding agency,
FCT - Fundação para a Ciência e a Tecnologia, within project POCI-01-0145-FEDER-030947.

iii

A B S T R A C T

Quantum computing is an emergent field that brings together Quantum Mechanics,
Computer Science and Information Theory, which promises improvements to classical
algorithms such as simulation of quantum systems, cryptography, data base searching and
many others. Among these algorithms, quantum walks may provide a quadratic speed up
when compared to their classical counterparts, allowing improvements to applications such
as element distinctness, searching problems, matrix product verification and hitting times
in graphs. The present work offers a general theoretical overview, simulation and circuit
implementation of the coined, staggered and continuous-time quantum walk models. The
first two chapters of this thesis are dedicated to the definition of the theoretical framework,
simulation in Python and comparison of the aforementioned quantum walk models for the
simple case of the dynamics in a line graph and for the search algorithm in a complete
graph. This is then used as a benchmark for the final chapter, devoted to building and
testing the circuits corresponding to models mentioned above in IBM’s Qiskit. A main
contribution of this dissertation concerns the circulant graph approach to diagonal operators
for continuous-time quantum walks.

Keywords: Quantum Computing Quantum Walks Python Qiskit

iv

R E S U M O

A computação quântica é uma área emergente, que junta os campos de Mecânica Quântica,
Ciências da Computação e Teoria da Informação, com a promessa de melhoramentos a
algoritmos clássicos tais como a simulação de sistemas quânticos, criptografia, busca em base
de dados, e outros. Entre estes algoritmos, as caminhadas quânticas surgem com um ganho
quadrático de complexidade em comparação às caminhadas clássicas, possibilitando melhor
desempenho em aplicações como distinção de elementos, problemas de busca, verificação
de produtos de matrizes e tempos de alcance em grafos. O trabalho atual oferece uma visão
geral de um ponto de vista teórico, de simulação e de implementação de circuitos, relativos
aos modelos de caminhadas quânticas com moeda, escalonadas e continuas no tempo. Os
primeiros dois capı́tulos desta tese são dedicados à definição da estrutura teórica, simulação
em Python e comparação dos modelos supracitados, para o caso simples da dinâmica na
linha, e para o problema de busca num grafo completo. Isto será então utilizado como
referência para o capitulo final, dedicado à construção e teste dos circuitos correspondentes
aos modelos supracitados. Uma contribuição principal desta dissertação diz respeito à
abordagem de grafos circulantes para realização de caminhadas quânticas continuas no
tempo.

Palavras-Chave: Computação Quântica Caminhadas Quânticas Python Qiskit

v

C O N T E N T S

1 introduction 1

1.1 Brief History of Quantum Computing 1

1.2 Classical and Quantum Walks 4

1.3 State of the Art on Quantum Walk Implementations 6

1.4 Objectives, Contributions and Structure 8

2 quantum walks 10

2.1 Classical Random Walk 10

2.2 Coined Quantum Walk 12

2.3 Staggered Quantum Walk 17

2.4 Continuous-Time Quantum Walk 20

3 searching problems 24

3.1 Grover’s Algorithm 24

3.1.1 One marked element 26

3.1.2 Multiple marked elements 28

3.1.3 Single-Shot Grover 30

3.2 Coined Quantum Walk 31

3.3 Staggered Quantum Walk 33

3.4 Continuous-Time Quantum Walk 35

4 implementations and applications 39

4.1 Coined Quantum Walk 40

4.2 Staggered Quantum Walk 43

4.3 Continuous-Time Quantum Walk 46

4.4 Implementing Search Algorithms in Qiskit 52

4.4.1 Grover’s Algorithm 52

4.4.2 Searching with a Coined Quantum Walk 55

4.4.3 Searching with a Staggered Quantum Walk 58

4.4.4 Searching with a Continuous-Time Quantum Walk 61

5 discussions and conclusion 65

a support material 75

a.1 The Postulates of Quantum Mechanics 75

a.2 Quantum Fourier Transform 79

vi

L I S T O F F I G U R E S

Figure 1 Probability distribution for the classical random walk on a line, after
72, 180 and 450 steps, running 300000 experiments for each number
of steps, with starting position on vertex 0. 11

Figure 2 Standard deviation after 200 steps for the quantum walk in blue, and
the classical random walk in red. 14

Figure 3 Probability distribution for the coined quantum walk on a line, after
32, 64 and 128 steps, with initial condition |ψ(0)〉 = |0〉 |x = 0〉 and
the Hadamard coin. 14

Figure 4 Probability distribution for the coined quantum walk on a line, after
32, 64 and 128 steps, with initial condition |ψ(0)〉 = |1〉 |x = 0〉 and
the Hadamard coin. 15

Figure 5 Probability distribution for the coined quantum walk on a line, after
32, 64 and 128 steps, with initial condition |ψ(0)〉 = |0〉+i|1〉√

2
|x = 0〉

and the Hadamard coin. 16

Figure 6 Tessellation of a line graph. 18

Figure 7 Probability distribution for the staggered quantum walk on a line
after 50 steps, with initial condition |ψ(0)〉 = |0〉+|1〉√

2
, for multiple

values of θ. 18

Figure 8 Probability distributions for the staggered quantum walk on a line
after 50 steps, for different initial conditions. 19

Figure 9 Probability distribution for the continuous-time quantum walk on
a line, at t = 40, 80 and 120, with initial condition |ψ(0)〉 = |0〉 and
γ = 1

2
√

2
. 21

Figure 10 Probability distribution for the continuous-time quantum walk on a
line, at t = 100, with initial condition |ψ(0)〉 = |0〉+|1〉√

2
, for multiple

values of γ. 22

Figure 11 Probability of one marked element in the Grover search, as a function
of the number of steps, for N = 32, 64, 128 and 256. 27

Figure 12 Probability of two marked elements in the Grover search, as a function
of the number of steps, for N = 32, 64, 128 and 256. 29

Figure 13 Total probability of marked elements in the Grover search, as a func-
tion of the number of marked elements, for 1 step, with N = 32, 64,
128 and 256. 30

vii

list of figures viii

Figure 14 Probability of one marked element in the coined quantum walk
search, as a function of the number of steps, for complete graphs of
size N = 16, 32 and 64. 32

Figure 15 Maximum probability of the marked element as a function of the
value of θ plotted from 0 to π, for complete graphs of size N = 64,
128 and 256. 34

Figure 16 Probability of one marked element in the staggered quantum walk
search, as a function of the number of steps, for complete graphs of
size N = 16, 32 and 64. 35

Figure 17 Value of the difference between the largest eigenvalue and the second
largest plotted as a function of γN, for N = 512. 36

Figure 18 Probability of one marked element in the continuous quantum walk
search, as a function of the number of steps, for complete graphs of
size N = 16, 32 and 64. 37

Figure 19 General circuits of the components of the shift operator for the coined
quantum walk. 40

Figure 20 General circuit for the coined quantum walk. 41

Figure 21 Qiskit circuit for the coined quantum walk, for a line graph of
size N = 8 and initial condition |ψ0〉 = |4〉, with 3 steps and the
Hadamard coin. 41

Figure 22 Qiskit circuits of the components of the shift operator for the coined
quantum walk, for a line graph of size N = 8. 41

Figure 23 Probability distributions of the coined quantum walk for several steps
in a line graph of size N = 8. The blue bar plot represents a circuit
run in the QASM simulator, and the orange bar plot on IBM’s Toronto
backend. 42

Figure 24 General circuit for the staggered quantum walk. 44

Figure 25 Qiskit circuit for the staggered quantum walk, for a line graph of size
N = 8 and initial condition |ψ0〉 = |4〉, with 3 steps. 45

Figure 26 Probability distributions of the staggered quantum walk for several
steps in a line graph of size N = 8. The blue bar plot represents a
circuit run in the QASM simulator, and the orange bar plot on IBM’s
Toronto backend. 45

Figure 27 General circuit for the continuous-time quantum walk. 48

Figure 28 Qiskit circuit for the continuous-time quantum walk, for a line graph
of size N = 8 and initial condition |ψ0〉 = |4〉, for time t. 48

Figure 29 Qiskit circuit of the quantum Fourier transform for a line graph of
size N = 8. 48

list of figures ix

Figure 30 Qiskit circuit of the diagonal operator associated with the adjacency
matrix, for a line graph of size N = 8. 49

Figure 31 Probability distributions of the continuous-time quantum walk for
several steps in a line graph of size N = 8. The blue bar plot repre-
sents a circuit run in the QASM simulator, and the orange bar plot
on IBM’s Toronto backend. 49

Figure 32 Circulant graphs Gk for N = 8 elements. 50

Figure 33 General circuit for the Grover search. 53

Figure 34 Qiskit circuit for the Grover algorithm, for a search space of size
N = 8 and 3 steps. 53

Figure 35 Qiskit circuit of the diagonal oracle operator for a search space of size
N = 8 and marked element |m〉 = |4〉. 53

Figure 36 Qiskit circuit of the diagonal Grover diffusion operator for a search
space of size N = 8. 54

Figure 37 Probability distributions of the Grover search algorithm for several
steps, in a search space of size N = 8. The blue bar plot represents a
circuit run in the QASM simulator, and the orange bar plot on IBM’s
Toronto backend. 54

Figure 38 General circuit for the search problem using the coined quantum
walk model. 55

Figure 39 Qiskit circuit for the search problem using the coined quantum walk
model, for a complete graph of size N = 8 and with 5 steps. 55

Figure 40 Qiskit circuit of the diagonal oracle operator in the coined quantum
walk search problem, for a complete graph of size N = 8, with
marked element |m〉 = |4〉. 56

Figure 41 Qiskit circuit of the diagonal diffusion operator in the coined quantum
walk search problem, for a complete graph of size N = 8. 56

Figure 42 Qiskit circuit of the flip-flop shift operator in the coined quantum
walk search problem, for a complete graph of size N = 8. 57

Figure 43 Probability distributions of the coined quantum walk search problem
for several steps, in a complete graph of size N = 8. The blue bar
plot represents a circuit run in the QASM simulator, and the orange
bar plot on IBM’s Toronto backend. 57

Figure 44 General circuit for the search problem using the staggered quantum
walk model. 58

Figure 45 Qiskit circuit for the search problem using the staggered quantum
walk model, for a complete graph of size N = 8, with 3 steps and a
value of θ = π

2 . 59

list of figures x

Figure 46 Qiskit circuit of the diagonal diffusion operator in the staggered
quantum walk search problem, for a complete graph of size N = 8
and a value of θ = π

2 . 59

Figure 47 Probability distributions of the staggered quantum walk search prob-
lem for several steps, in a complete graph of size N = 8. The blue bar
plot represents a circuit run in the QASM simulator, and the orange
bar plot on IBM’s Toronto backend. 60

Figure 48 General circuit for the search problem using the continuous-time
quantum walk model. 62

Figure 49 Qiskit circuit for the search problem using the continuous-time quan-
tum walk model, for a complete graph of size N = 8, time t, a value
of γ = 1

8 and a Trotter number r = 1. 62

Figure 50 Qiskit circuit of the diagonal oracle operator in the continuous-time
quantum walk search problem, for a complete graph of size N = 8,
marked element |m〉 = |4〉 and time t = π

2

√
8. 62

Figure 51 Qiskit circuit of the diagonal operator associated with the adjacency
matrix in the continuous-time quantum walk search problem, for
a complete graph of size N = 8, marked element |m〉 = |4〉, time
t = π

2

√
8 and γ = 1

8 . 63

Figure 52 Probability distributions of the continuous-time quantum walk search
problem for several time intervals, in a complete graph of size N = 8.
The blue bar plot represents a circuit run in the QASM simulator, and
the orange bar plot on IBM’s Toronto backend. 63

Figure 53 General circuit for the quantum Fourier transform. 80

L I S T O F TA B L E S

Table 1 Fidelity of quantum state with N=4, backend Toronto, and t=1. 51

Table 2 Fidelity of quantum state with N=8, backend Toronto, and t=1. 51

Table 3 Fidelity of quantum state with N=16, backend Toronto, and t=1. 51

xi

1

I N T R O D U C T I O N

This dissertation focuses on the study of quantum random walks and their implementation.
Its structure and contributions are detailed in section 1.4. Before that, however, the whole
area of work is put in context along sections 1.1 to 1.3. The first one starts from the very
beginning through a brief history of quantum computation, which aims at motivating a
discussion on classical and quantum random walks in section 1.2. Finally, section 1.3 presents
the the state of the art concerning the implementation of quantum walks as a background
for the dissertation’s contributions.

1.1 brief history of quantum computing

The modern understanding of computer science was firstly put forward by Turing (1936)
where he developed the abstract concept of what is now called a Turing machine. These
machines are the mathematical foundation of programmable computers, and Turing showed
that there is a Universal Turing Machine that can be used to simulate any other Turing
Machine. This means that if an algorithm can be executed in any piece of hardware, then
there is a Universal Turing Machine that can accomplish the same task. This is known as the
Church-Turing thesis, which connects the concept of what classes of algorithms can be run in
some physical device with the mathematical framework of a Universal Turing Machine.

The paper published by Turing set in motion a series of events which led to the rapid
advancement of electronic computers and computer science. One of the earliest theoretical
models developed by John von Neumann (later published in von Neumann (1993)), showed
how to assemble all the necessary parts to create a computer with all the capabilities of
a Universal Turing Machine. The true explosion of innovation in this field came after the
invention of the transistor in 1947 by John Bardeen and Walter Brattain. The creation of the
transistor led to an unprecedented growth quantified by Moore (1965), known as Moore’s
law, stating that computer power will double with constant cost approximately every two
years. Moore’s law has roughly held true throughout the decades, by the ever increasing
miniaturization of the transistor technology. However, conventional fabrication methods run

1

1.1. Brief History of Quantum Computing 2

into a problem of scale, as quantum effects begin to interfere more and more as the size of
the devices becomes smaller.

Feynman (1959) recognized such a miniaturization was the way forward as computational
resources, and even predicted the problems quantum effects presented to a classical computer.
With an amazing stroke of insight, Feynman imagined that these effects could be exploited
given the right computational paradigm. Quantum computing begins to take form in
later work developed by Benioff (1980), where the earliest quantum mechanical model of a
computer was described. In this paper, Benioff showed that a computer working under the
laws of quantum mechanics could be used to express a Schrödinger equation description
of a Turing machine. Shortly after, Feynman (1982) pointed out that simulating quantum
systems on classical computers is inefficient, and suggested using quantum computers
for this purpose. Additional work in the following decade further explored this idea and
showed that there are systems that quantum computers can simulate, which have no known
efficient simulation on a classical computer. Even today this continues to be one of the most
promising fields in quantum computing.

Driven by the work of Turing, Deutsch (1985) questioned if a stronger version of the
Church-Turing thesis could be derived from the laws of physics. The strong Church-Turing
thesis states that any algorithmic process can be simulated efficiently using a probabilistic
Turing machine, and Deutsch was set to define some device that could efficiently simulate
an arbitrary physical system. Whether Deutsch’s formulation of a Universal Quantum
Computer is sufficient for this purpose is still an open question. What he accomplished,
however, was a challenge to the strong Church-Turing thesis by suggesting that there are
tasks a quantum computer can accomplish efficiently that a probabilistic Turing machine
cannot. Deutsch and Jozsa (1992) present an example of a quantum algorithm that is
exponentially faster than a classical counterpart, the Deutsch-Jozsa algorithm that determines
if a function is constant or balanced. Even though of little practical use, this is one of the
first examples of possible advantages a quantum computer may have over a classical one.

Even though the Deutsch-Jozsa algorithm might not have real world applications, it led
to further research on finding other such types of algorithms. Shor (1994a) showed that
the problem of finding prime factors of an integer and the discrete logarithm problem can
be efficiently solved by a quantum computer. This brought a lot of interest to quantum
computing, since both of these problems have real world applications and no efficient
classical solution was/is known. Furthermore, most modern popular algorithms used for
cryptography rely on the fact that the integer factorization or discrete logarithm problems
are not solvable in time that grows polynomially with the size of the problem. Since this is
no longer the case, a new field has emerged called post-quantum cryptography, whose purpose
is to find suitable classical protocols for cryptography that cannot be efficiently broken by
quantum computing.

1.1. Brief History of Quantum Computing 3

A more modest, but very relevant advantage was presented by Grover (1996) in the form
of a quantum algorithm able to speed up unstructured database searches quadratically. Even
though it’s not an exponential improvement like Shor’s algorithm, search-based algorithms
are useful in many contexts, so even a ”small” quadratic gain generated a lot of interest.

Contemporary to computer science, information theory is another field very relevant
to this topic. Shannon (1948) revolutionized how communication and information are
understood. In his paper, Shannon was interested in defining what resources are required to
send information over a communication channel and how to reliably send that information
mitigating the effects of noise. This led to the discovery of the two fundamental theorems of
information theory. Firstly, Shannon’s noiseless channel coding theorem specifies what resources
are needed to store information sent from a source. Secondly, the noisy channel coding theorem,
specifies how much information can be sent through a channel subject to noise. Even though
Shannon’s second theorem does not define any specific methodology to reduce noise, it sets
an upper limit on how much noise can be mitigated through said methodology. These are
known as error-correcting codes and research has developed better and better codes that get
closer and closer to Shannon’s limit. They are used wherever there is a need to store or
transmit information.

Similar progress was made in quantum information theory. Schumacher (1995) developed
a quantum version of Shannon’s noiseless coding theorem, where he defined a quantum
bit as a physical resource. There is no analogue for the second Shannon theorem, but that
didn’t stop the development of quantum error-correcting theory. For example, Calderbank
and Shor (1996) and Steane (1996) proposed an important class of quantum error-correcting
codes known as CSS.

Error-correcting was designed to protect quantum states, but another discovery by Ben-
nett and Wiesner (1992) showed another interesting aspect of quantum information when
transmitting classical information through a quantum channel. They explained how to send
two classical bits of information using only one qubit, in a phenomenon known as superdense
coding.

Another interesting application of quantum information is in the field of cryptography.
Wiesner (1983) showed how quantum mechanics could be used to make sure that a informa-
tion sent could not be interfered with without destroying it. Building on this work, Bennett
and Brassard (1984) proposed a quantum key distribution protocol between sender and
receiver that could not spied upon without notice. Many other protocols have since been
proposed and experimental prototypes developed.

Finally, another interesting field within quantum computation is based on the concept
of distributed quantum computation. Quantum clusters show promise since they require
exponentially less communication to solve certain problems, such as modeling quantum
systems, but are stil in their infancy due to technical restrictions. There has been an increasing

1.2. Classical and Quantum Walks 4

international interest in taking advantage of these systems to build a quantum internet which
promises better and safer transmission of information, but there are still many technological
improvements to be made before this becomes a mainstream reality.

