
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Marta Sofia Saraiva Oliveira

Flexible Molecular Alignment

An Industrial case study on
Quantum algorithmic techniques

July 2020

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Marta Sofia Saraiva Oliveira

Flexible Molecular Alignment

An Industrial case study on
Quantum algorithmic techniques

Master dissertation
Master Degree in Physics Engineering

Dissertation supervised by
Prof. Luı́s Soares Barbosa

July 2020

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I
have not used plagiarism or any form of undue use of information or falsification of results
along the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the
University of Minho.

A C K N O W L E D G E M E N T S

Starting from the people that firstly made an impact on me and, hence, this dissertation, I
would like to thank all my close family. In my case it includes parents, sisters, grandparents,
cousins, aunts and uncles.

Secondly, I would like to thank all my dearest friends and colleagues that made an
impact in my life, in way or another, and always believed in me. A special appreciation
is required to Vánia, who read my dissertation from beginning to end, to Joana, who
always encouraged me, even in the most difficult time, and to Ricardo, my sweetheart and
greatest admirer. With the same gratitude and special recognition, I have my colleagues
and friends, Vı́tor and Michael, who accompanied me more closely in my last three years
and from whom I will always have great memories and appreciation. To the last, I would
also like to thank their inputs and patience during the making of this dissertation and this
degree.

In a more academic ground, I would like to thank Carlos Tavares, without whom I would
not be able to develop a very important section in this dissertation. Moreover, I would also
like to thank professors Ana Jacinta Soares, Fernanda Costa and Alexandre Madeira for
their advices and feedbacks in the early stage of the dissertation. In another ground, a
special thank you to doctors Marco Neves and Nuno Palma, from BIAL, is also required.
Finally, I would like to acknowledge the help of Ana Neri and the orientation of professor
Luı́s Barbosa in the making of this dissertation.

In a much more personal and important note, I would also like to thank Sérgio Ferreira
for helping me keep sane during this last year and for teaching me how to deal with myself
and my anxiety.

A B S T R A C T

Flexible molecular alignment is a complex and challenging problem in the area of Medic-
inal Chemistry. The current approach to this problem does not test all possible alignments,
but makes a previous analysis of all the variables and chooses the ones with potentially
greater impact in the posterior alignment. This procedure can lead to wrong ”best align-
ments” since not every data is considered.

Quantum computation, due to its natural parallelism, may improve algorithmic solutions
for this kind of problems because it may test and/or simulate all possible solutions in an
execution cycle.

As a case study proposed by BIAL and in collaboration with IBM, the main goal of
this dissertation was to study and create quantum algorithms able to refactor the problem
of molecular alignment in the new setting of quantum computation. Additionally, the
comparison between both classical and quantum solutions was defined as a subsequent
goal.

During this dissertation and due to its complexity, in order to produce a practical solu-
tion to this problem, we resorted to a manageable number of conformations per molecule,
revisited the classical solution and elaborated a corresponding quantum algorithm. Such
algorithm was then tested in both a quantum simulator and a real device.

Despite the privileged collaboration with IBM, the quantum simulations were not pro-
duced in viable time, making them impractical for industry applications. Nonetheless, tak-
ing in consideration the current point of development of quantum hardware, the suggested
solutions still has potential for the future.

R E S U M O

O alinhamento de moléculas flexı́veis é um problema complexo na área de Quı́mica
Medicinal, onde, mesmo hoje em dia, é um desafio encontrar uma solução. A atual abor-
dagem para este problema não testa todos os possı́veis alinhamentos. Em vez disso, realiza
uma análise prévia de todas as variáveis e escolhe aquelas com maior potencial de impacto
no posterior alinhamento. Este procedimento pode levar a falsos ”melhores alinhamentos”
visto que nem todos os dados são considerados.

A computação quântica, devido ao seu natural paralelismo, pode melhorar as soluções al-
gorı́tmicas deste tipo de problemas visto que poderá testar e/ou simular todas as possı́veis
soluções num ciclo de execução.

Partindo de um caso de estudo proposto pela BIAL, e em colaboração com a IBM, o obje-
tivo principal desta dissertação foi estudar e criar algoritmos quânticos capazes reformular
no contexto de computação quântica o problema de alinhamento de moléculas. Adicional-
mente, e como objetivo subsequente, foi prevista a comparação entre os algoritmos clássicos
e quânticos.

Durante esta dissertação e devido à sua complexidade, de modo a produzir uma solução
prática para este problema, foi utilizado um número tratável de conformações por molécula,
revisitada a soluçao clássica e desenvolvido um algoritmo quântico correspondente. Tal
algoritmo foi depois testado tanto num simulador quântico como num dispositivo real.

Apesar da colaboração previligiada com a IBM, as simulações quânticas não foram pro-
duzidas em tempo viável, tornando-as impraticáveis para aplicações industriais. Não ob-
stante, tendo em consideração o ponto atual de desenvolvimento dos dispositivos quânticos,
as soluções propostas terão potencial para o futuro.

C O N T E N T S

1 introduction 1

1.1 Medicinal Chemistry and Drug Design 1

1.2 Quantum Computation 5

1.3 Summary 6

2 background 9

2.1 Pharmacophores 9

2.2 Flexible Molecules 11

2.3 Molecular Alignment 14

3 state of art 17

3.1 Semiflexible Molecular Alignment 17

3.2 Flexible Molecular Alignment 22

3.3 Quantum Similarity Superposition Algorithm - QSSA 26

4 the approach 31

4.1 The data 34

4.2 The approach 35

4.3 Division of the problem 38

4.4 Reengineering of the problem 40

5 reengineering of a classic solution 43

5.1 Pre-alignment 43

5.2 SAT solver 51

5.3 Scores evaluation and solution choice 61

6 the quantum approach 69

6.1 Quantum SAT solver 69

6.1.1 Related work 69

6.1.2 Approaches 77

6.1.3 Implementation 82

6.2 Solution Search 85

6.2.1 Original Grover’s algorithm and its generalizations 85

6.2.2 Implementation 90

7 results and comparisons 101

7.1 Pre-alignment 101

7.2 SAT solver 102

7.3 Solution Search 107

x contents

8 conclusions 113

8.1 Technical Issues 113

8.2 Future work 114

a code - a classical approach with python 131

a.1 Imports Required 131

a.2 Data treatment 131

a.3 Main code 133

a.4 Auxiliary altered libraries 133

a.4.1 CPD algorithm 133

b code - a quantum approach with qiskit 139

b.1 Quantum SAT 139

b.2 Solution Search 142

c hardware specifications 151

L I S T O F F I G U R E S

Figure 1 Strategy for preclinical drug discovery. See text for details and glos-
sary for other definitions. Figure 1. of Verkman (2004). 2

Figure 2 Methods for protein structure-based inhibitor drug design. All meth-
ods first characterized the target site in terms of shape and presence
of specific surface properties, e.g. hidrophobic sites (H), hydrogen
bond donors (D) and acceptors (A). Subsquently, docking, building
or linking algorithms are applied. In docking, molecules are retriv-
ied from a huge database and evaluated for complementary to the
target site. Building starts from a highly complementary fragment,
either found by docking or known from a previous protein-ligand
structure. This fragment, called the ’seed’, is appended with a myr-
iad of different fragments, which each intern can be substituted fur-
ther. This combinatorial explosion, which is also the all mark of
the linking method, is contained by pruning techniques. In linking,
highly complementary fragments are linked into one molecule. Fig-
ure 2. of Verlinde and Hol (1994). 3

Figure 3 Bloch sphere representation of a qubit. It’s state, ψ, is given by
|ψ〉 = α|0〉+ β|1〉 = cos θ

2 |0〉+ eiϕsin θ
2 |1〉 where |α|2 and |β|2 yields

the probability to be in state |0〉 or |1〉, respectively. A classical bit
can only either have |α|2 = 1 or |β|2 = 1. Figure 1.3. of Nielsen and
Chuang (2011). 6

Figure 4 Number of representable states according to the number of bits (in
red) and qubits (in blue). To represent 10 states it is required less
than 4 qubits but 10 bits. 7

Figure 5 (a) Molecular Structure of hH3R antagonist (b) Pharmacophoric fea-
tures defined based on compound (a). (Red sphere = any positively
charged element, orange sphere = aromatic or hydrophobic group,
cyan sphere = aromatic ring). Figure 28.7 and 28.9 of Sippl (2008). 10

Figure 6 Superposition of conformations of the same molecule to visualize
the differences between them. (a) 2 conformations (b) 3 conforma-
tions. Molecule: 1C4V from PDB (Protein Data Bank). Images ob-
tained through Molsoft’s software, ICM-Pro. 12

xii list of figures

Figure 7 Best two alignments, using Feher and Schmidt (2000)’s work, of two
angiotensin II antagonists. Fig. 3 in (Feher and Schmidt, 2000). 18

Figure 8 Overview of Baum (2005)’s algorithm. The reference molecule is
denoted by R, its conformers by Rj. The query molecules are de-
noted by Qi, their conformers by Qij. The • symbol denotes the
computation of pairwise matchings. Tij denotes the matching tree
containing all pairwise matchings between molecule Qi and refer-
ence conformer Rj. Ti is the final matching tree comprising all mul-
tiple matchings (matching clusters) with respect to Ri. Finally, Pi

is a Pareto set containing multiple matchings of different reference
conformers. Fig.1. in (Baum, 2005). 19

Figure 9 Compound 1TBF together with its calculated pharmacophore points
using Taminau et al. (2008)’s algorithm, Pharao. Fig. 7. in (Taminau
et al., 2008). 20

Figure 10 Predicted docking pose of FXR 26 (blue) versus the co-crystallized
structure released (yellow). Fig. 3 in (Lam et al., 2018). 21

Figure 11 Overlay of L-benzylsuccinate and glycyl-L-tyrosine: (a) alignment in the
crystal; (b) calculated flexible alignment at the final set of parameters
optimized for all ligand pairs. Fig. 3 in (Labute et al., 2001). 22

Figure 12 Examples of dockings executed by Surflex with high accuracy (3tpi);
good accuracy (1tmn); acceptable accuracy (1hri) and poor accuracy
(1atl). Fig. 6 in (Jain, 2003). 23

Figure 13 (a) 2r04 ligand (light-blue) aligned on 2r06 (thick sticks). (b) Com-
parison between aligned pose (ball-and-stick) and crystal structure
for ligand 2r04 (thick sticks). (c) 2rs3 ligand (light-blue) aligned on
2rr1 ligand (thick sticks). (d) Comparison between aligned pose (ball
and stick) and crystal structure for ligand 2rs3 (thick sticks). (e) 2r04

ligand (light-blue) aligned on 2rr1 ligand (thick sticks). (f) Compar-
ison between aligned pose (ball-and-stick) and crystal structure for
ligand 2r04 (thick sticks). Fig. 3 in (Marialke et al., 2007). 25

Figure 14 Method flow of Pharmagist. Fig. 1 in (Schneidman-Duhovny et al.,
2008). 26

Figure 15 Stereochemical formulae of the conformations of ligand molecules
(1C4V, 1TOM and 1D4P) with respective pharmacophore features
surrounded by 2Å spheres. Positive charges represented by the
lighter colors and hydrophobicity by the darker colors within the
respective molecule’s colors (blue, green and orange). 31

list of figures xiii

Figure 16 Alignment of conformations of ligand molecules (1C4V, 1TOM and
1D4P) with respective pharmacophore features surrounded by 2Å
spheres. (a) with the molecule structure, (b) without. Data used as
depicted on (b). 32

Figure 17 Flow chart of the problem. The order of alignment is indifferent.
c©SofiaOliveira, 2020 33

Figure 18 Organizational flow chart of the data and possible alignments. The
order in which these alignments are done is indifferent. Each point,
referenced as P* (where ’*’ stand for a given number), has 3 inte-
ger values (for the x, y and z coordinates) and a string value, the
type (representative of the pharmacophore feature). c©SofiaOliveira,
2020 34

Figure 19 3-Dimensional Matrix of approach 2 after evaluation of which points
are connected. In this example are taken into account conformations
(subsets) of 3 different molecules (sets), with different number of
points. C stands for connected. c©SofiaOliveira, 2020 37

Figure 20 Flow chart of the division of the problem (right) based on Figure 17

(left). c©SofiaOliveira, 2020 39

Figure 21 Flow chart of the problem hybrid approach. Filled blue boxes are
steps under quantum paradigm and large dotted box stands for an
iterative cycle throughout all possible alignments previously gener-
ated. c©SofiaOliveira, 2020 40

Figure 22 Data organization through pyhton. Representation with equivalent
chemical meaning, colors added to simplify correlation. Real list
size illustrated for each case. (# stands for any valid position of the
list.) c©SofiaOliveira, 2020 44

Figure 23 Problem of point set registration: given two sets of points, assign the
correspondence and the transformation that maps one point set to
the other. Figure 1. in Myronenko and Song (2010). 45

Figure 24 Example of a rigid transformation, including rotation and transla-
tion, (a) with visible rigid links between points, and (b) without. d1,
d2 and d3 is always maintained during transformation. Note that (a)
is merely a representation, there are no actual links between points,
as represented in (b). c©SofiaOliveira, 2020 45

Figure 25 Example of probability distribution based on proximity extracted
from Khallaghi (2017). Inner circle has a radius of 0.2 units and
an assigned probability of 1. The outer circle has a radius of 4 units
and corresponding probability of 0.5. 47

xiv list of figures

Figure 26 GMM extracted from Khallaghi (2017), based on example depicted
in Figure 25, where three Gaussians have a variance of 0.75 units. 48

Figure 27 3-Dimensional Matrix of a possible solution after evaluation of which
points are connected. Same example as depicted in Figure 19. Here,
the red lines and red filled squares represent the elements one needs
to check to see whether only one point from each conformation is
simultaneously aligned or not. c©SofiaOliveira, 2020 55

Figure 28 List organization of a solution based on the same notation and ex-
ample of Figure 19. c©SofiaOliveira, 2020 62

Figure 29 Graphic display of Equation (10). c©SofiaOliveira, 2020 66

Figure 30 Graphic display of Equation (11) for M = 2, i.e., only considering
two different conformations in the alignment. c©SofiaOliveira, 2020

66

Figure 31 Scheme of the edges between three molecules. As in section 5, the
points are identified by the number of the molecule, type of the point
and an index. The edges checked with the symbol F are the ones
already respecting some restrictions. White squares represent all
possible different edges, and grey squares are not considered, since
they are the same as the ones in the upper diagonal of the scheme.
c©SofiaOliveira, 2020 78

Figure 32 Grover’s algorithm. In this case, only one application of the Grover
operator is perfomed. The oracle box represents the oracle opera-
tor U f and the remaing circuit on the right, except for the external
Hadamard gates, the diffusion operator UD. Fig.6 in J. et al. (2020). 86

Figure 33 System distribution after first step. The average amplitude is 1√
N

.
c©SofiaOliveira, 2020 87

Figure 34 System Distribution after the first application of operator U f |ψt〉 =
ψt′ . Because the amplitude of the desired state becomes negative, the
average amplitude is lowered and hence, becomes < 1√

N
. c©SofiaOliveira,

2020 88

Figure 35 System Distribution after the diffusion operator UD|ψt′〉. The action
of this operator can be seen as a reflection about the average ampli-
tude. Since the average amplitude has been lowered, this transfor-
mation boosts the negative amplitude of the desired state while it
decreases the other amplitudes. c©SofiaOliveira, 2020 88

Figure 36 UD with qy = 3. 98

list of figures xv

Figure 37 Alignment of three molecules (a) before, in light colors, and (b) af-
ter, in darker colors, pre-alignment. Illustration made with GeoGebra.
c©SofiaOliveira, 2020 103

Figure 38 Coordinates of each molecule before (in light colors) and after (in
darker colors) pre-alignment. Illustration made with GeoGebra. c©SofiaOliveira,
2020 103

L I S T O F TA B L E S

Table 1 Relations between notation used in Figures 19 and 28 and pyhton
code. 52

Table 2 Grover’s example database 86

Table 3 Example, relations between indexes and values. 91

Table 4 Coordinates of a two-molecule set before and after pre-alignment.
First conformation from each of the molecules. 101

Table 5 Coordinates of a three-molecule set before and after pre-alignment.
First conformation from each of the molecules. 102

Table 6 Results of the quantum solution search and time taken for molecule
1C4V and 1TOM. 110

Table 7 Results of the quantum solution search and time taken for molecule
1C4V and 1D4P . 110

Table 8 Results of the quantum solution search and time taken for molecule
1TOM and 1D4P. 111

Table 9 Hardware specifications of first device (A) used. 151

Table 10 Hardware specifications of second device (B) used. 151

1

I N T R O D U C T I O N

1.1 medicinal chemistry and drug design

Drug discovery and development is generally done in the commercial rather than aca-
demic contexts, mainly because of the money and time-consuming processes involved
(Verkman, 2004). In these processes, compounds with activity against a specified target
or function are identified, evaluated, and optimized for clinical applications. The average
preclinical costs, from lead identification to investigational new drug (IND) filing, illustrated
in Figure 1, has been estimated to be as high as US$4 million per compound, and to take
up to 3 years (Verkman, 2004).

The iterative step in Figure 1 is the optimization of each potential lead by medicinal
chemistry, where the main goal is to generate structural analogs of lead compounds that
are optimized in their potency, specificity, and pharmacological properties for entry into
clinical trials. Generally, this involves iterative rounds of synthetic organic chemistry and
compound evaluation that can take from months to years (Verkman, 2004). As illustrated in
Figure 1, it starts by the collection and analyses of Structure-activity relationship (SAR) data.

Three major computational methods have been used for lead optimization:

• Rational structural methods, which generally use a high-resolution structure of the
target to direct the synthesis of new analogs.

• Pharmacophore methods, which involves the definition of the minimal unit that leads
to activity (usually a combination of hydrogen bond donor/acceptors, hydrophobic
groups, and other functional groups) in a three-dimensional space. The consensus
pharmacophore is then used to examine the allowed placement of groups in a set of
candidate compounds.

• quantitative structure-activity relationship (QSAR) models, which relates calculated
physicochemical properties of molecules to activity, rather than strictly structural
properties.

2 Chapter 1. Introduction

Figure 1: Strategy for preclinical drug discovery. See text for details and glossary for other defini-
tions. Figure 1. of Verkman (2004).

The first method often involves the generation of a very large in silico library of potential
derivatives and use of a computational docking method to select derivatives that may inter-
act with the target on the basis of shape complementarities and charge placement. While
intellectually appealing, there have been few examples of success when used by itself. On
the other hand, pharmacophore analysis can be carried out without structural informa-
tion. It is most useful in identifying new compounds with a desired activity based on a
three-dimensional similarity to early leads. At last, a QSAR model relates more than just
structural properties, but unfortunately it requires a set of structurally related compounds
with a wide range of activities, ideally a 1000-fold variation in activity, which is often a
difficult requirement to meet. (Verkman, 2004)

Since it can be difficult to visualize a drug design process only based on written words,
it is relevant to take a look at Figure 2. The first image is the pharmacophore and structural
properties of the target, below are represented the methods on which the drug design can

1.1. Medicinal Chemistry and Drug Design 3

Figure 2: Methods for protein structure-based inhibitor drug design. All methods first characterized
the target site in terms of shape and presence of specific surface properties, e.g. hidropho-
bic sites (H), hydrogen bond donors (D) and acceptors (A). Subsquently, docking, building
or linking algorithms are applied. In docking, molecules are retrivied from a huge database
and evaluated for complementary to the target site. Building starts from a highly com-
plementary fragment, either found by docking or known from a previous protein-ligand
structure. This fragment, called the ’seed’, is appended with a myriad of different frag-
ments, which each intern can be substituted further. This combinatorial explosion, which
is also the all mark of the linking method, is contained by pruning techniques. In linking,
highly complementary fragments are linked into one molecule. Figure 2. of Verlinde and
Hol (1994).

4 Chapter 1. Introduction

be based. Throughout this work it was considered the docking method as the method used
for drug design. In the lead optimization, and because this work is a study of this method,
it was also only considered the pharmacophore modeling method.

Back in 1994, and as recalled in Verlinde and Hol (1994), it was usually only tested one lig-
and conformation in the docking method because of the inherent computational intractabil-
ity. Nowadays, more than one conformation per ligand are tested because the current com-
putational power is much higher. However, when considering an average organic molecule
(which have eight rotational bonds), and assuming that 30 increments in dihedral angles
define different conformations, then for just one average molecule, about 430 million con-
formations have to be examined (Verlinde and Hol, 1994). As one can imagine, even with
the present computational power, the docking method becomes quickly impracticable when
considering all conformations from every ligands. Some docking/alignment algorithms for
entire molecules make an attempt to address the issue of ligand flexibility but the CPU-
time requirements for docking/aligning large databases becomes unacceptable. As a more
time-sustainable approach, instead of testing enormous numbers of conformations, one can
investigate whether the conformation of a ligand can be altered to satisfy the constrains of
a protein-binding site. Such algorithms test on simple 3-5 point pharmacophore, instead of
a full three-dimensional protein context. Despite the huge reduction in information, this
remains a highly demanding computational problem.

Another potential problem in drug design is the flexibility of the target, as is the case
of proteins. A typical example, given in Verlinde and Hol (1994), is the triosephosphate
isomerase where the so-called flexible loop of the enzyme is closed in the presence of
inhibitors and open otherwise. The possibility of unexpected conformational changes of
the protein upon ligand binding is one of the reasons that experimental verification of
predicted binding modes of new ligands is a key step in a cyclic structured-based inhibitor
drug design process.

Ideally, all possible conformations of the ligands in the database should be checked ver-
sus all possible conformations of the protein molecule. However, because it becomes an
impracticable problem, one of the current key issues in this classical algorithm approach
is to determine whether a sufficient number of ligand conformations from a sufficiently
large reservoir of small compounds are tested for their fit versus a sufficiently large number
of conformations of the protein. The continuous increase in computer power will allow
the testing of more conformations but will never be sufficient to test all information. This
challenge is the main aspect this dissertation aims to tackle, reduce the computational time
required to test a large number of alignments in parallel in order to make feasible this
classically intractable problem.

On these grounds and due to some other challenges, the number of approved drugs
for the market has decreased in recent years, which entails the need for more effective

1.2. Quantum Computation 5

methods to discover a higher number of successful compound candidates (Verkman, 2004;
Dahms, 2017). It has been argued that drug discovery in an academic setting is urgently
needed to explore alternative paradigms in the currently very inefficient drug discovery
process (Verkman, 2004). Here, novel computational tools which could speed up drug
developments and lead to promising compounds could be produced. An academic goal
given as an example in Verkman (2004)’s work, is the identification of reasonably potent
and specific reagents for protein inhibition/activation in animal models and the discovery
and evaluation of drug candidates with the intention of partnering with the industry for
further development.

As the most recent pandemic emerged, COVID-19, and the world felt its effects, it quickly
became evident the importance of developing new drugs with quick and reliable methods.

This dissertation has in sight the development of a new (quantum) paradigm in the field
of bioinformatics, more specifically, drug design.

1.2 quantum computation

Quantum computation is based on quantum physics, which explains reality at a very
small scale (atomic and subatomic scale). The key aspect that makes its laws of interest
is the ability of matter, at this scale, to be in a superposition of states1. As an example,
consider an electron with two distinct possible configurations (spins), up (1) and down
(0). In a classical computer, this electron represents a bit since it can be in two possible
states, up or down (1 or 0). In an atomic scale, this electron is a qubit and it can also be
in a superposition of states. It can be up (1), down (0), or simultaneously up and down
(1 and 0). It is important to mention that a superposition is a linear combination of states,
whose coefficients are related to the probability of being in either state. Theoretically, the
qubit can represent an infinite number of different states but can only be, physically, in one
(Wright, 2015). This is a fundamental postulate of quantum mechanics, which states that an
object in superposition will collapse to a specific state, within a known probability, when
measured (Nielsen and Chuang, 2011). The bit, on its turn, can only represent and be in
one state. Of course, and due to practicalities, these number of representable different states
are finite and not infinite because one can only have a finite certainty to distinguish states
(Deconinck and Terhal, 2010). Refer to Figure 3 for a visual illustration and mathematical
representation.

Computationally, superposition is relevant because it allows an algorithm to be naturally
parallel. With a two bit register, a classic algorithm can only operate over one possible state,

1 A more interested reader may want to check DiVincenzo (1995) or, in more detail, Nielsen and Chuang (2011),
for more information on this subject.

6 Chapter 1. Introduction

Figure 3: Bloch sphere representation of a qubit. It’s state, ψ, is given by |ψ〉 = α|0〉 + β|1〉 =

cos θ
2 |0〉 + eiϕsin θ

2 |1〉 where |α|2 and |β|2 yields the probability to be in state |0〉 or |1〉,
respectively. A classical bit can only either have |α|2 = 1 or |β|2 = 1. Figure 1.3. of Nielsen
and Chuang (2011).

while with two qubits an algorithm can operate over four possible states. To consider the
same number of states with bits, it is required an exponential higher number of the latter,
as depicted in Figure 4.

To conclude, quantum algorithms due to their natural parallelism can be beneficial to
handle problems involving the analysis of a great volume of information, which would
require an extremely large number of bits. With quantum algorithms, this number is expo-
nentially reduced. Another relevant aspect to the flexible molecular alignment problem, in
particular, is that most of industrially used software are optimized to a level that a function
can converge to a local minimum and mistakenly give a wrong answer due to optimization
processes that may lead the software to consider only part of the data and not all informa-
tion. Since a quantum algorithm would be able to take into account more data, it could
hopefully converge to a global minimum, rather then to a local one.

1.3 summary

1.3. Summary 7

Figure 4: Number of representable states according to the number of bits (in red) and qubits (in
blue). To represent 10 states it is required less than 4 qubits but 10 bits.

The aim of this dissertation is to study a real problem in industry, introduce a quantum
approach as its solution, and analyze its possible impact and viability in the future. With
this intuit, contact was established between University of Minho and BIAL (a major Por-
tuguese pharmaceutical company) and a case study of the area of medicinal chemistry and
bioinformatics appeared. The case study proposed by BIAL was the alignment of flexible
molecules, as the title of this dissertation mentions, and subsequent discovery of pharma-
cophores. The goal, in more detail, was to find a quantum algorithm to align flexible
molecules, to test it using a quantum computer and lastly, analyze the results and their via-
bility compared to the current classical methods. Due to the already establish collaboration
between the University and IBM (the international company with the first-ever commer-
cially available quantum computing system (IBM, 2019)), it was possible to simulate (test
the algorithm) in a real quantum device.

Along this period, I was also involved in another work on quantum chemistry. This piece
of research was a case study on quantum simulation for two distinct molecules, hydrogen
(H2) and lithium hydride (LiH), at an actual commercially available quantum computer,
the IBM Q. As a result, a paper was presented in a conference and another is waiting to be
published in a journal. (Tavares et al.)

This dissertation is organized in eight sections. The opening sections introduce and
contextualize the problem. The succeeding sections explain and breaks down the classic
and quantum solutions. And the final sections exhibit the results, conclusions and future
suggestions and approaches. After the bibliography, a glossary of brief definitions on more
technical words and expressions is presented.

8 Chapter 1. Introduction

In more detail, the first and current section gives a brief introduction to both drug de-
sign and quantum computation. The following section provides a background on pharma-
cophores and on the interconnected flexible molecules and respective alignment. Next, the
third section gives a brief resume of the pre-existing algorithms for molecular alignment.
The fourth section, concerns the problem data, definition and approaches taken. The devel-
opment of a classic solution is reported in section five, and a quantum solution in section six.
Results and comparisons are presented in section seven and finally section eight concludes
and makes some considerations on future work.

2

B A C K G R O U N D

In broad terms, the topic of interest is related to computer-aided design of drugs. There-
fore, it is important to give the proper background, as an introduction to medicinal chem-
istry, so that the reader can understand the hows and whys of this field.

2.1 pharmacophores

There are several definitions of pharmacophores. In plain language, a pharmacophore
is the spatial arrangement of functional groups essential for biological activity; it is a three-
dimensional pattern that emerges from a set of biologically active molecules (Drie, 2007;
Neves, 2018). Another way to interpret a pharmacophore is as an abstract description of
molecular features which are necessary for molecular recognition of a ligand by a biological
macromolecule. It is important to emphasize that a pharmacophore is not a real molecule,
but an abstract concept (Qing et al., 2014). Pharmacophore features include hydrophobic
moieties, aromatic rings, hydrogen bond acceptors or donors, cations and anions (Karaman,
2016; Homeyer, 2007). Figure 5 depicts an example of a pharmacophore based on the
respective molecule.

As stated in the IUPAC definition of the term:

Definition 2.1 (Wermuth et al., 1998) Pharmacophore is the ensemble of steric and electronic fea-
tures that is necessary to ensure the optimal supramolecular interactions with a specific biological
target structure and to trigger (or to block) its biological response. The pharmacophore can be con-
sidered as the largest common denominator shared by a set of active molecules.

Now that it is clear what pharmacophore means, it is important to know how a phar-
macophore model is established. According to Yang (2010), it can either be established
in a structure-based manner, by probing possible interaction points between the macro-
molecular target and ligands; or in a ligand-based manner, by superposing a set of active
molecules and extracting common chemical features that are essential for their bio activity.

10 Chapter 2. Background

Figure 5: (a) Molecular Structure of hH3R antagonist (b) Pharmacophoric features defined based on
compound (a). (Red sphere = any positively charged element, orange sphere = aromatic
or hydrophobic group, cyan sphere = aromatic ring). Figure 28.7 and 28.9 of Sippl (2008).

The structure-based pharmacophore modeling works directly with the structure of a
macromolecular target or a macromolecule-ligand complex. The protocol for this technique
involves an analysis of the complementary chemical features of the active site and their spa-
tial relationships, and a subsequent pharmacophore model assembly with selected features.
Furthermore, it is reasonable to divide this strategy in two categories:

• macromolecule-ligand-complex-based, where the structure of both the target and lig-
and are known, and

• macromolecule-based, where only the structure of the receptor molecule is known.

The first method builds a pharmacophore model by locating the ligand-binding site of
the macromolecular target and then determining the principal interaction points between
the ligands and macromolecule, whereas the second constructs this model by analyzing
the chemical properties of the binding site of interest, which generates an interaction map
converted posteriorly into pharmacophore features (Yang, 2010; Qing et al., 2014).

The macromolecule-ligand-complex-based approach is bound to the structure of the
macromolecule-ligand-complex, as the name suggests. The implication is an impossibility
of applying this method to cases where no compounds targeting the binding site of inter-
est are known. Although this can be overcome with the macromolecule-based approach,
that technique has its limitations as well. For example, the derived interaction maps gen-
erally consist of a large number of unprioritized catalyst features, which complicates its
application in tasks such as database searches.

2.2. Flexible Molecules 11

However, both strategies face a frequent problem related to the high number of chemical
features that are identified for a specific binding site of the macromolecular target. A
pharmacophore model composed of too many chemical features (i.e. more than 7) is not
suitable for practical applications, making it necessary to select a limit number (i.e. between
3 and 7) of these features, which is not an easy task in most of the cases (Yang, 2010).

On the other hand, ligand-based pharmacophore modeling is an essential computational
strategy for facilitating drug discovery in the absence of a macromolecular target structure
(Yang, 2010). In this approach, only some chemical features are required to make a new
drug model that “suits” the target. The freedom from the target structure in this model-
ing technique is of great use because, recurrently, the macromolecular target structure is
unknown (Homeyer, 2007; Qing et al., 2014).

