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Abstract
As a compact representation of joint probability distributions over a dependence graph of 
random variables, and a tool for modelling and reasoning in the presence of uncertainty, 
Bayesian networks are of great importance for artificial intelligence to combine domain 
knowledge, capture causal relationships, or learn from incomplete datasets. Known as a 
NP-hard problem in a classical setting, Bayesian inference pops up as a class of algorithms 
worth to explore in a quantum framework. This paper explores such a research direction 
and improves on previous proposals by a judicious use of the utility function in an entan-
gled configuration. It proposes a completely quantum mechanical decision-making process 
with a proven computational advantage. A prototype implementation in Qiskit (a Python-
based program development kit for the IBM Q machine) is discussed as a proof-of-concept.

Keywords Bayesian inference · Quantum algorithms · Quantum decision making

1  Motivation

Bayesian reasoning is widely used in machine learning and data science, as a powerful 
framework for probabilistic analysis, applications ranging from learning processes (Neal 
1996) to pragmatic representations (Li et  al. 2018). Broadly speaking, machine learn-
ing algorithms are able to learn from data, with the purpose of performing some tasks, 
without requiring explicit programming; in a sense outcomes are directly built by the 
sampled data. However, the current rate of data creation is almost exponential Al-Jarrah 
et al. (2015) (going, for example, from 3.5 million text messages per minute in 2016, to 

This work is financed by the ERDF–European Regional Development Fund through the Operational 
Programme for Competitiveness and Internationalisation–COMPETE 2020 Programme and 
by National Funds through the Portuguese funding agency, FCT, within project POCI-01-
0145-FEDER-030947. The first author was further supported by project NORTE-01-0145-
FEDER-000037, funded by Norte Portugal Regional Operational Programme (NORTE 2020), under 
the PORTUGAL 2020 Partnership Agreement.

 * Michael de Oliveira 
 michaeldeoliveira@live.com.pt

 Luis Soares Barbosa 
 lsb@di.uminho.pt

1 INL - Quantum Software Engineering, Universidade do Minho, Braga, Portugal

http://crossmark.crossref.org/dialog/?doi=10.1007/s10699-021-09781-6&domain=pdf


 M. de Oliveira, L. S. Barbosa 

1 3

over 15 million in 2017), a fact that calls for radically new approaches and, most prob-
ably, new computational models and hardware to effectively deal with such numbers.

Can quantum computing bring some useful contribution to this state of affairs? On 
the one hand it is well known that building very large quantum-addressable classical 
memories is technologically very demanding, and will not be available soon. On the 
other, at least from a theoretical point of view, the question seems worth to discuss. 
Actually, even at its present, quite preliminar stage of development, quantum computing 
allows for a variety of speed ups with respect to classical algorithmic counterparts in 
e.g. information storage (Giovannetti et al. 2008), pattern recognition (Biamonte et al. 
2016), and matrix inversion, the latter being a basic ingredient of several machine learn-
ing algorithms (Harrow et  al. 2009). As a matter of fact, quantum algorithms, as the 
ones discussed in this paper, suggest radically different ways to approach old problems 
and to explore complexity boundaries. For example, to know whether for a concrete 
problem, as the size of the input parameter grows, one may asymptotically go faster 
with the use of a quantum memory than with purely classical states, is a question under-
lying many interesting problems from big-data to optimisation, or molecular synthesis.

The synergies between research lines in quantum technologies and Bayesian infer-
ence, in particular, seem promising. In one direction, a quantum processor can be 
expressed and studied as a Bayesian Network (Sakkaris 2016). In the reverse one, quan-
tum mechanics can describe naturally probabilistic systems in physical terms. Reference 
(Mansinghka 2009), for example, describes very promising improvements on the imple-
mentation of approximate Bayesian inference routines resorting to physical stochastic 
logic gates building up hardware implementations of sampling algorithms. Quantum 
processors are, in a sense, part of such a family.

This paper is a step in this direction. Our starting point is a quantum version of a 
Bayesian inference algorithm introduced by Low et  al. (2014) based on a square-root 
quantum speedup to rejection sampling on a Bayesian network, which avoids the use of 
an oracle. Note that an oracle-based version appeared previously in Ozols et al. (2013). 
This approach, revisited in Sect. 3, was implemented by us on Qiskit—the IBM open-
source platform for quantum computing. Our main contribution, presented in Sect.  4, 
extends Low et al. algorithm to a decision-making setting: this incorporates an utility 
function which is applied before any observation of the quantum state which encodes 
the Bayesian network. The computational effort for the proposed solution and a simpler 
quantum solution are determined in Sect. 5. A proof-of-concept implementation Qiskit 
is discussed in Sect.  6. Finally, Sect.  7 concludes and points out a number of issues 
for future work. A background section—Sect.2—recalls the Bayesian inference problem 
and provides a brief overview of the basic intuitions underlying decision making.