1.2 classical and quantum walks

The Church-Turing thesis, that states that any algorithmic process can be simulated
efficiently using a Turing Machine, was challenged by Solovay and Strassen (1977) where
they presented what is known as the Solovay-Strassen primality test. They showed that it
is possible to test whether a integer is prime or composite using a randomized algorithm.
The implication is that, because of the randomness, the Solvay-Strassen primality test does
not determine with certainty whether a integer is prime or composite, rather it computes
that a number is probably prime or else certainly composite. This is of significance since no
deterministic test for primality was known at the time1, meaning that this was an example
of a class of problems that could not be efficiently solved by a conventional deterministic
Turing Machine.

This led to a modification of the Church-Turing thesis, now stating that any algorithm
can be simulated efficiently using a probabilistic Turing machine. The discovery of more
instances of such algorithms followed, Motwani and Raghavan (1995) and Papadimitrious
(1994) show several problems that can be solved based on randomized algorithms. For
example, the Quicksort algorithm, developed by Hoare (1961), has a high probability of
finishing in O(n log n). In contrast to many deterministic algorithms that require O(n2)

time. They also show algorithms that take advantage of Markov chains and the Monte Carlo
method. The volume of a convex body, proposed by Dyer et al. (1991), can be estimated by a
randomized algorithm in polynomial time; the permanent of a nonnegative entry matrix can
also be approximately calculated in probabilistic polynomial time as was shown by Jerrum
et al. (2004) and the k-SAT and satisfiability with restrictions problem by Schöning (1999).

Random walks, as the name suggests, belong to this class of algorithms. Pearson (1905)
coined the term random walk, and they can be described as path consisting of a succession
of steps determined by a stochastic process, over a mathematical space. They are a special
case of Markov chains, which are stochastic processes that assume discrete values and whose
next state is dictated by a deterministic or random rule based only on the current state. This
is a useful framework, since it can be used to explain the behaviour of systems across many
fields, from the Brownian movement of particles moving through a gas, to the price of a
fluctuating stock as shown by Cootner (1967).

1 Work by Agrawal et al. (2002) has since found a general, polynomial, deterministic, and unconditional primality
proving algorithm.

1.2. Classical and Quantum Walks 5

The quantum analogue of the random walk was firstly developed by Aharonov et al.
(1993), where they defined the coined quantum random walk. This model consists of a walker
and a coin that determines the movement of the walker, which are both quantum systems
where time is a discrete variable dictated by the successive quantum coin flips and shifts in
position. Nayak and Vishwanath (2000) and Aharonov et al. (2001) present the first analyses
of the quantum walk on a graph described by a line. Further work by Inui et al. (2003)
studies the behaviour of the walk on grids and Aharonov et al. (2001) on general regular
graphs. The first algorithmic applications appear in the work of Shenvi et al. (2003) where
they constructed a search problem based on the quantum random walk, and Ambainis
(2007) applied it to the element distinction problem. On a more theoretical note, Konno
(2002) demonstrated how the classical and quantum models of the random walk on the line
differ, and Grimmett et al. (2003) generalized this to higher dimensions. Lovett et al. (2010)
demonstrated that any quantum algorithm can be reformulated as a discrete time quantum
walk algorithm, effectively showing that this model can be used for universal quantum
computation.

A different model for quantum random walks emerged from the work of Farhi and
Gutmann (1998), where a different way of computing a search problem was presented. They
showed that evolving a system in time between an initial and final Hamiltonian is analogous
to the Grover algorithm, but continuous in time. Farhi et al. (2000) revised their work, now
known as an adiabatic evolution, to solve Boolean sat problems. Childs and Goldstone
(2004) formulated a model of a quantum walk in terms of adiabatic evolution, known as
continuous time quantum walk or adiabatic quantum walk. Aharonov et al. (2007) showed that
any quantum algorithm can be efficiently simulated using adiabatic evolution, meaning that
it is polynomially equivalent to the conventional quantum computation model. Further work
by Childs (2009) showed that this model is indeed universal. The main difference between
these two quantum walk models lies on the fact that in the discrete case, the system evolves
with the flipping of a coin and subsequent movement of the walker, whilst in the adiabatic
case the system evolves smoothly in time.

Yet another way of thinking about quantum walks was announced by Szegedy (2004),
where he describes a discrete model based on Markov chain random walks. At the foundation
of this model is the duplication of a graph, a process by which a bipartite graph is created.
Magniez et al. (2007) show how to use this walk for triangle detection in an undirected graph.
Magniez et al. (2006) proposed a search problem, which takes advantage of ergodicity and
simmetry properties of Markov chains, with quadratic gain compared to classical algorithms.
Problems like element distinctness, matrix product verification and others were formulated
within this framework by Santha (2008). Further work by Portugal (2015) established a
connection between the coined and Szegedy’s quantum walk, by defining a model that
encompasses and expands the latter.

1.3. State of the Art on Quantum Walk Implementations 6

Patel et al. (2005) pointed that, at the time, there was confusion surrounding the scaling
behaviour of discrete and adiabatic quantum walk algorithms. They argued that this was
because the former model used a coin, which is an extra resource, and the latter didn’t. So,
in an attempt to resolve this confusion, they showed that a discrete time quantum walk could
be constructed without the use of a coin. A new way of thinking about quantum walks came
with the development of the methods behind the construction of evolution operators, by Falk
(2013), introducing the concept of tessellations, based on local diffusion operators. Portugal
et al. (2015) studied this model applied to a line graph. Further work by Portugal et al. (2016)
formalized this approach naming it staggered quantum walk, and showed instances where the
Szegedy quantum walk is equivalent. This suggests that this is a more general model, being
able to describe other discrete-time quantum walks. Portugal et al. (2017) delved deeper into
this topic, adding Hamiltonians to the model, and Portugal and Fernandes (2017) shows
how this can be instanced as a search problem in a grid. Finally, Coutinho and Portugal
(2018) analyze how a continuous-time quantum walk can be cast into this discrete model
and Moqadam et al. (2017) show a possible physical implementation of this walk.

1.3 state of the art on quantum walk implementations

One of the earliest works on a more computational approach to quantum random walks
was by Marquezino and Portugal (2008), where they created a general simulator for discrete-
time quantum walks on one- and two-dimensional lattices. They argued that this framework
allowed researchers to focus more on the mathematical aspect of quantum walks, instead of
the specific numerical implementations. Further work on these lattices was later presented
by Sawerwain and Gielerak (2010), where they studied the simulation of quantum walks
by taking advantage of the GPU and CUDA technology. Another interesting program for
simulating discrete-time quantum walks came with the work of Berry et al. (2011). This
package allows for direct simulation of these walks, and visualization of the time-evolution
on arbitrary undirected graphs. It also allowed for plotting of continuous-time quantum
walks, provided the data was provided externally. There are, however, direct simulators
of continuous-time quantum walks, the earliest being by Izaac and Wang (2015). Their
distributed memory software claims to be able to perform efficient simulation of multi-
particle continuous-time quantum walk based systems, on High Performance Computing
platforms. Falloon et al. (2017) provide a Mathematica package that implements a simulator
of Quantum Stochastic Walks, which are a generalization of the continuous-time model. These
walks incorporate both coherent and incoherent dynamics, which means that quantum
stochastic walks can be instantiated as both quantum walks and classical random walks.
What this paper then provides is a way of implementing quantum walks on directed graphs,
opening the door to applications ranging from the capture of energy by photosyntethic

1.3. State of the Art on Quantum Walk Implementations 7

protein complexes, to page ranking algorithms used by search engines. This package was
ported to and expanded in the Julia programming language by Glos et al. (2018).

In order to truly harness the power of quantum computing, however, one must be able to
perform these algorithms on quantum hardware. For this purpose, various implementations
of quantum walks on quantum circuits have been purposed. Douglas (2009) pioneered
this approach by developing efficient quantum circuits for discrete-time quantum walks on
highly symmetric graphs, whose resources scale logarithmically with the size of the state
space. Shakeel (2020) presented a new approach for building circuits for the discrete model,
reducing resource requirement by using the quantum Fourier transform. For the continuous-
time quantum walk, work by Qiang et al. (2016) presents efficient quantum circuits for the
circulant graph class, and also an experimental implementation on a photonic quantum
processor. In the same year, Loke and Wang (2017a) showed how to build continuous-time
quantum walk circuits for composite graphs, namely commuting graphs and Cartesian
product of graphs. Considering the Szegedy quantum walk, Chiang et al. (2009) proposed an
efficient method of creating quantum circuits for this model. In their work, they showed how
to derive a quantum version of the arbitrary sparse classical random walk by approximating
a quantum update rule with circuit complexity scaling linearly with the degree of sparseness
of the structure. Loke and Wang (2017b) developed this method by showing that an efficient
circuit for the Szegedy quantum walk can be constructed even if the structures are not
sparse, given they posses translational symmetry in the columns of the transitional matrix.
More specifically, they identified that the class of cyclic and bipartite graphs are compatible
with this approach. Another interesting result in this paper was the creation of circuits that
implement a quantum analogue of Google’s Page Rank algorithm, in terms of Szegedy walks.

On the experimental side, there have been various implementations of quantum walks on
quantum computers. On IBM’s hardware, work by Balu et al. (2017) presents an efficient
implementation of topological quantum walks where they ran the circuit on a five qubit
computer over a 4 vertex lattice. Georgopoulos and Zuliani (2019) implements two instances
of the discrete-time quantum walk. The first is based on the work of Douglas (2009)
using generalized CNOT gates, and the second uses a rotational approach to the CNOT
decomposition, which saves using an extra ancilla qubit register. They noted that IBM’s
simulator backend corresponded to the theoretical predictions, however the circuit for over
three qubits was too much for the quantum hardware at that time. The paper presented by
Shakeel (2020) also uses IBM’s hardware to perform their formulation of the discrete-time
quantum walk. For the staggered quantum walk model, work by Acasiete et al. (2020)
obtains meaningful results when using the quantum computers to study the dynamics
of this model on various graphs with 16 elements, requiring 4 qubits. They also modify
these circuits to accommodate an oracle, showing that a spatial search algorithm could be

1.4. Objectives, Contributions and Structure 8

performed on IBM’s quantum computers for a search space of size 8, and with a bit of noise
but still satisfactory for size 16.

1.4 objectives , contributions and structure

The motivation behind the contents in this dissertation is to create an expanded overview
on the topic of quantum random walks. To better contextualize the rest of this thesis,
appendix A.1 presents the basic concepts and mathematical tools needed to study quantum
walks.

Chapter 2 consists of the study of three major quantum random walk models, more
specifically the discrete-time coined quantum walk, the continuous-time quantum walk and
the staggered quantum walk. For each of these models, this work presents the theoretical
framework as well as the corresponding Python implementations. In these simulations, the
dynamics of the walks are analyzed by changing various parameters, plotting the resulting
probability distributions and seeing how these parameters alter the shape, propagation and
other features of the quantum random walks.

Chapter 3 follows this approach, but now the structure where these walks take place
is a complete graph and the goal is to find a marked element. For this purpose, the
section about Grover’s algorithm is used to introduce the notion of quantum searching
problems. The following sections show how to change the various models of quantum walks
to accommodate an oracle, thus performing an element search in time similar to Grover’s
algorithm.

Finally, chapter 4 is dedicated to constructing circuits for the models previously defined,
using IBM’s software Qiskit and their hardware. The first three sections are used to create
circuits for the dynamics of the walks. The biggest contribution is the circulant graph
approach to build diagonal operators for the continuous-time quantum walk, which can
be easily translated to Qiskit circuits. Although work by Qiang et al. (2016) pioneered this
approach, the work presented in this thesis aims to give a clear description on how to build
these circuits in Qiskit and an original analysis on how the approximate quantum Fourier
transform affects the accuracy of the results and the number of operations needed to perform
the quantum walk. The last section shows how to introduce an oracle to the various circuits
in order to perform a searching problem. For the continuous-time case, circulant graphs are
again used in an original implementation of the searching problem making use of diagonal
operators and the Suzuki-Trotter expansion.

The work reported in this dissertation is partially documented in an accepted paper, and
a poster submitted in June 2021:

1.4. Objectives, Contributions and Structure 9

• Jaime Santos, Bruno Chagas, Rodrigo Chaves. Quantum Walks on a Superconduct-
ing Quantum computer. (accepted in SBRC 2021 - WQuantum / Comunicação e
Computação Quântica)

• Jaime Santos, Bruno Chagas. Implementing Grover’s algorithm on a Superconducting
Quantum Computer. (accepted to the 2nd European Quantum Technologies Virtual
Conference)

A third publication

• Jaime Santos, Bruno Chagas. Searching with Continuous-Time Quantum Walks. (in
preparation)

is being prepared at the moment of writing.

2

Q UA N T U M WA L K S

The structure of this chapter is as follows. The first section presents a brief introduction to
random walks by reviewing the classical case. The following sections are dedicated to the
study of several quantum random walk models and their advantages. This analysis is done
by firstly describing the theoretical framework for these walks, and then simulating them in
Python, with code that can be found on Github 1.

Section 2.2 introduces the quantum case of random walks by analyzing the dynamics
of the coined model, making use of Python’s plot capabilities in order to visualize the
probability distributions associated with this algorithm. The quantum walk is generally
said to be quadratically faster than the classical one, which is reflected on the behavior of the
standard deviation associated with the probability distribution, and in this section a brief
comparison of this metric is also presented. Section 2.3 is dedicated to the study of another
instance of a discrete quantum walk, but where a coin is not needed. Instead, tessellations are
used to construct the Hamiltonians of this algorithm, hence the name staggered, effectively
reducing the associated Hilbert space. Here, plots are used to study the propagation of
the walk, and the effects of altering available the parameters will also be analyzed. Lastly,
section 2.4 presents the continuous-time model of the quantum walk. Following the previous
sections, the probability distributions will be plotted for the different parameters that can be
altered. Finally, this chapter is closed with some final thoughts and remarks.

2.1 classical random walk

The term random walk, firstly introduced by Pearson (1905), is classically defined as a
stochastic process that models the path a walker would take through a mathematical space,
where each step made by the walker is random. This can be used to model systems such
as a molecule displaying Brownian motion in a fluid, or even fluctuating stock prices as in
Sottinen (2001).

The simplest instance of this walk is on an infinite discretely numbered line, whose
mathematical space is composed of integer numbers. Here, the walker can only advance

1 https://github.com/JaimePSantos/QWSimulations

10

2.1. Classical Random Walk 11

with equal probability in one of two directions, depending on the outcome of a random
event such as tossing a coin. Starting from position x = 0, the walker moves to x = +1 or
x = −1 with 1

2 probability after the first toss. On the second toss, the walker could be on
x = ±2 with 1

4 probability each, and on x = 0 with 1
2 . Continuing this trend will result in a

normal probability distribution around the origin, as seen in the Python plot of figure 1.

Figure 1: Probability distribution for the classical random walk on a line, after 72, 180 and 450 steps,
running 300000 experiments for each number of steps, with starting position on vertex 0.

The number of iterations directly affects how far the walker can reach. As the number of
steps increases, the height of each curve at the starting position decreases and the width of
the curve increases. This relationship can be captured by the position standard deviation, and
Pearson (1905) shows that the standard deviation is

σ(t) ∼
√

t. (1)

In other words, equation (1) represents the rate at which a walker moves away from the
origin.

Note that this algorithm can be abstracted to graphs of higher dimensions. For example, in
a two dimensional lattice, a walker would be transversing a plane with integer coordinates,
choosing one of four directions at every intersection. Notably, Pólya (1921) proved that a
walker in a two dimensional lattice will almost surely return to the origin at some point.
However, the probability of returning to the origin decreases as the number of dimensions
increases, as shown by Montroll (1956) and Finch (2003). It is worth noting that a random
walk, over a graph whose nodes are weighed and directed, is analogous to a discrete-time
Markov chain2.

2 A Markov chain can be described as a sequence of stochastic events where the the probability of each event
depends only on the state of the previous event.

2.2. Coined Quantum Walk 12

2.2 coined quantum walk

In the quantum case, the walker is a system whose position, on an infinite discretely
numbered line, is described by a vector |x〉 in Hilbert space. The next position of the system
will depend, in part, of a unitary operator, which can be viewed as a quantum coin. The
analogy is, if the coin is tossed and rolls ”heads”, for example, the system transitions to
position |x + 1〉, otherwise it advances to |x− 1〉. From a physical perspective, this coin can
be the spin of an electron or the chirality of a particle, for example, and the outcome of
measuring these properties decides whether the walker moves left or right. The coin is a
unitary operator defined as C |0〉 = a |0〉+ b |1〉 ;

C |1〉 = c |0〉+ d |1〉 ,
(2)

where a, b, c and d are the complex amplitudes associated with each outcome of the coin toss.
One of the most commonly used coins is the unbiased coin, also known as the Hadamard
operator

H =

(
a c
b d

)
=

1√
2

(
1 1
1 −1

)
, (3)

which will be the one used in this example.
The Hilbert space of the system is H = HC ⊗HP, where HC is the two-dimensional

Hilbert space associated with the coin and HP is the Hilbert space of the walker.
The transition from |x〉 to either |x + 1〉 or |x− 1〉 must be described by a unitary operator,

the shift operator S |0〉 |x〉 = |0〉 |x + 1〉

S |1〉 |x〉 = |1〉 |x− 1〉 ,
(4)

that can also be described by

S = |0〉 〈0| ⊗
x=∞

∑
x=−∞

|x + 1〉 〈x|+ |1〉 〈1| ⊗
x=∞

∑
x=−∞

|x− 1〉 〈x| . (5)

It follows that the operator that describes the dynamics of the quantum walk will be given
by

U = S(C⊗ I) = S(H ⊗ I). (6)

Consider a quantum system located at |x = 0〉 with coin state |0〉, for t = 0. Its state will
be described by

|ψ(0)〉 = |0〉 |x = 0〉 . (7)

After t steps
|ψ(t)〉 = Ut |ψ(0)〉 , (8)

2.2. Coined Quantum Walk 13

more explicitly
|ψ(0)〉 U−→ |ψ(1)〉 U−→ |ψ(2)〉 U−→ (...) U−→ |ψ(t)〉 . (9)

In summary, the coined quantum walk algorithm consists of applying the coin operator
followed by the shift operator a certain number of times. Iterating this twice, evolves the
system to the following states

|ψ(1)〉 = |0〉 |x = −1〉+ |1〉 |x = 1〉√
2

(10)

|ψ(2)〉 = |0〉 |x = −2〉+ |1〉 |x = 0〉+ |0〉 |x = 0〉 − |1〉 |x = 2〉
2

(11)

If one were to measure the system after the first application of U, it would be expected to
see the walker at x = 1 with probability P(x) = 1

2 , and at x = −1 with P(x) = 1
2 . Measure

the system t times, after each application of U, and the result is a binomial probability
distribution similar to the one in figure 1. The conclusion is that repetitive measurement of
a coined quantum walk system reduces to the classical case, which means that any desired
quantum behavior is lost.

