
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Michael de Oliveira

On Quantum Bayesian Networks

February 2020

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Michael de Oliveira

On Quantum Bayesian Networks

Master dissertation
Master Degree in Computer Science

Dissertation supervised by
Luis Soares Barbosa(Univ. Minho)

February 2020

i

DIREITOS DE AUTOR E CONDIÇÕES DE UTILIZAÇÃO DO TRABALHO POR TERCEIROS

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas
as regras e boas práticas internacionalmente aceites, no que concerne aos direitos de autor
e direitos conexos.

Assim, o presente trabalho pode ser utilizado nos termos previstos na licença abaixo
indicada. Caso o utilizador necessite de permissão para poder fazer um uso do trabalho
em condições não previstas no licenciamento indicado, deverá contactar o autor, através do
RepositóriUM da Universidade do Minho.

A C K N O W L E D G E M E N T S

In the first place, I want to thank my parents and my brother for all the unconditional
support, during this long journey. My big family for all the motivation, never forgetting
sentences as “Quando acabas o curso rapaz?”, ”Ainda?!”,”Mas isso serve para quê?”.

A special thanks to my supervisor, Luis Barbosa, for all the help. Distinguishing the
opportunity conceded to explore this work with freedom.

To my girl Margarida for being the best distraction that I could ever have, companion of
many adventures and good moments.

A special thanks to my friends Filipe, Nelson and Vitor for never leaving me on the street
or in the ditch.

A big thanks to my friends from “a nossa turma” that no one knows the number of ele-
ments. However, I distinguish with ease Areias, Igor, Frango, Leo, Rafarik and Tiago(DDS).

To all my colleagues from this course, which are now friends, that survived difficult
moments with me. Without them, the course would be a very difficult journey.

Last but not least, the family ”Mecputos” I left behind in my first course. The course was
not what I pretended but the friends I made are not exchangeable.

ii

iii

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I
have not used plagiarism or any form of undue use of information or falsification of results
along the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the
University of Minho.

A B S T R A C T

As a compact representation of joint probability distributions over a dependence graph of
random variables, and a tool for modeling and reasoning in the presence of uncertainty,
Bayesian networks are becoming increasingly relevant both for natural and social sciences,
for example, to combine domain knowledge, capture causal relationships, or learn from in-
complete datasets. Known as an NP- hard problem in a classical setting, Bayesian inference
pops up as a class of algorithms worth to explore in a quantum framework.

The present dissertation explores this research field and extends the previous algorithm
by embedding them in decision-making processes. In this regard, several attempts were
made in order to find new and enhanced ways to deal with these processes. In a first at-
tempt, the quantum device was considered to run a subprocess of the decision-making pro-
cess, resulting in a quadratic speed-up for that subprocess. Afterward, “decision-networks”
were taken into account and allowed a fully quantum implementation of a decision-making
process, benefiting from a quadratic speed-up during the whole process. Lastly, a solution
was found. It differs from the existing ones by the judicious use of the utility function in an
entangled configuration. This algorithm explores the structure of input data to efficiently
compute a solution. In addition, for each one of the algorithms developed, their computa-
tional complexity was determined in order to provide the information necessary to choose
the most efficient one for a concrete decision problem.

A prototype implementation in Qiskit (a Python-based program development language
for the IBM Q machines) was developed as a proof-of-concept. If Qiskit offered a simulation
platform for the algorithm considered in this dissertation, string diagrams provided the
verification framework for algorithmic proprieties. Further, string diagrams were studied
with the intention to obtain formal proofs about the algorithms developed. This framework
provided relevant examples and the proof that two different implementations for the same
algorithm are equivalent.

Keywords: Bayesian inference, Quantum algorithms, Quantum decision-making, String
diagrams

iv

R E S U M O

As redes Bayesianas têm-se tornado cada vez mais importantes no domı́nio das ciências nat-
urais e sociais, na medida em que permitem inferir relações de causalidade entre variáveis
e aprender através de conjuntos incompletos de dados. Trata-se de uma representação
compacta de distribuição de probabilidade conjunta feita sobre um grafo que representa
dependências entre variáveis. Num contexto clássico, inferência sobre estas estruturas é
visto como um problema de complexidade NP destacando-se como uma das classes de
algoritmos a explorar num enquadramento quântico.

Esta dissertação explora este domı́nio de investigação e insere as redes Bayesianas num
processo de tomada de decisão. Neste sentido, foram feitas várias tentativas para se en-
contrarem novas e melhores formas de lidar com estes processos. Numa primeira tentativa,
considerou-se que o dispositivo quântico executava um subprocesso do processo de tomada
de decisão, resultando numa aceleração quadrática do mesmo. Posteriormente, foram con-
sideradas decision networks que permitiram uma implementação totalmente quântica de
um processo de tomada de decisão. Através desta implementação foi possı́vel obter uma
aceleração quadrática durante todo o processo. Por fim, foi encontrada uma solução viável.
Difere das já existentes pelo uso criterioso da função de utilidade num estado emaran-
hado. Este algoritmo explora a estrutura dos dados de entrada para calcular de forma
eficaz uma solução. Além disso, para cada um dos algoritmos desenvolvidos, foi deter-
minada a respetiva complexidade computacional de modo a que fossem conhecidas todas
as informações necessárias para escolher o algoritmo mais eficiente para um determinado
problema de decisão.

Foi desenvolvida uma implementação inicial no Qiskit (um software que permite o de-
senvolvimento de programas baseados em Python para as máquinas IBM Q) como prova
de conceito. Se o Qiskit ofereceu uma plataforma de simulação para o algoritmo consid-
erado nesta dissertação, os string diagrams forneceram a estrutura de verificação para pro-
priedades algorı́tmicas. Além disso, estes diagramas foram estudados com a intenção de se
obter provas formais sobre os algoritmos desenvolvidos. Esta estrutura forneceu exemplos
relevantes e a prova de que duas implementações diferentes para o mesmo algoritmo são
equivalentes.

Palavras-chave: Inferência Bayesiana, Algoritmos quânticos, Sistemas de decisão quânticos,
String diagrams

v

C O N T E N T S

1 introduction 1

1.1 Context 1

1.2 Motivation 2

1.3 Contributions 3

1.4 Outline 4

2 background 5

2.1 Classical Bayesian Networks 5

2.1.1 Definition 5

2.1.2 Conditional independence 7

2.1.3 Inference 9

2.2 Dynamic Bayesian Networks 16

3 quantum bayesian networks 18

3.1 Bayesian networks as a tool for quantum modeling 18

3.2 Quantum analogs for Bayesian networks 21

3.3 Other models and applications 23

3.4 Summary 25

4 quantum bayesian decision-making 26

4.1 Decision Making 26

4.2 Quantum assisted Decision Making 29

4.3 A new quantum algorithm for decision-making 31

4.4 Proof-of-concept implementation 37

4.5 Summary 41

5 complexity analysis 43

5.1 Number of iterations 43

5.2 Number of samples 45

5.3 Total number of operations 46

5.4 Summary 52

6 picturing a quantum bayesian algorithm 53

6.1 String diagrams 53

6.2 Other uses of String diagrams 57

6.3 Algorithmic analysis 62

6.4 Summary 68

7 conclusion 69

vi

Contents vii

7.1 Conclusions 69

7.2 Prospects for future work 70

a qiskit implementation 78

a.0.1 Preparation of the Quantum Registers 80

a.0.2 Preparation of the state of the Bayesian Network 80

a.0.3 Preparation of the Utility function 81

a.0.4 Application of the Utility function 81

L I S T O F F I G U R E S

Figure 1 Quantum processor developed by IBM (from Ralf Krauter). 2

Figure 2 Bayesian Network over 5 variables. For every node there is a table
that suports the conditional probalities related to its parents. 6

Figure 3 Topology of a chain network. 7

Figure 4 Topology of a fork network. 7

Figure 5 Topology of a collider network. 8

Figure 6 Markov blanket for a node A (from Russel and Norvig (2010)) 8

Figure 7 Data structure for the Enumeration algorithm 11

Figure 8 Transformation of a belief network into the a jointree (from Park and
Darwiche (2004)). 12

Figure 9 Representation of the first steps of the rejections sampling algorithm,
performed on the network from Figure 2. 13