The above mentioned chemical features are found due to their presence in essential inter-
actions between a set of ligands and a specific macromolecular target. There are two main
steps necessary to find them:

1. Create the conformational space for each ligand in the set to represent conformational
flexibility of ligands

2. Align the multiple ligands in the set

These steps allow determining the essential common chemical features to construct the
pharmacophore model. The two steps mentioned above, handling conformational flexibility
of ligands and conducting molecular alignment, are both the key techniques and the main
difficulties in ligand-based pharmacophore modeling (Yang, 2010; Homeyer, 2007).

The ligand-based pharmacophore modeling approach is the reason for the subject of
study of this dissertation, flexible molecular alignment. The following sub section will
introduce the topic of flexible molecules.

2.2 flexible molecules

As it was previously said, alignment of molecules is one of the main difficulties in ligand-
based pharmacophore modeling, the technique used in BIAL’s computer-aided drug design
software. The alignment of flexible molecules is a problem of even higher proportions. But
to understand why this is such a hard problem, one may need to understand what is a
flexible molecule and how they can be superposed. This will be discussed in the next sub
section.

To clarify, molecules are structures composed of two or more bonded atoms. A flexible
molecule is a molecule where these bonds have a certain degree of freedom, i.e. the bonds

12 Chapter 2. Background

can move (by rotation) within a certain physically-allowed degree (A. Y. Grosberg, 2011;
MacDowell, 2003).

Each possible position of a given flexible molecule, based solely on rotations about single
bonds, is named a conformation. According to IUPAC Recommendations (Moss, 1996), a
conformation is formaly defined as:

Definition 2.2 The spatial arrangement of the atoms affording distinction between stereoisomers
which can be interconverted by rotations about formally single bonds.

Figure 6: Superposition of conformations of the same molecule to visualize the differences between
them. (a) 2 conformations (b) 3 conformations. Molecule: 1C4V from PDB (Protein Data
Bank). Images obtained through Molsoft’s software, ICM-Pro.

It is important to clarify that by the definitions of stereoisomers, constitutional isomers1

and conformers, one may think that they stand for the same, despite they only have one
similarity. All of these terms stand for compounds that have the same molecular formula
but different atoms arrangements. Therefore, all of them are actual isomers. However, from
this point forward, they have different meanings. If the isomers have the atoms connected
in the same order, they are stereoisomers; if not, they are structural or constitutional iso-
mers. Furthermore, if they are stereoisomers compounds and they can be interconverted by
rotation about single bonds, they are conformational isomers or conformers, and otherwise,
configurational isomers (Hunt, 2009b).

1 In the literature (Gunawardena, 2019; Hunt, 2009a), structural isomers appear as a synonymous of constitu-
tional isomers. The International Union of Pure and Applied Chemistry (IUPAC) recommends that the term
”structural” should be abandoned when applied to constitutional isomers (Solomons and Fryhle, 2009).

2.2. Flexible Molecules 13

When a conformation corresponds to a potential energy minimum, it is said to be a
conformational isomer or conformer. Hence, all conformers have a correlated conformation
but not all conformations represent a conformer (Book, 2014). To a better comprehension,
check Hunt (2009b)’s diagram that summarizes these different types of isomers in a very
intuitive way.

Based on the definitions above, it is now known that it is possible to have other positions
of a given flexible molecule regarding other arrangements that deal with other than only
rotations about single bonds. But because the whole purpose, in this work, is to align (su-
perpose) flexible molecules to posteriorly make a pharmacophore model (and these only
deal with conformations), those arrangements will be the only ones of interest. Hencefor-
ward, ”all positions” will just mean the ones of interest.

Focusing only in conformations and conformers, it is clear that the number of different
conformers per molecule depends on the number of single bonds. A simple rule of thumb,
as stated by Smith (2010), is that every single bond multiplies the number of possible con-
formers by three. Thus, a molecule with one single bond has three conformers, which
can be translated into an exponential growth in the order of 3n (where n is the number
of single bonds in a molecule). Consequently, even a reasonably sized organic molecule
can exhibit hundreds to thousands of possible conformations (Smith, 2010). The alignment
of flexible molecules without any kind of compromise in the conformational space (com-
promise that can mislead to a false best fit) may involve testing the alignment between all
conformations from each molecule. The act of searching the whole conformational space is
called systematic search. Naturally this can turn into a problem of difficult resolution since
superposing hundreds of flexible molecules would involve the comparison of billions of
possible “solutions” (Beusen and Marshall, 2000; Neves, 2018).

As mentioned, conformational analysis, i.e. handling the conformational flexibility of
molecules, is one of the most challenging tasks in ligand-based pharmacophore modeling
since the active conformations of the molecules are usually unknown (Homeyer, 2007). If
this problem was solved, the necessity of testing all possible conformations of a molecule
would be cross off the problem and one would only test the exact conformations of interest
from each molecule, greatly reducing the number of possible solutions. This is then highly
related to flexible molecular alignment and pharmacophore modeling (Diller and Merz,
2002) but, because it is, by itself, a complex problem, it will not be further explained in this
text.

On the other hand, once classified what is a flexible molecule and all its implications,
the next step is to understand how molecular alignment is actually done regarding flexible
molecules.

14 Chapter 2. Background

2.3 molecular alignment

There are a variety of approaches to molecular alignment, which can be classified accord-
ing to different points of view. Two examples of different perspectives: one based on the
aspect of molecular similarity, and another on the treatment of conformational flexibility of
the molecules. The former is based on which common characteristics an alignment is based,
for example, atoms, pharmacophoric points, shape or by looking at similarities of fields of
various physicochemical properties (e.g. electron densities, charge distributions, hydropho-
bicity or hydrogen-bonding) (Homeyer, 2007). Furthermore, the latter perspective is based
on how the approaches deal with 3D structures, that is, if the molecules are handled as
rigid or flexible entities. This is the point of view most relevant to the ”story”.

In this classification point of view, there are still some other ways to handle structures
in addition to the strictly rigid or flexible entities. Some of the techniques try to intro-
duce conformational flexibility in an indirect way, i.e. they compare sets of precomputed
conformations for one molecule using conformation generation programs in advance, and
afterwards perform a rigid body alignment of the generated conformations. This is the
so-called semiflexible approach. Another technique that tries to bring flexibility into the
search process generates conformations on-the-fly by applying different algorithms. One
class of algorithms performs a systematic search in the conformational space while others
use stochastic methods to generate conformations for a molecule. (Homeyer, 2007; Lemmen
and Lengauer, 2000)

A disadvantage of the semiflexible approach is that it is often difficult to decide a priori on
the number of conformations used for the subsequent alignment. Besides, only metastable
and low energy conformations are considered. Bent conformations, such as observed in the
transition state of a chemical reaction, can not be detected with such an approach, which
can be insufficient to make a good conformational coverage. The advantage of on-the-fly
flexing is that the computed conformations are not restricted to low-energy conformers.
Even though it does not consider the whole conformational space, the disadvantage is that
it is still more time consuming than to use precomputed low-energy conformers. (Homeyer,
2007; Lemmen and Lengauer, 2000)

To recap, there are two ways to deal with the alignment of flexible molecules. One
handles the molecules as flexible entities throughout the process of alignment. The other
superposes the various conformations from each molecule and treats the alignment itself
as not one, but multiple rigid molecular alignments.

Ideally, all conformations of every molecule should be considered and all the overlays
taken into account (Feher and Schmidt, 2000). But this never happens in either of the

2.3. Molecular Alignment 15

methods mentioned above. It is possible to conclude that there is no perfect way to align
flexible molecules, there is always a disadvantage.

As the disadvantage of the semiflexible approach is essentially related to which and how
many conformations one should use to achieve the best solution, one way to solve this
issue would be to select a great number of conformations from each molecule. This is not
currently done because it is very time consuming, and it would involve a great number of
rigid molecular alignments. The only way to improve the method ended up with the same
disadvantage encountered in the on-the-fly method, the great computational time required.

Due to the natural parallelism of quantum computation, the time required to execute
the multiple rigid molecular alignments, on the semiflexible approach, could be potentially
reduced. But first is required a review of the current classical methods available.

3

S TAT E O F A RT

Throughout this section, several flexible molecular alignment methods will be quickly re-
viewed, majorly based on classical (non-quantum) mechanisms. Recently, no relevant stud-
ies regarding new techniques for flexible molecular alignment have been released. There-
fore, it is important to emphasize that this revision is entirely based on methods, in most
cases, with more than ten years.

Lemmen and Lengauer (2000) have made an extensive review of the literature regarding
computational methods for the structural alignment of molecules back in 2000. In Table
2 of the same article, there is a relevant overview of several approaches described in the
literature until then.

Since there are two ways to deal with flexible molecular alignment, as discussed in sec-
tion 2.3, there will be a division in this section. Two subsections will be about these two
approaches, and a third will be about a rigid molecular alignment method based on quan-
tum properties, which may be relevant for a future quantum approach.

3.1 semiflexible molecular alignment

As discussed in section 2.3, semiflexible molecular alignment introduces flexibility through
the generation of pre-computed conformations and posterior enforcement of rigid molec-
ular alignment. Therefore, it is relevant to get acquaintance with a few rigid molecular
alignment algorithms. Due to the considerable number of algorithms in this field, only a
selected few will be explained. To make it easier to understand the applications, the al-
gorithms will be explained in context, as they appear in the literature about semiflexible
molecular alignment.

Feher and Schmidt (2000) have created a method called MultiSEAL, an extension of the
steric and electrostatic alignment (SEAL) method (Kearsley and Smith, 1990), that allows the
overlay of multiple molecules and conformations. It makes a systematic study of possible

18 Chapter 3. State of Art

alignments and gives information about conformational energies associated with a given
overlay without any assumptions concerning initial alignment.

SEAL is a method developed to optimize the alignment of two rigid 3D structures
using their atomic partial charges and steric volumes factors combined with a
Monte Carlo1 search procedure. The overlay is based on an alignment function
that sums a set of atomic functions containing electronic terms (partial atomic
charges) and spatial factors (van der Waals atomic radii). Possible alignments
are identified by randomly rotating and translating structures with respect to the
other and then minimizing the alignment function for each orientation. (Kearsley
and Smith, 1990)

Figure 7: Best two alignments, using Feher and Schmidt (2000)’s work, of two angiotensin II antag-
onists. Fig. 3 in (Feher and Schmidt, 2000).

Since the method to assess the quality of a multi-molecule alignment, in MultiSEAL, is
based on the sum of the scores of pairs of alignments, there is no guarantee that a good fit
at an intermediate step will be able to contribute to a good overall fit at the end. Therefore,
this is a main disadvantage of the MultiSEAL program. Another limitation of MultiSEAL
is the same as in the SEAL method itself, i.e. they only consider atom-based properties and
partial charges. In Figure 7 can be found an example of an alignment done by Feher and
Schmidt (2000).

Baum (2005), in turn, described a new algorithm based on clique detection applied to each
correspondence graph of two molecular structures to identify structural similarities. The
results from these pairwise comparisons are merged using binary matching trees which, in
turn, allows to find the best alignments (see Figure 8).

In computer science, clique detection is the detection of cliques (complete sub-
graphs) in a graph. In molecular alignment, is the detection of a common sub-
structure between two molecular structures. According to Lemmen and Lengauer
(2000), regarding multiple molecule matching, depending on a distance tolerance

1 To find more on the subject refer to Hammersley and Handscomb (1964).

3.1. Semiflexible Molecular Alignment 19

δ, the clique detection algorithm generates a so-called distance compatibility graph.
This graph contains a node for each type and length compatible distance in a ref-
erence structure and one conformer of every molecule. Two nodes are connected
if they share a common point in each of the structures. The matching procedure
utilizes clique detection to determine overall valid distance constraints.

Figure 8: Overview of Baum (2005)’s algorithm. The reference molecule is denoted by R, its conform-
ers by Rj. The query molecules are denoted by Qi, their conformers by Qij. The • symbol
denotes the computation of pairwise matchings. Tij denotes the matching tree containing
all pairwise matchings between molecule Qi and reference conformer Rj. Ti is the final
matching tree comprising all multiple matchings (matching clusters) with respect to Ri.
Finally, Pi is a Pareto set containing multiple matchings of different reference conformers.
Fig.1. in (Baum, 2005).

Since clique detection is limited to rather small sets of points, it was used an extra refining
step to identify a larger number of common structures.

Furthermore, in this approach, all molecules are compared to a preselected reference
molecule. This initial assumption is a disadvantage since it is impossible to evaluate a
priori if the preselected molecule is a good reference structure. Another disadvantage lies
in the extra refining step. Although the search for common substructures is made more
thorough, it also requires a higher computational time, which forces a compromise between

20 Chapter 3. State of Art

the runtime and the search detail. The runtime also depends on the number of conformers
per molecule.

Figure 9: Compound 1TBF together with its calculated pharmacophore points using Taminau et al.
(2008)’s algorithm, Pharao. Fig. 7. in (Taminau et al., 2008).

Taminau et al. (2008) describes a pharmacophore alignment and optimization technique,
Pharao, based on Gaussian 3D Volumes. This method is inspired by an atom-based ap-
proach introduced by Grant and Pickup (1995), where the Gaussian volumes are attributed
to every atom, instead of to every pharmacophore feature. Since the goal of this disserta-
tion is to find flexible alignment of molecules based on their pharmacophore features, focus
on the approach proposed by Taminau et al. (2008). Nonetheless, there are techniques and
shape-based comparison programs (Rapid Overlay of Chemical Structures, ROCS) based on
that atom-based approach (Grant et al., 1996; Rush et al., 2005).

Pharao is a tool that automatically detects several pharmacophore points within a molecule,
assigns a respective volume to each, as pictured in Figure 9, and then begins the computa-
tion to find the subset of matching pharmacophore features that have the largest volume
overlap. The usage of Gaussian volumes, due to the smooth nature of the continuous Gaus-
sian functions, facilitates the computation of optimal alignments. No time or complexity
related information was mentioned.

The software used by BIAL, Internal Coordinate Mechanics software (ICM), which was taken
as a starting point for this dissertation, can be seen as a combination of all methods men-
tioned above. Molsoft’s software, ICM-Pro, as Pharao, makes its own conformational sam-

3.1. Semiflexible Molecular Alignment 21

pling, based on a biased probability Monte Carlo (BPMC, (Abagyan and Totrov, 1994)), with
local gradient minimization to optimize the docked ligand’s internal variables, including
six positional variables and all freely rotatable bonds. As MultiSEAL, it uses random moves
to these variables followed by energy minimization based on a full energy function, repre-
sented in a specific data structure, in order to find a good ligand pose/conformation (Neves
et al., 2012; Lam et al., 2018). And lastly, as Baum (2005), it uses a reference molecule and
a special data structure, this time based on Gaussian property fields as representations of
each ligand bond, to evaluate the best alignment (Lam et al., 2018).

Figure 10: Predicted docking pose of FXR 26 (blue) versus the co-crystallized structure released (yel-
low). Fig. 3 in (Lam et al., 2018).

Here, each data structure represents a conformation of a ligand and their respective
fitness to the protein (receptor) physicho-chemical atomic properties, and atomic property
field (APF) interaction energy, giving a measure of chemical 3D similarity, that is, phar-
macophoric potential, on a grid (Lam et al., 2018). APF can be generated from one or
multiple ligands and seven properties are assigned from empiric physico-chemical compo-
nents (classic pharmacophorics types: hydrogen bond donors, acceptors, Sp2 hybridization,
lipophilicity; others: size, electropositive/negative and charge) (Totrov, 2008). An example
of a conformation (blue) of a ligand (yellow) for alignment within a protein can be seen in
Figure 10.

To summarize, ICM uses an hybrid ligand/receptor structure-based docking and pose
selection method, Ligand-Biased Ensemble Docking (LigBEnD), by incorporating the APF
method, also developed by Molsoft, into structure-based ensemble docking (Lam et al.,
2018). This commercially available software ranked in first place for average RMSD docking
accuracy in the Drug Design challenge competition (D3R) in both 2016-17 and 2018 (Molsoft,

22 Chapter 3. State of Art

2017, 2018). Although it only considers semi-flexible alignment, this states the accuracy and
highly-use of semi-flexible methods for flexible molecular alignment.

3.2 flexible molecular alignment

Although, as stated, the software used as reference for this work, ICM, does not take
flexibility as a direct parameter in the alignment, it is still relevant to review some articles
related to the subject.

Figure 11: Overlay of L-benzylsuccinate and glycyl-L-tyrosine: (a) alignment in the crystal; (b) calcu-
lated flexible alignment at the final set of parameters optimized for all ligand pairs. Fig.
3 in (Labute et al., 2001).

Labute et al. (2001) created a method that produces a collection of alignments along with
a score for each alignment based upon the internal energy of the molecules and a similar-
ity score defined by an overlap of Gaussian feature densities. In the former, the volume,
aromatic, donor and acceptor feature densities are used as similarities factors. In order to
simultaneously search the conformational space of each molecule and the alignment space
of the collection for optimal alignments, it resorts to a modified RIPS procedure (originally
created by Ferguson and Raber (1989)) that can be summarized in five steps:

1. Set the values of the adjustable parameters;

3.2. Flexible Molecular Alignment 23

2. Set all rotable bonds to random dihedral angles. Add a random number, within a
certain range, to all atomic coordinates. Randomly orient all molecules by choosing
three atoms randomly from each molecules and superpose;

3. Minimize the objective function with respect to the coordinates of all atoms;

4. If the new configuration has not been seen before, then set the variable k to 0, oth-
erwise, k = k + 1. If k is greater than some predefined amount, then terminate the
search and go to step 5; otherwise return to step 2;

5. Prune the list of configurations by removing all configurations in which the average
potential energy (of the alignment) is greater than the minimum observed average
potential energy plus some predefined threshold.

As a disadvantage, this method takes into account the X-Ray crystallographic coordinates
to infer whether the alignment scoring function assigns the expected scores to experimen-
tally determined alignments, which can be a faulty reference. In Figure 11 it is possible to
see a calculated flexible alignment and respective crystallographic alignments.

Figure 12: Examples of dockings executed by Surflex with high accuracy (3tpi); good accuracy
(1tmn); acceptable accuracy (1hri) and poor accuracy (1atl). Fig. 6 in (Jain, 2003).

24 Chapter 3. State of Art

Surflex (Jain, 2003), a fully automatic flexible molecular docking algorithm, combines the
scoring function from the Hammerhead docking system, also created by Jain (1996), with
a search engine that relies on a surface-based molecular similarity method as a mean
to rapidly generate suitable putative poses for molecular fragments. The Hammerhead
docking system is an empirically derived scoring function based on the binding affinities
(such as hydrophobic and polar complementarity) of protein-ligand complexes coupled
with their crystallographically determined structures (Jain, 1996). Surflex combines the
Hammerhead’s function with a molecular similarity method (morphological similarity) to
generate putative poses of ligand fragments (Jain, 2003). Figure 12 depicts examples of
dockings with different levels of accuracy produced by Surflex.

Some disadvantages of this algorithm rely on the scoring function as it does not explicitly
include the training on negative examples (which would reduce false positive rates) and
the effect of nonbonded self-interactions within ligands. As in the previous algorithm,
Surflex also depends on the closeness to already determined crystallographic structures as a
parameter to the scoring function, making it an unreliable algorithm to find new structures
that may be possible but have not yet been detected experimentally.

As a different method, Marialke et al. (2007) takes a combined 2D/3D approach for the
superposition of flexible chemical structures based on common subgraphs identification
and a gradient-based torsion space optimization algorithm. This method neither requires
precalculated statistics on the conformations of the molecules nor does it make simplifying
assumptions on the topology of the molecules being compared.

This algorithm is a graph-based molecular alignment (GMA) and consists of three steps: a
preprocessing step, which produces mappings between the query and template, the actual
mapping of the dihedral angles, and the torsion space optimization of the flexible degrees
of freedom of the query molecule. In the first step, its used a maximum common subgraph
(MCS) metric (Raymond and Willett, 2002), but because the standard one-to-one mapping
between atoms is a poor choice for structurally mapping molecules (due to only taking into
account direct connectivity), it resorts to a variant of graph isomorphism, which, in turn,
leads to topologically correct mappings. The last two steps obtain the 3D coordinates of the
query molecule by optimization of its conformations with respect to the root-mean-square
deviation (RMSD) of the atoms that are mapped to the template. The optimization itself
is obtained with an algorithm that solves the RMSD minimization in torsion space. This
method does not require additional constraints or energy terms to keep the conformation
of the ligand physically reasonable, that is, with correct bond lengths and angles (Marialke
et al., 2007).

Unlike the two previous works reviewed, this algorithm does an unbiased alignment,
i.e. it makes no use of the X-Ray structure of complexes. As a downfall, it always takes
one of the molecules (the template) as rigid, not taking into account the flexibility of both

3.2. Flexible Molecular Alignment 25

Figure 13: (a) 2r04 ligand (light-blue) aligned on 2r06 (thick sticks). (b) Comparison between aligned
pose (ball-and-stick) and crystal structure for ligand 2r04 (thick sticks). (c) 2rs3 ligand
(light-blue) aligned on 2rr1 ligand (thick sticks). (d) Comparison between aligned pose
(ball and stick) and crystal structure for ligand 2rs3 (thick sticks). (e) 2r04 ligand (light-
blue) aligned on 2rr1 ligand (thick sticks). (f) Comparison between aligned pose (ball-
and-stick) and crystal structure for ligand 2r04 (thick sticks). Fig. 3 in (Marialke et al.,
2007).

molecules to align. Figure 13 compares alignments obtained by Marialke et al. (2007) and
the respective crystallographic alignment. It is possible to see that the alignments found
are really close to the template, but the crystallographic structure did not fit so well to the
pose generated. This proves that errors may be introduced when using the experimentally
obtained structure as a parameter in the scoring function used to align molecules.

All methods until now, despite their individual pros and cons, have one con in common,
the fact that they only consider two molecules at a time in the alignment.

On the contrary, the next approach, proposed by Schneidman-Duhovny et al. (2008), is
able to automatically align multiple flexible ligands in a deterministic matter. This method,
named Pharmagist, aims at pharmacophore detection by aligning (two or more) flexible
ligands, with or without prior knowledge of the receptor. The input of this algorithm
is a set of ligands, each given by the 3D coordinates of its atoms centers and covalent
bonds between them. To avoid explicit conformational search, it is assumed that one of
the ligands, called the pivot, is considered rigid. The other (target) ligands are treated
as capable of exhibiting torsional flexibility about their rotational bonds. Additionally, the
scoring function measures the similarity between a set of features from the targets and pivot
based on a set of definitions discussed in section 2.1 of Schneidman-Duhovny et al. (2008)’s
work. The features considered are physico-chemical properties relevant to ligand-receptor
binding (aromaticity, charge, hydrogen bonding, or hydrophobicity).

Pharmagist works as depicted in Figure 14. In the first stage, each ligand is partitioned
into rigid groups connected by rotatable bonds and is assigned a set of physico-chemical

26 Chapter 3. State of Art

Figure 14: Method flow of Pharmagist. Fig. 1 in (Schneidman-Duhovny et al., 2008).

features. In the second, pairwise flexible alignments between pivot and each target ligand
are computed. In the third, pairwise alignments are combined into multiple alignments be-
tween pivot and at least two target ligands. In the last stage, all candidate pharmacophores
are clustered to produce a non-redundant set of solutions. The clustering stage is invoked
only once to cluster solutions generated by all pivot iterations (Schneidman-Duhovny et al.,
2008). In this method, the pivot can be selected by the user. However, by default, the as-
sumption is that the pivot ligand is unknown and thus, the method iteratively selects each
one of the input ligands to work as pivot. In the case where the pivot is selected by the user,
there is no Pivot Iteration, as depicted in Figure 14.

The only negative characteristic of this algorithm is the fact that a pivot is always needed,
i.e. conformational search is not explicitly applied. A very similar approach, but based on
ant colony optimization, was proposed by Korb et al. (2010).

3.3 quantum similarity superposition algorithm - qssa

Unlike any other algorithm reviewed above, this algorithm does not mention or consider
molecular flexibility. It is only focused on optimization of rigid molecular alignment. This
algorithm can be of greater interest in this problem than all the others previously men-
tioned. This relevance, of course, is not to this case study in particular, but for the design
of future quantum algorithms for optimization of molecular alignment, rigid or flexible.

3.3. Quantum Similarity Superposition Algorithm - QSSA 27

Due to this reason, it will be briefly done a review on the principles of molecular similarity
and superposition based on quantum chemistry. In the next section, however, it will be
continued the train of thought to the case study presented in this dissertation.

A concept like molecular similarity is not so easily described in a mathematical form
based on quantum chemical ideas. The same goes for the alignment of molecules. In
a visual approach, the process starts by trying to find spaces within the two molecules
where a high similarity becomes apparent. In most of the molecular alignment procedures,
this similarity is based on molecular geometries. Consequently, when such topographical
similarity is absent or not expressive enough, this constitutes a limiting problem. The work
of Bultinck et al. (2003) takes into account the topographic properties along with a general
and internally consistent scheme based on quantum chemical ideas.

In quantum chemistry the determining entity is the wave function itself. Although this
mathematical object does not carry any physical meaning, it is possible to obtain informa-
tion with physical meaning, such as the electron density, using the density functional theory.
Bultinck et al. (2003) builds an approximate electron density in order to derive similarity
and alignment equations and algorithms. The molecular similarity is calculated through
the overlap of molecular densities between two molecules, and the alignment is performed
in such a way as to maximize the molecular similarity. This is achieved in terms of the
relative orientation of the second molecule’s coordinate system with respect to that of the
first molecule, using three translation parameters and three Euler angles. Due to the large
number of local maxima, this optimization involves a Lamarckian genetic algorithm with
the simplex method as a local optimizer (Bultinck et al., 2002b,a, 2003).

The method used, molecular quantum similarity (MQS), was first defined in 1980 (Carb
et al., 1980) and states that the quantum similarity measure of two molecules, A and B, can
be simply obtained through the integral measure, ZAB, expressed in Equations (1) and (2).
All elements ZAB form a symmetrical (N × N) matrix Z, called quantum similarity matrix.

ZAB =
∫ ∫

ρA(r1)Ω(r1, r2)ρB(r2)dr1dr2

=
∫

ρA(r1)ρB(r1)dr1 (1)

where ρA(r1) refers to the electron density of molecule A at some point r1 in space; Ω(r1, r2)

is a chosen positive definite operator, such as the kinetic energy operator or the coulomb
operator. In this case was used the Dirac function δ(r1 − r2).

Due to the very high computational effort, the electron density of a molecule with MA

atoms is approximated as the sum of the electron densities of the atoms composing the
molecule. This is called the Promolecular Atomic Shell Approximation (PASA), which is later
expanded in terms of a basis set of spherical Gaussian Type Orbitals (GTO). The GTO’s

28 Chapter 3. State of Art

employed are all chosen as spherically symmetric s-type orbitals, which yield rotational
invariant density functions. After these implementations and normalization, Equation (1)
becomes:

ZAB =
∫ ∞

−∞
(

MA

∑
a

Za

NG

∑
ia

wia |sia(r)|
2)(

MB

∑
b

Zb

N′G

∑
ib

wib

∣∣sib(r)
∣∣2)dr

=
MA

∑
a

MB

∑
b

ZaZb

NG

∑
ia

N′G

∑
ib

wia wib

∫ ∞

−∞
|sia(r)|

2∣∣sib(r)
∣∣2dr (2)

where Za refers to the atomic number of a single atom a, wia is the expansion coefficients
and NG is the number of GTOs of symmetry s used in the expansion.

To see the entire equation development refer to Bultinck et al. (2003).

The results, nonetheless, depend on the alignment of the involved pair of molecular struc-
tures. Depending on the relative orientation of both molecules, their electron densities will
differ in the same point in space in an external coordinate system. Aligning the molecules
by searching the relative orientation of molecule B versus molecule A (where ZAB becomes
maximum) is, once again, an approach with a high computational effort.

Although it is a very relevant procedure, due to lack of relevance to the main purpose of
this dissertation, this article will not continue to be reviewed. Nevertheless, it is important
to emphasize certain aspects and highlight the relevance of this article in the future world
of quantum simulations for chemistry or medicinal chemistry and drug-related problems.
This method and respective equations only take into account two molecules and until now,
there were two times where the computational power required could be too high. This
is important because, following the principles of quantum mechanics, these equations can
easily include interactions between several molecules. The reason for not implementing
lies on the lack of computational power, characteristic that may be solved with the help of
quantum simulations on quantum devices.

As stated by Feynman (1982):

“Nature isn’t classical, dammit, and if you want to make a simulation of nature, you’d
better make it quantum mechanical, and by golly, it’s a wonderful problem because it
doesn’t look so easy.”

Following the same principle of quantum simulations based on pure quantum mechanics,
as is the case of quantum chemistry, is the simulation of small molecules. As already
mentioned in section 1, it was explored a case study on simulation of small molecules
using quantum computation, in which is present my personal contribution, during the
same timeline of this dissertation.

In Tavares et al. is reviewed all relevant theories, tools, techniques and explored all steps
of the case study, from the conception to its actual execution. These include the Hamiltonian

3.3. Quantum Similarity Superposition Algorithm - QSSA 29

modeling of the molecular system, the Hamiltonian translation to a quantum circuit and
finally, the actual execution of the circuit in a quantum device. From such Hamiltonians is
calculated some molecular properties of interest, such as the ground state, the dissociation
energy and the Stark effect.

4

T H E A P P R O A C H

The purpose of the case study addressed in this dissertation is to discover the best align-
ment between sets of molecular conformations, i.e. the best alignment between flexible
molecules given some corresponding conformations. As discussed in section 2.3 and men-
tioned in section 3.1, these means that not a totally flexible alignment but rather, a semiflexi-
ble molecular alignment was adopted. In this case study, each conformation is represented
by the Cartesian coordinates of a given set of points. These points are not the atoms, but
the midpoints of a specific pharmacophore feature (which is a set of atoms that together
have a given property), and each of them can only be “connected” (superposed) to another
point with the same feature.

Figure 15: Stereochemical formulae of the conformations of ligand molecules (1C4V, 1TOM and
1D4P) with respective pharmacophore features surrounded by 2Å spheres. Positive
charges represented by the lighter colors and hydrophobicity by the darker colors within
the respective molecule’s colors (blue, green and orange).

32 Chapter 4. The Approach

This abstraction of perceiving a conformation as a set of points with specific properties is
at some point a good approach to this sort of problems since it does not take into account
a specific molecule or geometry, but instead a structure with some properties. This allows
the initial data to be any type of molecule, provided that it respects the positions of the
groups that have the properties that have been tested. Therefore, as easily concluded from
section 2.1, this is an approach based on the ligand-based pharmacophore model.

As illustrated in Figure 15, the number of points is variable among different molecules,
and so, among different conformations from different molecules. For a better understand-
ing: there can be a conformation with two points with Positive charge properties and one
point with Hydrophobic properties and another conformation, from a different molecule,
with only one point for each feature.

Figure 16: Alignment of conformations of ligand molecules (1C4V, 1TOM and 1D4P) with respec-
tive pharmacophore features surrounded by 2Å spheres. (a) with the molecule structure,
(b) without. Data used as depicted on (b).

As can also be seen from Figure 15 and 16, due to the structure and chemical properties
of molecules, each point can only be aligned to another point from each conformation.
Furthermore, another relevant restriction is that two points can only be aligned if they are
at a maximum distance of 2 Å, also represented in Figure 16. Both these restrictions exist
because this alignment method is based on distance and chemical affinity.