It is possible, however, to make use of the quantum correlations between different posi-
tions to generate constructive or destructive interference, by applying the Hadamard and
shift operators successively without intermediary measurements. The consequences of
interference between states become very apparent after only 3 iterations

|ψ(3)〉 = |1〉 |x = −3〉 − |0〉 |x = −1〉+ 2(|0〉+ |1〉) |x = 1〉+ |0〉 |x = 3〉
2
√

2
. (12)

Even though an unbiased coin was used, this state is not symmetric around the origin and
the probability distributions will not be centered in the origin. Moreover, Childs et al. (2002)
shows that the standard deviation will be

σ(t) ≈ 0.54t. (13)

This means that the standard deviation for the coined quantum walk grows linearly in time,
unlike the classical case which grows with

√
t, as seen in equation (1). The implication is

that the quantum walk displays ballistic behavior, as is reviewed in Venegas-Andraca (2012).
This behavior is usually defined in the context of a moving free particle with unit velocity
in a single direction, which is expected to be found at x = t after t steps. The velocity of
a walker in a Hadamard quantum walk is approximately half of the free particle example,
which is still a quadratic improvement over the classical random walk. Figure 2 shows the
comparison between the evolution of the classical and the quantum standard deviation.

2.2. Coined Quantum Walk 14

Figure 2: Standard deviation after 200 steps for the quantum walk in blue, and the classical random
walk in red.

This quadratic gain implies exponentially faster hitting times in certain graphs, as shown
by Childs et al. (2002), meaning improvements to problems that require transversing graphs.
Ambainis (2007) also shows advantages of the coined quantum walk model in element
distinctness problems, and Childs and Goldstone (2004) show advantages in spatial search
problems, which will be studied in a later chapter.

Figure 3: Probability distribution for the coined quantum walk on a line, after 32, 64 and 128 steps,
with initial condition |ψ(0)〉 = |0〉 |x = 0〉 and the Hadamard coin.

2.2. Coined Quantum Walk 15

In order to study this distribution, a simulation of the coined quantum walk was coded
in Python. Figure 3 is the result of using the Hadamard coin and the initial condition
in equation 7, for varying numbers of steps. Analyzing the plot, it is noticeable that the
distributions are asymmetric. The probability of finding the walker on the right-hand side is
much larger than on the left, with a peak around x ≈ t√

2
. Regardless of number of steps,

this peak is always present (albeit in varying positions), which is to say that the walker can
always be found moving in a uniform fashion away from the origin, consistent with ballistic
behaviour.

Another interesting case study is to find if this behavior is preserved for a symmetric
distribution around the origin. For this purpose, one must first understand where the
asymmetry comes from. The Hadamard operator flips the sign of state |1〉, hence more

Figure 4: Probability distribution for the coined quantum walk on a line, after 32, 64 and 128 steps,
with initial condition |ψ(0)〉 = |1〉 |x = 0〉 and the Hadamard coin.

terms are canceled when the coin state is |1〉. Since |0〉 was defined to induce movement to
the right, the result is as shown in figure 3. Following this logic, it would be expected that
an initial condition

|ψ(0)〉 = |1〉 |x = 0〉 , (14)

would result in more cancellations when the coin state is |0〉, thus the walker would be more
likely found in the left-hand side of the graph. This is indeed what happens, as figure 4 is a
mirror image of figure 3. The walker still moves away from the origin with ballistic behavior,
but in the opposite direction. The peaks behave in a similar fashion, being found instead at
x ≈ − t√

2
.

2.2. Coined Quantum Walk 16

In order to obtain a symmetrical distribution, one must superpose the state in equation (7)
with the state in equation 14. However, in order to not cancel terms before the calculation of
the probability distribution, one must multiply state |1〉 with the imaginary unit, i

|ψ(0)〉 = |0〉+ i |1〉√
2

|x = 0〉 . (15)

The entries of the Hadamard operator are real numbers, therefore terms with the imaginary

Figure 5: Probability distribution for the coined quantum walk on a line, after 32, 64 and 128 steps,
with initial condition |ψ(0)〉 = |0〉+i|1〉√

2
|x = 0〉 and the Hadamard coin.

unit will not cancel out with terms without it, thus the walk can proceed to both left and
right, as shown in figure 5. Note that using another coefficient for i will result in nontrivial
behaviour. The probability distribution is now symmetric and it is spread over the range
[− t√

2
, t√

2
] with peaks around x ≈ ± t√

2
. This means that if the position of the walker was

measured at the end, it would be equally probable to find him far away from the origin,
either in the left side or the right side of the graph, which is not possible in a classical
random walk.

All of the previous examples are in sharp contrast with the classical random walk dis-
tribution in figure 1. There, the maximum probability is reached at x = 0 since there are
approximately equal steps in both directions. Furthermore, the further the vertex is away
from the origin, the less likely the walker is to be found there. However, in the quantum case,
the walker is more likely to be found away from the origin as the number of steps increases.
More specifically, the walk spreads quadratically faster than the classical counterpart.

This is but one model of a quantum random walk. As it will be seen in further sections,
there are other approaches to creating both discrete and continuous-time quantum walk
models that do not use a coin.

2.3. Staggered Quantum Walk 17

2.3 staggered quantum walk

The staggered quantum walk (SQW) model aims to spread a transition probability to
neighboring vertices with discrete time steps. The notion of adjacency comes from cliques3,
and the initial stage of this walk consists of partitioning the graph into several different
cliques. This is known as the tessellation process. An element of a tessellation T is called
a polygon, and it is only valid if all of its vertices belong to the clique in T . The set of
polygons of each tessellation must cover all vertices of the graph, and the set of tessellations
{T1,T2,...,Tk} must cover all the edges.

These definitions allow the construction of operators H1,H2,...,Hk to propagate the proba-
bility amplitude locally, in each polygon. The state associated to each polygon is∣∣∣uk

j

〉
=

1√
|αk

j |
∑

l∈αk
j

|l〉 , (16)

where αk
j is the jth polygon in the kth tessellation.

The unitary, local and Hermitian operator Hk, associated to each tessellation is defined in
Portugal et al. (2017) as

Hk = 2
p

∑
j=1

∣∣∣uk
j

〉 〈
uk

j

∣∣∣− I. (17)

Solving the time-independent Schrodinger equation for this Hamiltonian gives the evolution
operator

U = eiθk Hk ...eiθ2 H2 eiθ1 H1 , (18)

where
eiθk Hk = cos (θk)I + i sin (θk)Hk, (19)

since H2
k = I, meaning that the Hamiltonian is a reflection operator that, when expanded in

a Taylor series, generates a local operator.
The simplest use case of this quantum walk model is the one-dimensional lattice, where

the minimum tessellations are

Tα = {{2x, 2x + 1} : x ∈ Z}, (20)

Tβ = {{2x + 1, 2x + 2} : x ∈ Z}. (21)

Each element of the tessellation has a corresponding state, as can be seen in figure 6, and

3 A clique is defined as the subset of vertices of an undirected graph such that every two distinct vertices in each
clique are adjacent.

2.3. Staggered Quantum Walk 18

Figure 6: Tessellation of a line graph.

the uniform superposition of these states is

|αx〉 =
|2x〉+ |2x + 1〉√

2
, (22)

|βx〉 =
|2x + 1〉+ |2x + 2〉√

2
. (23)

One can now define Hamiltonians Hα and Hβ as

Hα = 2
+∞

∑
x=−∞

|αx〉 〈αx| − I, (24)

Hβ = 2
+∞

∑
x=−∞

|βx〉 〈βx| − I. (25)

Figure 7: Probability distribution for the staggered quantum walk on a line after 50 steps, with initial
condition |ψ(0)〉 = |0〉+|1〉√

2
, for multiple values of θ.

2.3. Staggered Quantum Walk 19

The Hamiltonian evolution operator reduces to

U = eiθHβ eiθHα , (26)

and applying it to an initial condition |ψ(0)〉 results in the time evolution operator

U |ψ(t)〉 = Ut |ψ(0)〉 . (27)

Having defined the time evolution operator, the walk is ready to be coded with a certain
initial condition and θ value, to better understand how the probability distribution spreads
through time. For the first case study, the initial condition will be a uniform superposition of
states |0〉 and |1〉 and the value of θ will be varied in order to understand how this parameter
impacts the walk, as seen in figure 7. The overall structure of the probability distribution is
very similar for different values of θ, the difference being that the walker is more likely to be
found further away from the origin as the angle increases.

(a) |ψ(0)〉 = |0〉 (b) |ψ(0)〉 = |1〉

Figure 8: Probability distributions for the staggered quantum walk on a line after 50 steps, for
different initial conditions.

Another interesting case study is to see how the initial condition affects the dynamics of
the system, and figure 8 shows the results of plotting the quantum walk for initial conditions
|ψ(0)〉 = |0〉 and |ψ(0)〉 = |1〉. Similarly to the coined case, each initial condition results
in asymmetric probability distributions, |ψ(0)〉 = |0〉 leads to a peak in the left-hand side,
while condition |ψ(0)〉 = |1〉 results in a peak in the right-hand side. As shown in figure
7, the uniform superposition of both these conditions results in a symmetric probability
distribution.

So far, only discrete-time quantum walks have been shown. The next section presents
the continuous-time quantum walk model, where time is not discretized and whose Hilbert
space is the space of the walker.

2.4. Continuous-Time Quantum Walk 20

2.4 continuous-time quantum walk

The continuous-time random walk model on a graph is a Markov process where transitions
have a fixed probability per unit time, γ, of moving to adjacent vertices, firstly introduced by
Montroll and Weiss (1997). Consider a graph G with N vertices and no self-loops, this walk
can be defined by the linear differential equation that describes the probability of jumping
to a connected vertex in any given time

dpi(t)
dt

= γ ∑
j

Lij pj(t), (28)

where L is the Laplacian defined as L = A− D, and pj(t) is the time dependent probability
associated with each vertex transition. A is the adjacency matrix that represents each vertex
connection, given by

Aij =

1, if (i, j) ∈ G

0, otherwise,
(29)

and D is the diagonal matrix Djj = deg(j) corresponding to the degree4 of vertex j.
In the continuous-time quantum walk model (CTQW), the vertices are quantum states

that form the basis for the Hilbert space. The continuous-time quantum walk model will
also be described by a differential equation, the Schrödinger equation

ih̄
d |ψ(t)〉

dt
= H |ψ(t)〉 , (30)

where H = −γL is the Hamiltonian of the system. More explicitly,

Hij =

deg(j)γ, if i = j;

−γ, if i 6= j and adjacent;

0, if i 6= j and not adjacent.

. (31)

A general state of a system |ψ(t)〉 can be written as a function of its complex amplitudes

qi = 〈i|ψ(t)|i|ψ(t)〉 , (32)

which means equation (30) can be rewritten as

ih̄
dqi(t)

dt
= ∑

j
Hijqj(t). (33)

4 The degree of a vertex refers to the number of edges that it is connected to.

2.4. Continuous-Time Quantum Walk 21

Comparing equations (33) and (28), the Laplacian is replaced by the Hamiltonian, and the
probabilities by amplitudes. One of the main differences is the complex phase i, which will
result in a very different behavior. Setting h̄ = 1 and solving the differential equation results
in the evolution operator of this walk

U(t) = e−iHt = ei(γL)t = eiγ(A−D)t, (34)

In the regular graph case, where D is simply the degree of the graph multiplied by the
identity matrix, A and D will commute, meaning that the evolution operator can be written
in terms of the adjacency matrix

U(t) = eiγAt−iγDt = eiγAte−iγDt = φ(t)eiγAt, (35)

since the degree matrix becomes a global phase. Applying this operator to an initial condition
ψ(0), will give the state of the system at a time t

|ψ(t)〉 = U(t) |ψ(0)〉 . (36)

Figure 9: Probability distribution for the continuous-time quantum walk on a line, at t = 40, 80 and
120, with initial condition |ψ(0)〉 = |0〉 and γ = 1

2
√

2
.

Considering a uni-dimensional quantum system, each vertex will have at most 2 other
neighboring vertices, reducing equation (31) to

Hij =

2γ, if i = j;

−γ, if i 6= j and adjacent;

0, if i 6= j and not adjacent.

(37)

2.4. Continuous-Time Quantum Walk 22

For a more detailed visualization, this quantum walk model was coded in Python and
figure 9 was obtained setting the transition rate to γ = 1

2
√

2
and the initial condition to

|ψ(0)〉 = |0〉. A brief look at figure 9 reveals several similarities to previous models. The
property of having two peaks away from the origin and low probability near the origin is
present across all the quantum walks. However, in the continuous case, a symmetric initial
condition is not needed. In the staggered quantum walk model, the propagation of the walk
could be altered by changing the values of θ, whereas in this case different values of γ and
time will influence the probability distribution.

Altering the initial condition will also differ in the continuous-time example. For example,
setting the initial condition to the balanced superposition of states |0〉 and |1〉 has no effect
on the overall pattern of the probability distribution as seen in figure 10. Both peaks are
still present and at the same distance from the origin, with intermediate amplitudes being
attenuated relative to figure 9. This behavior is in contrast with the previous discrete-time
cases, where a change in the initial condition would dictate the number of peaks and where
they would appear. Figure 10 also shows the influence of the transition rate γ. As would

Figure 10: Probability distribution for the continuous-time quantum walk on a line, at t = 100, with
initial condition |ψ(0)〉 = |0〉+|1〉√

2
, for multiple values of γ.

be expected from equation (35), the effects are very similar to altering time, since both
parameters are multiplying in the exponential.

In conclusion, the purpose of this chapter was to present an overview of several different
models of a quantum walk. The probability distributions are very distinct from the classical
case, but relatively similar to each other. The bigger differences between the models come
from the size of the associated Hilbert space. The staggered and continuous-time quantum
walks have Hilbert spaces equal to the space of the walker, whereas the coined quantum
walk also requires a space for the coin. It might seem unimportant now, but it will play a

2.4. Continuous-Time Quantum Walk 23

major role when these models are translated into circuits, since the size of the Hilbert space
will have a direct relation with the number of qubits required to perform the walk, which is
a scarce resource for Noisy intermediate-scale quantum (NISQ) computers. Considering the
case of the coined quantum walk on a simple line graph, only one extra qubit will be needed.
However, as will be seen in the next chapter, the search problem is optimal when performed
over a complete graph which, in the coined case, will double the number of required qubits.

3

S E A R C H I N G P R O B L E M S

This chapter studies the search problem using quantum walks. Section 3.1 introduces the
basics of a search problem by presenting the theoretical framework of Grover’s algorithm,
followed by a complexity analysis, together with Python plots for a better illustration.
Different numbers of marked elements will be shown and, by the end of the section, it
should be clear that Grover’s algorithm is optimal for searching, as shown by Zalka (1999).

Subsequent sections are dedicated for the quantum walk instance of this problem. In
section 3.2, the coined quantum walk is defined for the search problem, which implies the
introduction of an oracle. Here, instead of a line, a complete graph is used, which will
increase the space of the search to 2N, due to the connected nature of this graph and the
need of a coin. Section 3.3 presents the staggered quantum walk version of the search
problem. Again, the notion of cliques and tessellations is used instead of a coin, and the
complete graph is again considered. The oracle is again defined for this walk, which makes
it quite similar to Grover’s algorithm. However, since it is possible to alter the parameter θ

and the structure over which the search is performed, this algorithm is known to be more
general then Grover’s. Like the coined quantum walk, the staggered model is discrete in
time but, since a coin is not used, the space associated with it scales only with the size of
the graph, meaning its implementation on a NISQ computer will be more feasible. Finally,
section 3.4 closes this chapter with the search instance of the continuous-time quantum walk.
Similarly to the staggered quantum walk, both the structure where the search is performed
and parameter γ can be controlled. However, because time is not discrete in this instance,
the probability distribution associated with this walk will be slightly different, and it will
later be seen that this results in a circuit that does not scale up with time.

3.1 grover’s algorithm

Searching through an unstructured database is a task classically achieved by exhaustively
evaluating every element in the database. Assume there exists a black box (oracle) that can
be asked to find out if two elements are equal. Since we’re looking for a specific element in

24

3.1. Grover’s Algorithm 25

a database of size N, we’d have to query the oracle on average N
2 times or, in the worst case,

N times.
Grover’s algorithm, presented in Grover (1996), comes as a quantum alternative to this type

of problems, taking advantage of superposition by increasing desirable states’ amplitudes
through a process called amplitude amplification. This method has a quadratic gain over the
classical counterpart, shown in Boyer et al. (1998), being able to find a target element in
expected time O(

√
N) .

The inner workings of the black box will now be expanded upon. Instead of directly
evaluating the elements, the searching indices will be considered, and the number of
elements defined as N = 2n, n being a positive integer. The next step is to define a function
f : {0, 1, ..., N − 1} that returns 1 when evaluating the desired (marked) element, and 0
otherwise. Since this function is to be applied to a quantum system, a unitary operator can
be built such as

O |x〉 |i〉 = |x〉 |i⊕ f (x)〉 . (38)

where |x〉 is the index register, ⊕ is the binary sum operation and |i〉 is a qubit that is flipped
if f (x) = 1.