2  Background

2.1  Bayesian Inference

Bayesian inference is used to update the posterior probability distribution of some query 
variables given the value of the observed variables, also known as evidence variables 
(Russel and Norvig 2010). The conditional probability is given by
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These joint probabilities can be stored in a distribution table, but note that the dimen-
sion of the latter grows exponentially with the number of variables. This means that for 
most applications the table would be too large to be stored computationally. Alternatively, 
Bayesian networks, as in Fig. 1, allow for a compact representation of joint probability dis-
tributions (Darwiche 2008) as a directed acyclic graph structure. The advantage is that the 
space complexity of the representation can be made much smaller than in the general case, 
by exploiting conditional dependencies in the distribution, through the association to each 
graph node of a conditional probability table for each random variable, with directed edges 
representing conditional dependencies. For this reason, they are largely used in industrial 
applications. However, inference via a Bayesian Networks is still a NP-problem. Figure 1 
depicts a toy Bayesian network relating a few variables encoding different sorts of activi-
ties and the possibility of a lung cancer diagnosis.

2.1.1  Inference

Algorithms that infer over a Bayesian network compute joint probabilities using the follow-
ing equation:

The computational effort to determine this value is low because the number of values 
selected is linearly bounded by the number of variables. The envisaged joint probability, 
however, may not be defined for all variables. If such is the case, it is necessary to sum out 
over all undefined variables as in

Consequently, the number of values to sum out grows exponentially with the number of 
undefined variables. A well known algorithm for variable elimination algorithm works 
exactly in this way. Approximate algorithms, treading off consumption of computational 
resources for precision, are typically used to tackle this problem. Solutions are found faster 

(1)P(A|B) = P(A,B)

P(B)

(2)P(x1,… , xn) =

n∏
i=1

P(xi|Parents(Xi))

(3)P(X1|x2, x3) =
∑
x4

∑
x5

P(X1, x2, x3, x4, x5)

Fig. 1  Bayesian network over 5 variables
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but may not be precise. The literature documents a bunch of approximate algorithms. In 
this paper we will focus on rejection sampling because the first part of the quantum infer-
ence algorithm discussed in the next section is a quantum analog to it. Rejection sampling 
is a popular method first systematised by von Neumann (1951), who curiously enough also 
developed the Hilbert space formalization of quantum mechanics and its logic.

Rejection sampling generates samples resorting to the probability distributions defined 
by the conditional probability tables as depicted in Fig. 1. The consequence of this genera-
tion process is that a certain configuration of values for the variables is only sampled with 
the associated probability:

Under those circumstances, a conditional probability can be determined by:

Clearly, the precision of the query grows with the number of useful samples ( #Samples ). It 
is important to notice that not all samples are useful since samples with different values for 
the evidence variables are not used.

2.1.2  Bayesian Networks for Decision Making

Bayesian networks are equipped with an utility function in order to support decision-mak-
ing processes. Its purpose is to quantify the utility of possible outcomes. The expected util-
ity (EU) of an outcome is the product of its probability and the associated utility value. 
Formally, to find the expected utility of some action a, one computes

If the EU values of all feasible actions is known, it is possible to choose the ‘best’, or more 
profitable, one:

This is indeed the maximum expected utility principle; a rational entity is expected to 
choose the action with the greatest expected utility with respect to her set of beliefs (Russel 
and Norvig 2010).

The previous principle describes many algorithms and solutions used in artificial intel-
ligence. For example, in reinforcement learning a great number of agents and robots are 
built on a process that attempts to find the optimal policy. This works with an instance of 
a Bayesian network (Markov decision process) and a more complex utility function (the 
so-called discounted reward function), where the agent also accounts for future rewards 
( R(St) ), which are reachable from the starting state. Further, it values present rewards over 
future rewards with the use of a discount factor � t.

(4)P(Sample < X1 = true,X2 = false >) = P(X1 = true,X2 = false)

(5)P(X1 = true|X2 = false) ≈
#Samples(X1 = true,X2 = false)

#Samples(X2 = false)

(6)EU(a|e) = ∑
r

P(Result = r|a, e) ∗ U(r)

(7)action = argmaxaEU(a|e)

(8)U�(s) = E

[
∞∑
t=0

� tR(St)

]
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Therefore, any algorithm that computes the best decision by Eqs. (6) and (7) has the poten-
tial to be applied to all other instances derived from the principal one, as a consequence of 
having the same computational pattern.