To summarize, these are the imposed restrictions to the alignment problem:

1. Two points can only be aligned if they have the same chemical feature.

2. Each point can only be superposed to one and only one point from each conformation.

3. Two points can only be considered aligned if they are at a maximum distance of 2 Å.

In the end, the solution is a set of conformations, one from each different molecule.
Additionally, it is important to highlight that there is not a unique solution to this type of

33

problem. There can be several possible sets of conformations that respect all the restrictions,
from which, the ”best” is the one with the most points aligned at the least distance possible.

Figure 17: Flow chart of the problem. The order of alignment is indifferent. c©SofiaOliveira, 2020

Therefore, it is possible to write out the problem as illustrated in Figure 17, and as so:

With N sets, each set M subsets and each subset a variable number of points, choose the subset
from each set that contributes to the best alignment. This alignment depends on the distance between
the points of the same type, from each subset. Each point can only be connected to a maximum of
N − 1 points, one from each set. The calculation of ’fitness’ of a given N subsets takes into account
all possibly connected points that are at a maximum of 2 Å distance from each other. The mentioned

34 Chapter 4. The Approach

subset of points is a rigid set of points that can undergo translation and rotation to achieve the best
position for posterior analysis of alignment.

Since this is an optimization problem and the goal is to change it to an entirely different
paradigm, quantum computation, one should abstract from their non-mathematical param-
eters. To do so, it is important to formalize the way one refers to the point’s properties.
This abstraction was made taking into account the actual data but keeping it adaptable.

4.1 the data

Figure 18: Organizational flow chart of the data and possible alignments. The order in which these
alignments are done is indifferent. Each point, referenced as P* (where ’*’ stand for a
given number), has 3 integer values (for the x, y and z coordinates) and a string value, the
type (representative of the pharmacophore feature). c©SofiaOliveira, 2020

In the initial stage, on which all assumptions and decisions were based, there are twelve
conformations for each of three molecules and there is only two different pharmacophore
properties: Positive charge and Hydrophobic. Due to the required abstraction from chem-
ical aspects and to simplify, from now on, the Positive charge property of a point will be

4.2. The approach 35

referred as a point of type P, and the hydrophobic property as the type H. In Figure 18 is
possible to consult the organization of the data and possible alignments.

The points from each conformation are given as Cartesian coordinates relative to a fixed
axis. This means that the data received can be located far apart and so, the third restriction
above, which states that two points can only be considered aligned if they are at a maximum
distance of 2 Å, could never be obeyed. To correct and prevent this situation, an additional
step is required, the spatial pre-alignment of the conformations. This pre-alignment step is
already depicted in Figure 17.

In the end, the solution consists of one set of three conformations (one from each different
molecule) when considering all the molecules generating a pharmacophore, or a set of
two conformations, when considering only two of them. As a consequence, the number
of different molecules chosen to generate a pharmacophore is a degree of freedom and
a decision one needs to previously make. This degree exists because there is no fixed
number of molecules required to create a pharmacophore. Indeed, the higher the number
of different molecules used, the more accurate would be the pharmacophore. However,
in the proposed case by BIAL, it was given freedom in this parameter and the number of
different molecules used to create a pharmacophore became a choice, which will be further
explained later on.

4.2 the approach

How should one organize the data? Even more important, what should be the approach to
the problem? These were questions that immediately emerged and changed this problem
to a purely computational problem, not a chemical one. Graphs have been used previously
to solve the problem of flexible molecular alignment, and as they are well studied and
characterized mathematical structures, it came as obvious that they could provide a good
approach. Then came the questions: Should one deal with this problem as a graph problem
(graph similarity or subgraph matching problem), i.e. treat data as graphs (Approach 1)? Or
use graphs as a tool to solve the problem (Approach 2)? To deliver a reliable answer, each of
the approaches needs to be studied. But first, a brief review to the notion of a graph.

Graph theory deals with the way objects are connected. For a mathematician, a graph is
the application of a set on itself, i.e. a collection of elements of the set and a binary relation
between these. There is hardly any concept in the natural sciences which is closer to the
notion of graph than the constitutional formulae of a chemical compound because one may
directly use a graph to represent a molecule if considering only its internal connectivity (i.e.
chemical bonds between atoms in a molecule) (Trinajstic, 1992).

36 Chapter 4. The Approach

Using the notation in Trinajstic (1992), a simple graph is defined as an ordered pair
[V(G), E(G)], where V = V(G) is a nonempty set of elements called vertices (or points) of
G and E = E(G) is a nonempty set of unordered pairs of distinct elements of V(G) called
edges (or lines). For further information on the subject check Trinajstic (1992), where is given
a chemical point of view, or West (2001), which follows a purely mathematical approach.

Next, the idea behind these two approaches, the problem and, in the second case, the
envisaged solution, is described.

approach 1

The first approach resorts to two well-known graph problems, subgraph matching and
graph similarity, where the goal is to match a graph to another in the first case, and assess
the similarity between two graphs, in the second. Both tasks need to be accomplished, in
that order, in this problem.

Based on Koutra et al. (2011), one can state these two problems as follows:

Subgraph matching involves identifying the coherent or well-connected subgraphs that
appear in some or all of a set of graphs, that is, it tries to extract a subset of nodes that are
highly connected (sharing a great number of edges).

Graph similarity, by its turn, is the classification of similarity based on the mapping
between the graph’s nodes. The mapping can be established through graph isomorphism,
feature extraction or iterative methods.

IDEA: Each subset forms a graph resorting to a subgraph matching algorithm, make an
evaluation of each possible solution and, choose the best matching score based on a
graph similarity algorithm.

PROBLEM: The points, from each subset, have no known ”connections” between them, i.e.
there is no set of vertices. Although one may think that these could be easily inferred
by geometric proximity, that could possibly lead to biased and unreal data. The
original data are nodes (points) with no relation between them1. This means the data
cannot be treated as graphs and thus makes it impossible to solve the problem as a
graph problem.

approach 2

The second approach takes advantage of graphs but only as an auxiliary data structure
to solve the problem.

1 In a discussion with BIAL, it was attempted to convert these abstracted data into a graph by connecting all
points to a null new point, creating a center point with all other points connected to the null. Although this
would indeed turn the data into graphs, it would not bring any greater advantage over the second approach
discussed below.

4.2. The approach 37

0
0
0
0

0
C
0
0

0
0
0
0

0
0
0
0

0
0
0
C

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

C
0
0
0

Some Subset of Molecule 1

1H1
1H2

1H3
1P1

Some Subset of
Molecule 2

2H1

2H2

2H3

2P1

Some Subset of
Molecule 3

3H1

3H2

3P1

Figure 19: 3-Dimensional Matrix of approach 2 after evaluation of which points are connected. In
this example are taken into account conformations (subsets) of 3 different molecules (sets),
with different number of points. C stands for connected. c©SofiaOliveira, 2020

IDEA: Creation of multiples graphs, each representing a possible solution. Every of these
graphs would be represented by a ∏N

i Ki dimension matrix, where N stands for the
number of subsets to be matched at once and Ki the number of points of the subset i.
Each matrix dimension is a subset of points.

The data in a given matrix position can either be an integer or 0, where 0 stands for
non-connected and otherwise connected. The solution would be the graph with the
best score. This score is a relation between the number of non-zero elements of the
matrix and the sum of theirs values since these represent the distance between the
elements that are connected. The points chosen to be connected will connect so after
the verification of restrictions. Figure 19 illustrates this approach.

PROBLEM: When comes to subsets with a different number of points of the same type, there
may exist the possibility of some points of at least two subsets not being connected to
at least one of the other subsets, within the same graph (possible solution). Having
an ∏N

i Ki dimensional matrix restricts this type of connections since it demands, at
every time, N points to be connected to each other.

SOLUTION: This was solved by analyzing not only possible solutions with N subsets (which
implies one subset from each different molecule), but also, all possible solutions with
size lower than N (N, N − 1, ..., 2), which implies that a possible solution may not
involve all N initial molecules. This, of course, entails the need for an analysis of
different alignments, each considering a different number of molecules (sets).

In conclusion, approach 2 was the followed approach in this dissertation.

38 Chapter 4. The Approach

4.3 division of the problem

Quantum computation still has a long way to go, which means that a complex problem,
such as the one to be studied here, needs to be broken into small pieces in order to be
solved. With that in mind, and by looking at Figure 17, one can easily see three distinct
computational tasks as depicted in Figure 20:

1. Spatial pre-alignment of conformations (Pre-Alignment)

2. Verification of restrictions (SAT Solver)

3. Search of the best solution (Solution Search)

The first one, only by itself, is a complex task that needs to consider rotations and transla-
tions of a rigid set of points (as in a conformation) in order to minimize the overall distance
between different sets of points (different conformations). After consideration, a quantum
algorithm of this segment of the problem was put aside and the idea of an hybrid algorithm,
with both quantum and classical computations, emerged. A totally classic algorithm would
tackle this first step, as illustrated in Figure 21.

In the next section, such algorithm will be introduced and further explained, but in an
overall view, this is a task of registration of 3D point sets, component key in many computer
vision problems (Fitzgibbon, 2003; Myronenko and Song, 2010; Wu et al., 2013). The goal of
point set registration is to assign a correspondence between two sets of points and to recover
the transformation that maps one point set to the other (Myronenko and Song, 2010). In
this particular case, the map transformation is not relevant, only the final position and the
correspondence error between the two sets of points to be aligned.

On the other hand, the second step, verification of restrictions, has a direct resemblance
to a very well known problem, CSP, short for constraint satisfaction problem. While CSP
deals with discrete variables, satisfiability SAT problems, also known as binary CSP, deals
with binary variables. As stated by Gu et al. (1996), due to this close relationship, any CSP
algorithm can always be transformed into a (SAT) algorithm. This is important because
working with binary variables is a lot less expensive (from a computational perspective)
than working with discrete ones. This is relevant when one is dealing with devices with
low computational power, as it the case of the nowadays NISQ (Noise Intermediate-Scale
Quantum, (Preskill, 2018)) devices. Nevertheless, the goal of a SAT problem is the same
as the CSP, determine whether there exists an assignment of truth values to variables that
makes formula (3) satisfiable (Gu et al., 1996).

C1 ∧ C2 ∧ ...∧ Cn (3)

4.3. Division of the problem 39

Figure 20: Flow chart of the division of the problem (right) based on Figure 17 (left). c©SofiaOliveira,
2020

Each Ci, for i ∈ 1...n, is a restriction with value True of False witnessing the verification of
a restriction. When this formula is satisfied, all n restrictions imposed are verified, exactly
what is intended for this step in the case study. Accordingly, there will be a quantum
algorithm that is capable of verify the satisfiability of the restrictions, which, for the sake of
coherence, will be named Quantum SAT (qSAT) solver. This qSAT solver will be iteratively
applied to each possible set of alignments but every intermediate step will be executed
classicaly, as depicted in Figure 21. (In order to better understand or recall what are all
possible sets of alignments, please check the bottom of Figure 18.)

The last, but not least, third step, is the final search throughout all alignments, of the one
that fits the criteria, i.e. that respects the restrictions. The search takes into account, not only
if the criteria are met, but also what is the alignment that has the highest possible number
of points correspondence and the least overall distance between those points. As in the
previous step, there will be a quantum algorithm to execute this search but all intermediate
steps are classical. The procedure is also illustrated in Figure 21.

40 Chapter 4. The Approach

Figure 21: Flow chart of the problem hybrid approach. Filled blue boxes are steps under quan-
tum paradigm and large dotted box stands for an iterative cycle throughout all possible
alignments previously generated. c©SofiaOliveira, 2020

4.4 reengineering of the problem

To close this section, one needs to recall that one of the goals of this dissertation is to
compare and analyse the viability of a quantum algorithm for this type of problem. Having
that in mind, it is relevant to compare similar processes in the quantum versus classic
paradigm. Although the present case study is based on a software, ICM, the actual problem
solved by ICM and the one solved in this dissertation, are not computationally the same.
ICM takes several more steps, such as the initial generation of the conformational space,
the energy function minimization as a parameter of alignment, and the consideration of the
molecule’s bonds to the actual alignment. ICM takes into account much more information
than the one used for this case study. Of course, because the problem to tackle is not the
same and it will be substantially abstracted and reduced compared to the original2, it only

2 Here, qualifier original stands for the commercially available optimized software, but not exclusively, ICM.

4.4. Reengineering of the problem 41

makes sense to create a classical algorithm that tries to solve the problem in the same steps
as the quantum algorithm.

With that in mind, it was done a classical reengineering of the problem executing the
same steps as the quantum algorithm. For that, a rather big research was necessary in
order to find and understand classical algorithms for this purpose. All of this process is
documented in the next section.

Meanwhile, is important to mention that the best comparison regarding viability of an
algorithm versus another always comes by comparing both of them with their best abilities
in action. Since the quantum devices available do not represent, by far, an optimal quantum
computer, it is not possible to make a fair comparison in that matter. Indeed, considering
the very noisy quantum computation versus the very well establish classical computation
existent nowadays, the classical algorithm would always win. The question remaining, that
hopefully could be answered in the future, is: Considering the ideal conditions for both
algorithms to run, which would get the best or the fastest results?

5

R E E N G I N E E R I N G O F A C L A S S I C S O L U T I O N

When approaching a new problem, an initial step is evaluating similar problems, if not
possibly the same, and respective resolutions.

As stated previously, the case study is not the whole problem of Flexible Molecular Align-
ment, but instead a small section of its components. That is, it will not be considered the
whole conformational space of the molecules neither their respective analysis. This disserta-
tion will only focus on a small set of pre-computed conformations per molecule. Nowadays,
this small section is never considered alone, i.e. the whole problem is considered. Hence,
there are not updated methods that could be used for the comparison, analysis, and compre-
hension of the problem. Consequently, and as concluded in section 4.4, a classical approach
to the problem is also necessary to be discussed. With this in mind, classical approaches
to the case study are documented in the current section, starting with the pre-alignment
of conformations, which will not be implemented by a quantum algorithm; next the SAT
implementations tested and used, and lastly the score evaluation and solution choice. All
respective programs can be found in the Appendix.

For a better understanding of the methods used, check Figure 22 for equivalence of data
structures, depicted in Figure 18, in pyhton language.

5.1 pre-alignment

The aim of this first step is to move the conformation as a rigid set of points by rotations
and translations in order to make it the closest possible to the other conformations to which
the first one is to be aligned. At an abstract level this problem can be seen as a Rigid Point
Set Registration.

Point Set Registration (PSR) is, as already mentioned in section 4.3, a common problem in
computer vision where the task of registration is to place the data into a common reference
frame by estimating the transformations between the datasets (Fitzgibbon, 2003). Therefore,
PSR is a search for the transformations necessary to make correspondences between two

44 Chapter 5. Reengineering of a classic solution

Figure 22: Data organization through pyhton. Representation with equivalent chemical meaning,
colors added to simplify correlation. Real list size illustrated for each case. (# stands for
any valid position of the list.) c©SofiaOliveira, 2020

sets of points (Fitzgibbon, 2003; Myronenko and Song, 2010; Wu et al., 2013). An illustration
of this problem can be found in Figure 23. Rigid Point Set Registration, on the other hand,
implies a specific search for a rigid transformation, also known as the Euclidean transformation,
that makes such correspondences. A rigid transformation is a transformation that preserves
the distance between points and can be seen as if there were a rigid link between points, as
illustrated in Figure 24.

According to Bottema and Roth (1990) and McCarthy (2013), a rigid transformation is
only composed by translations, rotations, and possibly reflections, definition that will be

5.1. Pre-alignment 45

Figure 23: Problem of point set registration: given two sets of points, assign the correspondence and
the transformation that maps one point set to the other. Figure 1. in Myronenko and Song
(2010).

Figure 24: Example of a rigid transformation, including rotation and translation, (a) with visible
rigid links between points, and (b) without. d1, d2 and d3 is always maintained during
transformation. Note that (a) is merely a representation, there are no actual links between
points, as represented in (b). c©SofiaOliveira, 2020

followed in this dissertation when mentioning a rigid transformation. However, in Myro-
nenko and Song (2010) is also mentioned another geometric transformation, scaling1, which,
by abuse of language, is also considered as a rigid transformation. Regardless, the latter
reference will be used so please take notice when such differences appear (which will be
mentioned). Explicitly, formula (4) is the considered formula in Myronenko and Song (2010)
while in Bottema and Roth (1990) and McCarthy (2013) is considered the one represented
by formula (5).

1 Linear transformation that increases or diminishes structures by a scale factor that is the same in all directions,
maintaining the proportion between points but altering the corresponding distances.

46 Chapter 5. Reengineering of a classic solution

T(v) = sRv + t (4)

T(v) = Rv + t (5)

In both equations, T(v) stands for a transformation acting on a vector vD×1, where RD×D

is a rotation matrix, tD×1 is a translation vector and, in Equation (4), s is a scaling parameter.
D is the dimension of the point sets.

There are a lot of algorithms proposed to perform this task. Among the most widely
used are the Iterated Closest Point (ICP) (Besl and McKay, 1992; Zhang, 1994) and Coherent
Point Drift (CPD) (Myronenko and Song, 2010) algorithms. The former iteratively assigns
correspondence based on the closest distance criterion and finds the least-squares rigid
transformation relating the two point sets. The algorithm then redetermines the correspon-
dences and continues until it reaches the local minimum. Although this is a very popular
method due to its simplicity and low computational complexity, ICP requires the initial
position of the two point sets to be adequately close. The later, on the other hand, formu-
lates the registration as a probability density estimation problem, where one point set is
represented using the Gaussian Mixture Model (GMM), and the other point set seen as an ob-
servation of that GMM. The correspondence is achieved by maximization of the likelihood.
Since this is a more recent approach and, in this case, there is no information regarding
initial closeness, CPD is expected to be more accurate and thus, it is the algorithm that will
be further explained. For additional information on ICP refer to Besl and McKay (1992) and
Zhang (1994).

coherent point drift algorithm

Is important to clarify how this algorithm operates but do not forget that the aim of this
dissertation is not to reproduce the classic process but rather its quantum version. As this
algorithm will not have a ”quantum version”, as explained in section 4, consider an example
extracted from Khallaghi (2017), where all further details can be found in Myronenko and
Song (2010)’s work.

Assume there are two point sets X and Y. The unknown transformation is a rotation
around the origin (parameterized by θ in a rotation matrix R) followed by a translation
(parameterized by t). The first step of this algorithm is assignment of correspondences
between points. If the correspondences are known the solution is given by the following,
also known as the orthogonal Procrustes problem (Schönemann, 1966):

5.1. Pre-alignment 47

Figure 25: Example of probability distribution based on proximity extracted from Khallaghi (2017).
Inner circle has a radius of 0.2 units and an assigned probability of 1. The outer circle has
a radius of 4 units and corresponding probability of 0.5.

argminR,t‖X− RY− t‖2, subject to RTR = I (6)

When the correspondence is not explicitly known, point set registration algorithms as-
sumes that correspondence can be inferred through point proximity. Based on this prin-
ciple, it is possible to assign arbitrary correspondence probability to point sets based on
proximity, as depicted in Figure 25. Even though this approach is quite simple, it is highly
used due to two distinct advantages. First, it allows to assign correspondences so that the
registration can be solved solely as a Procrustes problem. Furthermore, it also allows to
weight the certainty function according to the correspondence probability. CPD comes in
handy when the proximity is not adequate to make the correspondences. How so?

Instead of dealing with X, Y point sets directly, construct a GMM from the moving point
cloud, Y, and treat X as observations from that GMM. Figure 26 depicts a GMM where the
three Gaussians have a variance of 0.75 units. Blue points, i.e. Gaussian centroids, are the
transformed moving points (Y). Isocontours represent the log-likelihood that red points (X
point cloud) are sampled from this GMM.

48 Chapter 5. Reengineering of a classic solution

Figure 26: GMM extracted from Khallaghi (2017), based on example depicted in Figure 25, where
three Gaussians have a variance of 0.75 units.

In this case, in order to perform registration, the point correspondence and the moving
point set transformation problems need to be solved simultaneously. This is done through
expectation-maximization (EM) optimization, which can be divided in two steps. To solve the
correspondence problem, the Gaussian from which the observed point cloud was sampled
needs to be found (E-step). This provides the correspondence probability, similar to Figure
25. Once correspondences probabilities are known, the maximization of the negative log-
likelihood that the observed points were sampled from the GMM is performed with respect
to transformation parameters (M-step).

In Figure 26, if there was only one Gaussian component in the mixture, then the prob-
ability that a point x is sampled from this Gaussian is given using the probability density
distribution of the multivariate normal distribution. For the 2D case, with isotropic Gaus-
sians, this simplifies to:

p(X) =
1√

2πσ2
exp

{
−‖X− RY− t‖2

2σ2

}

5.1. Pre-alignment 49

However, since multiple Gaussians are in place, this probability needs to be normalized
by the contribution of all Gaussian centroids. This is already accomplished and all taken
into account in Khallaghi (2017)’s work, PyCPD.

Coming back to the problem, because in this pre-alignment there is no need to consider
the types of the points to align but just their geometric proximity, the pre-alignment can
be reached with a common computer vision algorithm that only considers Cartesian coor-
dinates of a set of points in order to reach a greater proximity, such as the one described so
far.

With this in mind, it was used a slightly modified version of the pyhton code documented
in Khallaghi (2017) and available here2. The modified version can be found here3 and
in appendix A.4.1. The algorithm per se was not altered, only some minor aspects and
parameters were adjusted.

The first obvious change lays on the definition of rigid transformation followed by My-
ronenko and Song (2010) and subsequently Khallaghi (2017), as already illustrated through
formulas (4) and (5). Due to this difference, it was necessary to eliminate the scaling factor
from the algorithm, which was accomplished quite easily by setting the scale parameter
always to 1 on each iterative update of parameters. Note, moreover, that a scaling factor
cannot be considered because molecules do not shrink or grow.

Unfortunately, with this adjustment came an unpredictable error, also incomprehensible
by the original author of the code4. It generated an error regarding convergence when the
tolerance was set lower than 0.5, value found by exhaustive search. The value of tolerance
is the interval of error between point sets proximity accepted as minimum in order to reach
convergence. In the original version this tolerance is preset to 0.001, which was clearly
impossible to reach in this case study.

A possible reason for this is the no similarity between point sets, that is, between molecules.
Since the points usually used in this type of problem are expected to be parts of the same
image/object, it is expected as well that a near perfect correspondence would be possible,
which in this case study is not. The tolerance, therefore, can not be very low. Initially the
value tested was 1, by exhaustive search of intervals as low as 0.01, the minimum value
allowed to make possible all transformations was 0.5. The change was as well implemented
within the code. It was tested several times whether such tolerance was enough to observe
any changes within the molecules proximity, and such was always found.

To describe the last adjustment, one needs to understand how the algorithm was used.
To do so, look at some of the code (given complete in appendix A.3).

def transformation(*confs):

2 https://github.com/siavashk/pycpd

3 https://github.com/msofiasoliveira/MasterDissertation/blob/master/pycpd_altered.zip

4 Contact was established with the author in the name of Sofia Oliveira on his blog, http://disq.us/p/223g8ia

https://github.com/siavashk/pycpd
https://github.com/msofiasoliveira/MasterDissertation/blob/master/pycpd_altered.zip
http://disq.us/p/223g8ia

50 Chapter 5. Reengineering of a classic solution

X and Y are lists with coordinates of 2 different conformations to "align"

if (len(confs)==2):

[c1,t1], [c2,t2] = convertTolist(confs[0]), convertTolist(confs[1])

reg1 = rigid_registration(**{ ’X’: c1, ’Y’: c2 })

TY1, _, err1 = reg1.register() #the new closest coordinates of Y

reg2 = rigid_registration(**{ ’X’: c2, ’Y’: c1 })

TY2, _, err2 = reg2.register() #the new closest coordinates of Y

if(err1 < err2):

result = unconvert(c1,t1), unconvert(TY1,t2)

else:

result = unconvert(TY2,t1), unconvert(c2,t2)

if (len(confs)==3):

[c1,t1], [c2,t2], [c3,t3] = convertTolist(confs[0]),

convertTolist(confs[1]),

convertTolist(confs[2])

nc1, nc2, nc3 = besterror(c1,c2,c3)

result = unconvert(nc1,t1), unconvert(nc2,t2), unconvert(nc3,t3)

return result

Please focus on function transformation, which receives as input a list of conformations
with the corresponding points in the object structure mentioned in Figure 22. In this case
study, because there are only three molecules to align, there are two possibilities. To align
two molecules at once, or to align three molecules at once. Focus on the first case since the
process behind it will mostly apply to the other one.

Initially, it is executed a conversion of the list of points of each conformation into two
separate lists, one to store the Cartesian points and the other the corresponding types. This
is necessary because the PyCPD is expecting a list of only Cartesian points. Afterwards, the
rigid registration is executed having in mind one conformation as the reference, that is, as
an observation of the GMM, which is always given as the first argument (X), and the other
as the moving GMM, always given as the second argument (Y).

5.2. SAT solver 51

Ideally, references should not be considered when making alignments because, as previ-
ously stated, they introduce a bias. Since solving this problem was not the focus of this
dissertation, it was chosen the best reference but no further enhancements were made.

It is possible to see that two transformations are made, one to each different conformation
taken as reference. Ideally, and if one were tackling a problem of computer vision, both
would converge to the same error level because it would be dealing with the same image at
different spatial locations. Such is not the case. The different conformations from different
molecules can, or cannot, have actual spatial resemblances. Remember this algorithm is just
an approximation and not the actual alignment. On that account, these two transformations
are performed and the one with the lowest error, that is, with the less overall distance
between points is chosen to be the best transformation. The new coordinates of the Y
conformation on such transformation will be taken into consideration from now on.

The last and only ”visible” aspect changed in the original PyCPD is the return of such
error. This error is not originally given as output although it is always calculated until
convergence.

Although all three adjustments were already mentioned, let us continue with the code
analysis. After the error check to see which reference corresponded to the best transfor-
mation, it is reversed the initial data conversion to the initial structure that gathers data
into one set (with both Cartesian coordinates and string types). The object of Class Point,
depicted in Figure 22, is used throughout the code except in this case. After this conversion,
data is sent back in its original structure but with the transformation applied.

If there were three sets to align, one would expected the process to be a lot more complex.
In appendix A.3 it is possible to see all necessary iterations to check for the best error. Nine
different transformations were done in order to find the best (minor) error. Still, the process
documented for the two-set case is similar to the one used in the three-set case and this
scales to higher numbers of sets. This method is not very efficient, its execution time grows
exponentially with the number of sets to align. Nevertheless, it is never too much to remind
that the aim of this dissertation is not this algorithm development but rather the quantum
algorithms that will still be addressed. The goal of this (classical) component is simply to
obtain the data necessary to solve the problem via a quantum process, which indirectly
required this extra development.

5.2 sat solver

The next phase, implementation of restrictions, resorts to the application of an algorithm
to every graph (matrices representing each possible solution) in order to choose the right
connections between every point. Since these are binary restrictions that allow, or not, an

52 Chapter 5. Reengineering of a classic solution

alignment to occur, they can easily be implemented with a common SAT solver (or such is
expected to). Further on, it will be possible to see that, because there is a weight associated
with some restrictions, not all SAT solvers can be applied. Notwithstanding, all events will
be document as they occur.

1H1 database[0][#][0] 2H1 database[1][#][0] 3H1 database[2][#][0]
1H2 database[0][#][1] 2H2 database[1][#][1] 3H2 database[3][#][1]
1H3 database[0][#][2] 2H3 database[1][#][2] 3H3 database[3][#][2]
1H4 database[0][#][3] 2P1 database[1][#][3] 3H4 database[3][#][3]
1H5 database[0][#][4] 2P2 database[1][#][4] 1P1 database[3][#][4]
1H6 database[0][#][5]
1P1 database[0][#][6]

Table 1: Relations between notation used in Figures 19 and 28 and pyhton code.

Recall, through Figure 22 and Table 1, how the data structure documented in Figure 19

is implemented in the pyhton code.
As already stated in section 4.2, each possible solution is a graph, represented by a N-

dimensional matrix and each matrix position, as easily observed in Figure 19, represents the
interaction between N points, one from each conformation (set of points). Each interaction
can be existent (points aligned) or non-existent (points not aligned), depending on the
verification of the restriction, which, as previously stated in section 4, is:

1. Two points can only be aligned if they have the same chemical feature.

2. Each point can only be superposed to one and only one point from each conformation.

3. Two points can only be considered aligned if they are at a maximum distance of 2 Å.

In order to implement these in a SAT solver, the restrictions need to be elaborated, as will
explained in the sequel.

same chemical feature and maximum distance

The process is straight forward: One only needs to, first, compare the string variable
from each N points to align and, second, decide on the distance calculation method to be
used.

The first operation is done by a Boolean comparison between all string variables. This was
implemented with function sameType(*Point) which receives as input a variable number of
Point objects. It was also implemented an error exception regarding the number of points
to be compared, where in case those are less then two, sends an error message.

def sameType (*points):

result = True

5.2. SAT solver 53

type_data = ""

if(len(points)<2):

raise Exception(’Number of points to be compared should be at least 2.

The number of points was: {}’.format(len(points)))

for i in points:

if (type_data == ""):

type_data = i.data

result = result and (type_data==i.data)

return result

The second operation results to the definition of Euclidean distance in the distance calcu-
lation.