The action of the oracle on state |0〉 will be

O |x〉 |0〉 =

|x0〉 |1〉 , if x = x0

|x〉 |0〉 , otherwise.
(39)

where x0 is the marked element. More generically, O can be written as

O |x〉 = (−1) f (x) |x〉 . (40)

This offers a bit of insight into the oracle: it marks the solutions to the search problem by
applying a phase shift to the solutions. The question now is, what is the procedure that
determines a solution x0 using O the minimum number of times? The answer lies in the
amplitude amplification section of Grover’s search, starting with the creation of a uniform
superposition

|ψ0〉 = H⊗n |0〉 = 1√
N

N−1

∑
x=0
|x〉 , (41)

where H⊗n is the Hadamard operator applied to an arbitrary number of qubits.
If one were to measure |x〉 at this point, the superposition would collapse to any of the

base states with the same probability 1
N = 1

2n , which means that on average, we’d need to
try N = 2n times to guess the correct item. This is where amplitude amplification comes
into effect, by means of a second unitary operator

D = (2 |ψ0〉 〈ψ0| − I) = H⊗n(2 |0〉 〈0| − I)H⊗n. (42)

3.1. Grover’s Algorithm 26

This operator applies a conditional phase shift, with every computational basis state except
|0〉 receiving a phase shift. This can also be described as the inversion about the mean, for a
state of arbitrary amplitudes

|φ〉 =
N−1

∑
k=0

αk |k〉 , (43)

the action of D on state φ will be

D |φ〉 =
N−1

∑
k=0

(−αk + 2〈α〉) |k〉 , (44)

where 〈α〉 is the average of αk

〈α〉 = 1
N

N−1

∑
k=0

αk |k〉 . (45)

The evolution operator that performs one step of the algorithm is then

U = DO, (46)

and after t steps the state of the system is

|ψ(t)〉 = U t |ψ0〉 . (47)

3.1.1 One marked element

The optimal number of steps is, as aforementioned, proportional to
√

N. More precisely,
if there’s only one solution, maximum probability can be reached in approximately π

4

√
N

iterations. In order to show that this is the case, an iteration will be formally defined,
following the example of Boyer et al. (1998), as the process that transforms the state

|ψ(k, l)〉 = k |i0〉+ ∑
i 6=i0

l |i〉 , (48)

into state
∣∣∣ψ(N−2

N k + 2(N−1)
N l, N−2

N l − 2
N k)

〉
. Amplitudes l and k are real numbers that satisfy

k2 + (N − 1)l2 = 1. Running t iterations over state |ψ0〉 will eventually lead to state∣∣ψj
〉
=
∣∣ψ(k j, lj)

〉
after the jth iteration, where k0 = l0 = 1√

N
and

k j+1 = N−2
N k j +

2(N−1)
N lj;

lj+1 = N−2
N lj +

2
N k j.

(49)

3.1. Grover’s Algorithm 27

After the last iteration, the system will be in state |ψt〉 with a certain amplitude. If that
amplitude corresponds to the marked element x0, then it is said that the algorithm was
successful.

Grover (1996) proves that there exists a value of t <
√

2N, such that the probability of
success is at least 1

2 . However the probability of success does not linearly increase with the
number of iterations, in fact for t =

√
2N the system will succeed less than 1 in 10 times.

Boyer et al. (1998) argues that an explicit value of t is needed, and this can be achieved by
finding a closed form formula for k j and lj. The first step is to define an angle θ so that
sin2 θ = 1

N , and equation (49) becomesk j = sin ((2j + 1)θ);

lj =
1√

N−1
cos ((2j + 1)θ).

(50)

In order to maximize the probability of success, one must find a value of t so that kt ≈ 1
and lt is as close to 0 as possible. The value of k after t iterations will be at its maximum
when sin ((2t + 1)θ) = 1. Solving the trigonometric equation leads to a value of t = π−2θ

4θ .
Conversely, lt̃ = 0 when t̃ = π−2θ

4θ for an integer number of t̃. Setting t to b π
4θ c will lead to

∣∣t− t̃
∣∣ ≤ 1

2
⇐⇒

∣∣(2t + 1)θ − (2t̃ + 1)θ
∣∣ ≤ π

2
. (51)

By definition, (2t̃ + 1)θ = π
2 which means that |cos ((2t + 1)θ)| ≤ |sin θ|. The probability of

Figure 11: Probability of one marked element in the Grover search, as a function of the number of
steps, for N = 32, 64, 128 and 256.

3.1. Grover’s Algorithm 28

failure after t iterations can then be written as

(N − 1)l2
t = cos2 ((2t + 1)θ) ≤ sin2 θ =

1
N

. (52)

Failure decreases as the number of elements increases. The run time of the algorithm will be

t ≤ π

4θ
≤ π

4

√
N, (53)

since θ ≥ sin θ = 1√
N

. This means that, for a large N, the number of iterations that maximizes

the probability of success will be very close to π
4

√
N.

Figure 11 was obtained by coding the appropriate operators as to simulate the system
presented in equation (47). The unitary evolution operator was applied approximately
π
4

√
N times and the amplitudes associated with those states were stored as a probability

distribution. Filtering the probability of the marked element and plotting it against the
number of steps, shows that the maximum is indeed reached after the said number of
iterations, and then decreases as more steps are taken, periodically. It also shows that the
maximum probability for N = 32 is lower than for N = 128, which makes sense since the
the probability of success is maximized for larger values of N. This is the case because the
ideal number of iterations will be bπ

4

√
Nc, meaning that the rounding will be proportionally

smaller as N increases.

3.1.2 Multiple marked elements

When there’s more than one element marked by the oracle, the number of iterations to
achieve maximum probability changes. In fact, the latter part of this section will be used to
discuss the case where one single iteration of this algorithm is enough to achieve maximum
probability.

Firstly, one must define a set A collecting all the marked elements and set B with the
remaining ones. The state from equation (48) will become

|ψ(k, l)〉 = ∑
i∈A

k |i〉+ ∑
x∈B

l |x〉 . (54)

Assuming m marked elements, iterating over this state will result in∣∣∣∣ψ(N − 2m
N

k +
2(N −m)

N
l,

N − 2m
N

l − 2m
N

k)
〉

. (55)

3.1. Grover’s Algorithm 29

Choosing an angle θ such that sin2θ = t
N , allows the definition of the amplitudes associated

with the states after j iterationsk j =
1√
m sin ((2j + 1)θ);

lj =
1√

N−m
cos ((2j + 1)θ).

(56)

Similarly to the one solution case, it can be shown that setting the number of iterations t, to

Figure 12: Probability of two marked elements in the Grover search, as a function of the number of
steps, for N = 32, 64, 128 and 256.

the nearest lower integer of π
4θ will result in a probability of failure (N −m)l2

t ≤ m
N . Because

θ ≥ sin θ =
√

t
N , then

t ≤ π

4θ
≤ π

4

√
N
m

. (57)

From a more practical perspective, if one were to mark two elements of a 64 element set,

maximum probability is expected to be reached in approximately 4 steps, since bπ
4

√
64
2 c = 4.

Likewise, for N = 256, the number of iterations is rounded to 8, which is plotted along
several other values of N in figure 12. The y-axis is now the sum total probability of the

marked elements and the x-axis represents the range of steps that spans from 0 to bπ
4

√
N
2 c for

each N. Again, the probability of success approaches 1 as N increases. However, comparing
to figure 11, the number of iterations that maximizes probability is lower because of the
increased number of marked elements, in agreement with equation (57). Work by Zalka
(1999) shows that the time complexity associated to Grover’s algorithm is optimal, and that
parallelization of quantum searching should not yield better results.

3.1. Grover’s Algorithm 30

3.1.3 Single-Shot Grover

An interesting case arises when the number of marked elements is set to m = N
4 , because

sin2θ =
N
4
N

=
1
4
⇐⇒ sin θ =

1
2
⇐⇒ θ =

π

6
. (58)

Note that there are an infinite number of negative and positive solutions, but equation (58)

Figure 13: Total probability of marked elements in the Grover search, as a function of the number of
marked elements, for 1 step, with N = 32, 64, 128 and 256.

reflects the only relevant one in this context. As a consequence, amplitudes associated with
state |ψ(k1, l1)〉 become

k1 = 1√
m sin ((2 + 1)θ) = 1√

N
4

sin (3 π
6) =

2√
N

;

l1 = 1√
N−m

cos ((2 + 1)θ) = 1√
N− N

4

cos (3 π
6) = 0.

(59)

These results show that the amplitudes associated with the marked states double in relation
to |ψ0〉 and the remaining states disappear after only one iteration. This behavior can be
seen in figure 13, where the total probability of marked elements reaches 1 after a single shot
of the Grover procedure, once the number of marked elements is 1

4 of the total elements.
The following sections will present the search problem in the context of quantum walks.

They are generalizations of Grover’s algorithm, but implemented in graphs.

3.2. Coined Quantum Walk 31

3.2 coined quantum walk

In classical computation, a spatial search problem focuses on finding marked points in a finite
region of space. Defining this region with graphs is fairly straightforward, the vertices of the
graph are the search space, and the edges define what transitions are possible through the
search space. As was previously mentioned in section 3.1, exhaustively searching through
an unstructured space, by means of a classical random walk for example, would mean that
in the worst case, one would have to take as many steps to find the marked points as there
are vertices in the graph. Quantum computing provides a more efficient alternative through
Grover’s algorithm. Applying some of the underlying ideas to the coined quantum walk not
only allows a quantum counterpart to the random walk search, but also further insight into
the algorithm itself.

Following Portugal (2018)’s definition, a good first step is to borrow the diffusion from
Grover’s algorithm and invert the sign of the state corresponding to the marked vertex while
leaving unmarked vertices unchanged. This is done through the following operator

O = I − 2 ∑
x∈M
|x〉 〈x| , (60)

where M is the set of marked vertices and O is an analogue to Grover’s oracle. For one
marked vertex, this oracle can be written as

O = I − 2 |0〉 〈0| . (61)

Notice that there is no loss of generality by choosing the marked vertex as 0, since the
labeling of the vertices is arbitrary.

The next step is to combine the evolution operator from the coined quantum walk model
with the oracle

U′ = UO. (62)

Similarly to the simple coined case, the walker starts at |ψ(0)〉 and evolves according to
the rules of an unitary operator U, followed by the sign inversion of marked vertices. The
walker’s state after an arbitrary number of steps will be

ψ(t) = (U′)t |ψ(0)〉 . (63)

For a better understanding of the search problem in the coined quantum walk model,
consider a graph where all the vertices are connected and each vertex has a loop that allows
transitions to itself. The next step is to label the edges using notation {(v, v′), v > 0∧ v′ 6

3.2. Coined Quantum Walk 32

N − 1} where N is the total number of vertices and (v, v′) are the position and coin value,
respectively. The shift operator, now called the flip-flop shift operator, is

S |v1〉 |v2〉 = |v2〉 |v1〉 . (64)

The coin operator is defined as
C = IN ⊗ G, (65)

where
G = 2 |s〉 〈s| − I (66)

is the Grover coin, with |s〉 being the uniform superposition of the coin states.
Marking an element in a complete graph is done through the following oracle

O′ = O ⊗ I = (IN − 2 |0〉 〈0|)⊗ IN = IN2 − 2 ∑
v
|0〉 |v〉 〈0| 〈v| , (67)

that is seen as an operator that marks all edges leaving 0. Recalling equation (62), now that
all the operators are defined, the modified evolution operator can then be written as

U′ = S(I ⊗ G)O′ = S(I ⊗ G)O ⊗ I = S(O ⊗ G), (68)

and the state of the system will evolve according to equation (63).

Figure 14: Probability of one marked element in the coined quantum walk search, as a function of
the number of steps, for complete graphs of size N = 16, 32 and 64.

3.3. Staggered Quantum Walk 33

As shown in Portugal (2018), maximum probability of the marked vertex is achieved
after bπ

2

√
Nc steps. Figure 14 is the result of coding and plotting the evolution of this

probability distribution, for graphs of varying sizes. It shows that the probability is close
to one at approximately the ideal steps, because of the discrete nature of the walk. The
probability distributions have a stair-like shape, because transitions in this model only occur
on even numbered time steps, because of the way the unmodified evolution operator was
constructed.

The next section is devoted to the study of the search problem using the staggered
quantum walk model. The algorithm is still discrete. However, since it does not use a coin,
its Hilbert space will be much smaller. In the coined case, due to how the coin and shift
operators were defined, for every qubit that represents the space of the walker, another
qubit will be needed for the coin since, in the complete graph, each vertex is connected to
all vertices. This means that for a N qubit walk, 2N qubits are required. Therefore, the
staggered quantum walk will be better suited for running in a NISQ computer.

3.3 staggered quantum walk

Defining the search problem in this model is similar to the coined quantum walk case.
The oracle still inverts the sign of a certain state and amplifies it, and the system’s state
will still be described by equation (63). However, instead of using a coin, the staggered
model takes advantage of the notions of cliques and tessellations, as was shown in chapter
2.3, which means the unmodified evolution operator has to be defined for an undirected
complete graph.

As was previously seen, a complete graph is defined as a simple undirected graph where
each pair of distinct vertices is connected by a unique edge. This is a special case, because
this is the only connected graph that can be covered by a single tessellation, due to the fact
that the graph is its own clique. The minimum tessellations required to cover this structures
are defined by the one clique that encompasses all N vertices of the graph

Tα = {{0, 1, 2, ..., N − 1}}. (69)

The associated polygon can then be described as the balanced superposition of all the vertices
in the graph

|α〉 = 1√
N

N−1

∑
v=0
|v〉 . (70)

The Hamiltonian, as defined in equation (17), is

Hα = 2
1

∑
0
|α〉 〈α| − I = 2 |α0〉 〈α0| − I. (71)

3.3. Staggered Quantum Walk 34

Figure 15: Maximum probability of the marked element as a function of the value of θ plotted from 0
to π, for complete graphs of size N = 64, 128 and 256.

The unmodified evolution operator from equation (18)

U = eiθk Hk ...eiθ2 H2 eiθ1 H1 , (72)

reduces to the single Hamiltonian case

U = eiθHα . (73)

The choice of the value of θ is quite important, since maximum probability is achieved at
θ = π

2 , as shown in figure 15.
Since H2

α = I, equation (73) can be rewritten as

U = e−i π
2 Hα = cos

π

2
I + i sin

π

2
Hα = iHα = i(2 |α0〉 〈α0| − I). (74)

Having defined the evolution operator associated to the complete graph, the next step is
to use the oracle

O = IN − 2 |0〉 〈0| , (75)

to create the modified evolution operator associated with the search

U′ = UO. (76)

3.4. Continuous-Time Quantum Walk 35

Figure 16: Probability of one marked element in the staggered quantum walk search, as a function of
the number of steps, for complete graphs of size N = 16, 32 and 64.

The walk achieves the same result as Grover’s algorithm after π
4

√
N steps, as shown in

figure 16. This plot also shows that the probabilities converge to 1 as N increases. Because
time is discretized, deviations to the ideal number of steps will matter less for bigger values
of N. Unlike Grover’s algorithm, however, the parameter θ can be changed in order to alter
how many iterations are required to achieve maximum probability of the marked element.
Combined with the fact that one has control over which structure this search problem is
performed, the staggered quantum walk search is more general than Grover’s search, both
being equivalent when a complete graph is considered and θ = π

2 .
Finally, the next section will present the search problem using the continuous-time

quantum walk model. Since time is not discretized, a finer control over the evolution is
possible. This will have significant impact when translating the algorithm to a quantum
circuit, since it will be seen that circuit depth will not scale with an increase in time.

3.4 continuous-time quantum walk

As was previously seen, the continuous-time quantum walk model is defined by an
evolution operator obtained by solving Schrödinger’s equation

U(t) = e−iHt. (77)

3.4. Continuous-Time Quantum Walk 36

The search problem requires introducing an oracle to the Hamiltonian, that will mark an
arbitrary vertex m

H′ = −γL− ∑
m∈M
|m〉 〈m| , (78)

where M is the set of marked vertices. Since the complete graph is a regular graph, the
operator can be rewritten in terms of the adjacency matrix plus the marked elements.
Considering the case where only element |0〉 is marked, one gets

U′(t) = e−iH′t = e−i(−γL−|0〉〈0|)t = e−i(−γA+γD−|0〉〈0|)t = eiγ(A+|0〉〈0|)t−iγDt. (79)

The degree matrix is again D = dI, which means it will commute with A + |0〉 〈0| and
become a global phase

U′(t) = eiγ(A+|0〉〈0|)te−iγDt = φ(t)eiγ(A+|0〉〈0|)t. (80)

Figure 17: Value of the difference between the largest eigenvalue and the second largest plotted as a
function of γN, for N = 512.

As shown by Childs and Goldstone (2004), the value of γ is crucial for the success of the
search. As γ increases, the contribution of the marked element in the Hamiltonian decreases
and, as γ approaches 0, the contribution of the adjacency matrix decreases. To find the

3.4. Continuous-Time Quantum Walk 37

optimum value, the Hamiltonian can be rewritten by adding multiples of the identity matrix
to the adjacency matrix

H′ = −γ(A + NI)− |0〉 〈0| = −γN |s〉 〈s| − |0〉 〈0| , (81)

where |s〉 = 1√
N ∑i |i〉. Now it is obvious that, for γ = 1

N , the Hamiltonian becomes
H = − |s〉 〈s| − |0〉 〈0|. Its eigenstates are proportional to |s〉 ± |w〉 and eigenvalues are
−1− 1√

N
and −1 + 1√

N
, respectively. This means that the evolution rotates from the state

of balanced superposition to the marked vertex state in time π
∆E = π

2

√
N, where ∆E is the

spectral gap. This is, as shown by Farhi et al. (2000), equivalent to Grover’s algorithm.

Figure 18: Probability of one marked element in the continuous quantum walk search, as a function
of the number of steps, for complete graphs of size N = 16, 32 and 64.

Plotting ∆E as a function of γN, as seen in figure 17, has a minimum at γN = 1. The
difference between the largest eigenvalue and second largest, plotted in the y-axis, is the
smallest for a value of γN = 1 =⇒ γ = 1

N , which will correspond to the maximum
probability for the marked vertex, in optimal steps.

Figure 18 shows the evolution of the probability of the marked vertex in time, which is
continuous in this model. In contrast with previous models, the distributions are smooth
and reach exactly one, since the walk is allowed to evolve for exactly the ideal time steps.

Again, this walk will require only as many qubits as needed to represent the space of the
walker. Similarly to the staggered case, this model allows an adjustment to the γ parameter,
that will affect the number of ideal steps. It also allows the choice of structure over which
to perform the search, making it more general than the Grover algorithm as well. Another

3.4. Continuous-Time Quantum Walk 38

interesting property is that, because time is treated as a continuous variable, the circuit
associated will not scale in time. For the case without search, the circuit will be relatively
small and somewhat resistant to noise. When considering the search problem, however, the
introduction of the oracle and the dependency of the Suzuki-Trotter expansion will render
the circuit less than ideal for NISQ implementation, as will be seen in the next chapter.

4

I M P L E M E N TAT I O N S A N D A P P L I C AT I O N S

This chapter is dedicated to the construction of quantum walk circuits using IBM’s
Software Development Kit, Qiskit, whose code is made publicly available in the Github
repository1. It is composed of two parts. The first one includes sections 4.1 through 4.3
and presents the circuits for the dynamics of each previously studied quantum walk model.
The second part corresponds to section 4.4, where the search algorithm is studied for each
model.