Figure 10 Kullback-Leiber divergence. On the left are represented two Gaus-
sian probability distribution and on the right the corresponding KL-
divergence area, which has to be integrated, for the measure (from
Suzen (2017)). 16

Figure 11 A representation of an automatic brake model. 17

Figure 12 Wave-functions for the Harmonic Oscillator (from Kapoor (2012)). 19

Figure 13 Spin system as an instance of a many-body quantum system (from
Knap). 20

Figure 14 Quantum circuit build to encode a Bayesian network in to a quantum
state (from Low et al. (2014)). 22

Figure 15 First order Markov decision process. 24

Figure 16 Empirical utility of money (from Russel and Norvig (2010)) 27

Figure 17 Model of an intelligent agent. The interaction with the environment
and the utility function are given to the decision process. This pro-
cess outputs to the actuators the next action. 29

Figure 18 Diagnostic assistant modeled with a decision network (from David
Poole (2010). 30

Figure 19 Probability distribution of an action variable. 36

Figure 20 Bayesian network with an independent action node. 37

Figure 21 Bayesian network over 3 variables. Node L represents the evidence
variable, A the action variable and R the outcome variable. 38

viii

List of Figures ix

Figure 22 Quantum circuit composed by rotations and controlled-rotations. 39

Figure 23 Decomposition of a two qubit controlled-rotation into available gates
on QISKIT. 40

Figure 24 Circuit representation of Grover’s search algorithm for the decision-
making process. 41

Figure 25 Chi-square distributions with different degrees of freedom (k). 46

Figure 26 Decision network with a densly connected utility node. 48

Figure 27 Composition of morphisms. 54

Figure 29 Parallel composition of a pair of morphisms. 55

Figure 30 The σA,B : A⊗ B→ B⊗ A isomorphism represents the swap operator
within a process a theory 55

Figure 31 Representation of a state in a graphical language. 56

Figure 32 Representation of an effect (dagger state) in a graphical language.
56

Figure 33 Grover’s algorithm represented in string diagrams (from Coecke and
Kissinger (2017)). 57

Figure 34 Graphical representation of a normalizes state and its semantics in
probability theory (from Coecke and Spekkens (2012)). 57

Figure 35 Graphical representation of a normalizes multi-variable state (from
Coecke and Spekkens (2012)). 58

Figure 36 Graphical representation of a state transformer (from Coecke and
Spekkens (2012)). 58

Figure 37 Conditional states in the graphical language (from Coecke and Spekkens
(2012)). 58

Figure 38 Bayes Theorem written in a graphical language (from Coecke and
Spekkens (2012)). 58

Figure 39 Conditional independence rules written in Coecke and Spekkens
(2012) graphical language. 59

Figure 40 Open game depicted in a graphical language (from Hedges et al.
(2016)). 60

Figure 41 Sequential composition of open games (from Hedges et al. (2016)). 61

Figure 42 Parallel composition of open games (from Hedges et al. (2016)). 61

Figure 43 Graphical representation of a decision problem (from Hedges et al.
(2016)). 62

Figure 44 Unitary transformation represented in string diagrams. 63

Figure 45 Composition of unitary transformations in a string diagrams. 63

Figure 46 Equivalent diagrams obtained by one graphical transformation. 63

Figure 47 Equivalent representation of the an unitary tansformation. 64

List of Figures x

Figure 48 Equivalent representation after a decomposition in simpler opera-
tions. 64

Figure 49 Equivalent diagrams with use of one graphical transformation. 64

Figure 50 Illustration 1. 65

Figure 51 Illustration 2. 66

Figure 52 Illustration 3. 66

Figure 53 Illustration 4. 66

Figure 54 Illustration 5. 67

Figure 55 Illustration 6. 67

Figure 56 Illustration 7. 67

Figure 57 Illustration 8. 68

Figure 58 State preparation circuit (part 1). 85

Figure 59 State preparation circuit (part 2). 86

Figure 60 Grover search circuit (part 1) 86

Figure 61 Grover search circuit (part 2) 86

Figure 62 Grover search circuit (part 3) 87

Figure 63 Grover search circuit (part 4) 87

Figure 64 Grover search circuit (part 5) 88

Figure 65 Results obtained after 5000 runs. 89

L I S T O F TA B L E S

Table 1 Classical vs quantum complexity. 23

Table 2 Comparison between theoretical and experimental results after sam-
pling from state (70). 41

Table 3 Number of samples per iterations per sample and per process. 45

Table 4 Mean number of operations for each process. 47

xi

1

I N T R O D U C T I O N

1.1 context

Over the past years, methods and equipment used in scientific research have changed. The
technological evolution has gifted researchers in different domains with new tools. Also,
solutions to common problems are shared within the scientific community, stimulating a
faster progress.

One main issue that affects a variety of domains is uncertainty. So, a tool to deal with
uncertainty is needed. Graphical models, in particular Bayesian networks are commonly
used for that purpose. The reason for choosing Bayesian networks is related to their causal
description. As Bayesian networks have acyclic edges, they describe causal relations be-
tween the elements connected Pearl (2009); Nadkarni and Shenoy (2004). Every node has
its parent nodes as causes and children as consequences. For models with cyclic dependencies
it is not possible to define a relation of cause and consequence between the elements.

In Biology, Bayesian networks “are becoming the machine learning method of choice”
Needham et al. (2007) given their capacity to learn from incomplete data and ability to
avoid overfitting. For example, in Needham et al. (2007) they are used to describe a gene
regulation network. Also, in the field of medical diagnosis, they are used since the last
century Kahn et al. (1997); Arroyo-Figueroa and Sucar (1999).

In Weber et al. (2012), the authors make an overview of Bayesian networks for risk anal-
ysis and maintenance areas. Resorting to a large number of references they concluded that
there is an “upward trend since 2000” for these structures. The arguments presented are
related to the ones presented before, distinguishing Bayesian networks from other classical
models by their polyvalency.

Bayesian networks present themselves as a powerful tool to tackle uncertainty, with a
great diversity of applications. Some of them are unexpected, including classification of
Chilean wines and even Terrorism risk management Pourret et al. (2008).

Additionally, these networks are not limited to static environments. Dynamic Bayesian
networks (DBN) solve problems that change in time and are susceptible to uncertainty. For
instance, DBN are used in ”fall prediction systems” of elderly people Nicholson (1997).

1

1.2. Motivation 2

Also, in particle filtering, a very big problem in statistical physics, DBN are used as the
main tool Doucet et al. (2000).

1.2 motivation

Despite the variety of uses and applications of Bayesian networks. They have a fundamen-
tal problem, related to the computational effort required to perform inference over them.
This means that when the problem or the Bayesian network grows in dimension, the com-
putational effort grows as well. Unfortunately, the rate of growth is exponential meaning
that simply adding some nodes to the networks can make the problem unmanageable.

Although, typical algorithms are optimized to be used on a classical machine. In the last
years, quantum computers have made their debut and the research around quantum com-
putation has increased. The idea of a quantum computer was presented for the first time by
Feynman Feynman (1999). He wanted to simulate a physical system with a computer that
would behave as the system to be simulated. The intention was to reduce the complexity of
the simulation by exploring the nature of the computer. Feynman’s idea turned out to be
right and quantum computers, with the potential to speedup simulations, start to emerge.

Figure 1.: Quantum processor developed by IBM (from Ralf Krauter).

It is known that quantum computers do not have the ability to solve more problems than
classical ones. However, they distinguish themselves from their classical counterparts by
providing speedups for certain problems. A variety of problems are solvable faster on a
quantum computer. For instance, Grover’s algorithm allows us to perform a search process
with a quadratic speedup Grover (1996). As search processes are found in many classical
problems, Grover’s algorithm would be useful for a variety of applications.

1.3. Contributions 3

Greater speedups are found in cryptography. Shor discovered that with the use of a
quantum computer the cryptographic protocols that are used nowadays are breakable in
a reasonable amount of time. This happens because these protocols are based on the fact
that factorizing a prime number is a computationally hard problem. In fact, it is a difficult
problem for a classical computer but not for a quantum computer. The algorithm that Shor
presented uses the quantum Fourier transform which has an exponential speedup with
respect to the Fourier transform performed on a classical computer.