Definition 5.1 Given two points in an Euclidean 3-space, p = (x1, y1, z1) and q = (x2, y2, z2), in
Cartesian coordinates, the distance between p and q is given by the formula:

d(p, q) = d(q, p) =
√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

In python, given two Point objects, the distance calculation is done by function dist (Point,
Point) as follows:

def dist (PointA, PointB):

xa = PointA.x

xb = PointB.x

ya = PointA.y

yb = PointB.y

za = PointA.z

zb = PointB.z

final = m.sqrt((xa-xb)**2 + (ya-yb)**2 + (za-zb)**2)

return final

Since the distance between three points is also relevant, is was created a function, dis-
tances(*Points), that joins both previous functions. Given a set of points, it checks whether

54 Chapter 5. Reengineering of a classic solution

all are of the same type, and if so is computes the distance between all individual non-
repetitive pairs of points. In case of all the pair-distance being inferior or equal to 2Å, it
returns the distance as the sum of all their pair-distance. Otherwise returns 0.

def distances (*points):

value = 0

pairs = [] #list with the distances between each different pairs

if sameType(*points):

for pair in comb(points,2):

pairs.append(dist(pair[0],pair[1]))

if (all(dists<=2 for dists in pairs)):

value = sum(pairs)

return value

(All codes are available in the link present in appendix A.3.)
These functions were created as auxiliary functions to the used in the SAT solver, because

they produce relevant data to the restriction itself.

alignment between one point from each conformation

The implementation of this restriction can be more complex. Using the same example
of Figure 19, this restriction demands that given all, but one, elements in every straight
”direction” viewed in a determined position needs to be zero. As an example, Figure 27

depicts in red such elements viewed from the position (1H2, 2H3, 3H1).
Thus, look at Figure 27, and imagine that instead of a possible zero or integer in every

position, it is zero or one, that is, instead of C being an integer, it is a 1. The restriction, is
given by the following calculation, where Nmoleculex is the number of points of conformation
x:

For a fixed:

i ∈ [0, Nmolecule1[,
Nmolecule2

∑
j

Nmolecule3

∑
k

elems[i][j][k] <= 1 (7)

j ∈ [0, Nmolecule2[,
Nmolecule1

∑
i

Nmolecule3

∑
k

elems[i][j][k] <= 1 (8)

k ∈ [0, Nmolecule3[,
Nmolecule1

∑
i

Nmolecule2

∑
j

elems[i][j][k] <= 1 (9)

5.2. SAT solver 55

0
0
0
0

0
C
0
0

0
0
0
0

0
0
0
0

0
0
0
C

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

C
0
0
0

Some Subset of Molecule 1

1H1
1H2

1H3
1P1

Some Subset of
Molecule 2

2H1

2H2

2H3

2P1

Some Subset of
Molecule 3

3H1

3H2

3P1

Figure 27: 3-Dimensional Matrix of a possible solution after evaluation of which points are con-
nected. Same example as depicted in Figure 19. Here, the red lines and red filled squares
represent the elements one needs to check to see whether only one point from each con-
formation is simultaneously aligned or not. c©SofiaOliveira, 2020

Since the goal is to create binary restrictions, take two matrix as decision variables. One,
elems, is based on the assumption that each position is zero or one, either the points are
non-align or align, respectively. The other, dists, follows the initial approach depicted in
section 4.2. The key in this SAT implementation is, therefore, to implement all restrictions
on the elems variable, and force dists to only have a value where elems has a 1. Such was
necessary in order to force elems to be maximized and dists to be minimized. Firstly, take a
look at the sketch of the SAT solver.

scip

def solve(conf1,conf2,conf3):

aviso = 0

cmol1 = conf1 # molecule 1 conformation

cmol2 = conf2 # molecule 2 conformation

cmol3 = conf3 # molecule 3 conformation

size = pmol1*pmol2*pmol3 #number of elements of matrix solution

aloc = VarArray(size,2) # array with 1 or 0

alocs = Variable(0,size+1) # sum of elements !=0

dists = VarArray(size,0,601) # array with elements (distances)

distss= Variable(0,size*601) # sum of elements (distances)

56 Chapter 5. Reengineering of a classic solution

def X(p1,p2,p3):

return aloc[p1 + pmol1*(p2 + pmol2*p3)]

def D(p1,p2,p3):

return dists[p1 + pmol1*(p2 + pmol2*p3)]

solucao = Model()

for id1, p1 in enumerate(cmol1):

for id2, p2 in enumerate(cmol2):

for id3, p3 in enumerate(cmol3):

value = distances(p1,p2,p3)

if (not(sameType(p1,p2,p3)) or value==0):

solucao.add(((D(id1,id2,id3)==0) & (X(id1,id2,id3)==0)))

else:

solucao.add((((D(id1,id2,id3)==0) & (X(id1,id2,id3)==0)) |

((X(id1,id2,id3)==1)

& (D(id1,id2,id3) == 100*(m.sqrt((p1.x-p2.x)**2

+ (p1.y-p2.y)**2 + (p1.z-p2.z)**2) + m.sqrt((p1.x-p3.x)**2 + (p1.y-p3.y)**2 +

(p1.z-p3.z)**2) + m.sqrt((p2.x-p3.x)**2 + (p2.y-p3.y)**2 + (p2.z-p3.z)**2)))

)

))

for p1 in range(pmol1):

solucao.add(Sum([X(p1,p2,p3) for p2 in range(pmol2)

for p3 in range(pmol3)]) <=1)

for p2 in range(pmol2):

solucao.add(Sum([X(p1,p2,p3) for p1 in range(pmol1)

for p3 in range(pmol3)]) <=1)

for p3 in range(pmol3):

solucao.add(Sum([X(p1,p2,p3) for p1 in range(pmol1)

for p2 in range(pmol2)]) <=1)

solucao.add(alocs == Sum([X(p1,p2,p3) for p1 in range(pmol1)

5.2. SAT solver 57

for p2 in range(pmol2)

for p3 in range(pmol3)]))

#relevant pharmacophore has to have at least 3 common groups

solucao.add(alocs>=3)

solucao.add(Sum([D(p1,p2,p3) for p1 in range(pmol1)

for p2 in range(pmol2)

for p3 in range(pmol3)]) == distss)

solucao.add(distss>0)

solucao.add(Minimize(distss))

solucao.add(Maximize(alocs))

if solucao.load(’SCIP’).solve():

aviso=0

else:

aviso = 1

print("No solution")

return [aviso,dists]

In a first attempt, the SAT model was implement using SCIP, where all variables need to
be in list (array) format. Here, elems is given by the name aloc and alocs is its respective sum.
dists is given by the same name and distss is the respective sum. In this SAT solver such
”duplicated” variables where necessary because it was not possible to optimize the sum of a
decision variable, it demanded the optimization to be directly applied to a decision variable.
To simplify, it was defined functions X(p1, p2, p3) and D(p1, p2, p3), that give direct access
to lists alocs and dists, respectively, given the matrix position.

A relevant aspect of this implementation is the use of integer lists. This is important be-
cause the distance between points returns a float variable, but such variable is not accepted
and unnecessarily complicates the SAT solver. In order to avoid such excess of information,
it was used the multiplication of every distance calculations by 100 in order to obtain an
integer with three digits with minimum value of 0 and maximum of 600 (as easily calcu-
lated, because each pair-distance between 3 points can only be 2Å in order to respect the
restriction, and so, the maximum distance between 3 points can only be 6).

58 Chapter 5. Reengineering of a classic solution

Another limitation of this model was the impossibility of assigning an external integer
to a decision variable. That is, when using the previously defined function distance (*Point),
despite all attempts5, it was not possible the give the result as the value of an imposed
restriction. The alternative was to calculate the distance directly in the restriction:

solucao.add((((D(id1,id2,id3)==0) & (X(id1,id2,id3)==0)) |

((X(id1,id2,id3)==1) & (D(id1,id2,id3) == 100*(m.sqrt((p1.x-p2.x)**2

+ (p1.y-p2.y)**2 + (p1.z-p2.z)**2) + m.sqrt((p1.x-p3.x)**2 + (p1.y-p3.y)**2 +

(p1.z-p3.z)**2) + m.sqrt((p2.x-p3.x)**2 + (p2.y-p3.y)**2 + (p2.z-p3.z)**2)))

)

))

Here is also perceptible the implication of elems (alocs) on dists. That is, given a position,
if X(i, j, k) = 0, then D(i, j, k) = 0, and whenever X(i, j, k) = 1, D(i, j, k) becomes an integer
which is the calculated distance between such points.

The last aspect of the SCIP solver, and obviously common to any other solvers, was the
impossibility to simultaneously minimize a decision variable and maximize another that
depended on the first, as it happens in this case. A solution was attempted by not forcing a
maximization of the sum of elems (alocss) but instead, force it to be a value equal or greater
than 3. Such value, 3, was chosen after discussion with BIAL, which stated that a relevant
pharmacophore should always have more than 3 groups in common with the ligands used.

The aspect that forced the change of the SAT solver was the impossibility to run, even
for only one time, the required number of calculations and restrictions6 in acceptable time.
The computer crashed every time real data was used. Due to that reason, another solver
was used, Gurobi, which, luckily, could perform all this restrictions in a non-relevant time.

gurobi

As a non-expected side effect, all bad aspects previously stated were cleared with the use
of Gurobi. In order to not extend too much on this topic, check the following implementation
of the solver.

def solve3(conf1,conf2,conf3,alignN):

aviso = 0

pmol1 = len(conf1)

5 Which included: use directly the result as the value of an upper restriction; attribute the result to a variable
and give the variable as the value of an upper restriction; separate the type and distance restrictions and try to
implement them externally; based on the last, simply use function dist(Point, Point) instead of distance (*Point)
and retry the first two attempts.

6 more than 500, according to SCIP.

5.2. SAT solver 59

pmol2 = len(conf2)

pmol3 = len(conf3)

cmol1 = conf1 # molecule 1 conformation

cmol2 = conf2 # molecule 2 conformation

cmol3 = conf3 # molecule 3 conformation

size = pmol1*pmol2*pmol3 #number of elements of matrix solution

toReturn = np.zeros(size)

try:

m = Model("trial")

m.Params.OutputFlag = 0

elems = m.addVars(pmol1,pmol2,pmol3,vtype=GRB.BINARY) #array with 1 or 0

dists = m.addVars(pmol1,pmol2,pmol3,lb=0.0,ub=60001.0,vtype=GRB.INTEGER)

array with elements (distances)

for id1, p1 in enumerate(cmol1):

for id2, p2 in enumerate(cmol2):

for id3, p3 in enumerate(cmol3):

value = round(10000*distances(p1,p2,p3),0)

if (not(sameType(p1,p2,p3)) or value == 0):

m.addConstr(elems[id1,id2,id3] == 0)

m.addConstr((elems[id1,id2,id3] == 0) >>

(dists[id1,id2,id3] == 0.0))

m.addConstr((elems[id1,id2,id3] == 1) >>

(dists[id1,id2,id3] == value))

for p1 in range(pmol1):

m.addConstr(sum(elems[p1,p2,p3] for p2 in range(pmol2)

for p3 in range(pmol3)) <=1)

for p2 in range(pmol2):

m.addConstr(sum(elems[p1,p2,p3] for p1 in range(pmol1)

for p3 in range(pmol3)) <=1)

60 Chapter 5. Reengineering of a classic solution

for p3 in range(pmol3):

m.addConstr(sum(elems[p1,p2,p3] for p1 in range(pmol1)

for p2 in range(pmol2)) <=1)

#relevant pharmacophore has to have at least 3 commun groups

m.addConstr(elems.sum() >= alignN)

m.setObjective(elems.sum(), GRB.MAXIMIZE)

m.setObjective(dists.sum(), GRB.MINIMIZE)

m.optimize()

aviso = 0

if (m.status == GRB.Status.OPTIMAL):

solD = m.getAttr(’X’, dists)

for i in range(pmol1):

for j in range(pmol2):

for k in range(pmol3):

toReturn[i + pmol1*(j + pmol2*k)] = solD[i,j,k]

elif (m.status == GRB.Status.INFEASIBLE):

aviso=1

except GurobiError as e:

print(’Error code ’ + str(e.errno) + ": " + str(e))

aviso = -1

except AttributeError:

aviso = -1

print(’Encountered an attribute error’)

return [aviso,toReturn]

The only additional procedure, that was not previously required in SCIP, was the exe-
cution of the model several times. This was necessary, because, as previously stated, is
impossible to minimize a decision variable and maximize another that depend on each
other. The proposed solution with SCIP was to force the sum of elems to be a value equal
or greater than 3. As the distance was being minimized, no value greater than 3 would ever

5.3. Scores evaluation and solution choice 61

be found, and so, the brute force solution found was to run the model several times, each
time for a value greater than the previous until it reaches a value of impossibility to find a
solution.

Another aspect taken into consideration for this solver, but not for the previous one, was
the conversion of the matrix used as decision variable (which was possible in this model)
to a list. That was done in order to make easier to perform several calculations, necessary
in the iterative step of solution choice. With the same goal, and in order to achieve better
precision in calculations, integer values of up to five digits were used (multiplication by
10.000 in every distance calculation, instead of the previous 100).

5.3 scores evaluation and solution choice

For this last step, in order to simplify some pre-search steps and because the future
quantum approach also requires it, each of the solution matrices in the code is converted to a
list of size ∑N

i Ki where Ki is the number of points of a conformation from molecule i. In this
particular case and because there are 3 molecules (N = 3), one with conformations of seven
points and the other two with conformations of 5 points, this means that when considering
the alignment between these three molecules, there will be a list of size 175 (7× 5× 5) that
represents each solution. Since there are twelve conformations from each molecule, in total,
there are 1728 different solutions, each represented by a 175-length list. Figure 28 illustrates
the list format for each solution using the same example data and notation used in Figure
19 and the respective correlations between the pyhton code, presented in Table 1.

The use of a list came with the need to simplify and prepare the data to be treated in
the search algorithm and also later in the quantum approaches. Is then important to see
how the correlation between matrix and list is done since both notations are used. To do
that, one simply needs to use the following relationship to find the correspondence between
matrix positions and list positions:

matrix[i][j][k] = list[i + P1 × (j + P2 × k)]

Indexes i, j, k specify the position of the point from molecule 1, 2 and 3 to align, respec-
tively, P1 stands for the total number of points from the molecule in the first position and
P2 for the number of points from the molecule in the second position. In this case, the order
matters, molecule 1 is the first molecule to appear and 2 the second. When considering the
alignment between only two molecules, the relationship simplifies to:

62 Chapter 5. Reengineering of a classic solution

Figure 28: List organization of a solution based on the same notation and example of Figure 19.
c©SofiaOliveira, 2020

matrix[i][j] = list[i + P1 × j]

Now that the conversion from matrices to lists is clear, it is important to show its use-
fulness. As integer variables were used, the values of distance are returned multiplied by
10.000, as already stated. In order to see if such calculations are correct, ones needs to
compare them with real values obtained visually with other reliable software. To do such
comparison, and because it is easier to apply an operation to every element of a structure
through lists, instead of matrices, due to several pre-existent mechanisms, such as lambda
operations, the return of the SAT solver is done in list format so that one can easily revert
the 10.000× multiplication. After that being done, all results are reconverted to matrix
structure. Now, back to this more intuitive structure, let us dive in the score process.

In a first attempt, because there are two important parameters to consider in a possible
solution, according to all restrictions implied, the approach was to count the number of
non-zero elements of the solutions (nz), as well as their respective sum, and divide by nz, s,
as the following code illustrates.

def NonZeroAndSum(matrix):

nz=0

s=0

5.3. Scores evaluation and solution choice 63

for idC1, c1 in enumerate(matrix):

for idC2, c2 in enumerate(c1):

if isinstance(c2, (np.ndarray)): #tests if this is an array or not

for idC3, c3 in enumerate(c2):

if (c3!=0):

s += c3

nz += 1

else:

if (c2!=0):

s += c2

nz += 1

if (nz!=0): #sum is divided by the number of points aligned

s = s/nz

return [nz,s]

After this calculation, the solution is chosen by means of the algorithm below, which,
having as the most important factor the number of points aligned (nz), chooses the solution
with the smallest distance with that particular highest value of nz found.

def answer (listmatrix):

bestNZ = 0

bestSum = 100000 # highest number

solution = 0

for idS, pSolution in enumerate(listmatrix):

#(number of non-zero elements)&(sum of this elements divided by previous)

[nz,s] = NonZeroAndSum(pSolution)

#parameter more relevant is the number of ’connections’

if (nz!=0):

if(nz==bestNZ and s<bestSum):

bestSum = s

solution = idS

print(nz, s, idS)

if(nz>bestNZ):

bestNZ= nz

64 Chapter 5. Reengineering of a classic solution

bestSum = s

solution =idS

print(nz, s, idS)

#last printed bestNZ and bestSum are the ones from the solution

print("------------------")

print("Position of solution:",solution) #position in array listmatrix

print("------------------")

return solution, bestSum

Unfortunately, as explained further on, in quantum search one cannot have two variables
as the score. There can only be one, and so, an alternative needs to be found. After several
attempts to find the best function capable of joining both variables in an appropriate matter,
the following approach was made.

def answer (scores):

bestSum = max(scores)+1 # highest number

solution = -1

sols = []

vals = []

for idS, s in enumerate(scores):

if(s < bestSum):

bestSum = s

solution = idS

print(s, idS)

print("------------------")

print("Position of solution:",solution) #position in array listmatrix/scores

print("------------------")

return solution, bestSum #position of solution, value of solution

This depends on the next score method, where the function NonZeroAndSum, instead
of returning s as the sum of all pair-distances divided by nz, returns the strict sum of all
pair-distances. The final answer is found by search of the lowest score.

def Scores(listMatrix,M):

5.3. Scores evaluation and solution choice 65

scores = []

for matrix in listMatrix:

naligned, d = NonZeroAndSum(matrix)

if (naligned!=0):

scores.append(int(round((d*200/(naligned*comb2(M,2))) +

(5-naligned)*400)))

else:

scores.append(int(2000))

return scores

Although the code is based in the formula (11), this corresponds to the final attempt. The
first attempt was actually with the formula (10) which, although appearing to be the most
obvious function, induced error in the search algorithm because it allowed a solution to be
found based on the distance solely, and not primarily on the number of points aligned.

score(naligned, d) = round
(

1000× d
naligned

)
(10)

score(naligned, d) = round

(
200× d

(M
2)× naligned

+ 400× (5− naligned)

)
(11)

Although more complex than the first attempt, with this type of score function, it is im-
possible for the algorithm to choose a solution based only on the distance sum, preventing
errors such as the ones that were found in the former. Both functions are depicted in Fig-
ures 29 and 30 respectively, in which one can see the errors that could happen when one
considers the formula (10). An example: given two distinct solutions, one with three points
aligned and d = 1.3 and another with four points aligned but with d = 3, according to
the Figure 29, the solution with the smallest score, and hence, the chosen score would be
the one with only three points aligned. However, because the number of points aligned is
always more relevant than the distance, the correct smallest score should be the one with
four points aligned. This is clearly obtained when using formula (11), as depicted in Figure
30.

There is, as expected, a reasoning behind the formula (11). If one considers [0, 2000]
as the codomain of the score function, and 5 to be the maximum set of points aligned
within a given solution, one knows that, given the formula (11), there is a 400 value interval
witnessing a linear growth according to the distance, d, when considering a specific number

66 Chapter 5. Reengineering of a classic solution

Figure 29: Graphic display of Equation (10). c©SofiaOliveira, 2020

of points aligned, as depicted in Figure 30. Another value that can be found is the 200 that
is initially multiplied by the d. This value is computed having in mind the 2000 maximum
value in the codomain, and hence, the 400 maximum interval for each linear dependency
of points aligned. According to the data, d/((M

2)× naligned) can only, at maximum, acquire
the value of 2, and so, in order to obtain a maximum of 400 with d/((M

2)× naligned), it need
to be multiplied by 200. Here, (M

2) represents the number of different pairs that can be
generated with M elements. Since the distance between several points is calculated as the
sum of all pair-distance, as stated in the beginning of this section, it is necessary to divide
the distance by that number in order to obtain a maximum of 2 in the variable of interest.

Figure 30: Graphic display of Equation (11) for M = 2, i.e., only considering two different conforma-
tions in the alignment. c©SofiaOliveira, 2020

It is interesting to state that this last function is far for perfect since it has different preci-
sion when considering different numbers of points and has a strict codomain. This could

5.3. Scores evaluation and solution choice 67

not be a relevant aspect if one considers a bigger codomain, but that is not possible in order
to be able to perform, in a quantum simulator, the corresponding quantum search. This, ob-
viously, depends on the same score function as the classic version and the codomain could
not surpass a certain maximum, dictated by the maximum number of qubits available. This
explanation may sound vague, but hopefully, it will all come clear by the end of the next
section, where all quantum dependencies will be explained. Another dependency based
on the quantum version, is the observed round function present in both score functions.
This is needed because floats require more space and hence, more qubits, reason for which
integers will always be used in the quantum algorithms discussed in the sequel.

One last step was necessary to know exactly to which molecule’s conformations does the
position, returned by the answer function, correspond. Such is given by the following code,
which depends on considering two or three structures in the alignments.

def which2(number,a):

if(number>=12):

a += 1

return which2(number-12,a)

else:

print("Conformation from molecule given as input 1: ",a,

"\nConformation from molecule given as input 2: ",number)

return [a, number]

def which3(number,a,b):

if (number>=144):

a += 1

return which3(number-144,a,b)

else:

if(number>=12):

b += 1

return which3(number-12,a,b)

else:

print("Conformation from molecule given as input 1: ",a,

"\nConformation from molecule given as input 2: ",b,

"\nConformation from molecule given as input 3: ",number)

return [a, b, number]

def whichConfs (number,mol):

#insert position of listmatrix and returns to each conformations that corresponds

if(mol==3):

68 Chapter 5. Reengineering of a classic solution

numbers = which3(number,0,0)

if(mol==2):

numbers = which2(number,0)

return numbers

The same process is also used in the quantum version.

6

T H E Q U A N T U M A P P R O A C H

This section will introduce some theoretic notions and pre-existent algorithms that can
fulfill the problem needs. Afterwards, it will be explained the particular approach followed
in this dissertation.

As already stated, the pre-alignment step will not have a quantum version and hence,
only the SAT solver and solution search will be approached in section 6.1 and 6.2, re-
spectively. In the former, will be revised two different techniques for implementation of
restricting on quantum devices and in the latter will introduce a quantum search algorithm.
Before, on both cases, the particularities of each algorithm used will be further explained.

6.1 quantum sat solver

6.1.1 Related work

The first algorithm that seemed to qualify as a quantum algorithm for a satisfiability
problem was an algorithm reported by Farhi et al. (2000), based on adiabatic evolution,
(Refer to Albash and Lidar (2018) for more information on the subject). In this approach,
the evolution of a quantum state is governed by a time-dependent Hamiltonian that inter-
polates between an initial Hamiltonian, whose ground state is easy to construct, H0, and a
final Hamiltonian, whose ground state encodes the satisfying assignment, HP. To ensure
that the system evolves to the desired final ground state, one must assure that the evolution
time is big enough, a key aspect to make such an algorithm reach the desired solution.

As an example, imagine a 3-SAT problem with clauses C, each involving bits i, j
and k. After replacing the bits by qubits, the Hamiltonian associated with all of
the clauses, HP, takes the form:

70 Chapter 6. The quantum approach

HP = ∑
C

HP,C (12)

where HP,C is a Hamiltonian associated with clause C. On the other hand, H0, can
simply be, for i, j, k:

H0 = ∑
C

H0,C (13)

where

H0,C = H(iC)
0 + H(jC)

0 + H(kC)
0

H(i)
0 =

1
2
(1− σ

(i)
x) with σ

(i)
x =

(
0 1
1 0

)

Taking time into account, the solution can be found, by adiabatic evolution,
considering Equations (13) and (12) in:

H(t) = (1− t
T
)H0 + (

t
T
)HP (14)

See Farhi et al. (2000) for full example.

However, the real difficulty in this type of algorithm lies in the construction of a device
that produces an assignment that satisfies all clauses (restrictions). Unfortunally, if one
strictly follows the same type of construction made by Farhi et al. (2000), which is the direct
implementation of a Boolean formula, another problem arises.

Despite being abstract, the problem still has a lot of information to be dealt with and,
once again, it become an issue. Since each matrix solution has 175 (7× 5× 5) positions,
and these need to be binary variables with a chosen value by the end of the restriction
evaluation, it implies the use of 175 qubits solely for data representation. But these are not
all the qubits required by this type of algorithm!

As already stated in section 5.2, in a three-molecule alignment, there are more than 500
individual restrictions to be applied in each solution. Consider that each restriction deals
with, at most, 7 variables at a time (considering 7 is the highest dimension of the solution
matrix). This makes the problem into a 7-SAT problem. According to Farhi et al. (2000), in a
3-SAT, each Boolean clause involves, at most, 3 bits. In the case study, each clause involves,
at most, 7 bits. This number is not actually relevant because these bits are only referent to

6.1. Quantum SAT solver 71

the oracle used, that is, the number of inputs the oracle will have. The problem comes with
the number of auxiliary qubits required for each restriction. Considering restrictions in an
almost ”best-case scenario”, such as having the oracle to be a toffoli gate that only requires
1 auxiliary qubit, one still requires in total, more than 500 auxiliary qubits solely for clause
evaluation.

In total, by using the algorithm suggested by Farhi et al. (2000), one would need more
than 675 (500 + 175) qubits, which is, of course, impossible to obtained even in the most
advanced quantum device simulator currently available.

Even if one would consider the alignment of the two smallest molecules, only for the data
representation, 25 (5× 5) qubits would be required. Of course, the actual total number is
higher considering all the auxiliary qubits one would need for each restriction implementa-
tion. Such number is much smaller than 500, but still, more than 501, individually greater
than the number of qubits that are currently available for simulations.

The Ising model is another possible restriction construction for an adiabatic-based quan-
tum algorithm that might be considered. But what is precisely an Ising model?

ising model

An Ising model is a mathematical model that can represent a variety of physico-chemical
systems with nearest-neighbor interactions. This model relies on the assumption that the
system can be represented by a regular lattice arrangement of particles in space where
each particle can be represented by any two-valued variable (Brush, 1967). In this case
study, it represents the system of qubits, a spin system, where each variable (qubit) can be
represented by its spin, up or down.

According to Lucas (2014), an Ising model can be written as a quadratic function on a set
of N spins si = ±1:

H(s1, ..., sN) = −∑
i<j

Jijsisj −
N

∑
i=1

hisi (15)

The quantum version of this Hamiltonian using adiabatic evolution and thus, Equation
(14), is simply

HP = H(σz
1 , ..., σz

N) (16)

1 This number was not confirmed since the SCIP solver, which gave such information, was only tested in an
initial stage. After some thought, it was concluded that this number would be smaller than 500 but, in any case,
much greater than 50.

72 Chapter 6. The quantum approach

where σz
1 is a Pauli matrix acting on the ith qubit in a Hilbert space of N qubits {|+〉, |−〉}⊗N ,

and Jij and hi are real numbers. H0 can be

H0 = −h0

N

∑
i=1

σx
i , (17)

so that the ground state of H0 is an equal superposition of all possible states on the eigen-
basis of HP. For a better understanding and applications, the reader may want to check
Lucas (2014), where several Ising formulations for a variety of NP problems are illustrated.

Reference Cervera-Lierta (2018) provides the documentation of an exact Ising model sim-
ulation on a quantum computer, i.e. an efficient quantum circuit that diagonalizes the Ising
Hamiltonian and allows to obtain all eigenstates of the model by just preparing the com-
putational basis states. This is a highly relevant and promising work that could be further
explored in our case study, but because it involves complex approaches and there is an
already implemented version, made available by IBM, such was not done in this work.

The IBM approach can be found in the Aqua segment of their public, commercially
available material. Indeed, two distinct problem implementations are discussed in their
advanced tutorials, IBM (a) and IBM (b).

The technique follows Farhi et al. (2014), Farhi et al. (2017) and Wecker et al. (2016),
for both the conception and implementation of the algorithm. But the foundation of this
technique is essencially set by Farhi et al. (2014). Introducing a bit of context, an algorithm
based on adiabatic evolution (Quantum Adiabatic Algorithm, QAA) produces an optimal
solution (if the time is long enough). On the contrary, Farhi et al. (2014) introduced a
quantum algorithm that produces approximate solutions for combinatorial optimization
problems (Quantum Approximate Optimization Algorithm, QAOA).

QAOA executes a Trotterized approximation to adiabatic evolution by alternation of two
operators, U(HP, γ) and U(H0, β), where the sum of the angles (γ and β) is the total run
time. Making the total time long enough, it is guaranteed that the solution can always be
found as close to the ideal as desired. By using an QAA one would be forced to reach the
ideal solution, if existent. In Farhi et al. (2014) is even documented a particular case where
QAA fails and QAOA succeeds. In that work is also documented a variant of the original
QAOA algorithm suited for cases where the search space is a complicated subset of the n
bit strings, for example, finding a large independent set in a given graph.

Throughout the years optimizations to such algorithm were suggested. Wecker et al.
(2016) introduces a slightly different parametrization and a different objective. Through the
help of machine learning, rather than looking for a state which approximately solves an
optimization problem, the goal is to find an algorithm modification that, given an instance

6.1. Quantum SAT solver 73

of the maximum 2-SAT problem, will produce a state with high overlap with the optimal
state.

Farhi et al. (2017) presents the strategy for programming with this algorithm, but suffices
to say that one advantage of using this method compared to adiabatic approaches is that
the target Ising Hamiltonian does not have to be implemented directly on the hardware,
allowing the algorithm not to be limited to the connectivity of the device.

Certainly IBM has made their own optimizations but nevertheless, the base algorithm is
still the QAOA. Therefore, it will not be made a tecnhical explanation but rather a deeper
understanding of their final implementation. Although in IBM (a) is depicted a weighted
Max-Cut problem, a simpler and perhaps easier example, IBM (b) documents the Vehicle
Routing problem, which has more restrictions and hence may better explain how complex
problems can be implemented.

Mathematically speaking, the vehicle routing problem (VRP) is a combinatorial
problem, wherein the best routes from a depot to a number of clients and back to
the depot are sought, given a number of available vehicles. (There are a number
of formulations possible, the one followed is known as MTZ (Miller et al., 1960).)

Let n be the number of clients (indexed as 1, ..., n), and K be the number of
available vehicles. Let xij = 0, 1 be the binary decision variable which, if it is 1,
activates the segment from node i to node j. The node index runs from 0 to n ,
where 0 is (by convention) the depot. If two nodes i and j have a link from i to j,
it is said i ∼ j. δ(i)+ denotes the set of nodes to which i has a link, i.e. j ∈ δ(i)+

if and only if i ∼ j. Similarly, δ(i)− denotes the set of nodes which are connected
to i, in the sense that j ∈ δ(i)− if and only if j ∼ i. In addition, there is also
considered continuous variables, for all nodes i = 1, ..., n, denoted ui.

The VRP can be formulated as:

(VRP) f = min
{xij}i∼j∈{0,1},{ui}i=1,...,n∈R

∑
i∼j

wijxij (18)

subject to the node-visiting constraint:

∑
j∈δ(i)+

xij = 1, ∑
j∈δ(i)−

xji = 1, ∀i ∈ {1, ..., n}, (19)

the depot-visiting constraints:

∑
i∈δ(0)+

x0i = K, ∑
j∈δ(0)+

xj0 = K, (20)

74 Chapter 6. The quantum approach

and the sub-tour elimination constraints:

ui − uj + Qxij ≤ Q− qj, ∀i ∼ j, i, j 6= 0, qi ≤ ui ≤ Q, ∀i, i 6= 0.

In particular,

• The cost function is linear in the cost functions and weighs the different
arches based on a positive weight wij > 0 (typically the distance between
node i and node j);

• The first set of constraints enforces that from and to every client, only one
link is allowed;

• The second set of constraints enforces that from and to the depot, exactly K
links are allowed;

• The third set of constraints enforces the sub-tour elimination constraints and
are bounded by ui, with Q > qj > 0, and Q, qi ∈ R

As already mentioned above, IBM followed the QAOA algorithm. In particular in this
case, it is used the Variational Quantum Eigensolver (VQE, Peruzzo et al. (2014)). Due to
the quantum circuits employed (variational forms) and inherent limited depth, the solution
obtained is heuristic by nature. Now, take a look at the steps followed by IBM.

– Preparation steps:

• Transform the combinatorial problem into a binary polynomial optimization
problem with equality constraints only;

• Map the resulting problem into an Ising Hamiltonian (H) for variables z and
basis Z, via penalty methods if necessary;

• Choose the depth of the quantum circuit m. Note that the depth can be modified
adaptively.

• Choose a set of controls θ and make a trial function |ψ(θ)〉 , built using a quan-
tum circuit made of C-Phase gates and single-qubit Y rotations, parameterized
by the components of θ.

– Algorithm steps:

• Evaluate C(θ) = 〈ψ(θ)|H|ψ(θ)〉 by sampling the outcome of the circuit in the
Z-basis and adding the expectation values of the individual Ising terms together.
In general, different control points around θ have to be estimated, depending on
the classical optimizer chosen.

6.1. Quantum SAT solver 75

• Use a classical optimizer to choose a new set of controls.

• Continue until C(θ) reaches a minimum, close enough to the solution θ∗.