The first part of this chapter begins with section 4.1, where the coined quantum walk
implementation based on the work of Douglas (2009) can be found. Here, the line graph
is considered again, whose shift operation is composed of increment and decrement gates
constructed with generalized CNOT gates. As seen in previous chapters, this model requires
an extra qubit for the space of the coin that, when combined with all the operations
required to implement the generalized CNOT gates, results in a circuit far too deep to be
implemented in current NISQ computers, as was concluded at the end of this section. The
staggered quantum walk circuit is presented in the following section, based on the work of
Acasiete et al. (2020). This implementation still uses the notion of increment and decrement
operations. However, since a coin was not required, the resulting circuit became much more
NISQ-friendly. The first part is then concluded with section 4.3, where the continuous-time
quantum walk circuit is implemented. The best results for the dynamics of the quantum walk
were obtained for this case, due to the circulant graph approach that, unlike the previous
discrete models, does not require extra iterations of the algorithm to represent time. Work
by Qiang et al. (2016) firstly presented the circulant graph definition of this model, limited
to the complete graph case, and the final part of this section greatly expands on this work by
means of statistical analysis of the impact of the approximate quantum Fourier transform on
a large collection of circulant graphs.

Finally, section 4.4 closes this chapter with the implementation of circuits for the search
problem using quantum walks. It starts with the introduction of quantum searching by
means of the circuit associated with Grover’s algorithm, followed by the coined quantum
walk, which produces the worst results due to the requirement of 2n qubits and swap gates

1 https://github.com/JaimePSantos/QWQiskit

39

4.1. Coined Quantum Walk 40

for the representation of the complete graph. Surprisingly, the best results were achieved
for the staggered quantum walk search problem, since it produced the circuit with the least
operations. The continuous-time quantum walk search was expected to produce the best
results in this section also, but the introduction of the oracle together with the requirement
of the Suzuki-Trotter expansion resulted in a circuit somewhat impacted by noise.

4.1 coined quantum walk

Consider the example of a quantum walker on a discretely numbered cycle. It was seen
that the evolution operator associated with such a system is, as defined in equation (6)

U = S(C⊗ I), (82)

where S is a shift operator, defined in equation (5) as

S = |0〉 〈0| ⊗
x=∞

∑
x=−∞

|x + 1〉 〈x|+ |1〉 〈1| ⊗
x=∞

∑
x=−∞

|x− 1〉 〈x| , (83)

that increments or decrements the position of the walker according to the coin operator C.
Previously, this system was simulated in Python by coding its equations. Now, the focus is

to study and implement a quantum circuit based on the work presented by Douglas (2009).
This approach relies on multi-controlled CNOT gates, also known as generalized Toffoli
gates, in order to shift the state of the walker by +1 or −1, each with a probability associated
with the chosen coin, as can be seen in figure 19. The generalized CNOT gates act on the

(a) Increment. (b) Decrement.

Figure 19: General circuits of the components of the shift operator for the coined quantum walk.

vertex states as a cyclic permutator, where each vertex state is mapped to an adjacent state.
This can be seen as the walker moving left or right, in the line graph example.

The coin operator will simply be a Hadamard gate acting on a single qubit. For a graph
of size N = 8, for example, n = 3 qubits are required to encode each vertex, and an extra
qubit for the coin.

4.1. Coined Quantum Walk 41

Repeat for steps.

/⊗n INCR DECR

C •

Figure 20: General circuit for the coined quantum walk.

The general circuit for the coined quantum walk is shown in figure 20. Note that this
circuit limits the number of graph nodes to powers of 2, and an arbitrary implementation of
2n nodes requires n + 1 qubits. However, it is possible to have any number of nodes, given
that the proper correction is made, as was shown in the work of Douglas (2009). The method
used for this correction is called Gray Code Ordering proposed by Slepoy (2006), whereby a
certain arrangement of CNOT gates results in control states only differing by a single bit.

Figure 21: Qiskit circuit for the coined quantum walk, for a line graph of size N = 8 and initial
condition |ψ0〉 = |4〉, with 3 steps and the Hadamard coin.

This circuit was implemented in Qiskit, as can be seen in figure 21. In this example, the
increment and decrement sequence was applied three times on a graph of size 23 = 8 nodes.
The starting position of the walker was set to ψ(0) = |4〉, and the Hadamard coin was used.

(a) Increment. (b) Decrement.

Figure 22: Qiskit circuits of the components of the shift operator for the coined quantum walk, for a
line graph of size N = 8.

4.1. Coined Quantum Walk 42

The first block after the barrier is the sequence of operations that will increment and
decrement the state, as shown in figure 22. Note that, because the decrement gate is
optimized, some X gates were removed. The generalized CNOT gates are implemented
using Qiskit’s mcx function, which decomposes these gates according to lemma 7.5 of
Barenco et al. (1995) and work by Maslov (2016), to create CNOT gates up to four controls.
For more generalized instances of the gate, the aforementioned Gray Code is used. The rest
of the circuit is just the repetition of these operations as a function of the number of steps
required.

Lastly, the circuit is measured. The results can be seen in figure 23. These results can be
verified by calculating the time evolution of the wave function associated with the system

|ψ(0)〉 = |4〉 , (84)

|ψ(1)〉 = |0〉 |x = 3〉+ |1〉 |x = 5〉√
2

, (85)

|ψ(2)〉 = |0〉 |x = 2〉+ |1〉 |x = 4〉+ |0〉 |x = 4〉 − |1〉 |x = 6〉
2

, (86)

|ψ(3)〉 = |1〉 |x = 1〉 − |0〉 |x = 3〉+ 2(|0〉+ |1〉) |x = 5〉+ |0〉 |x = 7〉
2
√

2
. (87)

Taking the modulus squared of the amplitudes associated with the states, confirms that
the probability distribution associated with the QASM simulator, presented in figure 23 as
the blue bar plot, is correct. However, the results obtained from running in IBM’s Toronto

Figure 23: Probability distributions of the coined quantum walk for several steps in a line graph of
size N = 8. The blue bar plot represents a circuit run in the QASM simulator, and the
orange bar plot on IBM’s Toronto backend.

4.2. Staggered Quantum Walk 43

backend are not satisfactory. This is because of the size of the circuit. Actually, the coined
quantum walk model besides requiring an extra qubit for the coin, also needs a very large
number of CNOT gates, more specifically 187, 372 and 569, for 1, 2 and 3 steps, respectively
each of which have an average associated error of 1.284e− 2 in this specific backend, at the
time of this experiment. Note that this number may vary, depending on the transpiler seed
used.

For a better error analysis, one can calculate the fidelity between the ideal distribution
p(x) and the experimental q(x) using the formula

F(p, q) =
N−1

∑
x=0

√
p(x)q(x), (88)

where x is the vertex. For 0 steps, the obtained fidelity is approximately 0.91 which is very
high, because the circuit is simply the initial condition. When the circuit is increased to 1
step the fidelity lowers to 0.49, due to the increase of CNOTs. However, for 2 and 3 steps, the
fidelity increases again to approximately 0.63 due to the fact that the probability distribution
in the simulator becomes more spread out with the increase of steps, meaning that the
random uniform distribution obtained from the noisy experiments ran in IBM’s backend
will be closer to them than a highly localized distribution like in the case of 1 step.

In order to reduce the effects introduced by noise, the next chapter will present the circuit
for the alternative discrete model, the staggered quantum walk. Besides avoiding an extra
qubit for the coin, this model also does not require so many CNOT gates for each iteration.

4.2 staggered quantum walk

As was discussed in section 2.3, the elements of each tessellation of a discretely numbered
cycle can be described by states

|αx〉 =
|2x〉+ |2x + 1〉√

2
, (89)

|βx〉 =
|2x + 1〉+ |2x + 2〉√

2
. (90)

These states allow the construction of the Hamiltonians

Hα = 2
+∞

∑
x=−∞

|αx〉 〈αx| − I, (91)

Hβ = 2
+∞

∑
x=−∞

|βx〉 〈βx| − I, (92)

4.2. Staggered Quantum Walk 44

as in equations (24) and (25).
Following the implementation presented in the work of Acasiete et al. (2020), these

operators can be rewritten in matrix form

Hα = I ⊗ X, (93)

Hβ =

0 · · · 1
... Hα

...
1 · · · 0

 , (94)

which turn out to be very useful representations for the construction of the circuit.
As was shown in equation (26), the unitary evolution operator is

U = eiθHβ eiθHα = UβUα, (95)

knowing that
Rx(θ) = e

−iθX
2 , (96)

then each of the evolution operators associated with the different tessellation Hamiltonians
will be

Uα = I ⊗ Rx(θ), (97)

Uβ =

cos θ · · · −i sin θ

... Uα
...

−i sin θ · · · cos θ

 . (98)

Notice that Uβ is simply a permutation of Uα, therefore it can be rewritten as

Uβ = P−1UαP, (99)

where P = ∑x |x + 1〉 〈x|.

Repeat for steps

/⊗n−1

INCR DECR
Rx(2θ) Rx(2θ)

Figure 24: General circuit for the staggered quantum walk.

Remember from equation (83) and figure 19 that these permutation operators can be
implemented as increment and decrement gates, defined in the work of Douglas (2009).

4.2. Staggered Quantum Walk 45

Therefore, the circuit for the staggered quantum walk on the line can be built as shown in
figure 24.

The next step is to implement the circuit in Qiskit, in order to test it in a real quantum
computer. Here, the walk will take place in a cyclic graph with 8 elements, which means
that 3 qubits will be required, as shown in figure 25. The circuit starts with a Pauli-X gate in

Figure 25: Qiskit circuit for the staggered quantum walk, for a line graph of size N = 8 and initial
condition |ψ0〉 = |4〉, with 3 steps.

the third qubit so that |ψ0〉 = |4〉. The following operation is a rotation in the X basis, where
θ = π

3 , since it was seen in figure 7 that this value of θ maximizes the propagation of the
walk. Finally, Uβ is applied, making use of the increment and decrement gates defined in
figure 22. Note that now, because this model does not require a coin, these gates do not need
to be controlled, meaning that the largest multi-controlled NOT gate will not be needed,
making the circuit more NISQ-friendly. This procedure is repeated 3 times, and the resulting
probability distributions after measurement are depicted in figure 26.

Figure 26: Probability distributions of the staggered quantum walk for several steps in a line graph
of size N = 8. The blue bar plot represents a circuit run in the QASM simulator, and the
orange bar plot on IBM’s Toronto backend.

Analyzing the figure, it is clear that this model is much better suited for running in current
NISQ hardware. Even though the probability distribution was somewhat affected by noise,

4.3. Continuous-Time Quantum Walk 46

the dynamics of the walk is relatively unaffected in the Toronto backend experiment. This is
mainly due to the much smaller number of CNOT gates, when compared to the last model.
Now, for 1, 2 and 3 steps, the gate count was 21, 37 and 64, respectively.

The highest fidelity was achieved for 2 steps, with a value of approximately 0.95, and
the remaining steps ranging from 0.91 to 0.92. Again, it may seem counter-intuitive that a
higher fidelity is achieved for a larger circuit, compared to 0 steps for example, but this is
again due to the balance of circuit size and spread of the probability distribution.

Nevertheless, because this discrete model requires ever more operations with the increase
of steps, it will eventually become intractable for NISQ technology. This justifies that the
next model studied in this work is one where the circuit will be constant in time.

4.3 continuous-time quantum walk

As was seen in section 2.4, the unitary evolution operator of this model is defined as

U(t) = e−iHt = ei(γL)t = eiγ(A−D)t. (100)

Considering a regular graph, this operator can be rewritten as

U(t) = φ(t)eiγ(A)t, (101)

where φ(t) is a global phase and A is the adjacency matrix associated with the graph.
In this section, the study will focus on the circuit implementation of this walk in a cycle

graph, where the associated adjacency matrix will be defined using a circulant matrix. The
motivation behind this choice was that the circulant graph class can be easily diagonalized
with the quantum Fourier transform, which means it has a straightforward implementation
in Qiskit.

The class of circulant graphs is defined by a circulant adjacency matrix such that

A =

c0 cN−1 · · · c3 c2

c1 c0 cN−1 c3
... c1 c0

. . .
...

cN−2
. cN−1

cN−1 cN−2 · · · c1 c0

, (102)

where ck = 1 if the vertices are connected, and 0 otherwise. In order to generate the proper
circulant graphs, restrictions on this matrix are in order. Firstly, c0 = 0, since self-loops are
not part of the structure. Secondly, the matrix must be symmetric, therefore cn−j = cj.

4.3. Continuous-Time Quantum Walk 47

These matrices can be fully described by their first columns

v1 = [c0, c1, · · · , cN−2, cN−1]
T, (103)

with a discrete convolution operator performing cyclic permutations of c, on each column,
known as the deque operator. For example,

Dv1 = [cN−1, c0, · · · , cN−3, cN−2]
T = v2. (104)

More specifically, for the cycle case

Dv1 = D[0, 1, 0, · · · , 0, 1]T = [1, 0, 1, 0, · · · , 0, 0]T = v2. (105)

The eigenvalues of a circulant matrix are given by

λp = c0 + ∑
q=1

cN−qωpq, (106)

and the eigenvectors by ∣∣ϕp
〉
=

1√
n

n−1

∑
q=0

ωpq. (107)

This given, it is possible to construct an operator that diagonalizes the circulant matrix
through the eigenvectors, which is useful for constructing the circuit. For this purpose, the
quantum Fourier transform can be used. It is defined by

F =
1√
N

∑
p,q

ωpq |p〉 〈q| , (108)

and further reading can be done in appendix A.2. The adjacency matrix of a circulant graph
is then diagonalized such that

A = F†ΛF, (109)

where Λ is a diagonal operator that encodes the eigenvalues, i.e.

Λ = ∑
j

λj |j〉 〈j| . (110)

The unitary operator of the walk can then be rewritten as

U = F†eiγΛtF, (111)

4.3. Continuous-Time Quantum Walk 48

where
eiγΛt = ∑

j
eiγλjt |j〉 〈j| . (112)

This representation is very easily translatable to a quantum circuit, as shown in figure 27.

/⊗n QFTm eiγΛt QFT†
m

Figure 27: General circuit for the continuous-time quantum walk.

The circuit can now be constructed making use of the diagonal function provided by Qiskit,
which decomposes diagonal operators based on the method presented in theorem 7 of
Shende et al. (2006). The other tool used was the quantum Fourier transform (QFT) also
provided by the Qiskit package. Figure 28 shows the implementation of the circuit for 23 = 8
graph nodes.

Figure 28: Qiskit circuit for the continuous-time quantum walk, for a line graph of size N = 8 and
initial condition |ψ0〉 = |4〉, for time t.

The quantum Fourier transform circuit, presented in figure 29, is well known. The inverse
QFT is similarly constructed by changing the signs of the angles of rotation associated with
the QFT.

Figure 29: Qiskit circuit of the quantum Fourier transform for a line graph of size N = 8.

The circuit associated with the diagonal operator is shown in figure 30. Furthermore
equation (111) says that time is simply a constant inside the exponential, which means that

4.3. Continuous-Time Quantum Walk 49

the diagonal operator’s circuit will not need extra operations when increasing time, only
when in size. It will simply require different rotations and it will differ in global phase.
This is an advantage when comparing to previous discrete models, where each extra step
required another increment and decrement gates.

Figure 30: Qiskit circuit of the diagonal operator associated with the adjacency matrix, for a line
graph of size N = 8.

Finally, the circuit was measured. The resulting probability distributions can be seen in
figure 31.

The dynamics of the walk, when ran on the Toronto backend, is closer to the simulation
than the previous examples. Now, the size of the circuit does not scale with time, and 29
CNOT gates were required to implement the walk for t = 1, 2 and 3.

A fidelity of approximately 0.97 was achieved for t = 3. For t = 0, 1, 2, the respective fi-
delities were 0.96, 0.90, 0.92, which are small improvements when compared to the staggered
quantum walk. Fidelity also stays relatively constant with increasing time, making this type

Figure 31: Probability distributions of the continuous-time quantum walk for several steps in a line
graph of size N = 8. The blue bar plot represents a circuit run in the QASM simulator,
and the orange bar plot on IBM’s Toronto backend.

4.3. Continuous-Time Quantum Walk 50

of circuit well suited for studying the dynamics of the continuous-time quantum walk.

Further Experiments

Another improvement, presented in the accepted paper by Santos et al. (2021), can be
made to this model resorting to the approximate quantum Fourier transform (AQFT). The
AQFT, proposed by Coppersmith (2002), is achieved through the modification of the regular
quantum Fourier transform circuit, as defined in appendix A.2, by removing the phase-shift
operations between the most distant qubits. This can be implemented in Qiskit by providing
the QFT function the approximation degree.

Each experiment was performed 10 times, with 3000 shots each, in order to extract
substantial statistical data, using the confidence interval of 95%. The average fidelity
between the ideal p(x, t) and the experimental q(x, t) distributions is again calculated using

F(p, q) =
1

10

10

∑
i=1

N−1

∑
x=0

√
p(x, t)q(x, t), (113)

which is a simple modification of equation (88).
For this section, not only is the cyclic graph considered, but also a considerable number of

other circulant graph, as is shown in figure 32. The numbering of graphs follows the rule
that Gk will have entries ck, · · · , c1 = 1 and cn−k, · · · , cn−1 = 1, and the remaining elements
are 0. This way, it is possible to systematically construct circulant graphs varying from
sparse to dense.

(a) G1 (b) G2 (c) G3 (d) G4

Figure 32: Circulant graphs Gk for N = 8 elements.

Starting with a smaller N = 22 = 4 case, two non-isomorphic circulant graphs can be
built. G1 corresponds to the cycle graph, and G2 to the complete graph. Table 1 shows the
achieved average fidelities, which were calculated with equation (113). Comparing to the
complete graph case presented in Qiang et al. (2016), where a fidelity of 0.967± 0.003 was
obtained, it is possible to see that the implementation presented here slightly outperforms it
in terms of fidelity.

4.3. Continuous-Time Quantum Walk 51

m\G G1 G2

0 0.98 ± 0.01 0.99 ± 0.01

1 0.98 ± 0.02 0.993 ± 0.006

Table 1: Fidelity of quantum state with N=4, backend Toronto, and t=1.

For the N = 23 = 8 case, table 2 shows that state fidelity is greater as graph connectivity
increases, and as m increases. This is due to the fact that a greater m implies a smaller circuit,
but also an increase in error. However, graphs have less distinct eigenvalues as they are more
connected, which means that a higher degree of approximation of the QFT will generally
introduce less errors, while keeping the circuit depth lower.

m\G G1 G2 G3 G4
0 0.80 ± 0.01 0.92 ± 0.02 0.968 ± 0.007 0.965 ± 0.006

1 0.894 ± 0.007 0.95 ± 0.01 0.98 ± 0.01 0.973 ± 0.008

2 0.852 ± 0.009 0.955 ± 0.004 0.985 ± 0.003 0.990 ± 0.002

Table 2: Fidelity of quantum state with N=8, backend Toronto, and t=1.