3  Quantum Bayesian Inference

In brief, a quantum algorithm can be regarded as a targeted manipulation of a quantum 
state (realised as an assembly of qubits) with a subsequent measurement to retrieve relevant 
information. States are represented by column vectors of complex numbers whose sum of 
moduli squared is 1, often represented in the so-called Dirac notation (Nielsen and Chuang 
2010) as ��⟩ . Typically, they correspond to linear combinations of basis states affected by 
complex coeficients, as in, for example, Eq. (9). The dynamics of a quantum system is rep-
resented by (the multiplication of the quantum state by) unitary matrices and is therefore 
reversible in time, as long as no measurement is involved. The reversal corresponds simply 
to a composition with the adjoint of the unitary matrix that represents forward evolution. 
Such an evolution can be expressed as a sequence of only a few elementary transformations 
represented as quantum gates, which only act on one or two qubits at a time. Therefore, 
quantum algorithms are widely formulated as circuits built of these elementary gates, as 
depicted, for example, in Fig 2.

A quantum algorithm for inference on Bayesian networks was introduced by Low et al. 
(2014), which, as mentioned above, is based on an improved quantum version of the Rejec-
tion Sampling algorithm. This algorithm is able to generate samples quadratically faster 
than the classical version, provided that the network is not too densely connected. The 
algorithm is divided into 3 stages, detailed in the sequel.

In the first stage, the Bayesian network is encoded into a quantum state. For this, a 
binary variable can be represented by a single qubit and the probabilities are mapped to the 
coefficients of the quantum state:

with the corresponding density matrix (Barnett 2009),

(9)��⟩ = ��Var1 = true⟩ + ��Var1 = false⟩ ⇔ ��⟩ =
�
�

�

�

(10)�� = ��⟩⟨� � =
�

�2 � ∗ �

� ∗ � �2

�

Fig. 2  Encoding circuit
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Whenever two variables share an edge in the network they are related, and therefore not 
independent from each other, such a relationship is expressed through state entanglement. 
Entanglement represents a strong correlation between quantum states, therefore expressing 
shared information between different elements. The envisaged state is achieved though the 
application of a specific sort of gates—controlled rotations—to the state qubits. The fact 
that a rotation is controlled by another qubit permits the creation of entanglement between 
them. The amplitude of the rotation defines the value of the coefficients. For instance, a 
circuit that encodes the Bayesian network in Fig. 1 is represented in Fig 2. 

The whole quantum state is equivalent to a superposition of all on entries of the original 
joint probability distribution table:

Afterward, a measurement1 to this state produces a sample, as in the Rejection Sampling 
algorithm, as the probability of each sample is the same as the one in the distribution:

At this point, a quantum analog to Rejection Sampling is created. However, it is not an 
efficient way to do inference because every time we measure the state it collapses, and it is 
necessary to reconstruct the state entailing the need for a subsequent reconstruction.

In a second stage, the Amplitude Amplification algorithm (Brassard et  al. 2000) is 
applied to amplify the states that have the right values for the evidence variable. It allows 
for a square root speed up in search problems, a fact that explains its relevance and ubiquity 
to many quantum programs. In our case, the quantum state that encodes the Bayesian net-
work is divided into two orthogonal states, one where the evidence variables have the right 
value and another state where they lack it:

Next, the amplitude amplification algorithm is applied to search for the state that has the 
right values for the evidence variables (Brassard et al. 2000).

(11)
�� �⟩ = �2

1
�Var1 = true,Var2 = true,…⟩ + �2

2
�Var1 = true,Var2 = false,…⟩

+ �2
3
�Var1 = false,Var2 = true, ..⟩ + �2

4
�Var1 = false,Var2 = false,…⟩

+⋯

P(Var1 =true,Var2 = true,…) = Tr(P0 ∗ �� � )

=

⎛
⎜⎜⎜⎝

1 0 ⋯ 0

0 0 ⋯ 0

⋮ ⋮ ⋱ ⋯

0 0 ⋯ 0

⎞
⎟⎟⎟⎠
∗

⎛
⎜⎜⎜⎝

�2
1

⋯ ⋯ ⋯

⋯ �2
2

⋯ ⋯

⋯ ⋯ ⋱ ⋯

⋯ ⋯ ⋯ �2
n

⎞
⎟⎟⎟⎠
= �2

1
∗ 1 + �2

2
∗ 0 +⋯ + �2

n
∗ 0 = �2

1

(13)
��init⟩ =

√
P(e)�Var1,Var2,… , evidences⟩

+
√
1 − P(e)�Var1,Var2,… ,¬evidences⟩

1 Notice, that the use of the density matrix notation with projectors is equivalent to the description of the 
measurement in the Dirac notation:

The matrix density notation was not required, as we are not dealing with mixed quantum states. However, it 
helped, later on, to expose the main ideas more clearly.