• Use the last θ to generate a final set of samples from the distribution |〈zi|ψ(θ)〉|2

to obtain the answer.

Although there are many parameters throughout the steps, according to IBM the diffi-
culty of finding good heuristic algorithms bails down to the choice of an appropriate trial
wavefunction. Here, and latter on the qSAT implementation, it will be considered a simple
trial function of the form

|ψ(θ)〉 = [Usingle(θ)Uentangler]
m|+〉 (21)

where Uentangler is a collection of C-Phase gates (fully entangling gates), and Usingle(θ) =

∏n
i=1 Y(θi), where n is the number of qubits and m is the depth of the quantum circuit. The

motivation is that for these classical problems, this choice allows a search over the space of
quantum states that have only real coefficients, still exploiting entanglement to potentially
converge faster to the solution.

Now that one is familiar with both the problem definition and the algorithm, it is clear
that in order to build this algorithm, one needs to construct a binary polynomial optimiza-
tion with equality constraints from Equation (18). This is done, is this case, by considering
cases in which K = n− 1. In these cases the sub-tour elimination constraints are not neces-
sary and the problem is only on the variable z. In particular, the Ising Hamiltonian can be
written as:

(IH) H = ∑
i∼j

wijxij + A ∑
i∈{1,...,n}

(
∑

j∈δ(i)+
xij − 1

)2
+ A ∑

i∈{1,...,n}

(
∑

j∈δ(i)−
xji − 1

)2

+ A
(

∑
i∈δ(0)+

x0i − K
)2

+ A
(

∑
j∈δ(0)+

xj0 − K
)2

(22)

where A is a big enough parameter. Each component of the formula is associated to a
restriction. Explicitly, the first term refers to Equation (18), the second and third to Equation
(19) and the last two terms to Equation (20).

The QP formulation of the Ising Hamiltonian needs to be deduced form this point in
order to be used in the VQE. This can be done with the assignment xi → (1− Zi)/2, where
Zi is the Pauli Z operator that has eigenvalues ±1. In the vector z, and for a complete graph
(δ(i)+ = δ(i)− = {0, 1, ..., i − 1, i + 1, ..., n}), the Hamiltonian can be written in matricial
form as follows.

76 Chapter 6. The quantum approach

min
z∈{0,1}n(n+1)

wTz + A ∑
i∈{1,...,n}

(
ei ⊗ 1T

n z− 1
)2

+ A ∑
i∈{1,...,n}

(
vT

i z− 1
)2

+ A
(
(e0 ⊗ 1n)

Tz− K
)2

+ A
(

vT
0 z− K

)2
(23)

that is

min
z∈{0,1}n(n+1)

zTQz + gTz + c, (24)

where

Q = A ∑
i∈{0,1,...,n}

[
(ei ⊗ 1n)(ei ⊗ 1n)

T + vivT
i

]
,

g = w− 2A ∑
i∈{1,...,n}

[
(ei ⊗ 1n) + vi

]
− 2AK

[
(e0 ⊗ 1n) + v0

]
and, c = 2An + 2AK2.

The solution is found by solving Equation (23).

The problem is instantiated and solved using a class QuantumOptimizer that encodes the
quantum approach. The same approach was followed in this dissertation so it is important
to check in this example the methods that are inside the class:

binary representation : encodes the problem into the Ising Hamiltonian QP;

construct hamiltonian : constructs the Ising Hamiltonian in terms of the Z basis;

check hamiltonian : makes sure that the Ising Hamiltonian is correctly encoded in
the Z basis: to do this, it solves an eigenvalue-eigenvector problem for a symmetric
matrix of dimension 2N × 2N , with N = n(n + 1);

vqe solution : solves the problem via VQE by using the SPSA solver (with default
parameters);

q solution : internal routine to represent the solution in a usable format.

Then, the steps encoding the problem as a binary formulation (IH-QP) and respective
version in the Z basis are accomplished and the problem is solved via VQE using the Qiskit
Aqua package.

Additionally, it is important do denote that depending on the number of qubits, the
simulation can take a while; for example with 12 qubits, it takes more than 12 hours.

6.1. Quantum SAT solver 77

Coming back to the problem of this dissertation, there are two ways to approach it using
Ising Hamiltonians. The first requires both SAT implementation as well as a solution search.
The latter, adopted in this dissertation, only handles the SAT solver. Both options will be
introduced next.

6.1.2 Approaches

first approach

The first approach would take into consideration each possible solution from all possible
alignments at the same time. That is, the restriction implementation and solution search
would be imposed simultaneously. To check if such is viable, one must calculate how many
qubits these would require.

To facilitate, assume each alignment between two points to be an edge. As restrictions,
there can only be chosen edges between points from different molecules, and all points
of such edges need to be from different conformations (one from each molecule). In total,
there are 20706 different edges, possible and impossible. This is calculated as the number
of different combinations of two points from all points from all molecules.

(
12× (7 + 5 + 5)

2

)
= 204C2 =

204!
2!(204− 2)!

= 20706

In order to find out which points from each conformation and from each molecule, make
up the solution, one needs to consider one qubit for each edge. Hence, just for data repre-
sentation, this requires more than twenty thousand qubits. To find the solution, one needs
to find alignments between the three molecules, that is, each alignment of points is a set of
three edges that fits the required criteria. In the end, the solution is a set of triples of edges.

(
20706

3

)
= 20706C3 = 1479361980320

There are, in total, more than 1 billion sets of 3 edges. Luckily, each of these sets does
not need to be represented by its own qubits, but rather its own states. With 41 qubits there
are more than 2 billion states (241 = 2199023255552), which is more than enough for this
problem!

Nevertheless, it is still a lot more qubits that one has available, and hence, this approach
cannot be taken into consideration.

78 Chapter 6. The quantum approach

Of course, compared to classical computation, which would require more than 2 billion
bits for this last step, this quantum approach has a clear advantage, but do not forget the
previously calculated number of 20706 qubits.

second approach

The second approach, as previously stated, only executes restriction implementations.
But how is this done? As before, each alignment between two points is an edge. But contrary
to the first approach, there is only one possible solution considered at a time. That is, the
input corresponds to one conformation from each different molecule and the output is a
graph of the possible and correct connections between them. Taking that in mind, the qSAT
is executed as many times as the number of different possible solutions, i.e. number of
distinct sets of conformations (each conformation from each molecule).

Here, each edge is a qubit and the number of edges, and hence, qubits is given by:(
7 + 5 + 5

2

)
= 17C2 =

17!
2!(17− 2)!

= 136

1H1 1H2 1H3 1H4 1H5 1H6 1P1 2H1 2H2 2H3 2P1 2P2 3H1 3H2 3H3 3H4 3P1

1H1 F F F F F F
1H2 F F F F F F
1H3 F F F F F F
1H4 F F F F F F
1H5 F F F F F F
1H6 F F F F F F
1P1 F F F F
2H1 F F F
2H2 F F F
2H3 F F F
2P1 F F
2P2 F F
3H1
3H2
3H3
3H4
3P1

Figure 31: Scheme of the edges between three molecules. As in section 5, the points are identified
by the number of the molecule, type of the point and an index. The edges checked with
the symbol F are the ones already respecting some restrictions. White squares represent
all possible different edges, and grey squares are not considered, since they are the same
as the ones in the upper diagonal of the scheme. c©SofiaOliveira, 2020

6.1. Quantum SAT solver 79

Although a lot smaller than the previous number of qubits necessary for data represen-
tation, it is still a very high number. Since it became obvious that considering all possible
edges was too much and in any case unnecessary (because edges within the same conforma-
tion will not align), it was opted to implement that restriction along with the first restriction
mentioned in section 4.2, about the type of the points. This was made because the aim of
this dissertation was to obtain pratical and implementable results, which was impossible
with 136 required qubits only for data representation.

In any case, instead of requiring 136, this restriction implementation reduced the number
of qubits to 53, as depicted in Figure 31. Unfortunately, due to the available number of
qubits, this number is still too high. Having that in mind, it was also opted to make
the simulation of the alignment of the two smallest molecules, instead of three. But until
discussing the simulation itself, consider the three molecule’s case.

Moving on and following the steps mentioned when introduced the VRP, each restric-
tion needs to be written algebraically and then translated to its quadratic programming (QP)
formulation. In every restriction there will be a vector binary variable x that represents
the edges (each taking the value 1 if that edge is aligned or 0 if not) and a vector integer
variable d that takes the value of the distance between the points represented by each edge.
Additionally, there will also be a binary variable p (called possibility) associated to every
edge, which represents some restrictions and takes the following form:

pij =

1 if i and j are:
- of the same type
- at a maximum distance of 2Å
- from different molecules

0 otherwise

p was created to avoid using more complex restrictions in the quantum algorithm. As an
example, if one would check if every edge links different molecules in the quantum algo-
rithm, that would involve several cycles and more complex algebraic calculations. Moreover,
that would require more qubits and in the end, the classic algorithm would be unequivo-
cally better. As will be further explained, the ideal approach to computation is the best of
the two worlds, both quantum and classic. There is no need to over complicate the quantum
approach that would, in the end, have no advantage over the classic one.

With that in mind, the first and third restrictions, two points can only be aligned if they
have the same chemical feature and if they are at a maximum distance of 2 Å, respectively, are
implemented as

80 Chapter 6. The quantum approach

xij ≤ pij ⇔ pij − xij ≥ 0, ∀i, j ∈ Points (25)

stating that each final edge can only take a value less or equal to p. As an example, if the
edge is not possible, i.e. pij = 0, the final edge cannot be aligned and hence, xij is forced to
be 0. In the case where the edge is possible, i.e. pij = 1, xij can either take the value 0 or
1, according to the other restrictions and optimizations. In a vector formulation, Equation
(25) becomes Equation (26).

x ≤ p ⇔ p− x ≥ 0 (26)

The other restriction, second in section 4.2, which states that each point can only be super-
posed to one and only one point from each conformation, was adapted to state that, each point
can only be superposed to 0 or M − 1 points where M is the number of different molecules. This
extrapolation was possible because one already assumes that every possible edge needs to
be from different molecules. By stating that one point can only be connected to 0 or M− 1
points, it is already taken into account that when M molecules are being aligned this results
in an alignment between all molecules, and hence, one point from each molecule needs to
be connected to M− 1 other points.

N

∑
j∼i

xij ≤ M− 1 ⇔ M− 1−
N

∑
j∼i

xij ≥ 0, ∀i ∈ Points (27)

where N is the total number of points.

With this slight modification to the restriction, comes another problem because this re-
striction do not ensure that a given point is aligned to M − 1 points, each from different
molecules! As an example, imagine a point i, from molecule A, two other points from
molecule B, and a final point from molecule C. One knows that point i needs to be aligned
with two points, one from each of the other molecules, because there are three molecules
to align. With the above formulation, it allows i to be connected to the two points from the
same molecule. In order to solve this problem, another restriction was added, which states
that if point A is aligned with point B and C, it implies that point B and point C also needs
to be aligned, and hence, respect all the other restrictions. This is assured by Equation (28).

1
3
(xij + xjk + xik) ≤ 1 ⇔ 1− 1

3
(xij + xjk + xik) ≥ 0, ∀i, j, k ∈ Points (28)

6.1. Quantum SAT solver 81

The next step formulates the problem itself and, therefore, the Hamiltonian. To do so, one
needs to first specify what is the objective function. In this problem, the objective function
is to maximize the number of points aligned and minimize the total distance between such
alignments. This is stated in Equation (29),

min
N

∑
i∼j

dijxij −
N

∑
i∼j

xij (29)

where, by minimizing the negation of the sum of final aligned edges, one achieves its
maximization. The reason to formulate this optimization as a minimization is because
Ising formulations are suitable to find the ground state, the lowest level of the function, i.e.
the minimization. In vector formulation, Equation (29) becomes

min dTx− x. (30)

Combining Equations (25), (27), (28) into Equation (29), one gets the augmented La-
grangian:

H =
N

∑
i∼j

dijxij −
N

∑
i∼j

xij + A
N

∑
i∼j

(
pij − xij

)2

+ B
N

∑
i

(
M− 1−

N

∑
j∼i

xij

)2

+ C
N

∑
i

N

∑
j

N

∑
k

(
1− 1

3
(xij + xjk + xik)

)2
(31)

Because it is required the absolute value of the expressions inside the parentesis, they
were raised to the power of two to inforce non-negative values. Additionally, A, B and
C are energy penalties associated to each restriction. According to the relevance/weight
one wants to assign to each restriction, the values are altered. The search for the ideal
constant for each value is a challenge and must always be tested because hardware noises
also introduce an energy penalty to the solution. Reference Lucas (2014) documents how
to make a rough estimation for such values based on the maximum and minimum values
of the constraint. Since this constants depend on the simulation itself, an approach was to
first test the objective function without any restrictions and see its behavior, and only later
introduce the restriction and respective energy penalties.

As already stated, due to the number of qubits required, a qSAT for only two molecules
was implemented. Having that in mind, the last restriction does not apply and was not
implemented. Above that, because in this restriction one needs to go through the list of

82 Chapter 6. The quantum approach

points several times within the same restriction, which is somehow equivalent to finding a
subgraph within a graph, it is required a more complex approach when taking this into a
QP formulation. In Lucas (2014) several problems are documented which require the same
approach, named cycles, but here, this was not considered.

Now comes the practical implementation.

6.1.3 Implementation

Since the quantum device is going to implement Equation (29), one needs first to write it
in the Z basis, and so Equation (29) becomes Equation (32), using xij →

1−zij
2 .

H =
1
2

N

∑
i∼j

dij −
1
2

N

∑
i∼j

dijzij −
1
2

N

∑
i∼j

1 +
1
2

N

∑
i∼j

zij (32)

Using vector id representation and isolating the expression that defines the contribution of
the individual variables, Equation (32) becomes:

H =
(1

2
(1− d)

)T
z +

1
2
(d− 1) = gTz + c (33)

Differently from VRP, there is no interaction between variables (Q expression).
Now that all theory has been discussed, we arrive at another stage: the implementation

of the qSAT using Qiskit. Notice that before the Qiskit implementation, some data prepa-
rations was performed with respect to the pre-alignment of the molecules. It suffices to say
that the data is available in two vectors, one regarding the distances, D and another the
possibilities P of each edge.

As in VRP, a QuantumOptimizer class with the methods binary representation, construct hamiltonian,
check hamiltonian, vqe solution and q solution and of course, the initialization method
was created. Although at this point only the D vector is required, this method is already
prepared to receive the P vector as well.

To begin with, look at the binary representation method.

def binary_representation(self,x_sol=[]):

p = self.p

d = self.d

size = self.size

ones = np.ones(size)

6.1. Quantum SAT solver 83

g = [x / 2 for x in np.subtract(ones,d)]

c = np.sum([x / 2 for x in np.subtract(d,ones)])

try:

fun = lambda x: np.dot(d,x) - np.dot(ones,x)

cost = fun(x_sol)

except:

cost = 0

return g, c, cost

This implements the QP formulation of the problem already in the z basis, following
Equation (33). Besides the D and P vectors, it also creates a vector ones with similar size.
Next the cost of the objective function is evaluated, given a solution as input, in order to
check its validity.

In the following method, construct hamiltonian, the Hamiltonian is generated in the
form of Pauli terms:

def construct_hamiltonian(self):

p = self.p

d = self.d

size = self.size

N = size

gz,cz, _ = self.binary_representation()

pauli_list = []

for i in range(N):

if gz[i] != 0:

wp = np.zeros(N)

vp = np.zeros(N)

vp[i] = 1

pauli_list.append((gz[i], Pauli(vp, wp)))

pauli_list.append((cz, Pauli(np.zeros(N), np.zeros(N))))

84 Chapter 6. The quantum approach

return cz, pauli_list

The next two methods, check hamiltonian and vqe solution, use the full form Hamil-
tonian resorting to an exact (classic) Eigensolver, in the first case, and a quantum simula-
tor/device, in the second, to compute a solution to the problem. The first method only
computes the lowest Eigenvalue and Eigenvector (the offset is set to 0), while in the second
all information is used and obtained a solution to the objective function.
vqe solution uses VQE as the chosen Eigensolver, SPSA as the optimizer and RY as the

variational form. It is important to notice that these choices were made based on the VRP
problem already mentioned.

def check_hamiltonian(self):

cz, op = self.construct_hamiltonian()

Op = WeightedPauliOperator(paulis=op)

qubitOp, offset = Op, 0

result0 = NumPyEigensolver(operator=qubitOp).run()

result = result0[’eigenstates’].to_matrix(massive=True)

quantum_solution = self._q_solution(np.real(result[0]).tolist(),self.size)

ground_level = np.real(result0[’eigenvalues’][0]) + offset

return quantum_solution, ground_level

def vqe_solution(self):

cz, op = self.construct_hamiltonian()

Op = WeightedPauliOperator(paulis=op)

qubitOp, offset = Op, cz

aqua_globals.random_seed = 10598

num_qubits = qubitOp.num_qubits

var_form = RY(qubitOp.num_qubits, depth=5, entanglement=’linear’)

optimizer = SPSA(max_trials=self.max_trials)

6.2. Solution Search 85

algo = VQE(qubitOp, var_form, optimizer)

backend = provider.get_backend(’ibmq_qasm_simulator’)

quantum_instance = QuantumInstance(backend,

seed_simulator=aqua_globals.random_seed,

seed_transpiler=aqua_globals.random_seed,

skip_qobj_validation=False)

result = algo.run(quantum_instance)

quantum_solution_dict = result[’eigenstate’]

q_s = max(quantum_solution_dict.items(), key=operator.itemgetter(1))[0]

quantum_solution= [int(chars) for chars in q_s]

quantum_solution = np.flip(quantum_solution, axis=0)

,,level = self.binary_representation(x_sol=quantum_solution)

return quantum_solution_dict, quantum_solution, level

Finally, consider the q solution method, which solely converts the output of the Eigen-
solver to an usable format, and the initialization method. It can be consulted in appendix
B.1, the entire class is definition.

Due to some problems detected along the simulations, no further discussion is made here
regarding the QP formulations of the restrictions. Please refer to section 7.2 to read about
such problems and respective results, expected and unexpected.

6.2 solution search

This section concerns the solution search. A generalization of the Grover’s algorithm
(Grover, 1996) leads to the requested solution. This generalization takes inspiration in
several works but mainly Alves (2019); Boyer et al. (1996); Dürr and Høyer (1996).

The following subsections describe the algorithm and how it was adapted and imple-
mented, respectively.

6.2.1 Original Grover’s algorithm and its generalizations

86 Chapter 6. The quantum approach

C(S) 0 0 1 0
S S1 S2 ... Sw ... SN

Table 2: Grover’s example database

Grover’s algorithm is a fast algorithm for database search problems published in 1996

(Grover, 1996). Since then its relevance has been growing due to the possibility of using it
as a subroutine that enables a quadratic runtime enhancement, in several algorithms (Neri
and Rodrigues, 2018).

Consider a database with N items. Each item has a label as its description and a state
for its representation S1, S2, ..., SN . Let Sw be the state that satisfies condition C(Sw) = 1. To
identify Sw, one has to encode an oracle function like (34).

f (w) = 1

f (s) = 0
(34)

In other words, there is an array of N elements, designated S. The output of the oracle
function is 1 for the envisaged object and 0 otherwise (see table 2).

Any classical algorithm, deterministic or probabilistic, takes O(N) steps since on average
it has to examine a large fraction of the N items: in the worst case all N items but on average
N/2 items. The Grover’s algorithm shows an evident advantage by finding the envisaged
object in

√
N steps. Additionally, this algorithm is also generic because it does not use the

internal structure of the list. In Figure 32 is a schematic diagram of the Grover’s algorithm.

Figure 32: Grover’s algorithm. In this case, only one application of the Grover operator is perfomed.
The oracle box represents the oracle operator U f and the remaing circuit on the right,
except for the external Hadamard gates, the diffusion operator UD. Fig.6 in J. et al. (2020).

The subsequent steps express the algorithm implementation, as depicted in Neri and
Rodrigues (2018), IBM (c) and J. et al. (2020), among others.

6.2. Solution Search 87

1. Initialize the system with a uniform superposition of states, i.e. with the same am-
plitude in each N state (check Figure 33). This superposition is obtained through
application of Hadamard gates. The system is now the superposition |s〉 = |0〉 =

1√
N ∑N−1

x=0 |x〉.

Figure 33: System distribution after first step. The average amplitude is 1√
N

. c©SofiaOliveira, 2020

2. Apply O(
√

N) times the following operators which together form the Grover’s oper-
ator, as depicted in Figure 32.

a) Quantum operator U f . This operator is responsible for identifying the solution,
by application of the oracle function (34), as the target.

U f |x〉 = (−1) f (x)|x〉 (35)

This operator is also called oracle reflection since, geometrically, this corresponds
to a reflection of the target state while the other states remain unchanged, as
depicted in Figure 34.

b) Quantum operator UD, also called the diffusion operator. This operator imple-
mentation can be achieved by UD = WRW, where W is the Walsh-Hadamard
transform matrix, and R is a rotation matrix. In another notation, this operator
can also be written as UD = 2|s〉〈s| − 1. Similarly to U f , UD is also considered
a reflection operator but not only it flips the desired input but also increases its
amplitude and lowers the remaining ones. (see Figure 35).

88 Chapter 6. The quantum approach

Figure 34: System Distribution after the first application of operator U f |ψt〉 = ψt′ . Because the
amplitude of the desired state becomes negative, the average amplitude is lowered and
hence, becomes < 1√

N
. c©SofiaOliveira, 2020

Figure 35: System Distribution after the diffusion operator UD|ψt′〉. The action of this operator can
be seen as a reflection about the average amplitude. Since the average amplitude has been
lowered, this transformation boosts the negative amplitude of the desired state while it
decreases the other amplitudes. c©SofiaOliveira, 2020

Both steps have to be repeated roughly
√

N times to get close to the optimal measure
(|w〉).

6.2. Solution Search 89

3. Finally the qubits are measured. After t rounds the state transformation is:

ψt = (UDU f)
t|ψ0〉 (36)

At this point, the probability of finding the wanted object is at least 1
2 .

Despite the enormous popularity of the original article, the scientific community raise
some relevant questions: What if there is more than one solution, i.e. the desired element appears
more than once in the table?, and hence What if the number of solutions is not known?.

First in Boyer et al. (1996) and latter in the corresponding published version (Boyer et al.,
1998), these issues were investigated and some attempts to solve them were presented.
These papers generalize the Grover algorithm by approximately calculating the number
of solutions with an approach inspired by Shor’s quantum factorization algorithm (Shor,
1994)

Additionally, they also give a simple closed-form formula for the probability of success
after any given number of iterations. This allows to determine the number of iterations
necessary to achieve almost certainty of finding the answer, as well as an upper bound on
the probability of failure.

According to both Grover (1996) and Boyer et al. (1996), if there is a unique solution that
suffices the problem, the algorithm must take about

√
N iterations.

It is essential to observe that in this project, the envisaged element is the smallest number,
or even the localization of such solution, in the list. Some months after the release of the
draft mentioned above, Dürr and Høyer (1996) presented a quantum algorithm for finding
the minimum, in which the main subroutine is the Shor and Grover’s inspired exponential
searching algorithm of Boyer et al. (1996).

In order to better understand such algorithms, consider the simple case of a list of N
unsorted and distinct values. If one consider T[0..N − 1] to be the list, the problem is to
find the index y such that T[y] is the minimum. The suggested algorithm solves the problem
after O(

√
N) iterations of the circuit.

Summarizing, the algorithm calls the previously mentioned algorithm as a subroutine
in order to find the index of an element smaller than the value determined by a particular
threshold index. The result is then chosen as the new threshold. This process is repeated
until the probability that the threshold index selects the minimum is sufficiently large. If
there are t > 1 marked table entries, the exponential searching algorithm will return one of
them with equal probability after an expected number of O(

√
N/t) iterations.

This is done by the following steps.

log stands for the binary logarithm. It is also important to notice that there is no ”time-
out”, i.e. it is expected that the algorithm always runs long enough to find the minimum.
This makes the algorithm an infinite algorithm. Due to the lack of a ”time-out”, there is also

90 Chapter 6. The quantum approach

1. Choose the threshold index 0 ≤ y ≤ N − 1 uniformly at random.

2. Repeat the following actions and interrupt it when the total running time is more
than 22.5

√
N + 1.4 log2 N. Then go to stage 2(2c).

a) Initialize the memory as ∑j
1√
N
|j〉|y〉. Mark every item j for which T[j] < T[y].

b) Apply the quantum exponential searching algorithm.

c) Observe the first register: let y′ be the outcome. If T[y′] < T[y], then set
threshold index y to y′.

3. Return y.

Algorithm 1: Quantum Exponential Searching Algorithm

the possibility that the algorithm could never find the solution, even with infinite time, if
no precautions are made.

According to Dürr and Høyer (1996), the expected total time used by the infinite algo-
rithm before y holds the index of the minimum is at most

m0 =
45
4

√
N +

7
10

log2 N (37)

After at most 2m0 iterations, T[y] holds the minimum value with probability at least 1
2 . The

proof can be found in the original paper.

Now that the algorithm is clear, let us discuss the implementation in Qiskit.

6.2.2 Implementation

When comes to the implementation, there are some data treatments that need to be
done, such as the calculation of the number of qubits required to the circuit and the binary
conversion of the data.

This circuit requires two sets of qubits, the ones that represent the index of the list and the
ones that represent the values. To calculate the qubits required for the index, it is enough to
calculate the length of the list, subtract one (because indexes start at 0) and convert that final
number, N, to binary. The number of qubits is the length of this binary number, named qy.
The number of qubits to represent the value, named maxq, is, ideally, the bit length of the
maximum value on the list, which requires such value to be known previously. This is, by
itself, biased since once is calculating the maximum of a list in order to find its minimum.
Another way to find such a value is through some knowledge of the list. If one knows that
the values cannot, at any point, surpass a certain limit, that limit can become the reference

6.2. Solution Search 91

decimal binary
index value

Primitives
index value

i0 i1 i2 v0 v1 v2 v3
0 6 P0 0 0 0 0 1 1 0

1 1 P1 0 0 1 0 0 0 1

2 9 P2 0 1 0 1 0 0 1

3 12 P3 0 1 1 1 1 0 0

4 0 P4 1 0 0 0 0 0 0

5 10 P5 1 0 1 1 0 1 0

6 4 P6 1 1 0 0 1 0 0

Table 3: Example, relations between indexes and values.

number for the qubit calculation. Given that the number of qubits available in nowadays
quantum devices is rather small, it was used the exact maximum value of the list as the
reference maximum. As mentioned, this was necessary to obtain practical results, although
theoretically not the best solution.

Then it is necessary to establish the correspondence between the index, values and their
binary representation. To do that, consider the list [6, 1, 9, 12, 0, 10, 4] and look at Table 3.
It is required 3 qubits for the index (23 = 8 indexes) and 4 qubits for the value (24 = 16,
maximum number is 12).

The connection between values and primitives is

v0 = P2 + P3 + P5

v1 = P0 + P3 + P6

v2 = P0 + P5

v3 = P1 + P2

and is stored in data t, as such, {’v0’: [’010’, ’011’, ’101’], ’v1’: [’000’, ’011’, ’110’],

’v2’: [’000’, ’101’], ’v3’: [’001’, ’010’]}.

The association between primitives and indexes is established by function symp aux,
where the inputs are the number of qubits in the index, qy, and the list of data data t.
In detail, symp aux:

1. verifies if the number of qubits is ok.

2. by usage of func aux, run through the list of primitives.

3. jumps to getand (where the output, taking as example primitive P5, is ”i0 & i2 &

∼i1”) and adds all primitives with the logic ’or’, |.

92 Chapter 6. The quantum approach

4. and resorting to function simplify logic from the library sympy, takes care of the
ensuing simplification.

The code corresponding to the functions can be found in appendix B.2.
Let us turn now to the implementation of the generalized Grover algorithm itself, which

will generate the circuit. qaux is the number of auxiliary qubits necessary to construct the
circuit.

def grover(qy, maxq, qaux, data_simp,v_threshold,J):

qr, cr = create_register(qy,maxq,qaux)

qc_grover= QuantumCircuit(qr,cr)

qc_grover_0 = grover_init(qr, cr, qy)

qc_grover_IV=grover_indexValues(qr,cr,qy,maxq,data_simp)

qc_grover_O1=grover_minor(qr, cr, qy, maxq, v_threshold)

qc_grover_O2=grover_mark_j(qr,cr,qy,maxq)

qc_grover_D1=grover_D(qr,cr,qy,maxq)

qc_grover_M = grover_measure(qr, cr, qy)

qc_grover = qc_grover_0 + qc_grover_IV

for i in range(J):

qc_grover = qc_grover + qc_grover_O1 + qc_grover_O2 + qc_grover_D1

qc_grover = qc_grover + qc_grover_M

return qc_grover

y = randrange(N-1)

v_threshold = data[y]

m0= int((9/2)*(m.sqrt(N)))

#’Grover’

J = methods(N,M,’Grover’)

backend = Aer.get_backend("qasm_simulator")

shots = 1

for i in range(m0):

grover_circuit=grover(qy, maxq, qaux, data_simp, v_threshold,J)

job=execute(grover_circuit, backend, shots=shots)

result_S = job.result()

counts_sim = result_S.get_counts(grover_circuit)

6.2. Solution Search 93

y_temp=int(list(counts_sim.keys())[0], 2)

if y_temp < len(data):

if data[y_temp] <= v_threshold:

v_threshold = data[y_temp]

y = y_temp

print(y,v_threshold)

print(’RESULT:’, ’\n index’,y,’\n value’, v_threshold)

Taking into account Algorithm 1, step (2b) is used to set the number of required iterations,
J, of the Grover algorithm, as shown in the previous code.

By running the code above one gets the circuit but before, one also needs to initialize
the qubit registers and other peculiarities. To perform the registers initialization one uses
the function create register which, resorting to the Qiskit library initializes both the
quantum registers and the classic registers as seen next.

def create_register(qubits_index,qubits_values,qubits_aux):

qrn= qubits_index + qubits_values + qubits_aux

qr = QuantumRegister(qrn, ’qr’)

cr = ClassicalRegister(qubits_index,’cr’)

return qr, cr

The initialization of the memory, step (2a) in Algorithm 1, is accomplished by adding an
Hadamard gate to each qubit of the index.

def grover_init(qubits, bits, n):

qc_grover_I = QuantumCircuit(qubits,bits)

for h in range(n):

qc_grover_I.h(qubits[h])

return qc_grover_I

Recalling that indexes and values are associated trough logic relations of primitives, it is
important to know how to represent them in a circuit. Therefore, there are four associations
that can occur and are implemented in the circuit as follows:

1. The value has a direct relation to the primitive:

•

94 Chapter 6. The quantum approach

2. The value has a direct relation to the negation of the primitive:

3. The value is the result of a logic AND between two primitives:

•
•

4. The value is the result of a logic OR between two primitives:

X

Now one only needs to write the circuit as above, as illustrated next. It now comes
to translating the relations mentioned in the beginning of this implementation to a quan-
tum circuit. As mentioned above, there is a possibility that the primitive is an expression.
If the value is only one primitive and such primitive is an index or the negation of an
index, it is only required a cx gate. On the other hand, when such primitives are expres-
sions of indexes, one needs to divide the implementation into two steps, truth table and
function aux.

def grover_indexValues(qubits, bits, n, m, data):

initialize this section of the circuit

qc_grover_IV = QuantumCircuit(qubits,bits)

get the list of values - keys

keys= list(data.keys())

#qt is the position of qubit value

qt=n

run the list of values

for k in keys:

simple=0

value=data[k]

if it is a symbol:

if type(value)!=And and type(value)!=Or:

gate_cx(value,qt,qc_grover_IV,qubits)

#if it is an expression (And / Or)

else:

6.2. Solution Search 95

table = truth_table(data_simp,k)

function_aux(table, qt, n+m, qc_grover_IV,qubits)

qt=qt+1

return(qc_grover_IV)

(Please refer to Appendix B.2 to see the definition of gate cx.)

def explore(expr):

variables = expr.free_symbols

list_values = []

for truth_values in cartes([False, True], repeat=len(variables)):

values = dict(zip(variables, truth_values))

values[’target’]=expr.subs(values)

list_values.append(values)

return(list_values)

def truth_table(data,v):

expr = sympify(data[v])

data_truth=explore(expr)

return(data_truth)

The truth table receives the data expressions that correlates the indexes and values with
resource of the primitives and translates it to a truth table. With the help of the function
explore, it runs over the list of the possible outcomes and returns a list of all possible
(classical) inputs and the respective target output. The result is stored in data truth.