Finally, table 3 presents the N = 24 = 16 case. Here, the behavior is similar to the previous
case up to graph G5, meaning that higher graph connectivity and larger m will result in
higher fidelity. However, graphs G6, G7 and G8, even though highly connected and with
relatively low depth, present lower fidelity. This seems to contradict the results in table 2.

m\G G1 G2 G3 G4 G5 G6 G7 G8

0 0.47 ± 0.03 0.61 ± 0.02 0.78 ± 0.02 0.86 ± 0.01 0.86 ± 0.01 0.70 ± 0.04 0.54 ± 0.03 0.49 ± 0.04

1 0.50 ± 0.03 0.63 ± 0.03 0.79 ± 0.03 0.87 ± 0.02 0.85 ± 0.03 0.70 ± 0.03 0.55 ± 0.05 0.50 ± 0.04

2 0.55 ± 0.03 0.71 ± 0.03 0.83 ± 0.02 0.90 ± 0.01 0.89 ± 0.02 0.75 ± 0.02 0.62 ± 0.04 0.59 ± 0.06

3 0.60 ± 0.03 0.70 ± 0.02 0.85 ± 0.01 0.92 ± 0.01 0.91 ± 0.01 0.80 ± 0.03 0.71 ± 0.04 0.69 ± 0.04

Table 3: Fidelity of quantum state with N=16, backend Toronto, and t=1.

However this behavior can be explained due to the fact that the probability distribution of
the dynamics of the walk on these structures is highly concentrated in a small number for
vertices. Considering that the size of the circuit starts to push the limits of NISQ computers,
it is expected that the spreading out of the probability distribution due to the effects of noise
produces a lower fidelity. Nonetheless, the increase of m still has a positive impact on the
fidelity of these circuits, which means that the reduction in circuit size will indeed produce
better results.

4.4. Implementing Search Algorithms in Qiskit 52

4.4 implementing search algorithms in qiskit

4.4.1 Grover’s Algorithm

As discussed in section 3.1, Grover’s algorithm is a quantum process to address unstruc-
tured search problems. Consider the case of finding element x0 out of an unordered list of
size N. For the worst case scenario, a classical algorithm would need to check every element
of the list, therefore requiring N steps.

The first stage of Grover’s algorithm is to create an uniform superposition of all states in
the system

|ψ0〉 =
1√
N

N−1

∑
x=0
|x〉 . (114)

The next stage is the application of the Grover iteration process, which starts with an
oracle that adds a negative phase to the solution states

O |x〉 = (−1) f (x) |x〉 . (115)

This operator can be seen as an identity matrix with negative entries corresponding to the
solution states. The operator can be rewritten as

O = I − 2 ∑
m∈M
|m〉 〈m| . (116)

where I is the identity matrix and M is a set of solutions where f (m) = 1, and 0 otherwise.
The matrix associated with this operator is

O =

(−1) f (0) 0 · · · 0

0 (−1) f (1) · · · 0
... 0

. . .
...

0 0 · · · (−1) f (N−1)

 . (117)

The second part of the iteration is an amplitude amplification process through the diffusion
operator

D = (2 |ψ0〉 〈ψ0| − I) = H⊗n(2 |0〉 〈0| − I)H⊗n. (118)

The unitary operator that describes the Grover iteration process will then be

U = DO. (119)

4.4. Implementing Search Algorithms in Qiskit 53

Repeat O(
√

N) times

/⊗n H O D

Figure 33: General circuit for the Grover search.

As previously discussed, this iteration process will be repeated several times, depending
on the number of elements. Optimal probability of success in finding a single solution will

be reached after bπ
4

√
Nc steps, and bπ

4

√
N
K c for K solutions, which amounts to a quadratic

gain when compared to the classical case. The general Grover circuit can then be constructed
as shown in figure 33.

Consider the 3 qubit case, where N = 8 and solution state |4〉. The optimal number of
iterations is approximately 2. Figure 34 depicts the circuit for 3 iterations implemented in
Qiskit.

Figure 34: Qiskit circuit for the Grover algorithm, for a search space of size N = 8 and 3 steps.

The system starts with the creation of an uniform superposition state, by applying
Hadamard gates to each qubit. Immediately following the barrier, the first operator of the

Figure 35: Qiskit circuit of the diagonal oracle operator for a search space of size N = 8 and marked
element |m〉 = |4〉.

iteration process is the oracle, which is shown in figure 35. Because the oracle operator is
simply the identity matrix with negative entries corresponding to the solution states, it can
be simply translated into a circuit through the diagonal function in Qiskit.

The last part of the iteration is the diffusion operator, whose circuit is shown in figure 36.
Comparing equations (116) and (118), it is easy to see why figures 35 and 36 are so similar.

4.4. Implementing Search Algorithms in Qiskit 54

Figure 36: Qiskit circuit of the diagonal Grover diffusion operator for a search space of size N = 8.

The diffusion circuit will simply be the oracle circuit for state |0〉, placed between Hadamard
operations.

Figure 37: Probability distributions of the Grover search algorithm for several steps, in a search space
of size N = 8. The blue bar plot represents a circuit run in the QASM simulator, and the
orange bar plot on IBM’s Toronto backend.

The results of measurement are shown in figure 37. As expected, the maximum probability
for the marked element was reached after 2 iterations, on the simulator, and it decreases
in subsequent steps. However, the experimental result from the Toronto backend presents
maximum probability for the marked element for 1 step, with a fidelity of 0.96. The optimal
number of steps, in contrast, has a lower fidelity of 0.89. This is because as the number of
steps increases, so does the circuit depth, more specifically the number of CNOT gates for 1,
2 and 3 steps were 19, 45 and 60, respectively. Therefore, the circuit does not achieve the
maximum probability after 2 steps due to the effects introduced by noise.

Despite this, the results are satisfactory when taking into account the properties of NISQ
computers. The following sections will present the search problem adapted to several
quantum walk models.

4.4. Implementing Search Algorithms in Qiskit 55

4.4.2 Searching with a Coined Quantum Walk

Following the structure of section 3.2, this section expands the coined quantum walk
model into a circuit for searching.

The modified unitary evolution operator is

U′ = S(O ⊗ G), (120)

as was defined in equation (68), where S is the flip-flop shift operator, O is the oracle
operator and G is the Grover diffusion as a coin operator.

Consider the case of a complete graph, where every vertex is adjacent to one another. The
general quantum circuit to implement this, as shown in figure 38, will require n qubits to
represent the state of the walker and n qubits for the state of the coin. The shift operator
was constructed based on the work of Douglas (2009), where the state of the walker is
flip-flopped with the state of the coin with a swap operation.

Repeat O(
√

N) times

/⊗n H O
SHIFT

/⊗n G

Figure 38: General circuit for the search problem using the coined quantum walk model.

This was implemented in Qiskit, for a graph of size N = 23 = 8, which means 6 qubits will
be required. For the case of one marked element, the number of iterations that maximizes
the amplitude of the solution state is bπ

2

√
Nc. Figure 39 shows the circuit for 5 iterations of

the walk.

Figure 39: Qiskit circuit for the search problem using the coined quantum walk model, for a complete
graph of size N = 8 and with 5 steps.

The circuit starts in a uniform superposition of the states corresponding to the vertices of
the graph. The first step of the iteration is the oracle. This operator flips the amplitude of

4.4. Implementing Search Algorithms in Qiskit 56

the vertex state |4〉, and can be translated into a circuit making use of the Qiskit’s diagonal
function, as shown in figure 40. It is the same oracle used in the Grover search of figure

Figure 40: Qiskit circuit of the diagonal oracle operator in the coined quantum walk search problem,
for a complete graph of size N = 8, with marked element |m〉 = |4〉.

35, but in the coined quantum walk model it is only applied to the states associated with
the position of the walker. The states associated with the coin space of the walk will be
transformed according to Grover’s diffusion of figure 36, as seen in figure 41.

Figure 41: Qiskit circuit of the diagonal diffusion operator in the coined quantum walk search
problem, for a complete graph of size N = 8.

The final part of the iteration is the shift operator, as represented in figure 42. The flip-flop
shift operator was defined in equation (64) as

S |v1〉 |v2〉 = |v2〉 |v1〉 , (121)

where |v1〉 represents the position of the walker and |v2〉 is the state of the coin. Making
use of the swap gate, this operator can be implemented as in figure 42.

Lastly, measurements were performed. The results are plotted in figure 43. Maximum
probability of the marked element was reached after 4 steps in the simulator. Extra steps
reduce that probability. The resulting probability distribution from the Toronto backend is
again unsatisfactory for the coined quantum walk model, with fidelities ranging from 0.58

4.4. Implementing Search Algorithms in Qiskit 57

Figure 42: Qiskit circuit of the flip-flop shift operator in the coined quantum walk search problem,
for a complete graph of size N = 8.

for 4 steps, to 0.75 for 2 steps. This is expected, since the complete graph representation
requires N extra qubits for the coin, and swap operations which are decomposed into
3 CNOT gates each, resulting in 92, 210 and 261 CNOT operations for 2, 4 and 5 steps,
respectively. The optimal number of steps that maximizes the probability of the marked
element is also a contributing factor to the size of the circuit, requiring more iterations to
achieve the same probability when compared to Grover’s search discussed above.

Figure 43: Probability distributions of the coined quantum walk search problem for several steps, in
a complete graph of size N = 8. The blue bar plot represents a circuit run in the QASM
simulator, and the orange bar plot on IBM’s Toronto backend.

As mentioned previously, other models of the quantum walks that do not require coins or
iterations will be studied in the following sections, in the context of the searching problem.
The staggered quantum walk, for example, should be able to present better results when ran
in a NISQ computer, considering the smaller Hilbert space due to its coinless nature.

4.4. Implementing Search Algorithms in Qiskit 58

4.4.3 Searching with a Staggered Quantum Walk

As discussed in section 3.3, the staggered quantum walk on a complete graph requires a
single tessellation with associated polygon

|α〉 = 1√
N

N−1

∑
x=0
|x〉 . (122)

The Hamiltonian will then be

Hα = 2
1

∑
0
|α〉 〈α| − I = H⊗n(2 |0〉 〈0| − I)H⊗n = H⊗nO0H⊗n, (123)

which is equivalent to the Grover diffusion operator. Therefore, it can be implemented in a
similar fashion.

The evolution operator for the staggered quantum walk on the complete graph can then
be defined as

U = eiθHα = eiθ(H⊗nO0 H⊗n) = H⊗neiθO0 H⊗n. (124)

This is a very useful representation since the exponent part of the operator is a diagonal
matrix, which means that implementing the circuit in Qiskit is straightforward.

Now that the staggered quantum walk associated with the complete graph is defined,
what remains to be done is to add an oracle to the evolution operator, as was done in
equation (76),

U′ = UO, (125)

where
O = IN − 2 ∑

m∈M
|m〉 〈m| , (126)

and M is the set of marked elements.
The general circuit for implementing the staggered quantum walk search problem in a

complete graph is shown in figure 44. Since only one tessellation is required, there is no

Repeat O(
√

N) times.

/⊗n H O H eiθO0 H

Figure 44: General circuit for the search problem using the staggered quantum walk model.

need for the Suzuki-Trotter approximation. However, several iterations will be needed in
order to achieve the maximum probability for the marked vertex. As the staggered quantum

4.4. Implementing Search Algorithms in Qiskit 59

walk search algorithm a complete graph is equivalent to Grover’s algorithm, the optimum

number of steps will also be bπ
4

√
N
K c, where K is the number of solutions.

Consider the case of N = 8 and one marked vertex, |m〉 = |4〉. The number of steps that

maximizes the probability of the marked element is bπ
4

√
8
1c = 2. Translating to Qiskit, n = 3

qubits will be needed and the circuit will be as in figure 45. Similar to previous examples,

Figure 45: Qiskit circuit for the search problem using the staggered quantum walk model, for a
complete graph of size N = 8, with 3 steps and a value of θ = π

2 .

the circuit begins with a uniform superposition built by the Hadamard gates. The next
operation is the oracle, which was implemented through the use of Qiskit’s diagonal function,
producing a circuit similar to the one in figure 35.

Next, an analogue to Grover’s diffusion operator is applied, where the operation named
UniOp is a diagonal matrix, easily translated to Qiskit, as shown in figure 46. This circuit is

Figure 46: Qiskit circuit of the diagonal diffusion operator in the staggered quantum walk search
problem, for a complete graph of size N = 8 and a value of θ = π

2 .

very similar to the one in figure 36, the difference being that in the staggered quantum walk
search model one can control the value of θ, as seen in equation (124). This influences how
fast maximum probability of the marked element is achieved. Since Grover’s algorithm is
optimal, a value of θ = π

2 yields a diffusion circuit equal to the one in figure 36, implying
that the staggered quantum walk is a more general model of quantum searching.

Finally, measurement is performed and the results for several steps of the walk are shown
in figure 47. The circuit for each step of the walk was run both in the QASM simulator
and IBM’s backend named Toronto. The experiment was performed with 3000 shots in
both cases, and the probability distributions show that this model is indeed more suited
for a NISQ computer than the previous case. However, unlike the simulator, maximum

4.4. Implementing Search Algorithms in Qiskit 60

Figure 47: Probability distributions of the staggered quantum walk search problem for several steps,
in a complete graph of size N = 8. The blue bar plot represents a circuit run in the QASM
simulator, and the orange bar plot on IBM’s Toronto backend.

probability of the marked vertex was achieved in 1 step of the walk instead of the expected 2
steps, as in the Grover algorithm. Looking at the 1 step case in the simulator, one can see that
the probability of vertex |4〉 is very close to the maximum, while the circuit has about half
of the operations of the 2 step case. This means it is not surprising that the smaller circuit
produces higher results for the probability of the marked vertex. For better context, the
number of CNOT gates for 1, 2 and 3 steps were 18, 37 and 64, which is a big improvement
when compared to the coined model.

This can be further confirmed by the fidelities of each of the states, which are approximately
0.954 and 0.780 for 1 and 2 steps, respectively. Thus, the former circuit produces better
results because of the number of operations, even though that the latter should theoretically
yield the highest probability.

Even though these results are a great improvement with respect to the algorithm using
the coined quantum walk, the staggered model is still discrete, meaning its circuit will
increase in depth as the number of steps increases. This can be avoided by turning again to
the continuous-time quantum walk, whose circuit remains constant with time. However,
to address the searching problem, the continuous-time model might not produce the best
results, because it will need extra iterations due to the Suzuki-Trotter approximation and it
will also require extra operations to implement the oracle, which was not the case in the
pure dynamics example of section 4.3.

4.4. Implementing Search Algorithms in Qiskit 61

4.4.4 Searching with a Continuous-Time Quantum Walk

As seen in section 3.4, the unitary operator associated with the continuous time quantum
walk model can be modified to mark an element for amplitude amplification

U′(t) = eiH′t = φ(t)e−i(γA+O)t, (127)

where φ(t) is a global phase, A is the adjacency matrix and the oracle defined as

O = ∑
m∈M
|m〉 〈m| , (128)

for M being the set of marked elements.
This section will focus on constructing and analyzing the circuit corresponding to the

continuous-time quantum walk search problem, to be performed over a complete graph
whose adjacency matrix is the following

A =

0 1 · · · 1 1
1 0 · · · 1 1
...

...
...

...
...

1 1 · · · 0 1
1 1 · · · 1 0

. (129)

which is simply a matrix with all entries set to 1, except the diagonal.
The first step is to borrow the diagonal definition of the adjacency matrix from equation

(109)
A = F†ΛF, (130)

and use the Suzuki-Trotter expansion

ei(H0+H1)t = lim
r→∞

(ei H0t
r ei H1t

r)r, (131)

to decompose the operator in equation (127)

ei(γA+O)t = lim
r→∞

(F†eiγ Λt
r Fei Ot

r)r. (132)

This can be easily translated into a circuit scheme as in figure 48.
Consider the case of a graph of size N = 23 = 8 and trotter number of r = 1. The

corresponding Qiskit circuit is shown in figure 48. The system starts out in an uniform
superposition followed by the application of the oracle operator as can be seen in figure 50.

4.4. Implementing Search Algorithms in Qiskit 62

Repeat r times

/⊗n H ei Ot
r F eiγ Λt

r F†

Figure 48: General circuit for the search problem using the continuous-time quantum walk model.

Figure 49: Qiskit circuit for the search problem using the continuous-time quantum walk model, for
a complete graph of size N = 8, time t, a value of γ = 1

8 and a Trotter number r = 1.

Note that the circuit was obtained with Qiskit’s diagonal function that takes the diagonal
entries of the operator corresponding to the oracle defined in equation (132).

The next operation to be applied is the QFT but, because a complete graph is considered,
the AQFT can be used with a degree of m = 2, which means the circuit will simply amount
to Hadamard transforms, thus reducing its depth.

Figure 50: Qiskit circuit of the diagonal oracle operator in the continuous-time quantum walk search
problem, for a complete graph of size N = 8, marked element |m〉 = |4〉 and time t = π

2

√
8.

Then, the operator associated with the adjacency matrix is shown in figure 51. Since A
is the diagonal adjacency matrix of a complete graph, it is easily implemented using the
aforementioned diagonal function.

Finally, the results of circuit measurement can be seen in figure 52. Even though the circuit
depth does not scale up with time, introducing the oracle operation to the continuous-time
quantum walk model appears to make the circuit hard to run in a NISQ computer. For a
single Trotter iteration, the number of CNOT gates was 37 for all times, which is slightly
worse than 1 step of the staggered quantum walk.

Note that, theoretically, 2 iterations of the Suzuki-Trotter expansion are needed for maxi-
mum probability of the marked vertex to be achieved in optimal time. In practice, however,

4.4. Implementing Search Algorithms in Qiskit 63

Figure 51: Qiskit circuit of the diagonal operator associated with the adjacency matrix in the
continuous-time quantum walk search problem, for a complete graph of size N = 8,
marked element |m〉 = |4〉, time t = π

2

√
8 and γ = 1

8 .

greater probability for this element is achieved when only 1 iteration is performed since the
smaller circuit seems to produce a greater fidelity of 0.71, when compared to a fidelity of
0.59 for the 2 iteration case. This is due to the fact that for r = 2, the number of CNOT gates
increases to 77, which is approximately double than the r = 1 case.