Research in quantum computing is currently divided into different branches. A large
number of groups are working to build a better quantum computer. The ones available, at
the moment, are limited in resources and are highly affected by errors. Consequently, the
best quantum computer would not outperform the best classical computer in any useful
task. Other groups are studying how to use a perfectly working quantum computer to
solve problems faster than traditional computers. The work of these groups is oriented to
create new quantum algorithms and find problems that could be solved faster on such a
device.

In summary, Bayesian inference is an important tool for a variety of domains, making it
a candidate worth exploring in a quantum setting. The aim of this dissertation is the study
of quantum variants of Bayesian networks, in which classical probabilities are replaced by
quantum amplitudes, and of the corresponding quantum algorithms and heuristics.

1.3 contributions

The contributions of this dissertation can be summed up as:

1. A detailed study of the quantum Bayesian inference algorithm and its application.

2. A completely new algorithm for decision-making processes.

3. A precise definition of the computational complexity of the algorithms developed.

4. The use of a categorical formalism (string diagrams) to reason about the algorithms
studied and introduced in the dissertation.

Part of the work covered in Chapter 4 was accepted for WOE (Worlds of Entanglement) in-
ternational workshop and presented in Santiago de Chile, 12th February 2019. A full paper
is currently being prepared as an invited submission resulting from the workshop. It should
also be mentioned that this work was awarded a research grant by Fundação Calouste Gul-
benkian related to the ”Gulbenkian Programme New Talents in Quantum Technologies”,
4th November 2018.

1.4. Outline 4

1.4 outline

This dissertation starts with an initial background in Chapter 2. It includes a review of
the literature on classical Bayesian networks. It contains the mathematical description of
Bayesian networks and the algorithms that handle the information represented by them.

Chapter 3, provides a review of quantum Bayesian networks, identifying and summa-
rizing the main approaches to model and reason about Bayesian networks in a quantum
setting. A quantum algorithm that has a computational advantage for Bayesian inference is
distinguished.

The algorithm presented in the previous chapter is used in Chapter 4 to solve problems
with computational advantage. In concrete, quantum algorithms for decision-making are
described. Additionally, the implementation of a quantum simulator is documented at the
end of the Chapter.

Chapter 5, offers an analysis of the computational effort required to perform each of the
algorithms presented in the previous Chapter. The exact number of iterations is defined
according to the characteristics of the given Bayesian network.

A formalization of the algorithms discussed in the previous chapter is presented in Chap-
ter 6, using string diagrams Coecke and Kissinger (2017). Different algorithms are proved
to equivalent in that context.

Finally, Chapter 7 summarizes the dissertation and guidelines for future work are pro-
posed to extend the solutions presented throughout this dissertation.

2

B A C K G R O U N D

2.1 classical bayesian networks

2.1.1 Definition

Bayesian Networks are probabilistic graphical models that support knowledge over a set X
of variables from an uncertain domain. In this graphical model, the nodes represent the
variables of a domain of study, which can be discrete or continuous. The edges represent
probabilistic dependencies between the variables associated with the nodes that each edge
joins. In concrete, a Bayesian Network is a Directed Acyclic Graph (DAG). This means that
there are no cyclic dependencies between the variables. In addition, each node is associated
with a Conditional Probability Table (CPT), which maps the conditional probability from the
variable of the node to his parents in the graph, given as:

P(Xi|Parents(Xi)) (1)

The content of CPTs are individual probabilities and probability densities functions for
discrete and continuous variables, respectively Needham et al. (2007); Darwiche (2008);
Networks et al. (2007).

As it can be seen in Figure 2, a Bayesian Network has to parts: the DAG which gives the
observer qualitative information about the dependencies of the variables and the CPTs that
provide quantitative information about these dependencies Networks et al. (2007).

This structure allows a compact representation of the Joint Probability Distribution (JPD)
over all variables in X. The corresponding equation for the variables represented by the
Bayesian Network, is:

P(x1, ..., xn) =
n

∏
i=1

P(xi|Parents(Xi)) (2)

A concrete value such as P(X1 = x1 ∧ ... ∧ Xn = xn) is determined by the product of
elements in the CPTs. These elements are selected by Equation (2) Russel and Norvig
(2010).

5

2.1. Classical Bayesian Networks 6

Figure 2.: Bayesian Network over 5 variables. For every node there is a table that suports
the conditional probalities related to its parents.

2.1. Classical Bayesian Networks 7

2.1.2 Conditional independence

The structure of the Bayesian Network makes it possible to extract independence statements.
For example, it could be useful to ask if some variable Z is independent of Y given some
other variable X. Formally, this independence would be written as P(z, y|x) = P(z|x) ∗
P(y|x), and denotes I(Z, X, Y). Such statements can be derived from the DAG using a
graphical method called D-Separation Darwiche (2008). To understand this method let us
consider the 3 elementary networks.

Case 1: The chain Z → X → Y (Figure 3). In this network, if X is known then Z is
independent of Y. This independence is easy to recognize when we take an example. Let
us suppose that the event Z is receiving a salary increase which influences the event X of
playing in the lottery, while event Y represents winning the lottery. In this example, we can
assume that the event of winning the lottery is independent of receiving a salary increase
knowing that one played the lottery.

Figure 3.: Topology of a chain network.

Case 2: The second network is the fork Z ← X → Y(Figure 4). In this topology we can
assume that Z is independent of Y knowing X. Let us again take an example to explain
that independence. Admit that X represents a raining event, Y represents wet streets and
Z represents people carrying umbrellas. Therefore wet streets are independent of people
caring umbrellas knowing that it rained.

Figure 4.: Topology of a fork network.

Case 3: The last one is the collider Z → X ← Y(Figure 5). This network has the opposite
effect with respect to independence: Z is independent of Y only if X is unknown. There are
two events that induce event X, so if we know that event X has happened, then by knowing

2.1. Classical Bayesian Networks 8

Z information about Y can be extracted. This relation can be determined in the CPT of node
X. To answer any query of independence in the DAG, the d-separation method decomposes
every path between two variables in a set of the elementary networks analyzed above.

Figure 5.: Topology of a collider network.

So I(Z, X, Y) is a true statement if every path between Z and Y has an elementary net-
work, where X guarantees independence. For example, if between Z and Y there is only one
path and if this path contains a chain network to which X belongs, then that statement is
true. Note that if the path contains a collider network, the independence of that elementary
network is proved if X is not the child node and none of his descendants. Importantly, this
method can be implemented in a polynomial time algorithm Henson et al. (2014); Darwiche
(2008); Geiger et al. (1990).

Some of the algorithms related to Bayesian networks resort to the Markov Blanket (Fig-
ure 6), to ensure the independence of a node concerning all other nodes in the network. For
the Markov blanket to provide that independence to a node, its parents, its children, and
the children’s parents must be given, as discussed in Russel and Norvig (2010).

Figure 6.: Markov blanket for a node A (from Russel and Norvig (2010))

2.1. Classical Bayesian Networks 9

2.1.3 Inference

One powerful feature of a Bayesian network is to obtain the probability of some event
knowing some other evidence. This process is known as inference. In a Bayesian Network,
such a query is obtained with the use of Bayes theorem, which provides a way to write
conditional probabilities as a function of the joint probability, as we can see in Equation (3).
The joint probability is obtained by multiplication of values in the CPTs as mentioned
before.

P(A|B) = P(A, B)
P(B)

(3)

The pieces of evidence given can change the possible worlds of an outcome in a way that
some event that was almost certain, could unlikely happen. Imagine for example that we
are going to make a bet on our favorite team next weekend. We know that the probability of
winning is high, P(Winning) = 2/3. But the day before the game the best player of our team
gets injured, forcing the probability of winning to go down, P(Winning|CR7 injured) =

1/6. Most practical uses of Bayesian networks deal with this kind of inferences. A simple
example is that of an intelligent agent that tries to find a way out of a certain room and uses
his sensors to obtain the evidence and infer the probability of the outcomes of the actions it
can make. Thus, this intelligent agent can maximize the “utility” of his actions depending
on the causal relations mapped in the Bayesian Network. More about this topic will be
discussed in more detail in section 4.1.

Inference in Bayesian Networks is a computationally difficult task, in the sense that it
requires a high amount of computational resources, fundamentally (time and space). There-
fore there are exact inference algorithms and approximate algorithms, the latter often lead-
ing to faster inferences, even if not in all cases.