If there is the need to use the function function aux, it means the primitive is an ex-
pression of indexes. Accordingly, the expression may have two controls or be the result of
other expressions. If the controls are symbols, a simple toffoli gate works, but recall that
even symbols can be a not statement. (Please refer to Appendix B.2 to see the definition of
gate toffoli.)

def function_aux(t, qt, qa, qc,qr):

for x in t:

control_number = len(x)-1

if x[’target’]:

if control_number==2:

gate_toffoli(x, qt, qc,qr)

else:

decomposed_gate(control_number, qt, qa,qc,x,qr)

96 Chapter 6. The quantum approach

In the possibility of the expression being composed by other expressions, since there
is a truth table, it is possible to focus in the situation where the target changes. In that
situation, a CnNOT is required, but since this gate doesn’t exist in Qiskit, a decomposition
with various toffoli gates is used (Bib, 2020).

def decomposed_gate(qcontrol,qtarget,qaux,qc,data,qr):

di is the situations where the target is true

di = list(data.items())

new_control = toffoli_init(di[0], di[1], qaux, qc,qr)

for x in di[2:-1]:

qaux=qaux+1

new_control = toffoli_mid(new_control, x, qaux, qc,qr)

qc.cx(qr[new_control],qr[qtarget])

for x in reversed(di[2:-1]):

qaux=qaux-1

new_control = toffoli_mid_rev(qaux, x, new_control, qc,qr)-1

new_control = toffoli_init(di[0], di[1], qaux, qc,qr)

(Please refer to Appendix B.2 to see the definition of toffoli init, toffoli mid and
toffoli mid rev.)

From the decomposition it is possible to guess the number of ancillary qubits, i.e. auxil-
iary qubits, needed in the circuit.

At this point, the only missing piece is the oracle. To do that one needs to find values
smaller than the threshold value. But first, in order to simplify, ignore 0 every time, in any
value, it is the most significant bit. As one is dealing only with positive natural numbers, if
the value is T[i] = 0, there is no j for which T[j] < T[i]. Similarly, every time there is a 0,
there is no need to add any gate to the circuit.

def grover_minor(qubits, bits, n, m, v_threshold):

qc_grover_m = QuantumCircuit(qubits,bits)

#v is v_threshold in binary

v= "{0:b}".format(v_threshold).zfill(maxq)

target = m+n

zero=False

for x in "{0:b}".format(v_threshold):

if x == ’0’:

zero = True

if zero==False:

mark_or_zero(v, n, m, qc_grover_m,qubits)

else:

6.2. Solution Search 97

toconsider = False

count=n

lcount= []

for i in v:

if i==’1’:

lcount.append(count)

if not(toconsider):

mark_zero(count, target, qc_grover_m,qubits)

else:

mark_other(lcount, target, qc_grover_m,qubits)

toconsider = True

count=count+1

return(qc_grover_m)

Auxiliary functions, such as mark or zero, mark zero and mark other, are used to de-
compose several cases of threshold values in order to obtain the list of possible values
inferior to the threshold. This list is not a list per se, but instead, a circuit that identifies the
values that are inferior to the threshold. (Please refer to Appendix B.2 to see the definition
of these auxiliary functions.)

After knowing how such inferior values are found, it is time to implement how to mark
the indexes of such values. First, the information is entangled in the auxiliary bits with the
index qubits. Then the information is marked with a CZ gate. If there are only 2 qubits
holding index information then only one gate is required, otherwise, the gate needs to be
decomposed.

def grover_mark_j(qubits, bits, n, m):

qc = QuantumCircuit(qubits,bits)

target = m+n

final_t = n

for x in range(n):

qc.cx(qubits[target], qubits[x])

#only 2 qubits in for index

if n<= 2:

qc.cz(qubits[0], qubits[1])

#need for decomposition

else:

t=n+m

qc.ccx(qubits[0],qubits[1],qubits[t])

ic_1=t

98 Chapter 6. The quantum approach

for x in range(2,n-1):

ic_2=x

t=t+1

qc.ccx(qubits[ic_1],qubits[ic_2],qubits[t])

ic_1=t

qc.cz(qubits[ic_1],qubits[final_t])

#reverse

for x in range(n,3,-1):

ic_1=ic_1-1

qc.ccx(qubits[ic_1],qubits[ic_2],qubits[t])

ic_1=t

t=t-1

t = t-1

qc.ccx(qubits[0],qubits[1],qubits[t])

for x in range(n):

qc.cx(qubits[target], qubits[x])

return(qc)

The final step is the application of the diffusion operator, UD, and the measurement.

i0 H X • X H

i1 H X • X H

i2 H X Z X H

Figure 36: UD with qy = 3.

This operator has Hadamard and X gates in all the index qubits. After, there is a Z or
CnZ gate given by the function ncz. And finally, the diffusion ends with X and Hadamard
gates in the index qubits. (See Figure 36)

def grover_D(qubits, bits, n, m):

qc_grover_D = QuantumCircuit(qubits,bits)

for i in range(n):

qc_grover_D.h(qubits[i])

for i in range(n):

qc_grover_D.x(qubits[i])

ncz(n, m, qc_grover_D,qubits)

for i in range(n):

6.2. Solution Search 99

qc_grover_D.x(qubits[i])

for i in range(n):

qc_grover_D.h(qubits[i])

return(qc_grover_D)

def ncz(n,m,qc_grover_D,qubits):

t=n-1

only one qubit

if n == 1:

qc_grover_D.z(qubits[t])

elif n ==2 :

only two qubits

qc_grover_D.cz(qubits[0],qubits[t])

more than 2 qubits

else:

decomposed_gate_Z(n,m,qc_grover_D,qubits)

As before, if there is more than 2 qubits, a decomposition is required.

def decomposed_gate_Z(index,m, qc_grover_D,qubits):

target= index+m

qc_grover_D.ccx(qubits[0],qubits[1],qubits[target])

i=index

for i in range(2,index-1):

t=target+1

qc_grover_D.ccx(qubits[target],qubits[i],qubits[t])

target=t

qc_grover_D.cz(qubits[target],qubits[i-1])

for i in range(index-1,2,-1):

target=target-1

t=target+1

qc_grover_D.ccx(qubits[target],qubits[i-1],qubits[t])

t=t-1

target=t

qc_grover_D.ccx(qubits[0],qubits[1],qubits[target])

By last, the measure, only required for the index qubits is given by the function grover measure.

def grover_measure(qubits, bits, n):

grover_m= QuantumCircuit(qubits,bits)

100 Chapter 6. The quantum approach

for h in range(n):

grover_m.measure(qubits[h],bits[h])

return grover_m

To run the circuit using specific data, one uses the function findsolution which receives
the case study data as input. Such function can be consulted in appendix B.2. In the next
section, all results and tests executed will be discussed.

7

R E S U LT S A N D C O M PA R I S O N S

7.1 pre-alignment

Although not relevant in a comparison, it still important to show the results of this step,
even if it was completely classical. As previously explained in section 5, it resorted to an
algorithm called CPD with slight modifications. Next, in table 4 and 5, are displayed some
results of this pre-alignment regarding two and three conformations, respectively, with 4

decimal values. It is quite easy to deduce which molecule has been used as a reference in
each case since the coordinates are the same before and after the transformation.

Old Coordinates New Coordinates
Molecules x y z x y z

1TOM

21.2667 −14.8849 24.9931 21.4404 −15.1142 24.5667
19.5525 −13.9286 20.8894 19.3836 −14.6355 20.5375
12.7832 −12.2659 21.5865 12.9837 −11.9752 21.5558
10.4754 −12.7687 23.0764 10.8223 −11.9027 23.3227
16.783 −16.8314 23.3519 16.5988 −16.6806 23.7348

1D4P

21.1589 −15.1013 24.7647 21.1589 −15.1013 24.7647
18.7243 −14.1965 20.3818 18.7243 −14.1965 20.3818
12.9148 −11.7571 21.6896 12.9148 −11.7571 21.6896
14.4792 −12.7914 20.5876 14.4792 −12.7914 20.5876
10.3365 −11.7564 24.1149 10.3365 −11.7564 24.1149

Table 4: Coordinates of a two-molecule set before and after pre-alignment. First conformation from
each of the molecules.

Since there are about 144 and 1728 different combinations regarding two and three con-
formations at a time, respectively, only one from each will be displayed in this document.
The entire data can be consulted in this link1.

1 https://github.com/msofiasoliveira/MasterDissertation/blob/master/pre-alignment.ods

https://github.com/msofiasoliveira/MasterDissertation/blob/master/pre-alignment.ods

102 Chapter 7. Results and comparisons

Old Coordinates New Coordinates
Molecules x y z x y z

1C4V

20.843 −15.2005 25.3773 21.3172 −15.1882 25.0506
18.8752 −13.6715 20.5892 19.1857 −14.3468 20.1633
12.7282 −11.6792 21.741 13.1105 −12.1026 21.2294
17.7388 −18.4445 27.0457 18.2418 −18.0983 27.2904
17.739 −16.7215 24.222 18.1540 −16.8096 24.2451
20.554 −12.778 18.604 20.7977 −13.7837 18.0087
10.41 −11.8565 24.2975 10.8897 −11.8625 23.8660

1TOM

21.2667 −14.8849 24.9931 21.4404 −15.1142 24.5667
19.5525 −13.9286 20.8894 19.3836 −14.6355 20.5375
12.7832 −12.2659 21.5865 12.9837 −11.9752 21.5558
10.4754 −12.7687 23.0764 10.8223 −11.9027 23.3227
16.783 −16.8314 23.3519 16.5989 −16.6806 23.7348

1D4P

21.1589 −15.1013 24.7647 21.1589 −15.1013 24.7647
18.7243 −14.1965 20.3818 18.7243 −14.1965 20.3818
12.9148 −11.7571 21.6896 12.9148 −11.7571 21.6896
14.4792 −12.7914 20.5876 14.4792 −12.7914 20.5876
10.3365 −11.7564 24.1149 10.3365 −11.7564 24.1149

Table 5: Coordinates of a three-molecule set before and after pre-alignment. First conformation from
each of the molecules.

Figures 37 and 38 display the data of Table 5. Figure 37 depicts the coordinates align-
ment of the three molecules while Figure 38 illustrates the coordinates of each individual
molecule, before and after the transformation. Please notice that in this particular case the
alignment was made with reference to the molecule 1D4P. According to the molecules to
be aligned, the reference may change and hence, the alignment can vary.

Just so one can better understand how much of a difference this pre-alignment makes:
check below, in matrices (38) and (39), the differences obtained when running the classical
SAT solver with both coordinates, before (left) and after (right) the transformation. The
following examples deal with the first conformation of each of the two and three molecules,
respectively. The results below were obtained with the same data displayed above. Due to
their irrelevance, all zero internal matrices were removed for better display.

7.2 sat solver

For the SAT solver, one has to consider data and algorithms regarding both the classic and
quantum approaches. In order to make this data presentation more intuitive, we continue
to consider the same example as above. As mentioned, matrix (38) and (39) display the

7.2. SAT solver 103

(a) (b)

Figure 37: Alignment of three molecules (a) before, in light colors, and (b) after, in darker colors,
pre-alignment. Illustration made with GeoGebra. c©SofiaOliveira, 2020

(a) 1C4V (b) 1TOM (c) 1D4P

Figure 38: Coordinates of each molecule before (in light colors) and after (in darker colors) pre-
alignment. Illustration made with GeoGebra. c©SofiaOliveira, 2020

results of the classical SAT solver implementation with coordinates before (left) and after
(right) pre-alignment.

0.3326 0 0 0 0

0 1.0076 0 0 0
0 0 0.5356 0 0
0 0 0 0 1.4569
0 0 0 0 0

 →

0.3444 0 0 0 0

0 0.8073 0 0 0
0 0 0.2649 0 0
0 0 0 0 0.9407
0 0 0 0 0

 (38)

104 Chapter 7. Results and comparisons

At this point, because the data is already expected to be pre-aligned, only the matrices in
the right are relevant. Here, is possible to see that every restrictions is obeyed. Do not forget
that each position of the matrix is the connection between every two and three points, in
matrix (38) and (39), respectively. Each dimension of the matrix represents a conformation
from a different molecule.

As previously, there are a lot of data to be documented but because the work is explana-
tory with only one example, the remaining data (all SAT implementation matrices of every
possible solution) can be checked in this link2.

1.6822 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 2.3761 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 1.3534 0 0
0 0 0 0 0
0 0 0 0 0

...

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 3.2033
0 0 0 0 0

→

1.1873 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 1.8519 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 1.2455 0 0
0 0 0 0 0
0 0 0 0 0

...

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 2.1055
0 0 0 0 0

(39)

The qSAT requires 25 qubits (the number of the edges) and it was run on both a quantum
simulator (ibmq qasm simulator) and a real device (ibmq cambridge).

Unfortunately, even with all the abstractions made and using only the objective function
and two molecules, neither the quantum device nor simulator were able to give an answer
within viable time in the first version of this code3. More than 72 hours after, no progress

2 https://github.com/msofiasoliveira/MasterDissertation/tree/master/Classic_SAT_%20solver_data

3 Same code but using version 0.18.x of Qiskit.

https://github.com/msofiasoliveira/MasterDissertation/tree/master/Classic_SAT_%20solver_data

7.2. SAT solver 105

was obtained and so, no results were retrieved. Nevertheless, the classic simulator of the
quantum code worked and no errors were raised, indicating that there were no problems in
what concerns the implementation and hence, the Hamiltonian.

Unforeseenly, within one month to finish this dissertation, there was an update on Qiskit
that produced two unexpected events. The first was the deprecation of the ExactEigensolver
class, the classic simulator used, which was substituted by the class NumPyEigensolver. This
generated some problems regarding memory allocation4 and no results were obtained with
the method check hamiltonian. The second event entailed the quick computation (less
than one hour and an half) of the qSAT using real data on the quantum simulator. In the
real quantum device it took around 40 hours. A long simulation but that got results. It is
important to state that a big percentage of the execution time were spent in waiting queues.
The simulation itself took only about 3 hours. Nevertheless, the number 40 will be taken as
the reference time since it was the total time required for collecting the results.

Initially, because no errors were detected during the waiting period of the first trial code,
it was believed that all steps taken and reproduced until this point of the simulation were
correct. Nevertheless, the example tested had only two molecules and unfortunately, due
to the late update, not all data was tested. Additionally, for any three molecule example,
requiring a lot more time, data and qubits, it remained impossible to obtain results.

If one wishes to test the program with other data note that the altered version of CPD
is required. In any case, some data regarding two molecules was obtained. First focus on
matrix (41), which is the list D, given as input to the qSAT, that contains all distances, times
10, associated with every point connection between conformations. The number 10 is a
weight associated with the distance, turning expression (29) to become,

min A
N

∑
i∼j

dijxij −
N

∑
i∼j

xij (40)

with A = 10. Initially, it was thought that no weight was necessary in the objective function
since the distance varied within the edges. The problem was that, with no weight, the
function always tended to set the solution to 0 since it was never beneficial to set any edge
to 1.

4 Please see documentation of class NumPyEigensolver in https://qiskit.org/documentation/stubs/qiskit.

aqua.algorithms.NumPyEigensolver.html.

https://qiskit.org/documentation/stubs/qiskit.aqua.algorithms.NumPyEigensolver.html
https://qiskit.org/documentation/stubs/qiskit.aqua.algorithms.NumPyEigensolver.html

106 Chapter 7. Results and comparisons

3.4438 50.7271 96.0379 83.4782 116.0924
46.0841 8.0730 71.7346 52.3994 101.4583
93.2221 62.6636 2.6493 19.5967 36.8839
109.1584 87.3796 26.5832 46.5225 9.4074
49.3446 46.8307 64.8046 54.3361 79.7557

 (41)

Is interesting to notice that the distances in the final solution in the right of matrix (38)
are the same, divided by 10, as the input.

Although it may seem a weird data input compared to the previous data since the classic
SAT receives the data as conformations with the corresponding points, the reason behind
such input was the classical data preparation. That is, the preparation of the data would be
made, in any case, classical, and thus previous to the qSAT. But, one may ask, why using the
distance of each edge? This time, the answer comes from the problem since, as illustrated
in Equation (40), the objective function is a relation between the number of points aligned
and their distance. The output of the qSAT used in the simulator is the presented in matrix
(42). The results form the real quantum device are displayed in matrix (43).

0 1 0 0 0
1 1 0 0 0
0 0 1 1 0
0 0 1 0 0
1 0 0 0 0

 (42)

1 0 1 1 1
0 1 0 0 1
1 0 1 1 0
0 1 1 1 1
0 1 0 0 1

 (43)

The equivalent solution of matrix (38) in the qSAT is matrix (42) or (43) multiplied by the
transverse of matrix (41), with each element divided by 10, that is, matrices (44) and (45).

7.3. Solution Search 107

0 5.0727 0 0 0

4.6084 0.8073 0 0 0
0 0 0.2649 1.9597 0
0 0 2.6583 0 0

4.9345 0 0 0 0

 (44)

0.3444 0 9.6038 8.3478 11.6092

0 0.8073 0 0 10.1458
9.3222 0 0.2649 1.9597 0

0 8.7380 2.6583 4.6522 0.9407
0 4.6831 0 0 7.9756

 (45)

As one can observe, this final matrices did not selected the overall edges with the lowest
values. Some possible explanations are the lack of time to reach a better solution (variable
max trials), the quantum noise, which was very disturbing, the weight given to D was not
enough, or too much... There are a lot of possible reasons to justify such a result but in any
case, the only way one could verify if the behavior of the qSAT was correct would be by
implementation of the restrictions. Of course, this solution has no real value since it does
not implement the restrictions, but nevertheless proves the functionality of the algorithm.
The fact that this result was achieved at a later stage, no restriction was translated into
the QP formulation and, unfortunately, no real data relevance was obtained. Nevertheless,
such result opens the door for further investigation and implementations.

Comparing both methods, classic and quantum, it is clear that no advantage was ob-
tained with the quantum approach. Time relating comparisons come up to, at most, 5
minutes in the classic solver, and, without the restrictions being implemented, not much
less than 1 hour and an half in the quantum simulator and around 40 hours in the real de-
vice. Of course, it is important to notice that there are few qubits available in any quantum
device but billions of bits is any commercially available classical computer. In the future,
when such a difference becomes smaller, maybe the advantage will be proved to be in the
quantum algorithm.

7.3 solution search

In this step, as in the previous, there are classic and quantum approaches and results.
Recalling from section 5.3, Equation (46) states the score each solution has. By solution, we

108 Chapter 7. Results and comparisons

mean here a structure of the same sort of matrices (38) or (44). To each such solution a
score value is associated, as already explained in more detail in section 5.3. In the case of
all edges being zero, the score is set to a maximum of 2000.

score(naligned, d) = round

(
200× d

(M
2)× naligned

+ 400× (5− naligned)

)
(46)

At this point it is expected a list of scores for each solution. The data obtained in the
classical SAT solver of two molecules alignment was used as the input list:

1. for molecule 1C4V and 1TOM:

[518, 567, 2000, 555, 2000, 527, 616, 2000, 532, 547, 564, 516, 965, 999,

2000, 993, 2000, 925, 967, 2000, 921, 951, 916, 965, 1068, 2000, 2000, 1026,

2000, 1062, 957, 2000, 640, 1050, 944, 994, 599, 597, 2000, 591, 1096, 585,

632, 1064, 574, 562, 604, 594, 1037, 1091, 2000, 2000, 2000, 1002, 949, 2000,

1001, 1039, 1088, 1060, 1080, 1027, 2000, 2000, 2000, 1080, 934, 2000, 1030,

967, 928, 1092, 934, 936, 1032, 920, 2000, 951, 1049, 1038, 937, 927, 940,

926, 1017, 978, 2000, 2000, 2000, 1032, 2000, 1063, 915, 939, 935, 2000, 958,

993, 576, 2000, 588, 928, 672, 594, 2000, 2000, 1105, 986, 979, 999, 2000,

993, 2000, 951, 993, 2000, 1026, 953, 920, 979, 1168, 2000, 2000, 2000, 2000,

1066, 999, 2000, 1058, 1075, 1045, 1108, 621, 601, 2000, 598, 1097, 632, 1074,

1115, 654, 630, 620, 607]

2. for molecule 1C4V and 1D4P:

[505, 509, 698, 502, 509, 986, 698, 710, 711, 595, 567, 517, 666, 683, 2000,

2000, 682, 685, 2000, 2000, 2000, 2000, 1160, 1123, 667, 2000, 2000, 2000,

2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 524, 524, 2000, 530, 524,

531, 2000, 2000, 2000, 592, 609, 544, 1063, 1069, 1098, 1056, 2000, 2000,

1098, 1011, 2000, 1076, 2000, 1072, 1103, 1111, 2000, 1102, 1110, 1103, 2000,

2000, 2000, 2000, 1129, 1102, 690, 687, 1077, 1070, 687, 1070, 1077, 1075,

1084, 1031, 1134, 703, 1071, 1051, 1068, 1070, 1051, 1070, 1068, 662, 662,

1051, 2000, 1083, 1056, 1069, 685, 1063, 1069, 954, 686, 2000, 2000, 2000,

582, 2000, 2000, 1065, 2000, 2000, 1065, 2000, 2000, 2000, 2000, 2000, 2000,

2000, 2000, 1084, 2000, 1085, 1084, 1085, 2000, 2000, 2000, 2000, 2000, 2000,

585, 550, 2000, 561, 550, 561, 2000, 1009, 2000, 561, 619, 587]

3. for molecule 1TOM and 1D4P:

[518, 537, 1035, 527, 537, 649, 1035, 690, 690, 2000, 942, 513, 575, 547,

977, 555, 547, 554, 976, 662, 662, 524, 964, 567, 2000, 2000, 581, 2000, 2000,

7.3. Solution Search 109

2000, 582, 930, 610, 2000, 960, 992, 565, 536, 986, 544, 537, 544, 986, 668,

668, 664, 571, 559, 2000, 2000, 679, 2000, 2000, 2000, 679, 991, 991, 2000,

634, 1070, 522, 547, 1033, 531, 547, 531, 1033, 692, 693, 2000, 619, 516,

564, 600, 2000, 583, 600, 583, 2000, 681, 682, 640, 520, 551, 2000, 2000,

596, 2000, 2000, 2000, 596, 615, 614, 2000, 973, 2000, 633, 665, 2000, 656,

657, 656, 2000, 1119, 1119, 629, 650, 633, 992, 669, 1055, 664, 669, 664,

1055, 663, 663, 653, 993, 533, 543, 533, 654, 531, 534, 530, 654, 627, 627,

645, 538, 535, 526, 529, 1003, 520, 530, 520, 1003, 713, 714, 687, 936, 520]

In a classical approach, such best score value is easily obtained with the min() function
of python, but we resorted to the following cycle:

for idS, s in enumerate(scores):

if(s < bestScore):

bestScore = s

solution = idS

In the end of the cycle the best score is stored in bestScore and the corresponding
position in solution. In the first case, the minimum value is 516, in position 11. In the
second case, 502 in position 3. And by last, 513 in position 11. (Position values start at 0.)

When comes to the quantum solution search, it was used a quantum simulator (qasm simulator)
instead of a real device since it requires 30 qubits: 8 qubits for solution representation, 11
qubits for value representation and another 11 auxiliary qubits for circuit construction. The
quantum devices available at this point count to a maximum of 28 qubits. There is a quan-
tum device, ibmq rochester, that provides 53 qubits but it works by reservation and only
allows for simulations in a total of 12 hours per month. Since the algorithm takes more
than 2 days per simulation, it was impossible to run it in this backend (more information
on time issues later in this section).

In total, six simulations were made, two for each set of data. For the first set of data it
was used the same hardware (A) in both, while for the other two sets was used different
hardware (A and B) on each simulation. (Please check appendix C for more information.)
Tables 6, 7 and 8 describe the results and respective time taken for each of the simulation’s
attempts. Each attempt was executed with two distinct versions of Qiskit, a possible reason
for why the time taken per iteration was changed so dramatically within the same device
(A). (All results obtained in the second attempt can be consulted here5.)

A possible reason for the correct answer not being found can be related to the first value
the circuit finds, and hence, also related to the random number used as the initial threshold.

5 https://github.com/msofiasoliveira/MasterDissertation/tree/master/Quantum%20Search/Output_

2attempt

https://github.com/msofiasoliveira/MasterDissertation/tree/master/Quantum%20Search/Output_2attempt
https://github.com/msofiasoliveira/MasterDissertation/tree/master/Quantum%20Search/Output_2attempt

110 Chapter 7. Results and comparisons

Molecule 1C4V and 1TOM

First
Attempt

Device used A
Iterations 135
Time per iteration (seconds) ∼ 1700
Total time (hours) ∼ 64
Value and position 518; 0

Second
Attempt

Device used A
Iterations 170
Time per iteration (seconds) ∼ 1400
Total time (hours) 66
Initial threshold 2000
First Value and position 2000; 105
Final value and position 518; 0

Table 6: Results of the quantum solution search and time taken for molecule 1C4V and 1TOM.

Molecule 1C4V and 1D4P

First
Attempt

Device used A
Iterations 135
Time per iteration (seconds) ∼ 1700
Total time (hours) ∼ 64
Final value and position 502; 3

Second
Attempt

Device used B
Iterations 170
Time per iteration (seconds) ∼ 1200
Total time (hours) ∼ 57
Initial threshold 1110
First Value and position 1056; 96
Final value and position 509; 4

Table 7: Results of the quantum solution search and time taken for molecule 1C4V and 1D4P .

In the first attempt, such values were not retrieved, but in the second attempt, it is possible
to see that when a smaller value is found in the first iteration, the solution was successfully
found. The opposite happens with higher values. One could only confirm such suspicions
based on more attempts, which were impossible to obtain due to the time required.

Another possible reason is the proximity of the minimum values. To evaluate such a pos-
sibility, one needs to check the states throughout the circuit. The only way to do this is with

7.3. Solution Search 111

Molecule 1TOM and 1D4P

First
Attempt

Device used A
Iterations 135
Time per iteration (seconds) ∼ 1700
Total time (hours) ∼ 64
Final value and position 522; 60

Second
Attempt

Device used B
Iterations 170
Time per iteration (seconds) ∼ 1070
Total time (hours) ∼ 51
Initial threshold 2000
First Value 640; 81
Final Value and position 513; 11

Table 8: Results of the quantum solution search and time taken for molecule 1TOM and 1D4P.

the statevector simulator, backend of the Qiskit library. Unfortunately, with the hardware A6

used in the first stage of the simulations, such was impossible. In a second attempt, another
hardware, B7, was used and the code started to run straight with 10Gb of RAM memory. A
possible explanation to the first attempt of simulation not being able to run is the lack of
RAM. After five minutes the usage was of 80% of total RAM memory, 13Gb. Due to the
quick exhaustion of the RAM memory, it was impossible to run the simulation until the
end.

The statevector operates by plotting the states of the qubits after each gate in the circuit.
Since in this algorithm there are hundreds of gates and 8 qubits (regarding the different
solutions), this can be a possible reason for this big usage of memory. Remember that
although there are only 8 qubits relative to the different solutions, in total the circuit uses
30 qubits.

It is now important to clarify some time related data. In the classic search, the time taken
can be considered irrelevant. On the other hand, with the quantum search algorithm used,
the circuit of each case needs to be run 170 times, and each circuit takes around 20− 28
minutes8. That sums up to 63 hours, around two days and an half, for each case. Of
course, given that it was only used the lists of two molecules alignment, such time quickly
becomes impracticable for bigger molecules. The number of iterations required in each case
is calculated by Equation (37) with N = 144 since this is the number of solutions in each of
the lists.

6 Check table 9 in appendix C.
7 Check table 10 in appendix C.
8 Such number depends on the hardware of the device used

112 Chapter 7. Results and comparisons

When comes to comparison between the two approaches, is clear that no advantage is
achieved with a quantum algorithm, at least, at this point in time. Maybe in the future,
with more qubits, such difference can be reversed.

8

C O N C L U S I O N S

When comes to creating a new algorithm, classic or quantum, it is always a challenge
to find the best path to follow. Each decision along the way defines a little of the road
that was taken. That being said, this work was an unsteady and adventurous road, full
of new obstacles and dilemmas that could never be expected. Additionally, came a lot
of interesting problems and subjects one could never imagine would learn. The learning
curve has done nothing but to grow during this dissertation. Beyond that learning, despite
the efforts, there were problems that could not be overcome and had a great impact in the
results of this dissertation. The next section makes an overall analysis of what technical
issues have been encountered and how they contributed so negatively to the success of the
algorithms created. Finally, we will discuss alternative approaches and work that can be
done in the future regarding the problem of flexible molecular alignment.

8.1 technical issues

The most important and most mentioned technical problem in this dissertation is the
number of available qubits. Despite the knowledge, beforehand, that one would need to ab-
stract the problem to a maximum, it was not anticipated how much abstraction that would
actually imply. After all, the problem proposed was never solved itself in any quantum
perspective. At least, not by beginning to end. By a difference of only 3 qubits, there was
possible to run the qSAT algorithm with real data on a real device. When comes to the
solution search quantum algorithm, there was only the possibility to use real data in the
algorithm when resorting to a quantum simulator.

It is also important to mentioned, although this is not a technical issue, that the unfamil-
iarity with medicinal chemistry, and hence, molecular alignment, also had a great impact on
the initial approach to the problem. It must be said as well that this unfamiliarity entailed
the need to create a whole classical algorithm in order to better understand the problem and

114 Chapter 8. Conclusions

which approaches and abstractions could be proposed while still respecting the problem
itself.

Continuing with the technical issues, the lack of memory in the local devices used, was
also a problem. Or, in another perspective, the excessive need of memory by the qiskit soft-
ware. Regardless, this was an issue that influenced the number of trials and tests one was
able to execute since it required a computer device to be solely dedicated to the simulation,
taking several days in some cases. A possible solution to such a problem could be provided
by the use of online backends or simulators. Unfortunately, that generates data that could
only be used for further computations if there was a steady internet connection. Although
it is possible to retrieve the information about the circuit run online, this does not include
data in treatable format.