The approximate quantum Fourier transform also has a positive impact, increasing fidelity
from 0.60 when the full QFT circuit is used, to the aforementioned 0.71 when only Hadamard
transformations are performed.

Figure 52: Probability distributions of the continuous-time quantum walk search problem for several
time intervals, in a complete graph of size N = 8. The blue bar plot represents a circuit
run in the QASM simulator, and the orange bar plot on IBM’s Toronto backend.

In conclusion, when comparing the different quantum walk models studied in previous
sections, the coined quantum walk seems to be the least suited for supporting a search
algorithm in NISQ computers. Then comes the continuous-time model which has the
advantage of not scaling with time, but produces a circuit slightly too large to achieve
a fidelity which rivals the staggered quantum walk. The latter appears to have the best

4.4. Implementing Search Algorithms in Qiskit 64

performance because, even though its discrete nature requires several iterations, the circuit
depth does not appear to introduce a drastic amount of noise for the N = 8 case.

5

D I S C U S S I O N S A N D C O N C L U S I O N

Chapter 1 began with a brief historical overview of the origins of quantum computation,
from the early days of Computer Science all the way to quantum walks. An overview of the
state of the art encompassing both theoretical and circuit implementations of quantum walks
and searching problems based on them was presented later, including the relevant literature
for this thesis. This introduction is closed with an overview of the following chapters and
main contributions.

The goal of the chapter 2 was to define the theoretical framework associated with the three
quantum walk models studied in this thesis. This was done in the context of the quantum
walk on the line, starting with a brief definition of the classical random walk, followed by the
discrete models of the quantum walk, namely the coined model and the staggered model,
and finishing with the continuous-time quantum walk. All the models were simulated in
Python, and various plots were created in order to analyze how the different parameters
influence the dynamics of each walk.

Chapter 3 was devoted to the study of the previously defined quantum walks when
applied to the searching problem. It starts with the definition of the Grover algorithm and its
complexity analysis, followed by the quantum walk analogue. The theoretical explanations
for the various quantum walks on complete graphs were discussed, combined with the
introduction of the oracle. As in the previous chapter, Python was used to simulate the
algorithms and study how the different aspects of each model affect how the way the search
algorithm evolves.

The main original contributions of this thesis are presented in chapter 4. The first
contribution is a systematic way of creating Qiskit circuits implementing continuous-time
quantum walks for a myriad of circulant graphs, resorting to the quantum Fourier transform
and Qiskit’s diagonal function, presented in the work by Santos et al. (2021) accepted in SBRC
2021 - WQuantum / Comunicação e Computação Quântica. Previous work by Qiang et al.
(2016) uses the concept of circulant graphs for the implementation of the CTQW model on
a complete graph for a small number of qubits. However this work provides a systematic
way of generating circuits for a much greater number of circulant graphs, for an arbitrary
number of qubits, as well as an analysis of how the approximate quantum Fourier transform

65

66

can be used to reduce circuit depth for better results in NISQ computers. Another original
contribution, was the use of this method to implement search on circulant graphs resorting
to the continuous-time quantum walk. The results were not as satisfactory as in the previous
dynamics example, because of the increase in the circuit size due to the introduction of
the oracle and Suzuki-Trotter iterations. This is still a work in progress, which will be
further expanded upon in future publications. This chapter also contains a compilation of
methods for creating circuits for the dynamics and search of the discrete-time quantum walk
models, based mainly on the work of Douglas (2009) and Acasiete et al. (2020). These are
not original contributions but hopefully provide a useful overview on how to implement
these algorithms on current quantum hardware.

Based on what was achieved in this dissertation, future work for the study and implemen-
tation of quantum walks includes the following:

1. The circuit implementation of the continuous-time quantum walk search problem using
circulant graphs, and the investigation on how the AQFT affects circuit depth and
implementability on NISQ computers. This is the goal of a planned next publication.

2. Simulation, implementation and analysis of the searching problem for multiple marked
elements using the staggered quantum walk model. The search problem with the SQW
is not very well documented in the literature, with fundamental issues still lacking.

3. Analysis, through simulation of the continuous-time quantum walk, from the perspec-
tive of transport problems, such as localization, perfect state transfer and mixing time,
and further analysis of the search problem for multiple marked elements.

4. Development of a method for constructing staggered quantum walk circuits for a
larger variety of graphs.

5. Expansion of the circulant graph method for the CTQW in order to perform the walk
over a larger class of graphs.

B I B L I O G R A P H Y

F. Acasiete, F. P. Agostini, J. Khatibi Moqadam, and R. Portugal. Implementation of quan-
tum walks on ibm quantum computers. Quantum Information Processing, 19(12), Nov
2020. ISSN 1573-1332. doi: 10.1007/s11128-020-02938-5. URL http://dx.doi.org/10.1007/

s11128-020-02938-5.

Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. Primes is in p. Annals of Mathematics,
160, 09 2002. doi: 10.4007/annals.2004.160.781.

Dorit Aharonov, Andris Ambainis, Julia Kempe, and Umesh Vazirani. Quantum walks
on graphs. STOC ’01 Proceedings of the thirty-third annual ACM symposium on Theory of
computing, pages 50–59, 2001.

Dorit Aharonov, Wim van Dam, Julia Kempe, Zeph Landau, Seth Lloyd, and Oded Regev.
Adiabatic quantum computation is equivalent to standard quantum computation. SIAM
Journal on Computing, 37(1), 2007. doi: 166-194.

Y. Aharonov, L. Davidovich, and N. Zagury. Quantum random walks. Physical Review A, 48

(2):1687–1690, 1993.

Andris Ambainis. Quantum walk algorithm for element distinctness. SIAM Journal on
Computing, 37(1):210–239, 2007.

Radhakrishnan Balu, Daniel Castillo, and George Siopsis. Physical realization of topological
quantum walks on ibm-q and beyond. 2017.

Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo, Norman Margo-
lus, Peter Shor, Tycho Sleator, John A. Smolin, and Harald Weinfurter. Elementary gates
for quantum computation. Physical Review A, 52(5):3457–3467, Nov 1995. ISSN 1094-1622.
doi: 10.1103/physreva.52.3457. URL http://dx.doi.org/10.1103/PhysRevA.52.3457.

Adriano Barenco, Artur Ekert, Kalle-Antti Suominen, and Päivi Törmä. Approximate
quantum fourier transform and decoherence. Physical Review A, 54(1):139–146, Jul 1996.
ISSN 1094-1622. doi: 10.1103/physreva.54.139. URL http://dx.doi.org/10.1103/PhysRevA.

54.139.

Paul Benioff. The computer as a physical system: A microscopic quantum mechanical
hamiltonian model of computers as represented by turing machines. Journal of Statistical
Physics, 22(5):563–591, 1980.

67

http://dx.doi.org/10.1007/s11128-020-02938-5
http://dx.doi.org/10.1007/s11128-020-02938-5
http://dx.doi.org/10.1103/PhysRevA.52.3457
http://dx.doi.org/10.1103/PhysRevA.54.139
http://dx.doi.org/10.1103/PhysRevA.54.139

bibliography 68

Charles Bennett and Gilles Brassard. Withdrawn: Quantum cryptography: Public key
distribution and coin tossing. Theoretical Computer Science - TCS, 560:175–179, 01 1984. doi:
10.1016/j.tcs.2011.08.039.

Charles H. Bennett and Stephen J. Wiesner. Communication via one- and two-particle
operators on einstein-podolsky-rosen states. Phys. Rev. Lett., 69:2881–2884, Nov 1992.
doi: 10.1103/PhysRevLett.69.2881. URL https://link.aps.org/doi/10.1103/PhysRevLett.69.

2881.

Scott D. Berry, Paul Bourke, and Jingbo B. Wang. qwviz: Visualisation of quantum walks on
graphs. Computer Physics Communications, 182(10):2295–2302, 2011. ISSN 0010-4655. doi:
https://doi.org/10.1016/j.cpc.2011.06.002. URL https://www.sciencedirect.com/science/

article/pii/S0010465511002128.

Michael Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp. Tight bounds on quantum
searching. Fortschritte der Physik, 46(4-5):493–505, 1998.

A. R. Calderbank and Peter W. Shor. Good quantum error-correcting codes exist. Phys. Rev.
A, 54:1098–1105, Aug 1996. doi: 10.1103/PhysRevA.54.1098. URL https://link.aps.org/

doi/10.1103/PhysRevA.54.1098.

D. Cheung. Improved bounds for the approximate qft. Proc. of the Winter Intl Symposium of
Information and Communication Technologies, pages 192–197, 2004.

Chen-Fu Chiang, Daniel Nagaj, and Pawel Wocjan. Efficient circuits for quantum walks.
Quantum Information and Computation, 10, 03 2009. doi: 10.26421/QIC10.5-6-4.

Andrew M. Childs. Universal computation by quantum walk. Physical Review Letters, 102

(18):180501, 2009.

Andrew M. Childs and Jeffrey Goldstone. Spatial search by quantum walk. Physical Review
A, 70(2):022314, 2004.

Andrew M. Childs, Richard Cleve, Enrico Deott, Edward Farhi, Sam Gutmann, and Daniel A.
Spielman. Exponential algorithmic speedup by quantum walk. Proc. 35th ACM Symposium
on Theory of Computing (STOC 2003), pp. 59-68, 2002. doi: 10.1145/780542.780552.

Paul H. Cootner. The random character of stock market prices. M.I.T. Press, Cambridge, Mass,
rev. ed. edition, 1967.

D. Coppersmith. An approximate fourier transform useful for quantum factoring. Feb 2002.

Gabriel Coutinho and Renato Portugal. Discretization of continuous-time quantum walks
via the staggered model with hamiltonians. Natural Computing, pages 1–7, 2018.

https://link.aps.org/doi/10.1103/PhysRevLett.69.2881
https://link.aps.org/doi/10.1103/PhysRevLett.69.2881
https://www.sciencedirect.com/science/article/pii/S0010465511002128
https://www.sciencedirect.com/science/article/pii/S0010465511002128
https://link.aps.org/doi/10.1103/PhysRevA.54.1098
https://link.aps.org/doi/10.1103/PhysRevA.54.1098

bibliography 69

David Deutsch. Quantum theory, the church-turing principle and the universal quantum
computer. Proceedings of The Royal Society A Mathematical Physical and Engineering Sciences,
400(1818), 1985.

David Deutsch and Richard Jozsa. Rapid solution of problems by quantum computation.
Proceedings of The Royal Society A Mathematical Physical and Engineering Sciences, 439(1907),
1992.

B. Douglas. Efficient quantum circuit implementation of quantum walks. Phys. Rev. A, 79, 05

2009. doi: 10.1103/PhysRevA.79.052335.

Martin Dyer, Alan Frieze, and Ravi Kannan. A random polynomial-time algorithm for
approximating the volume of convex bodies. Journal of the ACM, 38(1):1–17, 1991.

Matthew Falk. Quantum search on the spatial grid. 2013.

Peter E. Falloon, Jeremy Rodriguez, and Jingbo B. Wang. Qswalk: A mathematica package
for quantum stochastic walks on arbitrary graphs. Computer Physics Communications, 217:
162–170, 2017. ISSN 0010-4655. doi: https://doi.org/10.1016/j.cpc.2017.03.014. URL
https://www.sciencedirect.com/science/article/pii/S0010465517301029.

E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. Quantum computation by adiabatic
evolution. arXiv: Quantum Physics, 2000.

Edward Farhi and Sam Gutmann. An analog analogue of a digital quantum computation.
Physical Review A, 57(4):2403–2406, 1998.

Richard P. Feynman. There’s plenty of room at the bottom. Feynman and computation, pages
63–76, 1959.

Richard P. Feynman. Simulating physics with computers. International Journal of Theoretical
Physics, 21(6-7):467–488, 1982.

Steven Finch. Pólya’s random walk constant. Cambridge University Press, pages 322–331,
2003.

Konstantinos Georgopoulos and P. Zuliani. One-dimensional hadamard quantum walk on a
cycle with rotational implementation. arXiv: Quantum Physics, 2019.

Adam Glos, Jarosław Adam Miszczak, and Mateusz Ostaszewski. Qswalk.jl: Julia package
for quantum stochastic walks analysis. Computer Physics Communications, 235:414–421, Feb
2018. ISSN 0010-4655. doi: 10.1016/j.cpc.2018.09.001. URL http://dx.doi.org/10.1016/j.

cpc.2018.09.001.

https://www.sciencedirect.com/science/article/pii/S0010465517301029
http://dx.doi.org/10.1016/j.cpc.2018.09.001
http://dx.doi.org/10.1016/j.cpc.2018.09.001

bibliography 70

Geoffrey Grimmett, Svante Janson, and Petra F. Scudo. Weak limits for quantum random
walks. Physical Review E, 69(2):026119, 2003.

Lov K. Grover. A fast quantum mechanical algorithm for database search. STOC ’96
Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pages 212–
219, 1996.

C. A. R. Hoare. Algorithm 64: Quicksort. Commun. ACM, 4(7):321, 1961. ISSN 0001-0782.
doi: 10.1145/366622.366644. URL https://doi.org/10.1145/366622.366644.

Norio Inui, Yoshinao Konishi, and Norio Konno. Localization of two-dimensional quantum
walks. Physical Review A, 69(5):052323, 2003.

Josh Izaac and Jb Wang. Pyctqw: A continuous-time quantum walk simulator on distributed
memory computers. Computer Physics Communications, 186, 01 2015. doi: 10.1016/j.cpc.
2014.09.011.

Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A polynomial-time approximation algorithm
for permanent of a matrix with nonnegative entries. Journal of the ACM, 51(4):671–697,
2004.

Norio Konno. A new type of limit theorems for the one-dimensional quantum random walk.
J. Math. Soc. Japan, 57(4):1179–1195, 2002.

A. Lenstra, H. Lenstra, M. Manasse, and J. Pollard. The number field sieve. pages 564–572,
01 1990. doi: 10.1145/100216.100295.

T Loke and J B Wang. Efficient quantum circuits for continuous-time quantum walks on
composite graphs. Journal of Physics A: Mathematical and Theoretical, 50(5):055303, Jan
2017a. ISSN 1751-8121. doi: 10.1088/1751-8121/aa53a9. URL http://dx.doi.org/10.1088/

1751-8121/aa53a9.

T. Loke and J.B. Wang. Efficient quantum circuits for szegedy quantum walks. Annals
of Physics, 382:64–84, Jul 2017b. ISSN 0003-4916. doi: 10.1016/j.aop.2017.04.006. URL
http://dx.doi.org/10.1016/j.aop.2017.04.006.

Neil B. Lovett, Sally Cooper, Matthew Everett, Matthews Trevers, and Viv Kendon. Universal
quantum computation using the discrete quantum walk. Physical Review A, 81(4):042330,
2010.

Frédéric Magniez, Ashwin Nayak, Jérémie Roland, and Miklos Santha. Search via quantum
walk. SIAM Journal on Computing, 40(1):142–164, 2006.

Frédéric Magniez, Miklos Santha, and Mario Szegedy. Quantum algorithms for the triangle
problem. SIAM Journal on Computing, 37(2):413–424, 2007.

https://doi.org/10.1145/366622.366644
http://dx.doi.org/10.1088/1751-8121/aa53a9
http://dx.doi.org/10.1088/1751-8121/aa53a9
http://dx.doi.org/10.1016/j.aop.2017.04.006

bibliography 71

F.L. Marquezino and R. Portugal. The qwalk simulator of quantum walks. Computer Physics
Communications, 179(5):359–369, Sep 2008. ISSN 0010-4655. doi: 10.1016/j.cpc.2008.02.019.
URL http://dx.doi.org/10.1016/j.cpc.2008.02.019.

Dmitri Maslov. Advantages of using relative-phase toffoli gates with an application to
multiple control toffoli optimization. Physical Review A, 93(2), Feb 2016. ISSN 2469-9934.
doi: 10.1103/physreva.93.022311. URL http://dx.doi.org/10.1103/PhysRevA.93.022311.

Elliott Montroll. Random walks in multidimensional spaces, especially on periodic lattices.
Journal of the Society for Industrial and Applied Mathematics, 4(4):241–260, 1956. doi: 10.1137/
0104014.

Elliott Waters Montroll and George Herbert Weiss. Random walks on lattices. ii. Journal of
Mathematical Physics, page 167–181, 1997.

Gordon E. Moore. Cramming more components onto integrated circuits. Electronics, 38(8):
114–117, 1965.

J .K. Moqadam, M. C. de Oliveira, and Renato Portugal. Staggered quantum walks with
superconducting microwave resonators. Physical Review B, 95(14):144506, 2017.

Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

Ashwin Nayak and Ashvin Vishwanath. Quantum walk on the line. 2000.

Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press New York, NY, USA, 2011.

Christos Papadimitrious. Computational Complexity. Pearson, 1994.

Apoorva Patel, K.S. Raghunathan, and Pranaw Rungta. Quantum random walks do not
need a coin toss. Physical Review A, 71(3):032347, 2005.

Karl Pearson. The problem of the random walk. Nature, 72(1865):294, 1905. doi: 10.1038/
072294b0.

R. Portugal, R.A.M. Santos, T.D. Fernandes, and D.N. Goncalves. The staggered quantum
walk model. Quantum Information Processing, 15(1):85–101, 2016.

Renato Portugal. Establishing the equivalence between szegedy’s and coined quantum walks
using the staggered model. Quantum Information Processing, 15(4):1387–1409, 2015.

Renato Portugal. Quantum Walks and Search Algorithms. Springer, 2018.

http://dx.doi.org/10.1016/j.cpc.2008.02.019
http://dx.doi.org/10.1103/PhysRevA.93.022311

bibliography 72

Renato Portugal and T. D. Fernandes. Quantum search on the two-dimensional lattice using
the staggered model with hamiltonians. Physical Review A, 95(4):042341, 2017.

Renato Portugal, Stefan Boettcher, and Stefan Falkner. One-dimensional coinless quantum
walks. Physical Review A, 91(5):052319, 2015.

Renato Portugal, M. C. de Oliveira, and J. K. Moqadam. Staggered quantum walks with
hamiltonians. Physical Review A, 95(1):012328, 2017.

George Pólya. Über eine aufgabe der wahrscheinlichkeitsrechnung betreffend die irrfahrt im
straßennetz. Mathematische Annalen, 84:149–160, 1921. doi: 10.1007/BF01458701.

Xiaogang Qiang, Thomas Loke, Ashley Montanaro, Kanin Aungskunsiri, Xiaoqi Zhou,
Jeremy L. O’Brien, Jingbo B. Wang, and Jonathan C. F. Matthews. Efficient quantum walk
on a quantum processor. Nature Communications, 7(1), May 2016. ISSN 2041-1723. doi:
10.1038/ncomms11511. URL http://dx.doi.org/10.1038/ncomms11511.