Exact Inference

As mentioned before, inference is a computationally difficult task. In concrete, it is NP-hard,
which means that at least it is as hard as the hardest problems in the NP class. Problems
in the class NP (non-deterministic polynomial time) are problems that are not solvable in
polynomial time but their solutions are verifiable in polynomial time. For example, 2-CNF
(Conjunctive normal form) satisfiability problems are solvable in polynomial time and 3-
CNF satisfiability problems are not. A CNF is a Boolean formula as in (4), where the binary
variables are connected by conjunctions and closed by parentheses building a clause, and
the clauses are connected by disjunctions. Moreover, every variable can be contradicted
by the Not operator (¬). The k-CNF satisfiability problem is essentially the problem of
verifying if there is some assignment for the variables so that the whole CNF evaluated

2.1. Classical Bayesian Networks 10

to true. The value of k determines how many variables exist in each clause Cormen et al.
(2009).

(X1 ∧ X2) ∨ (X2 ∧ ¬X3) ∨ (¬X1 ∧ ¬X4) (4)

There are different algorithms for exact inference in Bayesian networks. The main differ-
ence between them is related to the way they use computational resources. Some of them
use more time of computation, while others require more memory space on the device. For
this reason, it is important to define the main parameters used to measure their complexity.
For instance, the graph-theoretic notion of Tree-Width (w) is the most important parameter
besides the number of nodes (n) Bacchus et al. (2009). The tree-width is determined after
converting the Bayesian Network into a tree, for example, a jointree. There are different
trees that can be constructed from the graph. So, the tree-width is defined as the smallest
width from all trees that can be constructed by that graph. In concrete, the value of the
tree-width is defined by the size of the largest cluster minus 1 Darwiche (2008). We shall
now proceed to analyzing a number of inference algorithms.

variable elimination. This algorithm is one of the reference algorithms for infer-
ence. It is defined by computing the joint probability without repeating some calculations.
For instance, the ones occurring in the Enumeration algorithm Russel and Norvig (2010).

To understand the Variable Elimination algorithm let us try to infer some probability from
the Bayesian network in Figure 2. Suppose we want to obtain the probability of a friend
performing a Duathlon, only knowing that he smokes, defined as P(Duathlon|Smoke). It
is necessary to obtain the joint probability P(Duathlon, Smoke) from the original Bayesian
network (Figure 2), resulting in the following expression:

P(Duathlon|Smokes) = α ∗ P(Duathlon, Smoke, Workout, Marathon) (5)

P(Duathlon|Smokes) = α ∗ ∑
Workout

∑
Marathon

P(Workout) ∗ P(Smoke)

∗P(Marathon|Workout, Smoke) ∗ P(Duathlon|Marathon)
(6)

The value of α is determined when both values P(Duatlhon|Smokes) and
P(¬Duathlon|Smokes) are known because it is just a normalization factor. Additionally,
the variable Lung cancer will not be summed out because it is independent of the variable
Duathlon. To confirm this the reader can apply the d-separation algorithm that was ex-
plained before. So, because there are some values that are constant, they can be put outside
the sum to reduce the number of operations:

P(Duathlon|Smokes) = α ∗ P(Smoke) ∗ ∑
Workout

P(Workout) ∑
Marathon

∗P(Marathon|Workout, Smoke) ∗ P(Duathlon|Marathon)
(7)

2.1. Classical Bayesian Networks 11

This optimization is considered by the enumeration algorithm but it still performs some re-
peated computations. For instance, in Figure 7 it can be seen that the terms P(Duathlon|Marathon),
P(Duathlon|¬Marathon) are determined twice.

That problem is solved by the variable elimination algorithm which evaluates the expres-
sion from right to left. With this procedure, the repeated values are maintained in the
cache. In summary, this algorithm requires O(n exp(w)) time to obtain one query Russel
and Norvig (2010); Darwiche (2008).

Figure 7.: Data structure for the Enumeration algorithm

clustering algorithms A typical example of a clustering algorithm is the Jointree
algorithm. This algorithm constructs a jointree from a given Bayesian Network, which
reduces the complexity of the inference because those nodes became singly connected, as it
also happens in a polytree. For that, the nodes in the initial network need to be joined into
clusters, as in Figure 8. To obtain this arrangement various steps need to be performed as
described in C.Huang and A.Darwiche (1996).

2.1. Classical Bayesian Networks 12

Figure 8.: Transformation of a belief network into the a jointree (from Park and Darwiche
(2004)).

The main advantage to do inference in a jointree is the reduced number of steps required.
Even in a polytree, which takes O(n) steps to perform one query, it would take O(n2) to
perform a query for every n. In contrast, a jointree would only need O(n) steps for the
same task. For this reason, clustering algorithms are the most used in industrial applica-
tions. These algorithms are a little more complex than the variable elimination ones because
some clusters have a number of variables in common, which means they need to deal with
repeated variables to ensure that the information given by the clusters agree. Finally, it is
important to refer that the complexity of the inference is still NP-hard. This means that if
the inference takes exponential resources with a variable elimination algorithm, the CPTs
in the jointree will occupy also exponential memory space Russel and Norvig (2010).

Aproximate Inference

These algorithms try to reduce the complexity of the inference by doing it in an approximate
way. There are several approaches to that. Some of them are based on stochastic sampling
and others reduce the complexity of the given network to a more simpler one.

rejection sampling . This algorithm is very simple: it takes the Bayesian network and
directly samples values from it. The procedure is to go through the network in topological
order and sample each variable. In this way, we obtain samples with values for all variables.
For example, in Figure 9 the first two steps of the algorithm are applied to the network from
Figure 2.

2.1. Classical Bayesian Networks 13

Figure 9.: Representation of the first steps of the rejections sampling algorithm, performed
on the network from Figure 2.

For the network considered, the first values sampled are Workout and Smoking, after that,
the variable Marathon can be obtained, which is used for the value of Duathlon. In the end,
a sample as the following is produced:

(Workout = True) ∧ (Smoke = True) ∧ (Marathon = False) ∧ (Duathlon = False) (8)

The algorithm creates various samples and calculates the probabilities from the corre-
sponding frequencies. Recall the Bayesian Theorem (3), a query P(Workout|Smoke) can be
written as:

P(Workout|Smoke) =
P(Workout, Smoke)

P(Smoke)
(9)

So for the example in Equation (8), this yields:

P(Workout|Smoke) ≈ #Samples(Smoke = True, Workout = True)
#Samples(Smoke = True)

(10)

This value becomes more accurate as the number of samples grows, so there is a balance
between time and accuracy. In concrete, the value for the standard deviation of the error is
related to the number of samples. This algorithm, however, fails to take advantage of every
sample, considering only those where the evidence appears. So, if the evidence probability
is small, then a larger number of samples will be discarded. For this reason, it is inefficient
and not used in real applications Russel and Norvig (2010).

likelihood weighting . In order to avoid wasting samples, there is another approach
that can be adopted by this algorithm. It forces the evidence variables to the values given

2.1. Classical Bayesian Networks 14

by the query, whereas nonevidence variables are normally sampled. By doing that the
samples are no more equally weighted. Every time an evidence variable is forced to a value
it does not respect the real probability with which this value would happen. So, to solve
this problem every sample is associated with a weight related to the real probability of the
value imposed. In this way, every sample has a weight that represents its real probability
out of a forced sampling mechanism. Therefore, the weight of each sample with E evidence
variables, Z nonevidence variables and m number of evidence variables, is obtained by,

w(z, e) =
m

∏
i=1

P(ei|parents(Ei)) (11)

Consequently, the conditional probability for the query P(x|e) is determined as,

P(x|e) ≈ α ∗∑
y

Nws(x, y, e) ∗ w(x, e) (12)

When Nws becomes large,

P(x|e) = α′ ∗∑
y

Sws(x, y, e) ∗ w(x, e) (13)

where Sws(z, e) is the probability of the nonevidence variables defined as,

Sws(z, e) =
l

∏
i=1

P(zi|parents(Zi)) (14)

Due to the fact that every sample is used, the algorithm is more efficient than rejection
sampling. But it has a problem: when one of the evidence variables occurs late on the
topological order, then the samples are guided by nonevidence variables, which is not, of
course, the best scenario. It would be of great interest to allow the evidence variables to
guide the sampling distributions so that we would get samples in correspondence to the
probability induced by them Russel and Norvig (2010).

other approximate algorithms There are other approaches to do approximate in-
ference. One is the Gibbs Sampling algorithm based on Markov Chain Monte Carlo algorithms
Walsh (2004). Here the evidence variables are fixed and then one of the nonevidence vari-
ables is randomly chosen. Subsequently, the probabilities of the states of the variable are
determined through its Markov blanket, which is a simple process. After that, the state is

2.1. Classical Bayesian Networks 15

sampled. The result is used as one sample for the whole process and the next step takes
this new value into account. In the end, the result of P(x|e) is given by:

P(x|e) ≈ #Samples(X = x)
#Samples

(15)

It is important to refer that the Gibbs sampling on a Bayesian Network has to fulfill some
properties. For instance, the transition probability distribution must be ergodic, i.e. from
every state in the state space there is a possible transition to every other state. Therefore,
there are no periodic cycles. It is important to refer that this algorithm is a better approach
than the ones mentioned before but it still has some problems, for example, if some prob-
ability in the CPTs is 0 or 1 the state space can be disconnected Kulaga (2006); Russel and
Norvig (2010); Darwiche (2008).