Despite that point, online simulators and backends were used in all qSAT solver simula-
tions. Nevertheless, due to queue waiting time or maybe other connection related reasons,
it also took several hours to generate results. In the end, all solution regarding quantum
simulations, on real devices or quantum simulators, took a lot more time than any classic
algorithm. As mentioned previously, there is no fair comparison when comes to evaluate
algorithms in systems with such resource disparity, but it is the only viable approach in a
near future.

In the end and to sum up, the biggest problem encountered in this dissertation was the
time and resources required for each simulation. It made it impossible to create or verify
all algorithms created in a practical manner with all the real data provided by Bial.

8.2 future work

The future work regarding this project has a variety branches. Indeed, there are a lot of
different paths entailing different degrees of research. Some more complex than others but
in the end, they would all greatly contributed to a better success of this case study.

As an example of future work not too far from the approaches taken in this dissertation,
all algorithms could be improved. For the qSAT, this involves the development and imple-
mentation of the QP formulations of the restrictions. For the solution search, on the other
hand, the weight factor could be further refined to see its implications in the optimization
of the search.

Additionally, if all algorithms could be run several times with different input parameters,
(i.e. different data, number of circuit iterations, number of shots, number of max trials), it
would be possible to study the impact of each of these parameters in the simulation.

A promising future work is the development of a quantum algorithm that would be
able to make the spatial alignment of the molecules, i.e. the pre-alignment. Such could be

8.2. Future work 115

inspired on the QSSA algorithm, presented in section 3.3. Although not classically efficient,
since elaborated quantum calculations are required, with a quantum approach that could be
greatly changed. This idea came from the essence of quantum devices, that this, quantum
mechanics. The calculations could never be required if one executed the simulation as a
system of molecules that need to aligned according to the laws of physics and chemistry.
In such a small scale, once again, reality is quantum. In such an algorithm, qubits would
not be edges or points but atoms and all its respective peculiarities, which would improved
the accuracy and reliability of the data produced.

Since the spatial alignment of molecules is such an important step in molecular alignment,
the sole achievement of such could revolutionize the field of medicinal chemistry. Stepping
back a little further in the problem, although extremely ambitious, the development of
such an algorithm would create the possibility to treat the molecular flexibility as a direct
parameter, instead of the semiflexible approach used during this dissertation. Even the
promises of integrating the flexibility of molecules directly in the alignment with an efficient
quantum algorithm would lead to a breakthrough within the science community and even
industries that investigate this subject.

In any case, all the mentioned suggestions require time and resources allied with great
knowledge of a variety of fields, including Physics, Chemistry, Mathematics and Computer
Science. It is probably a theme for a broad scope research project.

B I B L I O G R A P H Y

Metastable state. Encyclopdia Britannica website, 2018. URL https://www.britannica.

com/science/metastable-state. Acessed: 03-07-2020.

Automatic compilation of quantum circuits, Apr 2020. URL https://quantumcomputing.

stackexchange.com/questions/4086/automatic-compilation-of-quantum-circuits.
Acessed: 16-06-2020.

Pierre-Gilles de Gennes A. Y. Grosberg, A. R. Khokhlov. Flexibility Mechanisms. World
Scientific, 5 Toh Tuck Link, Singapore 596224, 2nd edition, 2011.

Ruben Abagyan and Maxim Totrov. Biased probability monte carlo conformational searches
and electrostatic calculations for peptides and proteins. Journal of Molecular Biology, 235

(3):983 – 1002, 1994. ISSN 0022-2836. doi: https://doi.org/10.1006/jmbi.1994.1052. URL
http://www.sciencedirect.com/science/article/pii/S0022283684710527.

Tameem Albash and Daniel A. Lidar. Adiabatic quantum computation. Reviews of Modern
Physics, 90(1), Jan 2018. ISSN 1539-0756. doi: 10.1103/revmodphys.90.015002. URL
http://dx.doi.org/10.1103/RevModPhys.90.015002.

Carolina Alves. A Quantum Algorithm for Ray Casting using Orthographic Camera. Mas-
ter’s thesis, University of Minho, Portugal, 2019.

Daniel Baum. Multiple semi-flexible 3d superposition of drug-sized molecules. In Michael
R. Berthold, Robert C. Glen, Kay Diederichs, Oliver Kohlbacher, and Ingrid Fischer, edi-
tors, Computational Life Sciences, pages 198–207, Berlin, Heidelberg, 2005. Springer Berlin
Heidelberg. ISBN 978-3-540-31726-5.

Paul J. Besl and Neil D. McKay. Method for registration of 3-D shapes. In Paul S. Schenker,
editor, Sensor Fusion IV: Control Paradigms and Data Structures, volume 1611, pages 586–
606. International Society for Optics and Photonics, SPIE, 1992. doi: 10.1117/12.57955.

Denise D. Beusen and Garland R. Marshall. Pharmacophore definition using the active ana-
log approach. In Osman F. Güner, editor, Pharmacophore Perception, Development, and Use
In Drug Design, chapter 3, pages 17–45. International University Line, La Jolla, California,
2000.

Gold Book. Compendium of chemical terminology. International Union of Pure and Applied
Chemistry, 2014. Acessed: 24-06-2019.

https://www.britannica.com/science/metastable-state
https://www.britannica.com/science/metastable-state
https://quantumcomputing.stackexchange.com/questions/4086/automatic-compilation-of-quantum-circuits
https://quantumcomputing.stackexchange.com/questions/4086/automatic-compilation-of-quantum-circuits
http://www.sciencedirect.com/science/article/pii/S0022283684710527
http://dx.doi.org/10.1103/RevModPhys.90.015002

118 bibliography

O. Bottema and B. Roth. Theoretical kinematics. Dover Publications, New York, 1 edition,
1990. ISBN 0-486-66346-9.

Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp. Tight bounds on quan-
tum searching. arXiv, May 1996. doi: 10.1002/(SICI)1521-3978(199806)46:4/5〈493::
AID-PROP493〉3.0.CO;2-P.

Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp. Tight bounds
on quantum searching. Fortschritte der Physik, 46(45):493–505, 1998. doi:
10.1002/(SICI)1521-3978(199806)46:4/5〈493::AID-PROP493〉3.0.CO;2-P. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291521-3978%

28199806%2946%3A4/5%3C493%3A%3AAID-PROP493%3E3.0.CO%3B2-P.

Stephen G. Brush. History of the lenz-ising model. Rev. Mod. Phys., 39:883–893, Oct
1967. doi: 10.1103/RevModPhys.39.883. URL https://link.aps.org/doi/10.1103/

RevModPhys.39.883.

P. Bultinck, W. Langenaeker, P. Lahorte, F. De Proft, P. Geerlings, C. Van Alsenoy, and
J. P. Tollenaere. The electronegativity equalization method ii: Applicability of different
atomic charge schemes. The Journal of Physical Chemistry A, 106(34):7895–7901, 2002a. doi:
10.1021/jp020547v.

P. Bultinck, W. Langenaeker, P. Lahorte, F. De Proft, P. Geerlings, M. Waroquier, and J. P.
Tollenaere. The electronegativity equalization method i: Parametrization and validation
for atomic charge calculations. The Journal of Physical Chemistry A, 106(34):7887–7894,
2002b. doi: 10.1021/jp0205463.

Patrick Bultinck, Tom Kuppens, Xavier Girons, and Ramon Carb-Dorca. Quantum sim-
ilarity superposition algorithm (qssa): a consistent scheme for molecular alignment
and molecular similarity based on quantum chemistry. Journal of Chemical Informa-
tion and Computer Sciences, 43(4):1143–1150, 2003. doi: 10.1021/ci0340153. URL https:

//doi.org/10.1021/ci0340153.

Ramon Carb, Luis Leyda, and Mariano Arnau. How similar is a molecule to another? an
electron density measure of similarity between two molecular structures. International
Journal of Quantum Chemistry, 17(6):1185–1189, 1980. doi: 10.1002/qua.560170612. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/qua.560170612.

Alba Cervera-Lierta. Exact ising model simulation on a quantum computer. Quantum, 2:
114, 2018. doi: 10.22331/q-2018-12-21-114.

Henderson James (Jim) Cleaves. Moiety, pages 1069–1069. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2011. ISBN 978-3-642-11274-4. doi: 10.1007/978-3-642-11274-4 1873.
URL https://doi.org/10.1007/978-3-642-11274-4_1873.

https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291521-3978%28199806%2946%3A4/5%3C493%3A%3AAID-PROP493%3E3.0.CO%3B2-P
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291521-3978%28199806%2946%3A4/5%3C493%3A%3AAID-PROP493%3E3.0.CO%3B2-P
https://link.aps.org/doi/10.1103/RevModPhys.39.883
https://link.aps.org/doi/10.1103/RevModPhys.39.883
https://doi.org/10.1021/ci0340153
https://doi.org/10.1021/ci0340153
https://onlinelibrary.wiley.com/doi/abs/10.1002/qua.560170612
https://doi.org/10.1007/978-3-642-11274-4_1873

bibliography 119

Hans-Uwe Dahms. Challenges in medicinal chemistry. J Chem Bio and Med Chem., 1(1),
November 2017.

Matthieu E. Deconinck and Barbara M. Terhal. Qubit state discrimination. Phys. Rev. A, 81:
062304, Jun 2010. doi: 10.1103/PhysRevA.81.062304. URL https://link.aps.org/doi/

10.1103/PhysRevA.81.062304.

David J Diller and Kenneth M Merz. Can we separate active from inactive conformations?
Journal of computer-aided molecular design, 16(2):105–112, 2002.

David P. DiVincenzo. Quantum computation. Science, 270(5234):255–261, 1995. ISSN
0036-8075. doi: 10.1126/science.270.5234.255. URL https://science.sciencemag.org/

content/270/5234/255.

John H. Van Drie. Monty kier and the origin of the pharmacophore concept. Internet
Electronic Journal of Molecular Design, 6(9):271–279, 2007. ISSN 1538-6414. URL http:

//www.biochempress.com/av06_0271.html.

Christoph Dürr and Peter Høyer. A quantum algorithm for finding the minimum. CoRR,
quant-ph/9607014, 07 1996.

EUPATI. Active molecule, Oct 2016. URL https://www.eupati.eu/glossary/

active-molecule/. Acessed: 23-06-2019.

E. Farhi, J. Goldstone, S. Gutmann, and H. Neven. Quantum algorithms for fixed qubit
architectures, 2017.

Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser. Quantum computa-
tion by adiabatic evolution, 2000.

Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate optimization
algorithm, 2014.

Miklos Feher and Jonathan M. Schmidt. Multiple flexible alignment with seal: a study
of molecules acting on the colchicine binding site. Journal of Chemical Information and
Computer Sciences, 40(2):495–502, 2000. doi: 10.1021/ci9900682.

David M. Ferguson and Douglas J. Raber. A new approach to probing conformational space
with molecular mechanics: random incremental pulse search. Journal of the American
Chemical Society, 111(12):4371–4378, Jun 1989. ISSN 0002-7863. doi: 10.1021/ja00194a034.
URL https://doi.org/10.1021/ja00194a034.

Richard P Feynman. Simulating physics with computers. International Journal of Theoretical
Physics, 21(6/7), 1982.

https://link.aps.org/doi/10.1103/PhysRevA.81.062304
https://link.aps.org/doi/10.1103/PhysRevA.81.062304
https://science.sciencemag.org/content/270/5234/255
https://science.sciencemag.org/content/270/5234/255
http://www.biochempress.com/av06_0271.html
http://www.biochempress.com/av06_0271.html
https://www.eupati.eu/glossary/active-molecule/
https://www.eupati.eu/glossary/active-molecule/
https://doi.org/10.1021/ja00194a034

120 bibliography

Andrew W Fitzgibbon. Robust registration of 2d and 3d point sets. Image and Vi-
sion Computing, 21(13):1145 – 1153, 2003. ISSN 0262-8856. doi: https://doi.org/
10.1016/j.imavis.2003.09.004. URL http://www.sciencedirect.com/science/article/

pii/S0262885603001835. British Machine Vision Computing 2001.

J. A. Grant and B. T. Pickup. A gaussian description of molecular shape. The Journal of
Physical Chemistry, 99(11):3503–3510, 1995. ISSN 0022-3654. doi: 10.1021/j100011a016.

J. A. Grant, M. A. Gallardo, and B. T. Pickup. A fast method of molecular shape compari-
son: A simple application of a gaussian description of molecular shape. Journal of Com-
putational Chemistry, 17(14):1653–1666, 1996. doi: 10.1002/(SICI)1096-987X(19961115)17:
14〈1653::AID-JCC7〉3.0.CO;2-K.

L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of
the twenty-eighth annual ACM symposium on Theory of computing, pages 212–219, 1996.

Jun Gu, Paul W Purdom, John Franco, and Benjamin W Wah. Algorithms for the satisfiabil-
ity (sat) problem: A survey. Technical report, Cincinnati Univ oh Dept of Electrical and
Computer Engineering, 1996.

Gamini Gunawardena, Jun 2019. URL https://chem.libretexts.org/Ancillary_

Materials/Reference/Organic_Chemistry_Glossary/Constitutional_Isomers.
Acessed: 26-06-2019.

J. M. Hammersley and D. C. Handscomb. Monte carlo methods. Chapman and Hall, 1964.
doi: 10.1007/978-94-009-5819-7.

Anne Marie Helmenstine. Macromolecule definition and examples, April 2018. URL https:

//www.thoughtco.com/definition-of-macromolecule-605324. Acessed: 24-06-2019.

Alexander von Homeyer. A Superimposition Method for Small Ligand Molecules: Implementation
and Application. PhD thesis, Naturwissenschaftlichen Fakultten der Universitt Erlangen-
Nrnberg, 2007.

Ian Hunt. Constitutional isomers, 2009a. URL http://www.chem.ucalgary.ca/courses/

350/Carey5th/Ch01/ch1-5.html. Acessed: 04-07-2019.

Ian Hunt. Isomer types, 2009b. URL http://www.chem.ucalgary.ca/courses/350/

Carey5th/Ch07/ch7-1.html. Acessed: 27-06-2019.

IBM. Qiskit aqua: Experimenting with max-cut problem and traveling salesman prob-
lem with variational quantum eigensolver, a. URL https://github.com/Qiskit/

qiskit-tutorials/blob/master/legacy_tutorials/aqua/optimization/max_cut_

and_tsp.ipynb. Accessed: 30-04-2020.

http://www.sciencedirect.com/science/article/pii/S0262885603001835
http://www.sciencedirect.com/science/article/pii/S0262885603001835
https://chem.libretexts.org/Ancillary_Materials/Reference/Organic_Chemistry_Glossary/Constitutional_Isomers
https://chem.libretexts.org/Ancillary_Materials/Reference/Organic_Chemistry_Glossary/Constitutional_Isomers
https://www.thoughtco.com/definition-of-macromolecule-605324
https://www.thoughtco.com/definition-of-macromolecule-605324
http://www.chem.ucalgary.ca/courses/350/Carey5th/Ch01/ch1-5.html
http://www.chem.ucalgary.ca/courses/350/Carey5th/Ch01/ch1-5.html
http://www.chem.ucalgary.ca/courses/350/Carey5th/Ch07/ch7-1.html
http://www.chem.ucalgary.ca/courses/350/Carey5th/Ch07/ch7-1.html
https://github.com/Qiskit/qiskit-tutorials/blob/master/legacy_tutorials/aqua/optimization/max_cut_and_tsp.ipynb
https://github.com/Qiskit/qiskit-tutorials/blob/master/legacy_tutorials/aqua/optimization/max_cut_and_tsp.ipynb
https://github.com/Qiskit/qiskit-tutorials/blob/master/legacy_tutorials/aqua/optimization/max_cut_and_tsp.ipynb

bibliography 121

IBM. Qiskit aqua: Vehicle routing, b. URL https://github.com/Qiskit/

qiskit-tutorials/blob/master/legacy_tutorials/aqua/optimization/vehicle_

routing.ipynb. Accessed: 30-04-2020.

IBM. Grover’s algorithm, c. URL https://quantum-computing.

ibm.com/docs/guide/q-algos/grover-s-algorithm?fbclid=

IwAR3a4UP-Q0fGSocmHe3qPEjx0bdqus5fA0lxGdwC4YbwDyQxRoGTifUlv-Y. Acessed:
17-06-2020.

IBM. Ibm unveils world’s first integrated quantum computing sys-
tem for commercial use, 2019. URL https://newsroom.ibm.com/

2019-01-08-IBM-Unveils-Worlds-First-Integrated-Quantum-Computing-System-for-Commercial-Use.
Acessed: 29-01-2020.

Abhijith J., Adetokunbo Adedoyin, John Ambrosiano, Petr Anisimov, Andreas Brtschi,
William Casper, Gopinath Chennupati, Carleton Coffrin, Hristo Djidjev, David Gunter,
Satish Karra, Nathan Lemons, Shizeng Lin, Alexander Malyzhenkov, David Mascarenas,
Susan Mniszewski, Balu Nadiga, Daniel O’Malley, Diane Oyen, Scott Pakin, Lakshman
Prasad, Randy Roberts, Phillip Romero, Nandakishore Santhi, Nikolai Sinitsyn, Pieter J.
Swart, James G. Wendelberger, Boram Yoon, Richard Zamora, Wei Zhu, Stephan Eiden-
benz, Patrick J. Coles, Marc Vuffray, and Andrey Y. Lokhov. Quantum algorithm imple-
mentations for beginners, 2020.

Ajay N. Jain. Scoring noncovalent protein-ligand interactions: A continuous differentiable
function tuned to compute binding affinities. Journal of Computer-Aided Molecular Design,
10(5):427–440, 1996. ISSN 1573-4951. doi: 10.1007/BF00124474. URL https://doi.org/

10.1007/BF00124474.

Ajay N. Jain. Surflex: fully automatic flexible molecular docking using a molecular
similarity-based search engine. Journal of Medicinal Chemistry, 46(4):499–511, 2003. doi:
10.1021/jm020406h.

Rafik Karaman. What is pharmacophore, 2016. URL https://www.researchgate.net/

post/What_is_Pharmacophore. Acessed: 04-03-2019.

Simon K. Kearsley and Graham M. Smith. An alternative method for the alignment of
molecular structures: Maximizing electrostatic and steric overlap. Tetrahedron Computer
Methodology, 3(6, Part C):615 – 633, 1990. ISSN 0898-5529. doi: https://doi.org/10.1016/
0898-5529(90)90162-2. Three-dimensional chemical structure handling.

Siavash Khallaghi. Pycpd: Tutorial on the coherent point drift algorithm, May 2017.
URL http://siavashk.github.io/2017/05/14/coherent-point-drift/. Acessed: 06-
03-2020.

https://github.com/Qiskit/qiskit-tutorials/blob/master/legacy_tutorials/aqua/optimization/vehicle_routing.ipynb
https://github.com/Qiskit/qiskit-tutorials/blob/master/legacy_tutorials/aqua/optimization/vehicle_routing.ipynb
https://github.com/Qiskit/qiskit-tutorials/blob/master/legacy_tutorials/aqua/optimization/vehicle_routing.ipynb
https://quantum-computing.ibm.com/docs/guide/q-algos/grover-s-algorithm?fbclid=IwAR3a4UP-Q0fGSocmHe3qPEjx0bdqus5fA0lxGdwC4YbwDyQxRoGTifUlv-Y
https://quantum-computing.ibm.com/docs/guide/q-algos/grover-s-algorithm?fbclid=IwAR3a4UP-Q0fGSocmHe3qPEjx0bdqus5fA0lxGdwC4YbwDyQxRoGTifUlv-Y
https://quantum-computing.ibm.com/docs/guide/q-algos/grover-s-algorithm?fbclid=IwAR3a4UP-Q0fGSocmHe3qPEjx0bdqus5fA0lxGdwC4YbwDyQxRoGTifUlv-Y
https://newsroom.ibm.com/2019-01-08-IBM-Unveils-Worlds-First-Integrated-Quantum-Computing-System-for-Commercial-Use
https://newsroom.ibm.com/2019-01-08-IBM-Unveils-Worlds-First-Integrated-Quantum-Computing-System-for-Commercial-Use
https://doi.org/10.1007/BF00124474
https://doi.org/10.1007/BF00124474
https://www.researchgate.net/post/What_is_Pharmacophore
https://www.researchgate.net/post/What_is_Pharmacophore
http://siavashk.github.io/2017/05/14/coherent-point-drift/

122 bibliography

Oliver Korb, Peter Monecke, Gerhard Hessler, Thomas Sttzle, and Thomas E. Exner. phar-
macophore: Multiple flexible ligand alignment based on ant colony optimization. Journal
of Chemical Information and Modeling, 50(9):1669–1681, 2010. doi: 10.1021/ci1000218.

Danai Koutra, Ankur Parikh, Aaditya Ramdas, and Jing Xiang. Algorithms for graph
similarity and subgraph matching. In Proc. Ecol. Inference Conf, volume 17, 2011.

Paul Labute, Chris Williams, Miklos Feher, Elizabeth Sourial, and Jonathan M. Schmidt.
Flexible alignment of small molecules. Journal of Medicinal Chemistry, 44(10):1483–1490,
2001. doi: 10.1021/jm0002634.

Polo C-H Lam, Ruben Abagyan, and Maxim Totrov. Ligand-biased ensemble recep-
tor docking (ligbend): a hybrid ligand/receptor structure-based approach. Journal of
computer-aided molecular design, 32(1):187–198, Jan 2018. ISSN 1573-4951. doi: 10.1007/
s10822-017-0058-x. URL https://www.ncbi.nlm.nih.gov/pubmed/28887659.

Christian Lemmen and Thomas Lengauer. Computational methods for the structural
alignment of molecules. Journal of Computer-Aided Molecular Design, 14, 04 2000. doi:
10.1023/a:1008194019144.

Tracy Levin, 2000. URL http://cs.smith.edu/~istreinu/Teaching/Courses/274/

Spring00/StudProj/Tracy/project3.html. Acessed: 25-06-2019.

Andrew Lucas. Ising formulations of many np problems. Frontiers in Physics, 2:5, 2014.
ISSN 2296-424X. doi: 10.3389/fphy.2014.00005. URL https://www.frontiersin.org/

article/10.3389/fphy.2014.00005.

Luis Gonzlez MacDowell. Flexible molecules, 2003. URL http://catalan.quim.ucm.es/

html.uk/invest/molflex/molflex.htm. Acessed: 26-06-2019.

J. Marialke, R. Krner, S. Tietze, and Joannis Apostolakis. Graph-based molecular alignment
(gma). Journal of Chemical Information and Modeling, 47(2):591–601, 2007. doi: 10.1021/
ci600387r.

J. M. McCarthy. Introduction to Theoretical kinematics. MDA Press, 2013. available on iPad
through iBookstore.

C. E. Miller, A. W. Tucker, and R. A. Zemlin. Integer programming formulation of traveling
salesman problems. J. ACM, 7(4):326329, October 1960. ISSN 0004-5411. doi: 10.1145/
321043.321046. URL https://doi.org/10.1145/321043.321046.

Molsoft. Molsoft icm d3r docking challenge success, 2017. URL http://www.molsoft.com/

news.html#n2017. Acessed: 12-02-2020.

https://www.ncbi.nlm.nih.gov/pubmed/28887659
http://cs.smith.edu/~istreinu/Teaching/Courses/274/Spring00/StudProj/Tracy/project3.html
http://cs.smith.edu/~istreinu/Teaching/Courses/274/Spring00/StudProj/Tracy/project3.html
https://www.frontiersin.org/article/10.3389/fphy.2014.00005
https://www.frontiersin.org/article/10.3389/fphy.2014.00005
http://catalan.quim.ucm.es/html.uk/invest/molflex/molflex.htm
http://catalan.quim.ucm.es/html.uk/invest/molflex/molflex.htm
https://doi.org/10.1145/321043.321046
http://www.molsoft.com/news.html#n2017
http://www.molsoft.com/news.html#n2017

bibliography 123

Molsoft. Molsoft outperforms a range of other methods for docking pose and affinity
prediction accuracy in d3r grand challenge 3, 2018. URL http://www.molsoft.com/news.

html#gc3. Acessed: 12-02-2020.

G.P. Moss. Basic terminology of stereochemistry (iupac recommendations 1996). Pure and
Applied Chemistry, 68(12):21932222, 1996. doi: https://doi.org/10.1351/pac199668122193.

A. Myronenko and X. Song. Point set registration: Coherent point drift. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 32(12):2262–2275, Dec 2010. ISSN 0162-8828.
doi: 10.1109/TPAMI.2010.46.

Ana Neri and Afonso Rodrigues. Ibm q experience. Lecture notes from the class
Quantum Computation ,MAPi Doctoral Programme in Computer Science, 2018.
URL https://anac.nery.name/static/media/IBM_Q_Experience___class.27ba5124.

pdf?fbclid=IwAR1-pB5ezfayf_1lP8A0B0qVmUj8xml2mFjzlyD-iWElP5TVocWpn3mB3EE.
Acessed: 17-06-2020.

Marco Neves. Project ideas. Powerpoint presentation given by Marco Neves, at BIAL
(pharmaceutic company), when was first presented the case study present in this master
dissertation., 2018.

Marco A. C. Neves, Maxim Totrov, and Ruben Abagyan. Docking and scoring with icm: the
benchmarking results and strategies for improvement. Journal of computer-aided molecular
design, 26(6):675–686, Jun 2012. ISSN 1573-4951. doi: 10.1007/s10822-012-9547-0. URL
https://www.ncbi.nlm.nih.gov/pubmed/22569591.

Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press, USA, 10th edition, 2011. ISBN
1107002176.

Lakna Panawala. What is the active site of an enzyme, May 2017. URL https://pediaa.

com/what-is-the-active-site-of-an-enzyme/. Acessed: 24-06-2019.

Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J.
Love, Alán Aspuru-Guzik, and Jeremy L. O’Brien. A variational eigenvalue solver on a
photonic quantum processor. Nature Communications, 5(1):4213, Jul 2014. ISSN 2041-1723.
doi: 10.1038/ncomms5213. URL https://doi.org/10.1038/ncomms5213.

John Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2:79, August
2018. ISSN 2521-327X. doi: 10.22331/q-2018-08-06-79. URL https://doi.org/10.22331/

q-2018-08-06-79.

Xiao-Yu Qing, Samantha Lee, Joren De Raeymaecker, Jeremy Tame, Kam Zhang, Marc
De Maeyer, and Arnout Voet. Pharmacophore modeling: Advances, limitations, and

http://www.molsoft.com/news.html#gc3
http://www.molsoft.com/news.html#gc3
https://anac.nery.name/static/media/IBM_Q_Experience___class.27ba5124.pdf?fbclid=IwAR1-pB5ezfayf_1lP8A0B0qVmUj8xml2mFjzlyD-iWElP5TVocWpn3mB3EE
https://anac.nery.name/static/media/IBM_Q_Experience___class.27ba5124.pdf?fbclid=IwAR1-pB5ezfayf_1lP8A0B0qVmUj8xml2mFjzlyD-iWElP5TVocWpn3mB3EE
https://www.ncbi.nlm.nih.gov/pubmed/22569591
https://pediaa.com/what-is-the-active-site-of-an-enzyme/
https://pediaa.com/what-is-the-active-site-of-an-enzyme/
https://doi.org/10.1038/ncomms5213
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79

124 bibliography

current utility in drug discovery. Journal of Receptor, Ligand and Channel Research, 7:81–92,
11 2014. doi: 10.2147/JRLCR.S46843.

John W. Raymond and Peter Willett. Maximum common subgraph isomorphism algorithms
for the matching of chemical structures. Journal of Computer-Aided Molecular Design, 16(7):
521–533, 2002. ISSN 1573-4951. doi: 10.1023/A:1021271615909. URL https://doi.org/

10.1023/A:1021271615909.

Douglas A Reynolds. Gaussian mixture models. Encyclopedia of biometrics, 741, 2009.

Thomas S. Rush, J. Andrew Grant, Lidia Mosyak, and Anthony Nicholls. A shape-based
3-d scaffold hopping method and its application to a bacterial protein-protein inter-
action. Journal of Medicinal Chemistry, 48(5):1489–1495, 2005. ISSN 0022-2623. doi:
10.1021/jm040163o.

Dina Schneidman-Duhovny, Oranit Dror, Yuval Inbar, Ruth Nussinov, and Haim J Wolf-
son. Deterministic pharmacophore detection via multiple flexible alignment of drug-like
molecules. Journal of Computational Biology, 15(7):737–754, 2008. doi: 10.1089/cmb.2007.
0130.

Peter H. Schönemann. A generalized solution of the orthogonal procrustes problem. Psy-
chometrika, 31(1):1–10, Mar 1966. ISSN 1860-0980. doi: 10.1007/BF02289451. URL
https://doi.org/10.1007/BF02289451.

P. W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In Pro-
ceedings 35th Annual Symposium on Foundations of Computer Science, pages 124–134, 1994.

Wolfgang Sippl. Chapter 28 - pharmacophore identification and pseudo-receptor modeling.
In Camille Georges Wermuth, editor, The Practice of Medicinal Chemistry (Third Edition),
pages 572–586. Academic Press, New York, third edition edition, 2008. ISBN 978-0-12-
374194-3. doi: https://doi.org/10.1016/B978-0-12-374194-3.00028-7. URL http://www.

sciencedirect.com/science/article/pii/B9780123741943000287.

Michael B. Smith. Chapter 1 - retrosynthesis, stereochemistry, and conformations. In
Michael B. Smith, editor, Organic Synthesis (Third Edition), pages 1–76. Academic Press,
Oxford, third edition edition, 2010. ISBN 978-1-890661-40-3. doi: https://doi.org/
10.1016/B978-1-890661-40-3.50001-6. URL http://www.sciencedirect.com/science/

article/pii/B9781890661403500016.

T. W. Graham Solomons and Craig B. Fryhle. Organic Chemistry. John Wiley & Sons, Inc.,
10 edition, 2009. ISBN 9780470556597.

https://doi.org/10.1023/A:1021271615909
https://doi.org/10.1023/A:1021271615909
https://doi.org/10.1007/BF02289451
http://www.sciencedirect.com/science/article/pii/B9780123741943000287
http://www.sciencedirect.com/science/article/pii/B9780123741943000287
http://www.sciencedirect.com/science/article/pii/B9781890661403500016
http://www.sciencedirect.com/science/article/pii/B9781890661403500016

bibliography 125

Jonatan Taminau, Gert Thijs, and Hans De Winter. Pharao: Pharmacophore alignment
and optimization. Journal of Molecular Graphics and Modelling, 27(2):161–169, 2008. ISSN
1093-3263. doi: https://doi.org/10.1016/j.jmgm.2008.04.003.

Carlos Tavares, Sofia Oliveira, Vitor Fernandes, Andrei Postnikov, and Mikhail Vasilievskiy.
Quantum simulation of the groundstate stark effect in small molecules: A case study
using ibm q. Soft Computing. Submitted.

Maxim Totrov. Atomic property fields: Generalized 3d pharmacophoric potential for au-
tomated ligand superposition, pharmacophore elucidation and 3d qsar. Chemical Bi-
ology & Drug Design, 71(1):15–27, 2008. doi: 10.1111/j.1747-0285.2007.00605.x. URL
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1747-0285.2007.00605.x.

Nenad Trinajstic. Chemical Graph Theory. CRC Press, 2 edition, February 1992. ISBN
9780849342561.

AS Verkman. Drug discovery in academia. American Journal of Physiology-Cell Physiology,
286(3):C465–C474, 2004. doi: 10.1152/ajpcell.00397.2003.