(12)⟨Var1 = true,Var2 = true,…�� �⟩ ≡ Tr(P0 ∗ �� � )
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where Q represent the operator that amplifies the selected elements, k the number of itera-
tions, and � the initial probabilities,

then for the right number of iteration ( k′ ), the final quantum state approximates with great 
probability to the pretended state,

The last stage amounts simply to observe this state and use the result as a sample. In 
Table 1 we can see the comparison between the classical and the quantum versions. The 
latter exhibits a quadratic speed up but only if the Bayesian network is not too densely con-
nected, meaning that m the number of edges between the nodes (n) is not to large. Other-
wise the price of encoding it to a quantum state will be too high, as the corresponding term 
grows exponentially.

4  Quantum Decision‑Making

Clearly, a quantum computer could be used to work out the conditional probabilities with a 
quadratic speed up for decision problems, according to Eq. (16).

In this section, however, we would like to propose a different approach which, in princi-
ple, will increase the advantage of having the quantum resources. The idea is quite simple: 
Instead of sampling the conditional probabilities, the quantum state remains unobserved 
until the utility function is applied. The intention is to apply a transformation to the out-
come variable and look to what happens to the action variable. As both the outcome and 
the action variables are entangled, a transformation applied to the former will produce an 
effect on the latter.

The new algorithm modifies the process described in the previous section to infer a con-
ditional probability by preventing the action variable to be used as an evidence variable. 
Thus, after an application of the amplitude amplification algorithm and tracing out the non-
evidence variables (NE), as nothing happens to them during the proposed process, we have,

Qk ∗ ��init⟩ = cos
�
2k + 1

2
∗ �

�
�Var1,Var2,… , evidences⟩

+ sin
�
2k + 1

2
∗ �

�
�Var1,Var2,… ,¬evidences⟩

(14)� = 2sin−1(
√
P(e)) ∧ � = 2cos−1(

√
1 − P(e))

(15)Qk� ∗ ��init⟩ = ��final⟩ ≈ �Var1,Var2,… , evidences⟩

(16)
EU(a|e) = ∑

r

P(Result = r|a, e)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Quantum

∗ U(r)
⏟⏟⏟
Classical

Table 1  Classical versus 
quantum complexity

Process type Complexity

Classical O(n ∗ m ∗ P(e)−1)

Quantum
O(n ∗ 2m ∗ P(e)

−1

2 )
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or, equivalently,

describing only the states of the featured variables. The utility function U(r) is then applied 
to this state ( ��A,R⟩ ). Therefore, a quantum state ��U⟩ isomorphic to the utility function will 
be created:

where n is a normalization term such that ⟨�A,R��A,R⟩ sums up to 1. Also, by creating both 
states in memory, the whole product state �𝛹A,R⟩⊗ �𝛹U⟩ becomes,

Then, this state ��Syt⟩ already contains the relevant terms where the Utility function is 
applied to the correct bases. All one has to do is to amplify them resorting again to ampli-
tude amplification algorithm. For the example at hands, such is the case when r ∧ r and 
¬r ∧ ¬r hold, yielding,

(17)
trNE(QSearch1

��init⟩) =��A,R⟩ = �a,r�a, r, evidences⟩ + �a,¬r�a,¬r, evidences⟩
+ �¬a,r�¬a, r, evidences⟩ + �¬a,¬r�¬a,¬r, evidences⟩

(18)��A,R⟩ =
⎛
⎜⎜⎜⎝

�a,r
�a,¬r
�¬a,r
�¬a,¬r

⎞
⎟⎟⎟⎠

U(R) =

�
U(r)