Another technique is based on a variational method, which tries to obtain an approxi-
mate value by finding a simpler network. The task is to find a simpler and better-behaved
network for performing inference. A computationally good behaved network should have,
for instance, a small tree-width. The algorithm turns out to be an optimization problem
because it tries to maximize the Kullback-Leibler Divergence (KL-divergence), of the two net-
works. The KL-divergence, given by Equation (16) measures how much one probabilistic
distribution diverges from another. The quality of the values obtained afterward is directly
related to this divergence measure. In Figure 10, the KL-divergence between two Gaussian
distributions is presented.

KL(q(x)||p(x)) = −∑
x

q(x) ∗ log
q(x)
p(x)

(16)

The algorithm works like other variational methods because it searches for the best param-
eters for the new network. This algorithm is able to obtain faster results but it does not
guarantee the same convergence to the real value as the Gibbs sampling Jordan et al. (1999);
Darwiche (2008).

2.2. Dynamic Bayesian Networks 16

Figure 10.: Kullback-Leiber divergence. On the left are represented two Gaussian probabil-
ity distribution and on the right the corresponding KL-divergence area, which
has to be integrated, for the measure (from Suzen (2017)).

2.2 dynamic bayesian networks

Bayesian Networks can also represent time models. In this case, the network is divided
into slices, each slice corresponding to a different time frame. To keep the model simple
the local network is invariant along different time slices, containing the same variables
and topology. As a result, there is an occurrence of each variable for each time frame
X0, ..., Xt, Xt+1. Additionally, there are temporal dependencies between the variables, for
instance, the previous position of an object has a direct influence on the next one. These
dependencies define the transition model P(Xt+1|Xt). Normally in each time slice, there are
also evidence variables which means that the network in each time slice maps the sensor
model P(Et|Xt). A Dynamic Bayesian Network is totally defined when the initial values of
the variables are given P(X0) to the transition and sensor model. In Figure 11, a simple
dynamic Bayesian network is presented. It models the behaviour of an automatic brake
system. For that, it considers the velocity of the car, the distance to the front car and the
state of the brakes. Additionally, in this system, the transition model describes that the
velocity in the next time frame is dependent on the previous, while the distance in the next
time frame depends on the previous distance and velocity.

Finally, it is important to mention that a dynamic Bayesian network represents a first-
order Markov process. This means that a state is only dependent on the previous one, in
other words, the present state is independent of past states except for the previous one Li
et al. (2018).

2.2. Dynamic Bayesian Networks 17

Figure 11.: A representation of an automatic brake model.

3

Q U A N T U M B AY E S I A N N E T W O R K S

3.1 bayesian networks as a tool for quantum modeling

Quantum mechanics is the most successful theory to explain how elementary particles,
such as electrons, behave. The theory has in its nature a probabilistic interpretation. The
observables, which are the physical quantities measurable in a laboratory, not only are
quantified for some concrete values “quanta”, but also have a non-deterministic character
House (2017). Moreover, these particles exhibit “social” behaviour, i.e. two particles can
behave as if they are only one, somehow sharing information Oliveira et al. (2007). This
effect is called entanglement, and it has become a highly researched topic. A new era of
communications is emerging to explore it, for the safety of their users Kimble (2008).

As the number of experiments confirming this behaviour increased, the more accepted
the theory became. And remember, even Einstein was not convinced that the universe
would work that way Einstein et al. (1935). Nevertheless, no experiment has disproved
quantum mechanics Aspect et al. (1981), which came as a disappointment for several Physi-
cists.

In quantum mechanics, a particle is described by its wave-function (Figure 12). This
function holds the information that can be extracted from the particle or system, and its
unit is the probability density House (2017).

18

3.1. Bayesian networks as a tool for quantum modeling 19

Figure 12.: Wave-functions for the Harmonic Oscillator (from Kapoor (2012)).

As a result of this probabilistic nature, Bayesian networks and similar models were con-
sidered to specify physical systems. They allow performing belief propagation, which is the
process of passing information between the nodes, necessary to perform inference. The in-
formation obtained after the inference process provides a better understanding of a system
in a posterior state. For instance, in Leifer and Poulin (2007), Bayesian networks are used
to create and analyze error correction codes. These codes are intended to reduce or even
eliminate the presence of noise in quantum based computations. For that, they measure
part of the quantum state and predict using precisely these graphical models, which would
be the best operation to correct, as much as possible, the effect caused by the noise at that
time step.

Another example is the usage of the same structures for quantum many-body simulations.
They allow Physicists to simulate particle systems and predict their behaviour. For instance,
spin-systems (Figure 13) are of great interest to simulate superconducting qubits. The use
of graphical structures for simulation is also found in Tucci (1995), where only Bayesian
networks are considered and their systems are written down by the second quantization
formalism.

3.1. Bayesian networks as a tool for quantum modeling 20

Figure 13.: Spin system as an instance of a many-body quantum system (from Knap).

There are other approaches where a special kind of Bayesian networks called “Qudot
Nets” is used as a representation of real qubits Sakkaris (2016). The vertices of the net-
works are the states of the qubits and the edges correspond to the quantum operations.
Belief propagation is applied to obtain the outcomes of the computations performed on
the qubits. In other words, these inference algorithms work as a classical simulation of
quantum algorithms.

In this sequence, Leifer has defined some of the most basic elements of probability the-
ory Leifer and Spekkens (2011). A very interesting one for this text is “Quantum Bayes
Theorem”:

ρA|B =
ρB|A ∗ ρA

ρB
(17)

Resorting to this theorem, quantum states (ρA) and quantum conditional states (ρB|A),
the author defines belief propagation for quantum systems. However, despite the previous
works presented, this framework intends to demonstrate the fundamental proprieties of the
quantum systems. Representing or simulating a physical system is not the main intent. For
instance, in Leifer and Spekkens (2011) the authors demonstrate that there is an isomor-
phism between the state that characterizes two physical systems in the same time step and
the time evolution operator that defines the transition of a system between two different
time steps. So, there is no reason to distinguish these two elements, as it happens in the
traditional quantum mechanical formalism.

Explaining and predicting quantum mechanical experiences with the use of probabilistic
theories is a research topic by itself. But there is an interpretation the other way around
where quantum mechanical systems are used to simulate probabilistic computations. A
more primitive idea came with Feynman’s concept of a quantum computer, to simulate
quantum mechanical systems Feynman (1999). The concept of a quantum computer turns
out to be extremely useful for the purpose that Feynam presented. Several computational

3.2. Quantum analogs for Bayesian networks 21

problems were proven to be solved efficiently in the concept of such a machine. For in-
stance, the discrete Fourier transform has an exponential speedup on a quantum computer
Nielsen and Chuang (2010). That has a great impact in many engineering applications since
solutions for problems that were computationally intractable before are now reachable. In
cryptography, Shor’s algorithm could compromise the current cryptographical protocols,
with the use of the quantum Fourier transform to factorize prime numbers in a reasonable
amount of time Shor (1995). This happens, because most of the current cryptographical
protocols are based on the assertion that factorizing a prime number is a computationally
difficult problem Katz and Lindell (2014).

3.2 quantum analogs for bayesian networks

Bayesian networks are a model used to describe a probabilistic system and every time they
were mentioned in this dissertation they had a classical nature. But they are not limited to
a classical framework. There are some interesting examples where these models are written
in a quantum framework.