J. J. Sakurai. Modern Quantum Mechanics. Addison-Wesley Publishing, Co, 1994.

Miklos Santha. Quantum walk based search algorithms. International Conference on Theory
and Applications of Models of Computation. TAMC 2008. Lecture Notes in Computer Science,
4978:31–46, 2008.

J. Santos, B. Chagas, and R. Chaves. Quantum walks on a superconducting quantum
computer. Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuı́dos, July 2021.

Marek Sawerwain and Roman Gielerak. Gpgpu based simulations for one and two dimen-
sional quantum walks. Communications in Computer and Information Science, page 29–38,
2010. ISSN 1865-0937. doi: 10.1007/978-3-642-13861-4 3. URL http://dx.doi.org/10.1007/

978-3-642-13861-4 3.

Benjamin Schumacher. Quantum coding. Phys. Rev. A, 51:2738–2747, Apr 1995. doi:
10.1103/PhysRevA.51.2738. URL https://link.aps.org/doi/10.1103/PhysRevA.51.2738.

Uwe Schöning. A probabilistic algorithm for k-sat and constraint satisfaction problems. 40th
Annual Symposium on Foundations of Computer Science, pages 410–, 1999.

Asif Shakeel. Efficient and scalable quantum walk algorithms via the quantum fourier
transform. Quantum Information Processing, 19(9), Aug 2020. ISSN 1573-1332. doi: 10.1007/
s11128-020-02834-y. URL http://dx.doi.org/10.1007/s11128-020-02834-y.

C. E. Shannon. A mathematical theory of communication. The Bell System Technical Journal,
27(3):379–423, 1948. doi: 10.1002/j.1538-7305.1948.tb01338.x.

http://dx.doi.org/10.1038/ncomms11511
http://dx.doi.org/10.1007/978-3-642-13861-4_3
http://dx.doi.org/10.1007/978-3-642-13861-4_3
https://link.aps.org/doi/10.1103/PhysRevA.51.2738
http://dx.doi.org/10.1007/s11128-020-02834-y

bibliography 73

V.V. Shende, S.S. Bullock, and I.L. Markov. Synthesis of quantum-logic circuits. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 25(6):1000–1010,
Jun 2006. ISSN 1937-4151. doi: 10.1109/tcad.2005.855930. URL http://dx.doi.org/10.1109/

TCAD.2005.855930.

Neil Shenvi, Julia Kempe, and Birgitta Whaley. A quantum random walk search algorithm.
Physical Review A, 67(5):052307, 2003.

Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring.
Proceedings 35th Annual Symposium on Foundations of Computer Science, pages 124–134,
1994a.

P.W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. Proceed-
ings 35th Annual Symposium on Foundations of Computer Science, pages 124–134, 1994b. doi:
10.1109/SFCS.1994.365700.

Alexander Slepoy. Quantum gate decompostition algorithms. Sandia National Laboratories,
2006.

R. Solovay and V. Strassen. A fast monte-carlo test for primality. SIAM Journal on Computing,
6(1):84–85, 1977. doi: 10.1137/0206006. URL https://doi.org/10.1137/0206006.

Tommi Sottinen. Fractional brownian motion, random walks and binary market models.
Finance and Stochastics, (5):343–355, 2001. doi: 10.1007/PL00013536.

Andrew Steane. Multiple-particle interference and quantum error correction. Proceedings
of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 452

(1954):2551–2577, 1996. doi: 10.1098/rspa.1996.0136. URL https://royalsocietypublishing.

org/doi/abs/10.1098/rspa.1996.0136.

Mario Szegedy. Quantum speed-up of markov chain based algorithms. 45th Annual IEEE
Symposium on Foundations of Computer Science, 2004.

Alan Turing. On computable numbers, with an application to the entscheidungsproblem.
Proceedings of the London Mathematical Society, s2-42(1):230–265, 1936.

Salvador Elı́as Venegas-Andraca. Quantum walks: a comprehensive review. Quantum
Information Processing, 11(5):1015–1106, 2012.

J. von Neumann. First draft of a report on the edvac. IEEE Annals of the History of Computing,
15(4):27–75, 1993. doi: 10.1109/85.238389.

Stephen Wiesner. Conjugate coding. SIGACT News, 15(1):78–88, 1983. ISSN 0163-5700. doi:
10.1145/1008908.1008920. URL https://doi.org/10.1145/1008908.1008920.

http://dx.doi.org/10.1109/TCAD.2005.855930
http://dx.doi.org/10.1109/TCAD.2005.855930
https://doi.org/10.1137/0206006
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1996.0136
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1996.0136
https://doi.org/10.1145/1008908.1008920

bibliography 74

Christof Zalka. Grover‘s quantum searching algorithm is optimal. Physical Review A, 60(4):
2746–2751, 1999.

A
S U P P O RT M AT E R I A L

a.1 the postulates of quantum mechanics

Quantum mechanics, firstly discovered in the decade of 1920, is a mathematical framework
for developing physical theories. This section revisits the basic postulates of quantum
mechanics, which are formalized resorting to the Dirac notation. Further reading on this
notation includes the work of Sakurai (1994) and, for an extensive review of quantum
computation, the book by Nielsen and Chuang (2011).

The first postulate defines where the processes of quantum mechanics take place. The
state of a system describes its physical characteristics, so some rules are required for these
mathematical objects to have a connection to the real world.

Postulate 1 (State Space) Any isolated physical system has an associated Hilbert Space, H, known
as the state space. The state of the system is wholly described by its state vector |ψ〉 ∈ H. The
physical system’s degrees of freedom dictate the dimension of H

Note that this postulate does not tell us the Hilbert space of any given physical system, nor
does it tell us its state vector. It is generally hard to define the Hilbert space of an arbitrary
system, which makes the work physicists have done in developing certain theories, like
quantum electrodynamics, even more remarkable.

Considering the computational basis {|0〉 , |1〉}, the simplest quantum system, the qubit,
can be defined as

|ψ〉 = α |0〉+ β |1〉 , (133)

where α, β are complex numbers and

|0〉 =
(

1
0

)
and |1〉 =

(
0
1

)
. (134)

Because Hilbert spaces are also vector spaces, linear combinations of these states are also
allowed

|ψ〉 = ∑
i

αi |ϕi〉 . (135)

75

A.1. The Postulates of Quantum Mechanics 76

Since |ψ〉 is required to be a unit vector, |ψ〉 〈ψ| = 1 or, equivalently,

∑
j
|αj|2 = 1. (136)

These combinations, known as superpositions, are the main difference between a classical
bit and a qubit, where the states are not in a definite value before measurement. This is a
well studied quantum phenomenon that leads to constructive and destructive interference
between states, which is an aspect many algorithms indeed exploit.

The second postulate aims to describe how a quantum system evolves with time, and it
can be formulated in the following way.

Postulate 2 (Evolution) The time evolution of a closed quantum system is described by a unitary
operator. Considering an initial condition |ψ0〉, then for any time evolution of a closed quantum
system, a unitary operator U exists such that

∣∣ψ f
〉
= U |ψ0〉.

Just as the first postulate does not specify a Hilbert space, the evolution postulate does not
state which unitary operators U describe an arbitrary physical system. What it does state is
that the evolution of a closed quantum system follows those rules. More specifically, the
second postulate describes the dynamics of such systems. In the case of a qubit, any U can
be performed in a realistic system as long as UU† = U†U = I, which is another way of
saying that U is unitary.

There are a number of unitary operators very relevant to quantum computation, known as
Pauli matrices, that are usually composed to create more general matrices. These are defined
as

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
and Z =

(
1 0
0 −1

)
. (137)

Postulate 2 tells us the relationship between the states of the system at two different
times. An improved version of this postulate takes time as a continuous variable, stating
that the temporal evolution of a closed quantum system can be described by the Schrodinger
equation

ih̄
d |ψ〉

dt
= H |ψ〉 , (138)

where h̄ is the Planck’s constant and H is a Hermitian operator known as the Hamiltonian of
the system. In principle, the Hamiltonian can be used to describe a system in its entirety.
However figuring out the Hamiltonian is generally a hard task.

So far only single quantum systems have been considered. The next postulate describes
how one can create composite quantum systems made of smaller distinct systems.

A.1. The Postulates of Quantum Mechanics 77

Postulate 3 (Composite Systems) The state space of a system composed of smaller sub-systems
can be described by the tensor product of the individual state spaces H1 ⊗H2. Moreover, if the first
system’s state is |ψ1〉 and the second is |ψ2〉 then the state of the composite system is |ψ1〉 ⊗ |ψ2〉.

The tensor product is used because of the nature of superposition in quantum mechanics.
A system composed of subsystems {|ψ〉 , |ϕ〉} is denoted as |ψ〉 ⊗ |ϕ〉. Recalling the super-
position principle, that tells us that any complex linear combination of states belonging to
the system is also allowed, the tensor product naturally follows.

The tensor notation can be written in a more compact way. A system described by n
component states

|ψ〉 = |ψ0〉 ⊗ |ψ1〉 ⊗ · · · ⊗ |ψn−1〉 , (139)

can be rewritten as
|ψ〉 = |ψ0〉 |ψ1〉 · · · |ψn−1〉 , (140)

and even further compacted to

|ψ〉 = |ψ0ψ1 · · ·ψn−1〉 . (141)

However, not all composite systems can be described as the tensor product of the compo-
nent states. For example, state

|ψ〉 = |00〉+ |11〉√
2

, (142)

cannot be broken down further. These subsystems are known to be entangled, and the state
in equation (142) is called a Bell state. Bell states describe the set of 2 qubit states that
present maximum entanglement. They are used in many quantum applications like quantum
teleportation and superdense coding.

As was mentioned above, closed quantum systems evolve unitarily in time. However, in
order to do something useful with such a system, one must extract the underlying classical
information. This is achieved by the process of measurement, which requires some form
of interaction with the system, thus making it no longer closed nor described by a unitary
evolution.

Postulate 4 (Measurement) Quantum measurements are described by a set, {Mm}, of measure-
ment operators that act on the state space of the system, satisfying the completeness relation

∑m M†
m Mm = I, where m refers to the measurement outcomes. Considering a system with state |ψ〉,

immediately before measurement, then the probability of an outcome m is

p(m) = 〈ψ|M†
m Mm |ψ〉 . (143)

A.1. The Postulates of Quantum Mechanics 78

The state of the system after the measurement will be

∣∣ψ′〉 = 1√
p(m)

Mm |ψ〉 . (144)

Measurement can be done and interpreted in several different ways, however this appendix
focuses on what is called projective measurement. A projective measurement is described by
an Hermitian operator, M, known as an observable, with spectral decomposition

M = ∑
m

mPm (145)

where Pm is an Hermitian projection operator with eigenvalue m. For example, P1 and P2 are
projection operators that are orthogonal to each other and whose product is a zero matrix. A
set of operators with these characteristics obey the completeness equation

∑
i

Pi = I. (146)

The probability of outcome m associated with the measurement of state |ψ〉 can be written
as

p(m) = 〈ψ| Pm |ψ〉 . (147)

Knowing that m was the result of the measurement, the resulting state for the quantum
system is then

Pm√
p(m)

|ψ〉 . (148)

An important case of projective measurement arises when it is performed in the computa-
tional basis of a qubit. Given operators

M0 = |0〉 〈0| =
(

1 0
0 0

)
and M1 = |0〉 〈0| =

(
0 0
0 1

)
, (149)

it is obvious that they are Hermitian and that they obey the completeness relation. Consider
again the state |ψ〉 = α |0〉+ β |1〉. The probability of outcome 0 will be

p(0) = 〈ψ|M†
0 M0|ψ〉 = 〈ψ|M0|ψ〉 = |α|2 (150)

and outcome 1
p(0) = 〈ψ|M†

0 M0|ψ〉 = 〈ψ|M0|ψ〉 = |β|2. (151)

A.2. Quantum Fourier Transform 79

For each of the outcomes, the state after measurement will be

M0

|α| |ψ〉 =
α

|α| |0〉 , (152)

M1

|β| |ψ〉 =
β

|β| |1〉 . (153)

Projective measurement destroys the superposition of possible states. This is known as
the collapse of the wave function.

a.2 quantum fourier transform

As was seen in section 3.1, quantum computers can perform certain tasks more efficiently
than classical ones. A well kown such example is the problem of finding the prime factoriza-
tion of an n-bit integer, which the most efficient solution to date, proposed by Lenstra et al.

(1990), requires eO(n
1
3 log

2
3 n) operations. In contrast, a quantum algorithm proposed by Shor

(1994b) accomplishes the same task in O((log n)2(log log n)(log log log n)) operations, which
amounts to an exponential gain due to the efficiency of the quantum Fourier transform.

The quantum Fourier transform is an implementation of the discrete Fourier transform
over amplitudes of quantum states. It offers no speed ups when used in computing
Fourier transforms of classical data, since the amplitudes cannot be accessed directly by
measurement. Moreover, it is not known of a generalized, efficient way of preparing the
initial state to be Fourier Transform. This means that the relevance of the QFT is not to
provide a straightforward way of calculating discrete Fourier transforms, but to design
algorithms, such as phase estimation, that take advantage of its properties. The QFT can be
described as the following operation over an orthonormal basis |0〉 , |1〉 , · · · , |N − 1〉

QFT(|j〉) = 1√
N

N−1

∑
k=0

e
2πijk

N |k〉, (154)

where N = 2n. With a little bit of algebra, this can be rewritten as a product

1√
N

N−1

∑
k=0

e
2πijk

2n |k〉 = 1√
N

1

∑
k1=0
· · ·

1

∑
kn=0

e2πij(∑n
l=1 kl2−l)|k1 · · · kn〉

=
1√
N

n⊗
l=1

(
1

∑
kl=0

e2πijkl2−l |kl〉)

=
1√
N

n⊗
l=1

(|0〉+ e2πij2−l |1〉).

(155)

A.2. Quantum Fourier Transform 80

The quantum Fourier transform applied to a state as in equation (154) can then be rewritten
as

QFT(|x1, ...xn〉) =
(|0〉+ e2πi0.xn |1〉)(|0〉+ e2πi0.xn−1xn |1〉) · · · (|0〉+ e2πi0.x1x2···xn |1〉)

2
N
2

, (156)

where x = x12n−1 + x22n−2 + · · · + xn20 and the notation 0.x1xl+1 · · · xn represents the
binary fraction xl

2i0 +
xl+1
21 · · · xm

2m−l+1 . This is a very useful representation because it makes
constructing an efficient circuit much simpler, as can be seen in figure 53. However, the
circuit implementation of the QFT requires exponentially smaller phase-shift gates as the
number of qubits increases. This can be somehow mitigated by eliminating the smaller
phase-shift gates at the cost of some accuracy, as was shown in Coppersmith (2002) who
defined the approximate quantum Fourier transform. This approximation requires only
O(n log n) gates. The work of Barenco et al. (1996) and Cheung (2004) established lower
bounds for the probability of the approximate state accurately representing the state without
approximation.

|x1〉 H R2 · · · Rm−1 Rm |y1〉

|x2〉 • H · · · Rm−1 Rm |y2〉
...

|xn−1〉 • • H R2 |yn−1〉

|xn〉 • • • H |yn〉

Figure 53: General circuit for the quantum Fourier transform.

The rotation Rk in figure 53 is defined as the controlled version of

Rk =

(
1 0

0 e
2πi
2k

)
. (157)

To verify that this circuit is the QFT, consider the state |x1 · · · xn〉 as input. Applying the
Hadamard gate on the first qubit produces the state

H |x1 · · · xn〉 =
1√
N
(|0〉+ e2πi0.x1 |1〉) |x1 . . . xn〉 . (158)

The next operation is the rotation R2, controlled by the second qubit, resulting in state

1√
N
(|0〉+ e2πi0.x1x2 |1〉) |x1 . . . xn〉 . (159)

A.2. Quantum Fourier Transform 81

Applying the successive rotations up to Rn appends an extra bit to the phase of the first |1〉,
ultimately becoming

1√
N
(|0〉+ e2πi0.x1x2···xn |1〉) |x1 . . . xn〉 . (160)

A similar process is applied to the second qubit. At the end, the state has become

1√
N
(|0〉+ e2πi0.x1x2···xn |1〉)(|0〉+ e2πi0.x2···xn |1〉) |x1 . . . xn〉 , (161)

and the successive application of this process to the remaining qubits results in state

1√
N
(|0〉+ e2πi0.x1x2···xn |1〉)(|0〉+ e2πi0.x2···xn |1〉) · · · (|0〉+ e2πi0.xn |1〉) |x1 . . . xn〉 , (162)

confirming that this is indeed the Fourier transform derived in equation (156) up to the order
of the qubits, which is reversed. It also shows that the QFT is unitary, since all operations in
the circuit are unitary.

Counting the number of gates on the circuit, one can conclude that the first qubit will
have 1 Hadamard gate followed by n− 1 controlled rotations. The second qubit is another
Hadamard followed by n− 2 controlled rotations. After n qubits, the total number of gates
will be n(n+1)

2 . This means the circuit provides a O(n2) algorithm, compared to the fastest
classical algorithm, the Fast Fourier Transform, which requires O(n2n) operations. This is an
exponential gain, which can be improved upon at the cost of accuracy.

	1 Introduction
	1.1 Brief History of Quantum Computing
	1.2 Classical and Quantum Walks
	1.3 State of the Art on Quantum Walk Implementations
	1.4 Objectives, Contributions and Structure

	2 Quantum Walks
	2.1 Classical Random Walk
	2.2 Coined Quantum Walk
	2.3 Staggered Quantum Walk
	2.4 Continuous-Time Quantum Walk

	3 Searching Problems
	3.1 Grover's Algorithm
	3.1.1 One marked element
	3.1.2 Multiple marked elements
	3.1.3 Single-Shot Grover

	3.2 Coined Quantum Walk
	3.3 Staggered Quantum Walk
	3.4 Continuous-Time Quantum Walk

	4 Implementations and Applications
	4.1 Coined Quantum Walk
	4.2 Staggered Quantum Walk
	4.3 Continuous-Time Quantum Walk
	4.4 Implementing Search Algorithms in Qiskit
	4.4.1 Grover's Algorithm
	4.4.2 Searching with a Coined Quantum Walk
	4.4.3 Searching with a Staggered Quantum Walk
	4.4.4 Searching with a Continuous-Time Quantum Walk

	5 Discussions and Conclusion
	A Support Material
	A.1 The Postulates of Quantum Mechanics
	A.2 Quantum Fourier Transform