U(¬r)
���→ ��U⟩ =

⎛
⎜⎜⎜⎝

√
U(r)

n√
U(¬r)

n

⎞⎟⎟⎟⎠

(19)�𝛹Syt⟩ = �𝛹A,R⟩⊗ �𝛹U⟩ =
⎛⎜⎜⎜⎝

𝛾a,r
𝛾a,¬r
𝛾¬a,r
𝛾¬a,¬r

⎞⎟⎟⎟⎠
⊗

⎛⎜⎜⎜⎝

√
U(r)

n√
U(¬r)

n

⎞⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝛾a,r ∗

√
U(r)

n

𝛾a,r ∗

√
U(¬r)

n

𝛾a,¬r ∗

√
U(r)

n

𝛾a,¬r ∗

√
U(¬r)

n

𝛾¬a,r ∗

√
U(r)

n

𝛾¬a,r ∗

√
U(¬r)

n

𝛾¬a,¬r ∗

√
U(r)

n

𝛾¬a,¬r ∗

√
U(¬r)

n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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At this moment the amplitudes of the action variable hold the solution to the decision 
problem. To understand how the Results variable and the Utility function are traced out as 
follows,

A measurement yields,

and,

Combining the deduced probability of the action variable with,

and

we conclude that

and the transformation yields a state where

(20)QSearch2
��Syt⟩ ≈

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�a,r ∗
√
U(r)

n�

0

0

�a,¬r ∗
√
U(¬r)

n�

�¬a,r ∗
√
U(r)

n�

0

0

�¬a,¬r ∗
√
U(¬r)

n�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(21)

�A = trR,U(�Syt)

=

⎛⎜⎜⎜⎜⎜⎝

�
�a,r ∗

√
U(r) + �a,¬r ∗

√
U(¬r)

n�

�2

⋯

⋯

�
�¬a,r ∗

√
U(r) + �¬a,¬r ∗

√
U(¬r)

n�

�2

⎞⎟⎟⎟⎟⎟⎠

(22)P(a�) = tr(P0 ∗ �Syt) =

�
1 0

0 0

�
∗ �Syt =

�
�a,r ∗

√
U(r) + �a,¬r ∗

√
U(¬r)

n�

�2

(23)

P(¬a�) = tr(P1 ∗ �Syt) =

�
0 0

0 1

�
∗ �Syt =

�
�¬a,r ∗

√
U(r) + �¬a,¬r ∗

√
U(¬r)

n�

�2

(24)�2
a,r

= P(a, r, evidences)

(25)P(r|a, evidences) = P(a, r, evidences)

P(a, evidences)

(26)�2
a,r

∝ P(r|a, evidences)
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So, after applying there transformations the probability of some action ( ai ) is proportional 
to its expected utility [Eq. 6],

Finally, if initially the Bayesian networks respects,

then

and

The constant of proportionality takes the following value for all actions:

Thus, the values of the proportionality constants �i between all the Expected Utili-
ties remain the same. This means that an action with a greater probability has a greater 
expected utility. Consequently, to choose the action with the greatest probability/utility 
(Fig. 3), it is enough to resort to a limited collection of samples, rather than obtaining first 
all the conditional probabilities. Moreover, this provides a more precise way of choosing an 
action because the sampling method always yields an approximation and the error affecting 
the computed values grows for every conditional probability determined.

(27)P(a�
i
) = tr(Pi ∗ �Syt) =

�2
ai,r1

∗ U(r1) + �2
ai,r2

∗ U(r2) +⋯ + �2
ai,rn

∗ U(rn)

n�2

(28)P(a�
i
) ∝ EU(ai|e)

(29)P(a�
i
) = �ai ∗ EU(ai|e)

(30)P(a|evidences) = P(a)

(31)P(r|a, evidences) = P(r, a|evidences)
P(a)

(32)P(ai� ) = P(ai), i ≠ i�

(33)�i� = �i =
1

n�2 ∗ P(a)
, i ≠ i�

Fig. 3  Probability distribution of an action variable



Quantum Bayesian Decision-Making  

1 3

Remember, that this decision process requires that Eq. (32) has to be initially true. This 
expresses the rational choice which considers all actions as equal at the beginning. In other 
words, the intelligent agent is not biased beforehand. Additionally, the action variable 
should be independent of the evidence variables as in Eq. (30), which means that the topol-
ogy of the network has to be as in Fig. 4. This requirement ensures that the intelligent agent 
is not biased by the current state of his environment and performs his decisions in order to 
achieve the best outcome in the future state.

5  Complexity

The purpose of this Section is to characterize computational complexity of the proposed 
algorithm and compare it to the solution that computes the conditional probabilities with 
use of the quantum inference algorithm (Eq. (16)). So, to simplify let us denote by Process 
A the new quantum algorithm and by Process B the second one.