In Moreira and Wichert (2018) the authors present “quantum Bayesian networks” that
are not a classical object to describe a quantum mechanical one, as before, but a quantum
mechanical system used to describe human behaviour. A classical Bayesian network can
be used to describe human behaviour but when paradoxical results appear Pothos and
Busemeyer (2009); Shafir and Tversky (1992), their complexity grows exponentially. This
happens because more latent variables have to be considered. Latent variables are extra
nodes in Bayesian Networks that cannot be observed but are inferred from the data. How-
ever, when “quantum Bayesian networks” are considered the paradoxical results do not
generate an exponential increase. The network maintains its dimension and the results
occur due to interference along the inference process.

Following the idea that a quantum computer could solve probabilistic problems faster, a
lot of research has been done to speedup these processes. Inference over a Bayesian network
was not an exception, as it is found in a lot of real applications Jensen and Nielsen (2007);
Neapolitan (2003).

A quantum algorithm for inference over Bayesian networks was introduced by Low et al.
(2014), based on an improved quantum version of the rejection sampling algorithm. This
algorithm is able to generate samples quadratically faster than the classical version, pro-
vided that the network is not too densely connected. The algorithm is divided into 3 stages,
detailed in the sequel.

In the first stage, the Bayesian network is encoded into a quantum state. For this, a binary
variable is represented by a single qubit and probabilities are mapped into the coefficients
of the quantum state:

3.2. Quantum analogs for Bayesian networks 22

|Ψ〉 = α |0〉+ β |1〉 ⇔ |Ψ〉 = α |Var1 = true〉+ β |Var1 = f alse〉 (18)

Whenever two variables share an edge in the network such a relationship is expressed
through state entanglement. Entanglement represents a strong correlation between quan-
tum states, therefore expressing shared information between different elements. The en-
visaged state is achieved through the application of a specific sort of gates — controlled
rotations — to the state qubits (Figure 14). The fact that a rotation is controlled by an-
other qubit creates entanglement between them (mutual information). The amplitude of
the rotation defines the value of the coefficients.

Figure 14.: Quantum circuit build to encode a Bayesian network in to a quantum state (from
Low et al. (2014)).

Measuring this state leads to its collapse into a classical value:

|Ψ〉 = α |0〉+ β |1〉 measurement−−−−−−−→ |Ψ〉 = |0〉 or |Ψ〉 = |1〉 (19)

Additionally, the probability of some state becoming the outcome of the measurement is
the square norm of the corresponding amplitude:

P(|Ψ〉 = |0〉) = |α|2 and P(|Ψ〉 = |1〉) = |β|2, |α|2 + |β|2 = 1 (20)

The quantum state is the superposition of all entries in the original joint probability distri-
bution table:

|Ψ〉 = |γ1|2 |Var1 = true, Var2 = true〉+ |γ2|2 |Var1 = true, Var2 = f alse〉+

|γ3|2 |Var1 = f alse, Var2 = true〉+ |γ4|2 |Var1 = f alse, Var2 = f alse〉
(21)

This means that a measurement produces a sample, as in the rejection sampling algorithm.
Consequently, this process has similarities with rejection sampling. However, it is not an
efficient way to do inference because every time a measurement is performed over the state,
it collapses and needs to be reconstructed.

3.3. Other models and applications 23

In a second stage, Grover’s algorithm Grover (1996) is applied to amplify the states that
have the right values for the evidence variable. Grover’s algorithm allows for a quadratic
speedup in search problems, a fact that explains its ubiquity and relevance to many quan-
tum programs. In this case, the quantum state that encodes the Bayesian network is divided
into two orthogonal states, one where the evidence variables have the right value and an-
other where they lack it:

|Ψinit〉 =
√

P(e) |Var1, Var2, ..., evidences〉

+
√

1− P(e) |Var1, Var2, ...,¬evidences〉
(22)

Then Grover’s algorithm is applied to search for the state that has the right values for the
evidence variables.

|Ψinit〉
Grover−−−→

∣∣Ψ f inal
〉
= |Var1, Var2, ..., evidences〉 (23)

The last stage amounts simply to observe this state and use the result as a sample. Table 1

shows the comparison between the classical and the quantum versions. The latter exhibits a
quadratic speedup but only if the Bayesian network is not too densely connected. Otherwise
the price of encoding into a quantum state will be too high, as the corresponding term
grows exponentially.

Table 1.: Classical vs quantum complexity.

Process type Complexity

Classical O(n ∗m ∗ P(e)−1)

Quantum O(n ∗ 2m ∗ P(e)
−1
2)

As before, e represents the evidence variables, while n quantifies the total number of
variables represented in the Bayesian network. Finally, m represents the density of the
graph Darwiche (2008).

It is important to mention that the inference process remains in the NP-class. The quan-
tum inference process presented before does not change the exponential characteristic of
the problem. The authors of Moreira and Wichert (2018) showed that inference process per-
formed with an quantum Bayesian network does not change the difficulty of the problem.

3.3 other models and applications

Bayesian networks are a very generic structure. For this reason, some special cases of these
networks are known by a specific name. For example, Markov processes (Figure 15) and

3.3. Other models and applications 24

Kalman filters are a special case of dynamic Bayesian networks Russel and Norvig (2010),
and, have also been explored for quantum analogs.

Some very interesting results appeared for quantum Markov decision processes. In Ying
and Ying (2014), they were used to describe the semantics of quantum programs. In con-
crete, the reachability of invariant states was analyzed and the results showed that for the
quantum case this problem is undecidable. This means that a generic algorithm to compute
reachability does not exist.

Figure 15.: First order Markov decision process.

A similar result was found in Barry et al. (2014), which studies a slightly different case fo-
cused on partially observable Markov processes (POMP) and their quantum analog. POMP
are named that way because some nodes are not directly observable. However, also in this
case, the reachability problem is undecidable. Both structures in a quantum framework
have undecidable reachability.

These two examples proved the existence of fundamental differences between classical
models and their quantum analogs. Furthermore, these differences revealed important
implications for their applications and formal verification.

In other research fields, these differences are studied for better or faster results. For in-
stance, in Paparo et al. (2014) a quantum analog for a projective simulation model Briegel
and De las Cuevas (2012) is presented. This kind of models are used for active learning
agents because of the structure changes with every iteration. They are commonly used in
robotics because it is impossible, in most cases, to have a perfect model of the environment.
So, the agents learn with every interaction how to behave in such an environment. Their in-
ternal processes are very prone to use quantum walks, which is the reason for the speedup.
Also, they do not require a universal quantum computer. A physical system that supports
quantum walks such as optical systems and trapped ions are enough for a complete imple-
mentation. A few years later, a proof-of-principle experiment based on trapped ions was
executed Sriarunothai et al. (2018), demonstrating a real quantum enhancing speedup for
these models.

3.4. Summary 25

3.4 summary

Bayesian networks and other graphical models come in hand to describe probabilistic sys-
tems. Quantum mechanics and quantum computing are good candidates to be described by
these models. Such descriptions are useful in a variety of research areas related to physics.
An application of great importance are simulations of quantum mechanical systems.

Quantum computing reveals to be a powerful playground for such models, allowing
them to represent and implement related processes with an advantage in performance.
These differences in performance could have a huge impact on real industrial applications.
For this reason, topics related to quantum probabilistic programming, quantum machine
learning, and quantum artificial intelligence remain very active research topics within the
scientific community.

4

Q U A N T U M B AY E S I A N D E C I S I O N - M A K I N G

4.1 decision making

Decisions are made by humans in their everyday life. The choice between the food we
eat and the clothes we wear are simple examples. Decision making can be defined as the
process of deliberation between the options available. It is also related to the notion of
intelligence, which is one of the features that distinguishes us the most from other ani-
mals. Another relevant feature of the human being is laziness, so we look to optimize our
everyday tasks and decision making is not an exception.

In the field of artificial intelligence, the idea of equipping a machine with such a decision-
making process already exists. It is the result of combining probability theory with utility
theory Russel and Norvig (2010). From probability theory, the intelligent agent receives
a framework to model the world that surrounds it, and from utility theory, the notion of
usefulness that each result (R) can have. The utility of each outcome can be quantified by
a utility function (U). A well known object that behaves as a utility function for humans is
money because it quantifies the value of objects and services (Figure 16).