Christophe LMJ Verlinde and Wim GJ Hol. Structure-based drug design: progress, results
and challenges. Structure, 2(7):577 – 587, 1994. ISSN 0969-2126. doi: https://doi.org/10.
1016/S0969-2126(00)00060-5. URL http://www.sciencedirect.com/science/article/

pii/S0969212600000605.

Dave Wecker, Matthew B. Hastings, and Matthias Troyer. Training a quantum optimizer.
Phys. Rev. A, 94:022309, Aug 2016. doi: 10.1103/PhysRevA.94.022309. URL https://

link.aps.org/doi/10.1103/PhysRevA.94.022309.

C.G. Wermuth, C.R. Ganellin, Per Lindberg, and Lester Mitscher. Glossary of terms used
in medicinal chemistry. Pure and Applied Chemistry - PURE APPL CHEM, 70(5):1129–1143,
1998. doi: https://doi.org/10.1351/pac199870051129.

Douglas B. West. Introduction to Graph Theory. Pearson Education, 2 edition, 2001. ISBN
81-7808-830-4.

John Wright. Quantum information theory and holevos bound, 2015. URL https://www.

cs.cmu.edu/~odonnell/quantum15/lecture18.pdf. Acessed: 30-01-2020.

J. Wu, Y. Wan, and Z. Su. Bayesian rigid point set registration using logarithmic double
exponential prior. In 2013 IEEE Third International Conference on Information Science and
Technology (ICIST), pages 1360–1364, March 2013. doi: 10.1109/ICIST.2013.6747790.

Sheng-Yong Yang. Pharmacophore modeling and applications in drug discovery: chal-
lenges and recent advances. Drug Discovery Today, 15(11):444–450, 2010. ISSN 1359-6446.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1747-0285.2007.00605.x
http://www.sciencedirect.com/science/article/pii/S0969212600000605
http://www.sciencedirect.com/science/article/pii/S0969212600000605
https://link.aps.org/doi/10.1103/PhysRevA.94.022309
https://link.aps.org/doi/10.1103/PhysRevA.94.022309
https://www.cs.cmu.edu/~odonnell/quantum15/lecture18.pdf
https://www.cs.cmu.edu/~odonnell/quantum15/lecture18.pdf

126 bibliography

doi: https://doi.org/10.1016/j.drudis.2010.03.013. URL http://www.sciencedirect.

com/science/article/pii/S135964461000111X.

P. Závodszky, J. Kardos, Svingor, and G. A. Petsko. Adjustment of conformational flexibility
is a key event in the thermal adaptation of proteins. Proceedings of the National Academy
of Sciences of the United States of America, 95(13):7406–7411, Jun 1998. ISSN 0027-8424. doi:
10.1073/pnas.95.13.7406. URL https://www.ncbi.nlm.nih.gov/pubmed/9636162.

Zhengyou Zhang. Iterative point matching for registration of free-form curves and surfaces.
International Journal of Computer Vision, 13(2):119–152, 1994. ISSN 1573-1405. doi: 10.1007/
BF01427149.

http://www.sciencedirect.com/science/article/pii/S135964461000111X
http://www.sciencedirect.com/science/article/pii/S135964461000111X
https://www.ncbi.nlm.nih.gov/pubmed/9636162

G L O S S A RY

A

active conformation conformation of a molecule as it binds to target proteins (Diller and
Merz, 2002). 13

active molecule In research and development (R&D) of medicines, is a chemical compound
that has pharmacological or biological activity likely to be therapeutically useful
(EUPATI, 2016). 9

active site is the region of an enzyme where substrate molecules bind (Panawala, 2017). 10

agonist Substance which binds to cell receptors normally responding to naturally occurring
subtances which produces a response of its own (Book, 2014). 127

antagonist Substance that reverses or reduces the effect induced by an agonist; Substance
that attaches to and blocks cell receptors that normally bind naturally occurring
substances (Book, 2014). xi, xii, 10, 18

B

binding site Along with the catalytic site, form the active site of the enzyme. The binding
site binds and orients the substrate (Panawala, 2017). 4, 10, 11

C

catalyst substance that increases the rate of transfer of a reaction without affecting the
position of equilibrium (Book, 2014). 10

catalytic site Along with the binding site, form the active site of the enzyme. The catalytic
site carries out the catalysis, reducing the chemical activation energy (Panawala,
2017) . 127

conformation The spatial arrangement of the atoms affording distinction between stereoiso-
mers which can be interconverted by rotations about formally single bonds (Moss,
1996) . v, xi–xiv, xvii, 4, 12–15, 17, 18, 20, 21, 24–26, 31–35, 37, 38, 43, 50–52, 54, 55,
61, 66, 67, 77–80, 101, 102, 105, 106, 127

conformational analysis consists of the exploration of energetically favorable spatial ar-
rangements (shapes) of a molecule (conformations) using molecular mechanics,
molecular dynamics, quantum chemical calculations or analysis of experimentally-
determined structural data, e.g., NMR or crystal structures. Molecular mechanics
and quantum chemical methods are employed to compute conformational energies,
whereas systematic and random searches, Monte Carlo, molecular dynamics, and

128 GLOSSARY

distance geometry are methods (often combined with energy minimization proce-
dures) used to explore the conformational space (Book, 2014). 13

conformational flexibility flexibility/fluctuations of a molecule’s conformations due to in-
ternal energy fluctuations (Závodszky et al., 1998). 11, 13, 14

conformational isomer One of a set of stereoisomers, each of which is characterized by a
conformation corresponding to a distinct potential energy minimum (Moss, 1996).
13, 128

conformational space the space encompasing all possible positions of the molecule (Levin,
2000). 11, 13, 14, 22, 40, 43, 128

conformer Contracted version of conformational isomer. xii, 12–14, 19, 20

constitutional formulae or structural formulae, is a formula which gives information about
the way the atoms in a molecule are connected and arranged in space (Book, 2014).
35, 128, 129

constitutional isomers or structural isomers are compounds with the same molecular for-
mula but different structural formulas (constitution) (Gunawardena, 2019; Book,
2014). 12

E
enzyme is a protein molecule that can act as a biological catalyst. The molecules that

enzymes act upon are called substrates (Panawala, 2017). 4, 127

F
functional group atom, or a group of atoms, that has similar chemical properties whenever

it occurs in different compounds (Book, 2014). 1, 9, 129

G
GMM (Gaussian Mixture Model), is a parametric probability density function represented as

a weighted sum of Gaussian component densities (Reynolds, 2009). xiv, 46–48, 50

H
Hamiltonian energy function (wavefunction) of a physical system. Quantum mechanical

operator associated with the system energy. The system energy is composed by the
kinetic and potential energy.. 28, 29, 69–77, 81, 83, 84, 105

I
isomer One of several molecular entities that have the same molecular formula but different

constitutional formulae or different stereochemical formulae (Moss, 1996). 12, 13, 129

L
ligand If it is possible or convenient to regard part of a polyatomic molecular entity as

central, then the atoms, groups or molecules bound to that part are called ligands
(Book, 2014). xi–xiii, 3, 4, 9–11, 13, 21, 22, 24–26, 31, 32, 58

GLOSSARY 129

M
macromolecule a molecule with a very large number of atoms. Macromolecules typically

have more than 100 component atoms (Helmenstine, 2018). 9, 10

metastable ,in physics and chemistry, is a particular excited state of an atom, nucleus, or
other system that has a longer lifetime than the ordinary excited states and that
generally has a shorter lifetime than the lowest, often stable, energy state, called
the ground state. A metastable state may thus be considered a kind of temporary
energy trap or a somewhat stable intermediate stage of a system the energy of
which may be lost in discrete amounts (bri, 2018). 14

moieties plural of moiety. Parts of a molecule. 9

moiety is generally used to signify part of a molecule (Book, 2014); In organic chemistry, the
term moiety is used to denote a portion of a molecule, which may be a functional
group, or describe a portion of a molecule with multiple functional groups which
share common structural aspects (Cleaves, 2011). 129

molecular formula For compounds consisting of discrete molecules, a formula according
with the relative molecular mass (Book, 2014). 12, 128

O
oracle black box/operator capable of recognize solutions to a specific problem (Nielsen and

Chuang, 2011). xiv, 71, 86, 87, 96

Q
quantum noise unwanted interactions within a real quantum system, that is, an open sys-

tem. Example: if the state of a qubit is represented by two positions of a electron,
then that electron will interact with other charged particles, which act as a source
of uncontrolled noise affecting the state of the qubit (Nielsen and Chuang, 2011).
107

S
stereochemical formulae A three-dimensional view of a molecule either as such or in a

projection (Book, 2014). xii, 31, 128, 129

stereoisomer Isomers that possess identical constitution, but which differ in the arrange-
ment of their atoms in space (Moss, 1996). 12, 128

steric that has an effect on a chemical or physical property (structure, rate or equilibrium)
of a molecule (Book, 2014). 9, 17, 18

structural formula see constitutional formulae. 128

superpose Bring two particular stereochemical formulae (or models) into coincidence (or
to be exactly superposable in space, and for the corresponding molecular entities
or objects to become exact replicas of each other) by no more than translation and
rigid rotation (Book, 2014). 11, 13, 14, 23, 31, 32, 52, 80, 130

130 GLOSSARY

superposing The act of superpose. 9, 13

supramolecular relating to or denoting structures of two or more molecular entities held
together and organized by means of intermolecular (noncovalent) binding interac-
tions (Book, 2014). 9

T
toffoli gate reversible gate with three input bits and three output bits. Two of them are

control bits, they are unaffected by the action of the gate. The third is the target bit
that is flipped if both control bits are set to 1, and otherwise is left alone. Check
more details in Nielsen and Chuang (2011). 71, 95, 96

A
C O D E - A C L A S S I C A L A P P R O A C H W I T H P Y T H O N

Check the next link for entire codes.
https://github.com/msofiasoliveira/MasterDissertation/

a.1 imports required

from gurobipy import *

import numpy as np

import math as m

import time

import sys

from itertools import combinations as comb

from scipy.special import comb as comb2

from functools import partial

from pycpd import rigid_registration

a.2 data treatment

class Point(object):

def __init__(self, x, y, z, data):

self.x, self.y, self.z = x, y, z

self.data = data

def __str__ (self):

return "Ponto do tipo %s. Coordenadas %s %s %s" % (self.data, self.x,

self.y, self.z)

https://github.com/msofiasoliveira/MasterDissertation/

132 Appendix A. Code - a classical approach with Python

import csv

csv.register_dialect(’myDialect’, delimiter = ’,’, skipinitialspace=True)

with open(’featureXYZ_update_new.csv’, ’r’) as csvDataFile:

csvReader = csv.reader(csvDataFile, dialect = ’myDialect’)

database = []

with open(’featureXYZ_update_new.csv’, ’r’) as csvDataFile:

csvReader = csv.reader(csvDataFile, dialect = ’myDialect’)

mol = -1

molecule_type = ""

idconf = -1

for idx, row in enumerate(csvReader):

if (row[0] != ’pdb’):

if (molecule_type != row[0]):

molecule_type = row[0]

database.append([])

mol = mol+1

idconf= -1

if(idconf != int(row[1])):

print("new conformation: ",row[1])

idconf = idconf+1

database[mol].append([])

types=""

if "H" in row[2]:

types="H"

if "P" in row[2]:

types ="P"

print("Adding the point",types,"with coordinates ",row[3],row[4],row[5])

database[mol][idconf].append(Point(float(row[3]),

A.3. Main code 133

float(row[4]),

float(row[5]),

types))

a.3 main code

In order to not over-extend this appendix, and because a large part of the main code was
already approach during the document, refer to the following link to check the code.
https://github.com/msofiasoliveira/MasterDissertation/blob/master/Classic.ipynb

a.4 auxiliary altered libraries

a.4.1 CPD algorithm

from builtins import super

import numpy as np

from .expectation_maximization_registration import

expectation_maximization_registration

class rigid_registration(expectation_maximization_registration):

def __init__(self, R=None, t=None, s=None, *args, **kwargs):

super().__init__(*args, **kwargs)

if self.D != 2 and self.D != 3:

message = ’Rigid registration only supports 2D or 3D point clouds.

Instead got {}.’.format(self.D)

raise ValueError(message)

if s == 0:

raise ValueError(’A zero scale factor is not supported.’)

self.R = np.eye(self.D) if R is None else R

self.t = np.atleast_2d(np.zeros((1, self.D))) if t is None else t

self.s = 1 if s is None else s

def update_transform(self):

muX = np.divide(np.sum(np.dot(self.P, self.X), axis=0), self.Np)

muY = np.divide(np.sum(np.dot(np.transpose(self.P), self.Y), axis=0),

self.Np)

https://github.com/msofiasoliveira/MasterDissertation/blob/master/Classic.ipynb

134 Appendix A. Code - a classical approach with Python

self.XX = self.X - np.tile(muX, (self.N, 1))

YY = self.Y - np.tile(muY, (self.M, 1))

self.A = np.dot(np.transpose(self.XX), np.transpose(self.P))

self.A = np.dot(self.A, YY)

U, _, V = np.linalg.svd(self.A, full_matrices=True)

C = np.ones((self.D,))

C[self.D-1] = np.linalg.det(np.dot(U, V))

self.R = np.transpose(np.dot(np.dot(U, np.diag(C)), V))

self.YPY = np.dot(np.transpose(self.P1), np.sum(np.multiply(YY, YY),

axis=1))

self.s = 1

self.t = np.transpose(muX) - self.s * np.dot(np.transpose(self.R),

np.transpose(muY))

def transform_point_cloud(self, Y=None):

if Y is None:

self.TY = self.s * np.dot(self.Y, self.R) + self.t

return

else:

return self.s * np.dot(Y, self.R) + self.t

def update_variance(self):

qprev = self.q

trAR = np.trace(np.dot(self.A, self.R))

xPx = np.dot(np.transpose(self.Pt1), np.sum(np.multiply(self.XX, self.XX),

axis =1))

self.q = (xPx - 2 * self.s * trAR + self.s * self.s * self.YPY) /

(2 * self.sigma2) + self.D * self.Np/2 * np.log(self.sigma2)

self.err = np.abs(self.q - qprev)

self.sigma2 = (xPx - self.s * trAR) / (self.Np * self.D)

if self.sigma2 <= 0:

self.sigma2 = self.tolerance / 10

A.4. Auxiliary altered libraries 135

def get_registration_parameters(self):

return self.s, self.R, self.t

Sub-Algorithm - Expectation Maximization Registration

import numpy as np

def initialize_sigma2(X, Y):

(N, D) = X.shape

(M, _) = Y.shape

XX = np.reshape(X, (1, N, D))

YY = np.reshape(Y, (M, 1, D))

XX = np.tile(XX, (M, 1, 1))

YY = np.tile(YY, (1, N, 1))

diff = XX - YY

err = np.multiply(diff, diff)

return np.sum(err) / (D * M * N)

class expectation_maximization_registration(object):

def __init__(self, X, Y, sigma2=None, max_iterations=100, tolerance=0.001,

w=0, *args, **kwargs):

if type(X) is not np.ndarray or X.ndim != 2:

raise ValueError("The target point cloud (X) must be at a

2D numpy array.")

if type(Y) is not np.ndarray or Y.ndim != 2:

raise ValueError("The source point cloud (Y) must be a 2D

numpy array.")

if X.shape[1] != Y.shape[1]:

raise ValueError("Both point clouds need to have the same

number of dimensions.")

self.X = X

self.Y = Y

self.sigma2 = sigma2

(self.N, self.D) = self.X.shape

(self.M, _) = self.Y.shape

self.tolerance = 0.5

self.w = w

self.max_iterations = max_iterations

136 Appendix A. Code - a classical approach with Python

self.iteration = 0

self.err = self.tolerance + 1

self.P = np.zeros((self.M, self.N))

self.Pt1 = np.zeros((self.N,))

self.P1 = np.zeros((self.M,))

self.Np = 0

def register(self, callback=lambda **kwargs: None):

self.transform_point_cloud()

if self.sigma2 is None:

self.sigma2 = initialize_sigma2(self.X, self.TY)

self.q = -self.err - self.N * self.D/2 * np.log(self.sigma2)

while self.iteration < self.max_iterations and self.err > self.tolerance:

self.iterate()

if callable(callback):

kwargs = {’iteration’: self.iteration, ’error’: self.err,

’X’: self.X, ’Y’: self.TY}

callback(**kwargs)

return self.TY, self.get_registration_parameters(), self.err

def get_registration_parameters(self):

raise NotImplementedError("Registration parameters should be defined

in child classes.")

def iterate(self):

self.expectation()

self.maximization()

self.iteration += 1

def expectation(self):

P = np.zeros((self.M, self.N))

for i in range(0, self.M):

diff = self.X - np.tile(self.TY[i, :], (self.N, 1))

diff = np.multiply(diff, diff)

P[i, :] = P[i, :] + np.sum(diff, axis=1)

A.4. Auxiliary altered libraries 137

c = (2 * np.pi * self.sigma2) ** (self.D / 2)

c = c * self.w / (1 - self.w)

c = c * self.M / self.N

P = np.exp(-P / (2 * self.sigma2))

den = np.sum(P, axis=0)

den = np.tile(den, (self.M, 1))

den[den==0] = np.finfo(float).eps

den += c

self.P = np.divide(P, den)

self.Pt1 = np.sum(self.P, axis=0)

self.P1 = np.sum(self.P, axis=1)

self.Np = np.sum(self.P1)

def maximization(self):

self.update_transform()

self.transform_point_cloud()

self.update_variance()

B
C O D E - A Q U A N T U M A P P R O A C H W I T H Q I S K I T

Check the next link for entire codes.
https://github.com/msofiasoliveira/MasterDissertation/

b.1 quantum sat

class QuantumOptimizer:

def __init__(self, d, p, max_trials=1000):

self.d = d

self.p = p

self.size = len(d)

self.max_trials = max_trials

def binary_representation(self,x_sol=[]):

p = self.p

d = self.d

size = self.size

ones = np.ones(size)

g = [x / 2 for x in np.subtract(ones,d)]

c = np.sum([x / 2 for x in np.subtract(d,ones)])

try:

fun = lambda x: np.dot(d,x) - np.dot(ones,x)

cost = fun(x_sol)

https://github.com/msofiasoliveira/MasterDissertation/

140 Appendix B. Code - a quantum approach with Qiskit

except:

cost = 0

return g, c, cost

def construct_hamiltonian(self):

p = self.p

d = self.d

size = self.size

N = size

gz,cz, _ = self.binary_representation()

pauli_list = []

for i in range(N):

if gz[i] != 0:

wp = np.zeros(N)

vp = np.zeros(N)

vp[i] = 1

pauli_list.append((gz[i], Pauli(vp, wp)))

pauli_list.append((cz, Pauli(np.zeros(N), np.zeros(N))))

return cz, pauli_list

def check_hamiltonian(self):

cz, op = self.construct_hamiltonian()

Op = WeightedPauliOperator(paulis=op)

qubitOp, offset = Op, 0

result0 = NumPyEigensolver(operator=qubitOp).run()

result = result0[’eigenstates’].to_matrix(massive=True)

quantum_solution = self._q_solution(np.real(result[0]).tolist(),self.size)

B.1. Quantum SAT 141

ground_level = np.real(result0[’eigenvalues’][0]) + offset

return quantum_solution, ground_level

def vqe_solution(self):

cz, op = self.construct_hamiltonian()

Op = WeightedPauliOperator(paulis=op)

qubitOp, offset = Op, cz

aqua_globals.random_seed = 10598

num_qubits = qubitOp.num_qubits

var_form = RY(qubitOp.num_qubits, depth=5, entanglement=’linear’)

optimizer = SPSA(max_trials=self.max_trials)

algo = VQE(qubitOp, var_form, optimizer)

backend = provider.get_backend(’ibmq_qasm_simulator’)

quantum_instance = QuantumInstance(backend,

seed_simulator=aqua_globals.random_seed,

seed_transpiler=aqua_globals.random_seed,

skip_qobj_validation=False)

result = algo.run(quantum_instance)

quantum_solution_dict = result[’eigenstate’]

q_s = max(quantum_solution_dict.items(), key=operator.itemgetter(1))[0]

quantum_solution= [int(chars) for chars in q_s]

quantum_solution = np.flip(quantum_solution, axis=0)

,,level = self.binary_representation(x_sol=quantum_solution)

return quantum_solution_dict, quantum_solution, level

def _q_solution(self, v, N):

142 Appendix B. Code - a quantum approach with Qiskit

for x in range(len(v)):

if v[x] == max(v):

index_value = x

break

string_value = "{0:b}".format(index_value)

while len(string_value)<N:

string_value = ’0’+string_value

sol = list()

for elements in string_value:

if elements == ’0’:

sol.append(0)

else:

sol.append(1)

sol = np.flip(sol, axis=0)

return sol

b.2 solution search

def initial(data, ordem):

N = len(data)

y = randrange(N-1)

v_threshold = data[y]

M = v_threshold + 1

nb=N-1

qy = nb.bit_length()

maxq=ordem.bit_length()

if qy>maxq:

qaux=qy

else:

qaux=maxq

B.2. Solution Search 143

data_b = {}

for i in range(len(data)):

string_index = bin(i)[2:].zfill(qy)

string_value = bin(data[i])[2:].zfill(maxq)

data_b[string_index]=string_value

dim = len(data_b[string_index])

vv=-1

data_t = {}

data_simp = {}

for a in range(dim):

count=0

vv=vv+1

for x in data_b.values():

if x[a]==’1’:

vs=’v’+str(vv)

#ps=’P’+str(count)

k=data_b

ps=list(k)[count]

if vs in data_t:

tps.append(ps)

data_t[vs]= tps

else:

data_t[vs]= [ps]

tps=[ps]

count=1+count

if data_t != {}:

data_simp[vs] = symp_aux(qy, data_t[vs])

return data_simp, qy, maxq, qaux, N, M

def symp_aux(nq,ls):

global i0,i3,i

nq

if nq <= 10:

144 Appendix B. Code - a quantum approach with Qiskit

i, i0, i1, i2, i3, i4, i5, i6, i7, i8 =

symbols(’i,i0, i1, i2, i3, i4, i5, i6, i7, i8’)

else:

print(’To many qubits’)

lis=[i0, i1, i2, i3, i4, i5, i6, i7, i8]

def negifzero(x,y):

if x==’0’:

na = ~y

else:

na = y

return na

def getand(l):

for ll in range(len(l)):

if ll==0:

na = negifzero(l[ll],i0)

a = na

elif ll==1:

na = negifzero(l[ll],i1)

a = a & na

elif ll==2:

na = negifzero(l[ll],i2)

a = a & na

elif ll==3:

na = negifzero(l[ll],i3)

a = a & na

elif ll==4:

na = negifzero(l[ll],i4)

a = a & na

elif ll==5:

na = negifzero(l[ll],i5)

a = a & na

elif ll==7:

na = negifzero(l[ll],i6)

a = a & na

elif ll==8:

B.2. Solution Search 145

na = negifzero(l[ll],i7)

a = a & na

else:

na = negifzero(l[ll],i8)

a = a & na

return a

def func_aux(i, lis, ls):

a = i

for l in range(len(ls)):

if a != i:

a = a | getand(ls[l])

else:

a = getand(ls[l])

return a

fa = func_aux(i, lis, ls)

sfa = simplify_logic(fa)

return sfa

def gate_cx(I, qt, qc,qr):

dataIstr = str(I)

if dataIstr[0]==’~’:

i= int(dataIstr[2])

qc.x(qr[i])

qc.cx(qr[i],qr[qt])

qc.x(qr[i])

else:

i= int(dataIstr[1])

qc.cx(qr[i],qr[qt])

def gate_toffoli(data, target, qc):

v = list(data.values())

k = list(data.keys())

146 Appendix B. Code - a quantum approach with Qiskit

icf = int(str(k[0])[1])

ics = int(str(k[1])[1])

if v[0] and v[1]:

qc.ccx(qr[icf],qr[ics],qr[target])

elif v[0] and not(v[1]):

qc.x(qr[ics])

qc.ccx(qr[icf],qr[ics],qr[target])

qc.x(qr[ics])

elif not(v[0]) and v[1]:

qc.x(qr[icf])

qc.ccx(qr[icf],qr[ics],qr[target])

qc.x(qr[icf])

else:

qc.x(qr[icf])

qc.x(qr[ics])

qc.ccx(qr[icf],qr[ics],qr[target])

qc.x(qr[ics])

qc.x(qr[icf])

def toffoli_init(c1,c2,target,qc,qr):

icf = int(str(c1[0])[1])

ics = int(str(c2[0])[1])

if c1[1] and c2[1]:

qc.ccx(qr[icf],qr[ics],qr[target])

elif c1[1] and not(c2[1]):

qc.x(qr[ics])

qc.ccx(qr[icf],qr[ics],qr[target])

qc.x(qr[ics])

elif not(c1[1]) and c2[1]:

qc.x(qr[icf])

qc.ccx(qr[icf],qr[ics],qr[target])

qc.x(qr[icf])

else:

qc.x(qr[icf])

qc.x(qr[ics])

qc.ccx(qr[icf],qr[ics],qr[target])

qc.x(qr[ics])

qc.x(qr[icf])

B.2. Solution Search 147

return target

def toffoli_mid(c1, c2, target, qc,qr):

ics = int(str(c2[0])[1])

if c2[1]:

qc.ccx(qr[c1],qr[ics],qr[target])

elif not(c2[1]):

qc.x(qr[ics])

qc.ccx(qr[c1],qr[ics],qr[target])

qc.x(qr[ics])

return target

def toffoli_mid_rev(c1, c2, target, qc,qr):

ics = int(str(c2[0])[1])

if c2[1]:

qc.ccx(qr[c1],qr[ics],qr[target])

elif not(c2[1]):

qc.x(qr[ics])

qc.ccx(qr[c1],qr[ics],qr[target])

qc.x(qr[ics])

return target

def mark_or_zero(v,n,m,qc,qr):

target = n+m

control = n

for i in v:

if i==’1’:

qc.cx(qr[control],qr[target])

control= control+1

def mark_zero(c,t,qc,qr):

qc.cx(qr[c],qr[t])

def mark_other(c,t,qc,qr):

lc = len(c)

final_t=t

if lc == 2:

qc.x(qr[c[1]])

148 Appendix B. Code - a quantum approach with Qiskit

qc.ccx(qr[c[0]],qr[c[1]],qr[t])

qc.x(qr[c[1]])

else:

t=t+1

qc.ccx(qr[c[0]],qr[c[1]],qr[t])

ic_1=t

t=t+1

count=2

for x in c[2:]:

count=count+1

ic_2=x

if lc==count:

qc.x(qr[ic_2])

qc.ccx(qr[ic_1],qr[ic_2],qr[t])

if lc==count:

qc.x(qr[ic_2])

ic_1=t

t=t+1

qc.cx(qr[ic_1],qr[final_t])

#reverse

t=t-1

ic_1=ic_1-1

for x in reversed(c[1:-1]):

if lc==count:

qc.x(qr[ic_2])

qc.ccx(qr[ic_1],qr[ic_2],qr[t])

if lc==count:

qc.x(qr[ic_2])

ic_1=ic_1-1

t=t-1

ic_2=x

count=count-1

#t = t-1

qc.ccx(qr[c[0]],qr[c[1]],qr[t])

def findsolution(data,method,backend):

try:

top = max(data)

B.2. Solution Search 149

data_simp, qy, maxq, qaux, N, M = initial(data, top)

y = randrange(N-1)

v_threshold = data[y]

v_threshold_old = top+1

m0= int((45/4)*(m.sqrt(N)))

method =’Grover’

J = methods(N,M,method)

#use qasm_simulator

backend = Aer.get_backend(backend)

shots = 1

print("qy:",qy," maxq:", maxq," qaux:", qaux," N:", N," M:",

M ," m0:", m0," J:", J,"initial v_threshold: ",v_threshold)

if qy+maxq+qaux > 32:

raise Exception(’too many qubits’)

for i in range(m0):

print("Iteration number ",i+1," of",m0)

if (v_threshold != v_threshold_old):

print(" Making Circuit")

start = time.time()

grover_circuit = grover(qy, maxq, qaux, data_simp, v_threshold,J)

print(" time taken (seconds):",time.time() - start)

job=execute(grover_circuit, backend, shots=shots)

print(" Running Circuit")

start = time.time()

result_S = job.result()

print(" time taken (seconds):",time.time() - start)

print(" Getting Results")

start = time.time()

150 Appendix B. Code - a quantum approach with Qiskit

counts_sim = result_S.get_counts(grover_circuit)

print(" time taken (seconds):",time.time() - start)

y_temp=int(list(counts_sim.keys())[0], 2)

v_threshold_old = v_threshold

if y_temp < len(data):

if data[y_temp] <= v_threshold:

v_threshold = data[y_temp]

a = y_temp

print(a,v_threshold)

print(’RESULT:’, ’\n index’,a,’\n value’, v_threshold)

return a, v_threshold

except Exception as e:

print("Not possible to run, ",e)

C
H A R D WA R E S P E C I F I C AT I O N S

General
Operating System Linux Mint 19.2 Cinnamon
Processor Intel Core i7− 4702MQ @ 2.20GHz ×4
Memory 5.8 GB
Graphics Intel Corporation 4th Gen Core Processor Integrated

Graphics Controller
Processor details

CPU Intel Core i7− 4702MQ
Topology Quad Core
Min/Max core Speed 800/3200 MHz

Table 9: Hardware specifications of first device (A) used.

General
Operating System Windows 10 Pro Version 1903
Processor Intel Core i7− 4770K @ 3.50GHz
Memory 15.9 GB
Graphics NVIDIA Geforce GTX 1080 Ti

Processor details
CPU Intel Core i7− 4770K
Topology Quad Core
Min/Max core Speed 800/3900 MHz

Table 10: Hardware specifications of second device (B) used.

This dissertation was supported by BIAL, in the context of a cooperation agreement with the University of Minho,
and integrated within the KLEE research project - POCI-01-0145-FEDER-030947 (KLEE), supported by the
ERDF European Regional Development Fund through the Operational Programme for Competitiveness and
Internationalisation - COMPETE 2020 Programme.

	1 Introduction
	1.1 Medicinal Chemistry and Drug Design
	1.2 Quantum Computation
	1.3 Summary

	2 Background
	2.1 Pharmacophores
	2.2 Flexible Molecules
	2.3 Molecular Alignment

	3 State of Art
	3.1 Semiflexible Molecular Alignment
	3.2 Flexible Molecular Alignment
	3.3 Quantum Similarity Superposition Algorithm - QSSA

	4 The Approach
	4.1 The data
	4.2 The approach
	4.3 Division of the problem
	4.4 Reengineering of the problem

	5 Reengineering of a classic solution
	5.1 Pre-alignment
	5.2 SAT solver
	5.3 Scores evaluation and solution choice

	6 The quantum approach
	6.1 Quantum SAT solver
	6.1.1 Related work
	6.1.2 Approaches
	6.1.3 Implementation

	6.2 Solution Search
	6.2.1 Original Grover's algorithm and its generalizations
	6.2.2 Implementation

	7 Results and comparisons
	7.1 Pre-alignment
	7.2 SAT solver
	7.3 Solution Search

	8 Conclusions
	8.1 Technical Issues
	8.2 Future work

	A Code - a classical approach with Python
	A.1 Imports Required
	A.2 Data treatment
	A.3 Main code
	A.4 Auxiliary altered libraries
	A.4.1 CPD algorithm

	B Code - a quantum approach with Qiskit
	B.1 Quantum SAT
	B.2 Solution Search

	C Hardware Specifications