Both algorithms generate samples to determine which is the best action. The number of 
operations ( It ) in each algorithm is defined by the number of iterations per sample ( Is ) and 
the number of samples (S) necessary, as in Eq. (34).

5.1  Number of Iterations

The number of iterations per sample of the two processes are defined by the number of 
Search iterations that are necessary to apply in each case. Also, the number of iterations 
necessary to find the goal state in a quantum search is defined by the probability of this 
state:

(34)It = S ∗ Is

(35)Is =

√
1

P(state)

Fig. 4  Bayesian network with an independent action node
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For Process A, this is the probability of the state which has already the utility function 
applied to it,

knowing that,

Assuming that any distribution is possible for U(r) and P(r,e), we conclude that the proba-
bility can take any value between 0 and P(e). We also know that the mean value for U(r) is:

where Nr represents the dimension of the outcome variable. Thus, P(e,r) can be described 
as:

So the mean value for the product of the two values U(r) ∗ P(e, r) will be,

if they are independent, which is the case because the utility function is independent of 
the information present in the Bayesian Network. The mean value for the sum can be com-
puted by the sum over the mean terms

This mean value for the probability will be used to define the number of steps:

defining in this way the number of iterations necessary to obtain a sample with Process A.
The same has to be done for Process B, where the probabilty of the goal state is

In this case, we have to apply the requirements determined by Process A described in (30) 
and (32) in order to make a correct comparison at a later stage,

where Na is the dimension of the action variable. Finally, we estimate the number of itera-
tions as

(36)P(state) =
∑
r

U(r) ∗ P(r, e)

(37)1 =
∑
r

U(r)

(38)
1

Nr

(39)
P(e)

Nr

(40)
P(e)

Nr

∗
1

Nr

=
P(e)

N2
r

(41)Mean(P(state)) =
∑
r

P(e)

N2
r

=
P(e) ∗ Nr

N2
r

=
P(e)

Nr

(42)Is =

√
Nr

P(e)

(43)P(state) = P(e, a)

(44)P(e, a) = P(e) ∗ P(a) =
P(e)

Na
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5.1.1  Number of Samples

The next step is to obtain the number of samples necessary for each process. Recall that the 
simultaneous error terms for a Multinomial Distribution are:

The value A represents the upper � ∗ 100 th percentile of a Chi-Square Distribution (Fig. 5) 
with k-1 degrees of freedom, �i represent the probability of category i, N is the number of 
samples, and the difference on the left side of the equation represents the error term (Good-
man 1965).

Writing the same equation as a function of N, yields

Equation (47), defines the number of samples necessary for Process A and Process B, 
since, both processes are sampling from a quantum state with multiple bases.

5.1.2  Total Number of Operations

The total number of operations is characterized by the product of the terms deduced in 
the previous sections and the number of operations necessary to encode the network as a 
quantum state. Additionally, Process B requires at least 2(Na + Nr) operations to apply the 
Utility function and sum the respective terms for the expected utilities. Finally, the total 
number of operations for each process to solve the decision problem is shown in Table 2.

When the decision problem is totally defined all that it requires is to plug the num-
ber in the equation and look which process performs better. However, a comparison was 

(45)Is =

√
Na

P(e)

(46)(pi − �i)
2 =

A ∗ �i(1 − �i)

N
, (i = 1, 2,… , k)

(47)N =
A ∗ �i(1 − �i)

�2
, (i = 1, 2,… , k)

Fig. 5  Chi-square distributions 
with different degrees of freedom 
(k)
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performed (as described in Appendix) and the relation between the computational effort is 
asymptotically over the term,

This result shows that Process A is faster when the outcome variable has a greater dimen-
sion than the action variable. This is a quite normal scenario in real applications because 
the number of states in which an agent can transit is tremendously smaller than the pos-
sible states that his environment can evolve. Also, for a fixed number of action this pro-
cess allows the agent to explore quadratically more outcomes with the same computational 
effort, making him a wiser decision maker.

Finally, this process can also be compared with a quantum version of decision networks 
(Russel and Norvig 2010), as discussed in Oliveira (2019). The results show that again the 
best process depends on the characteristics of the problem. Although, it is important to 
mention that process A solves a decision process that wants to sample an action from a dis-
tribution based on the expected utilities in a extremely efficient way with only one sample, 
this kind of decision processes could be used and studied for applications in reinforcement 
learning.