26

4.1. Decision Making 27

Figure 16.: Empirical utility of money (from Russel and Norvig (2010))

However, both elements have to be combined in a way that respects the notion of ratio-
nal decision making. If rationality was not a requirement, the decision process could be
performed with any heuristic or even in a completely random way. Given that, the model
of the environment does not impose any restriction of rationality, all axioms fall into the
utility function Russel and Norvig (2010). For instance, the utility function has to be strictly
increasing and positive, which means that the following has to be true:

(U(r1) > U(r2)) ∧ (U(r2) > U(r3)) =⇒ U(r1) > U(r3) (24)

If the utility function does not respect this axiom then the agent ruled by this function could
be fooled. Imagine that r1 = 10e, r2 = 5e, r3 = 2e and the following is true:

(U(r1) > U(r2)) ∧ (U(r2) > U(r3)) ∧ (U(r1) < U(r3)) (25)

then, someone could exchange 2e by 10e with the agent, until the agent has no money.
This happens, because the agent thinks that the utility of 2e is bigger than the utility of
10e (U(r3) > U(r1)). With that, the agent would run out of money and still believe that it
had made the best choices.

Additionally to the axioms imposed, the decision process has to follow the maximum
expected utility (MEU) principle C. Fishburn (1982). This principle, claims that a rational
entity is expected to choose the action (A) with the greatest expected utility (EU) with respect
to its own set of beliefs. The expected utility of some action is the value that quantifies the
reward expected, on average, by picking exactly that one. The equation used to compute

4.1. Decision Making 28

the expected utility for a certain action, with knowledge about the state of some variables
called evidences (E) is:

EU(a|e) = ∑
R

P(r|a, e) ∗U(r) (26)

Summarizing, the maximum expected utility principle becomes :

action = argmaxaEU(a|e) (27)

In general, the MEU principle is found all over the domain of artificial intelligence. But,
this does not mean that all follow exactly equations (26) and (27). For some tasks, it is
not enough to consider only the next state, as it happens in (26). In such problems the
intelligent agent seeks for the ideal policy (π∗) within all possible policies (π), with a policy
being simply a mapping from states to actions.

The utility of each policy (Uπ(s)) is determined by computing all possible combination of
interactions with the environment until the goal state is reached. Afterward, with respect
to the highest expected utility principle, the optimal policy is selected:

πs∗ = argmaxπUπ(s) (28)

The computational work increases, but the underlying principle is the same in both cases.
It is important to mention that dynamic Bayesian networks discussed in Section 2.2 are

often used to model the environment, which means that, at this point, all elements of a
decision process were presented. In Figure 17, the main processes of an intelligent agent
are demonstrated. Solutions of this kind are commonly used and have excellent results
Bongard (2008).

Although, more complex processes exist. For instance, in reinforcement learning models,
the agents adapts its behaviour depending on its interactions with the environment. If some
action generates a positive feedback it is rewarded and the opposite happens for negative
feedback. So the utility of each actions changes with the history of the interactions. These
types of model are frequently used in robotics because the robot can not have access to a
model of its environment or, if it can, it is too complex to perform inference over it.

4.2. Quantum assisted Decision Making 29

Figure 17.: Model of an intelligent agent. The interaction with the environment and the
utility function are given to the decision process. This process outputs to the
actuators the next action.

4.2 quantum assisted decision making

Decision-making Processes are very useful. Unfortunately, the quality of their result is
not only bounded by their theoretical limitations but by the computational power of the
machines running them. As inference is an NP-hard problem, decision making is at least
of the same complexity, as it has an inference process as a subprocess.

A quantum computer running the inference algorithm presented in Chapter 3 , could
be used to speedup decision-making processes. The conditional probabilities could be
computed with a quadratic speedup, according to Equation (29).

EU(a|e) = ∑
R

P(Result = r|a, e)︸ ︷︷ ︸
Quantum

∗U(r)

︸ ︷︷ ︸
Classical

(29)

At this point, there is no doubt that a decision-making process performed on a quantum
computer could, in some cases, reduce the time of computation. It is important to mention
that the complexity of inference is not reduced, a quadratic speedup applied to an NP-
problem has almost no effect when the dimension of the problem increases. Still, such a
speedup will be observable in real applications and have a great impact on them.

The algorithm presented before is a hybrid one, it uses a quantum and a classical Turing
machine. The subprocess that suffers the speedup is the one performed on the quantum
machine. So, if a larger part of the computational work was performed on the quantum
machine then the entire process, in principle, would be faster.

4.2. Quantum assisted Decision Making 30

By using Decision Networks (Figure 18) it will be possible to do exactly that. Decision
networks are a Bayesian network with extra nodes for actions and utilities Russel and
Norvig (2010). This means that the network will have a utility node that is connected to the
outcome node, or the outcome nodes if in a multi-attribute utility function. To compute the
expected utility of some action it is only necessary to perform the inference algorithm until
the utility node is reached.

Figure 18.: Diagnostic assistant modeled with a decision network (from David Poole (2010).

Classically, the computational work needed to determine the expected utility is the same
in both cases because the exact inference process applied to a decision network does the
same as Equation (26). In the quantum case, the use of decision networks allows us to
perform a larger part of the process with the quantum inference algorithm :

EU(a|e) = ∑
R

P(Result = r|a, e) ∗U(r)︸ ︷︷ ︸
Quantum

(30)

This has, as consequence, a quadratic speedup not only for the subprocess that computes
the conditional probabilities (P(Result = r|a, e)) as before, but a quadratic speedup for the
utility term of each outcome (P(Result = r|a, e) ∗U(r)).

A quantum decision-making algorithm based on the quantum inference algorithm, pre-
sented in Chapter 3, applied to a decision network, can be defined by the following itera-
tions:

• Observe the current state of the evidence variables.

• For each possible action:

4.3. A new quantum algorithm for decision-making 31

– Until the expected utility of actioni is precise enough:

* Encode the decision network as a quantum state (|Ψinit〉).

* Perform a Grover search for the correct state of the action and evidence vari-
ables.

|Ψinit〉
Grover−−−→

∣∣Ψ f inal
〉
= |Var1, Var2, ..., actioni, evidences〉 (31)

* Observe the final state(
∣∣Ψ f inal

〉
).

• Return the action with the highest utility.

There are important implications to mention. First of all, the utility function has to be
normalized to be encoded as a quantum state. Secondly, the expected utility which is
sampled is also a normalized value. Additionally, if the utility function is a multi-attribute
function the number of variables on which it depends is important because it can change
the tree-width of the network. The tree-width is one of the parameters that define the
complexity of the quantum inference algorithm as seen in Table 1. So, for some decision
networks a quadratic speedup can be obtained by using a quantum computer, while for
others the quantum process is slower.

4.3 a new quantum algorithm for decision-making

In this section, a different approach for decision making which, in principle, will take an
increased advantage of the quantum resources will be presented. The idea is quite sim-
ple: instead of sampling the conditional probabilities (P(Result = r|a, e)) or utility terms
(P(Result = r|a, e) ∗U(r)), the quantum state remains unobserved until the utility function
is applied. The utility is not part of the state, as in the decision networks, but a transforma-
tion applied to the quantum state:

|Ψ〉 Utilty function−−−−−−−→
∣∣Ψ′〉 (32)

The intention is to apply this transformation to the outcome variable and look to what
happens to the action variable. As both the outcome and the action variables are entan-
gled, a transformation applied to the former will produce an effect on the latter. The new
algorithm modifies the process described in the previous section to infer a conditional prob-
ability by preventing the action variable to be used as an evidence variable. By maintaining
the action variable in a superposition, the utility function will be applied in parallel to all
conditional probability terms used in the decision-making process. Also, by observing later
on the action variable all the utility terms will automatically be summed out for that action

4.3. A new quantum algorithm for decision-making 32

as it happens in Equation (26). From this state the expected utility of some action (EU(a))
will be directly sampled.