6  Proof‑of‑Concept Implementation

The algorithm presented in Sect.  4 was implemented on the IBM Q quantum simulator 
as a proof-of-concept. At our disposal was the IBM 20-qubit machine, which is based on 
superconducting circuits (Steffen 2011). This machine specifies an error term associated 
with each gate used in a quantum circuit and a life-time for each qubit. So, as the number 
of gates grows the error of the outcome grows as well. The output of a circuit with a con-
siderable number of gates would be majorly noise. Thus, the decision processes presented 
before, which is based on a search problem, would be impossible to compute with a man-
ageable error term.

IBM’s best quantum computer is not the only that fails to solve such problems. The 
best quantum devices, in the world, are not even near to solve problems related to search 
problems with a higher dimension. However, that does not mean that the current devices 
are completely useless. There are problems where a Noisy Intermediate-Scale Quantum 
(NISQ) devices may have an impact, in the near future (Preskill 2018). The applications 

(48)ProcessB

ProcessA
≥

√
Nr

Na

Table 2  Mean number of operations for each process

Process A Process B

n ∗ 2m ∗

√
N
r

P(e)
∗

A∗�
i
(1−�

i
)

�2
a

n ∗ 2m ∗

√
N
a

P(e)
∗

A∗�
i
(1−�

i
)

�2
c

∗ N
a
+ 2(N

a
+ N

r
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of these NISQ devices are related to simulations in chemistry and many-body quantum 
physics.2

Over the last years, quantum devices have had a lot of progress. For example, the num-
ber of qubits are smoothly increasing, the gate errors are reducing (Schäfer et al. 2018) and 
entanglement between them is becoming stronger (Kues et al. 2017; Pirandola et al. 2006). 
This progress has been giving hope to construct a powerful universal quantum computer, 
which one day may have a great impact on our everyday life. But to validate results as pre-
tended, in this section a classical simulator has to be used. However, the same simulator 
struggles to compute the outcomes, if the number of qubits used increases. As mentioned 
before the complexity to simulate a quantum computer on a classical computer is too high. 
Given that, a very simple Bayesian network (Fig. 6) was selected for the decision process.

The network was encoded to a quantum state with use of the technique presented in 
Low et al. (2014), producing the circuit shown in Fig. 7.

A value for the evidence variable L was selected ( L = False) and the following utility 
function,

was applied with use of the proposed algorithm. However, to compute the algorithm on 
IBM’s quantum simulator, each part has be to converted in a concrete quantum circuit 
(Fig.  8). Every state has to be encoded, which in theory is simple with the use of rota-
tions and controlled-rotations. The major difficulty exists when the rotation is controlled 

(49)U(R) =

{
7, R = r

3, R = ¬r

Fig. 6  Bayesian network over 3 variables. Node L represents the evidence variable, A the action variable 
and R the outcome variable

Fig. 7  Quantum circuit composed by rotations and controlled-rotations

2 It is interesting to mention that the major companies investing in quantum computing are constructing 
devices based on different technologies. Microsoft devices are based on topological quantum computing 
(Nayak et al. 2008), while Intel is exploring spin qubits (Vandersypen et al. 2017).
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by more than one qubit. In such cases, this operation has to be decomposed to simpler and 
available operations in the working framework. The existence of an equivalent circuit is 
guaranteed by the fact that the simulator is a universal quantum computer, meaning that it 
may perform any possible computation. In practice, there are tools to decompose complex 
operations into simpler ones (Vartiainen et al. 2004; Möttönen et al. 2004).

Finally, these circuits have to be built on “Qiskit” which runs on a “jupyter notebook” 
(Github link “Quant um Bayes ian Decis ions”). The circuits created are sent as a job to 
IBM’s servers and the results are sent back to the client. For this example, a significant 
number of samples was generated. The number of samples for each state of the action vari-
able must be similar to the theoretical probability. Table 3 shows that this is indeed the 
case: the experimental result is quite similar to the one foreseen by theory.

The small discrepancies pointed out in Table 3 can be explained by deficiencies of the 
implementation. First, note that the amplitude amplification algorithm is probabilistic, i.e. 
the result is never entirely precise. On the other hand, the number of iterations in the ampli-
tude amplification algorithm was an integer number; thus, if n.m non-integer iterations are 
required the usage of the value bellow n or the one above n + 1 , generates a small variation. 
Actually, it is possible to perform a a quantum search with a non-integer number of itera-
tions (Zekrifa et al. 2000), but this would not add relevance to this results.

7  Conclusions and Future Work

A quantum algorithm which solves the generic decision-making problem was presented. 
It is a very curious solution for couple of reasons. First, it has a proven computational 
advantage over the classical and the semi-classical solutions when the parameters are in the 
correct relation. Secondly, it samples from a very particular probability distribution, which 
classically would require an tremendous amount of computational work to recreate. Moreo-
ver, it benefits from the structure of the data, which no classical algorithm could benefit 
from, making it a very interesting example to illustrating the differences between classical 
and quantum computations.

Fig. 8  Circuit representation of the amplitude amplification algorithm for the decision-making process

Table 3  Comparison between 
theoretical and experimental 
results after sampling from the 
constructed state

States Theoretically expected prob-
ability

Percentage 
of Samples

Action0 0.58 0.544
Action1 0.42 0.456

https://github.com/MichaelOliveira1994/Quantum-Bayesian-Decisions
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To support the theoretical work described the algorithm was implemented in IBM’s 
quantum simulator as a proof-of-concept. The results were as in correspondence with what 
theory anticipated for the example chosen, further confirming the ideas presented.

As an extension to this work we propose a search for decision problems that take advan-
tage by sampling from the probability distribution created by this solution. Also, the deci-
sion-making process discussed here was related to a static model, in which, neither the util-
ity function nor the Bayesian network change in time. It would be of interest to verify if the 
decision-making process could benefit from an additional learning process (Jonsson and 
Barto 2007; Robinson and Hartemink 2010; Tong and Koller 2001). Enabling an agent to 
adapt its behaviour to a changing environment, would probably result in better outcomes, 
raising the number of possible applications.

Appendix

A Complexity Comparison

The decision-making processes we aim at comparing require inequality (50) to be satisfied. 
It assures that the decision maker chooses with certainty the best action.

Thus, to compare Process A and Process B it is necessary to consider all terms that are dif-
ferent. Therefore, the error term �a for Process A is related to directly sampling values for 
the expected utilities, while in Process B the expected utility is determined indirectly. For 
this reason, in Process B it is necessary to apply error propagation rules:

Before applying error propagation to this equation, we need to normalize it so that 
EU(a|e)/k is equal to P(a).

where the normalization function (F(r)) is expressed as,

Here, again, the mean value of U(r) is used:

Expressing the equation that determines the error term �a as a function of the error term �b 
yields

(50)∀n⧵{max}EU(actionmax) − EU(actionn) > 𝛿actionmax + 𝛿actionn

(51)EU(a|e) + �EU(a|e) =
∑
R

(P(Result = r|a, e) + �b) ∗ U(r)

(52)P(a) + �a =
∑
R

(P(Result = r|a, e) + �b) ∗ F(r)

(53)F(r) =
U(r)∑

a

∑
r U(r) ∗ P(r�a, e)

(54)F(r) =
U(r)∑

a

∑
r P(r�a, e) ∗ U(r)

=
U(r)∑
a

1

Nr

=
U(r)
Na

Nr

=
Nr ∗ U(r)

Na

(55)F(r) =
1

Na
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Using Eq. (55) we obtain:

Then, assuming that �b is similar, which is in favor of Process B because it minimizes the 
�a term:

yielding,

With the relation between the error terms determined, it is possible to compare the dif-
ference of the computational effort involved in both processes, assuming again the mean 
terms for the probabilities:

Let us call the term on the right,

Using 59,

also,

and,

(56)�a =

√∑
R

�2
b
∗ F(r)2

(57)�a =

√∑
R

�2
b
∗ (

1

Na

)
2

(58)�a =

√
Nr ∗ �2

b
∗ (

1

Na

)
2

(59)�a = (

√
Nr

Na

) ∗ �b

(60)

√
Na

Nr

∗

Ar,� ∗
1
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∗ (1 −
1
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) ∗ �2
a
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Aa,� ∗
1
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∗ (1 −
1
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+
2 ∗ Na ∗ Nr

n ∗ 2m ∗

√
Nr

P(e)
∗

Aa,� ∗
1

Na

∗ (1 −
1
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)

�2
a

(61)
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2 ∗ Na ∗ Nr
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√
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From Inglot (2010) we obtain a lower bound for A�,k . Although these terms are different 
for distinct values of � , we consider the one where � is not leaning to zero too fast. Thus,

With this equation it is possible to define a better value for the difference between the com-
putational efforts,

As

and,

it is possible to approximate the expression to

Writing the term of �a as a function of its dimension and a factor that adjusts the precision,

we obtain,

Rewriting this the expression as,

Because,

(64)

√
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Na

∗
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−
1

N2
r

)
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N2
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)
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for any value of the composing variables, then,

we prove that the relation between Process A and B is under bounded by,
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