For a better understanding of that algorithm, let us follow a generic quantum state that
encodes a Bayesian network:

|Ψ〉 = |Result, Action, Evidences, Var1, ...〉 (33)

In the first step, Grover’s search algorithm is applied to obtain the correct values of the
evidence variables, without considering the action variable as one:

|Ψ〉 = |Result, Action, Evidences, Var1, ...〉 Grover−−−→
∣∣Ψ′〉 = |Result, Action, evidences, Var1, ...〉

(34)
The same state can be written as a superposition of all concrete bases of the result variable,
which, being Boolean, yields:

∣∣Ψ′〉 = α ∗ |r, Action, evidences, Var1, ...〉+ β ∗ |¬r, Action, evidences, Var1, ...〉 (35)

where
|α|2 + |β|2 = 1 (36)

Considering that the action variable is also a Boolean, the same state can be written as:

∣∣Ψ′〉 = γ1 |r, a1, evidences, Var1, ...〉+ γ2 |r, a2, evidences, Var1, ...〉
+γ3 |¬r, a1, evidences, Var1, ...〉+ γ4 |¬r, a2, evidences, Var1, ...〉

(37)

with

|γ1|2 + |γ2|2 + |γ3|2 + |γ4|2 = 1 (38)

The coefficients that describe the state and determine the probability of observing each base
are related by the following expressions:

|α|2 = |γ1|2 + |γ2|2 (39)

|β|2 = |γ3|2 + |γ4|2 (40)

Afterward, the utility function is applied as an operator U to the state |ψ〉. This operator
changes the amplitudes of the state, in correspondence to the utility of each value of the
result variable:

4.3. A new quantum algorithm for decision-making 33

U
∣∣Ψ′〉 = √

U(r) ∗ α

k
|r, Actions, evidences, Var1, ...〉

+

√
U(¬r) ∗ β

k
|¬r, Actions, evidences, Var1, ...〉

(41)

k is a normalization term, so that,

|
√

U(r) ∗ α

k
|2 + |

√
U(¬r) ∗ β

k
|2 = 1 (42)

yielding,

U
∣∣Ψ′〉 = γ′1 |r, a1, evidences, Var1, ...〉+ γ′2 |r, a2, evidences, Var1, ...〉
+γ′3 |¬r, a1, evidences, Var1, ...〉+ γ′4 |¬r, a2, evidences, Var1, ...〉

(43)

Thus,
U(r) ∗ |α|2

k2 = |γ′1|2 + |γ′2|2 (44)

which yields, by equation (39),

U(r)
k2 =

|γ′1|2 + |γ′2|2
|γ1|2 + |γ2|2

(45)

|γ′1|2 + |γ′2|2 =
U(r)

k2 ∗ (|γ1|2 + |γ2|2) (46)

|γ′1|2 + |γ′2|2 =
U(r)

k2 ∗ |γ1|2 +
U(r)

k2 ∗ |γ2|2 (47)

concluding that

|γ′1|2 =
U(r)

k2 ∗ |γ1|2 (48)

|γ′2|2 =
U(r)

k2 ∗ |γ2|2 (49)

Rewriting state U |Ψ′〉 in the bases where the action variable is defined and the result
variable is not, leads to

U
∣∣Ψ′〉 = ω1 |R, a1, evidences〉+ ω2 |R, a2, evidences〉 (50)

knowing that,

4.3. A new quantum algorithm for decision-making 34

|ω1|2 = |γ′1|2 + |γ′3|2

|ω2|2 = |γ′2|2 + |γ′4|2
(51)

where the probabilities of measuring each state of the action variable are:

P(a1) = |ω1|2 =
U(r)

k2 ∗ |γ1|2 +
U(¬r)

k2 ∗ |γ3|2

P(a2) = |ω2|2 =
U(r)

k2 ∗ |γ2|2 +
U(¬r)

k2 ∗ |γ4|2
(52)

Moreover, given that

|γ1|2 = P(a1, r|evidences) , |γ2|2 = P(a2, r|evidences)

|γ3|2 = P(a1,¬r|evidences) , |γ4|2 = P(a2,¬r|evidences)
(53)

and

P(r|a1, evidences) =
P(a1, r|evidences)
P(a1|evidences)

(54)

we conclude that
|γ1|2 ∝ P(r|a1, evidences) (55)

and that the transformation yields a state where

P(a1|evidences) =
U(r)

k2 ∗ P(a1, r|evidences)

+
U(¬r)

k2 ∗ P(a1,¬r|evidences)
(56)

As after the transformation the probability of some action is proportional to its expected
utility

P(a1|evidences) ∝ EU(a1|e) (57)

P(a1|evidences) = $1 ∗ EU(a1|e) (58)

Finally, if initially

P(a1|evidences) = P(a1) (59)

4.3. A new quantum algorithm for decision-making 35

then
P(r|a1, evidences) =

P(r, a1|evidences)
P(a1)

(60)

and
P(an′) = P(an), n 6= n′ (61)

the constant of proportionality takes the following value for all actions:

$n′ = $n =
1

k2 ∗ P(a)
, n 6= n′ (62)

Thus, the values of the proportionality constants $n between all the Expected Utilities re-
main the same. This means that an action with a greater probability has a greater expected
utility,

U
∣∣Ψ′〉 = ω1 |Result, action1, evidences, Var1, ...〉+ ω2 |Result, action2, evidences, Var1, ...〉

+ ω3 |Result, action3, evidences, Var1, ...〉+ ω4 |Result, action4, evidences, Var1, ...〉+ ...

|ω1|2 = EU(action1|e) ∗ $, |ω2|2 = EU(action2|e) ∗ $,

|ω3|2 = EU(action3|e) ∗ $, |ω4|2 = EU(action4|e) ∗ $, ...

(63)

Consequently, to choose the action with the greatest probability/utility (Figure 19), it
is enough to resort to a limited collection of samples, rather than obtaining first all the
conditional probabilities. Moreover, this provides a more precise way of choosing an action
because the sampling method always yields an approximation and the error affecting the
computed values grows for every conditional probability determined.

4.3. A new quantum algorithm for decision-making 36

Figure 19.: Probability distribution of an action variable.

Remember, that this decision process requires that Equation (61) has to be initially true.
This expresses the rational choice which considers all actions as equal at the beginning.
In other words, the intelligent agent is not biased in beforehand. Additionally, the action
variable should be independent of the evidence variables as in Equation (59), which means
that the topology of the network has to be as in Figure 20. This requirement ensures that
the intelligent agent is not biased by the current state of his environment and performs his
decisions in order to achieve the best outcome in the future state.

4.4. Proof-of-concept implementation 37

Figure 20.: Bayesian network with an independent action node.

The new quantum decision-making algorithm presented can be completely described by
the following iterations:

• Observe the current state of the evidence variables.

• Until (∀n\{max}EU(actionmax)− EU(actionn) > δactionmax + δactionn):

– Encode the Bayesian network as a quantum state (|Ψinit〉).

– Perform a Grover search for the correct state of the evidence variables.

|Ψinit〉
Grover−−−→

∣∣Ψ′〉 = |Result, Action, evidences, Var1, ...〉 (64)

– Apply the Utility function (U) to state |Ψ′〉.

∣∣Ψ′〉 Utility function−−−−−−−−→
∣∣Ψ f inal

〉
(65)

– Observe the action variable of the final state (
∣∣Ψ f inal

〉
).

• Return the action with the highest utility.

4.4 proof-of-concept implementation

The algorithm presented in the previous Section 4.3 was implemented on the IBM Q quan-
tum simulator as a proof-of-concept. The purpose of the following example is to present

4.4. Proof-of-concept implementation 38

a valid instance of the algorithm, which invalidated the use of the real quantum device.
At our disposal was IBMs 20-qubit machine, which is based on superconducting circuits
Steffen et al. (2011). This machine has an error term associated with each gate used in a
quantum circuit and a life-time for each qubit. So, as the number of gates grows the error of
the outcome grows too. The output of a circuit with a considerable number of gates would
be majorly noise. Due to that, the decision processes presented before, which is based on a
search problem would be impossible to compute with a manageable error term.

IBM’s best quantum computer is not the only that fails to solve such problems. The best
quantum devices, in the world, are not even near to solve problems related to search prob-
lems with a higher dimension. Although, that does not mean that the current devices are
completely useless. There are problems where a Noisy Intermediate-Scale Quantum (NISQ)
devices could have an impact, in the near future Preskill (2018). The applications of these
NISQ devices are related to simulations in chemistry and many-body quantum physics.
Also, it is interesting to mention that the major companies investing in quantum comput-
ing are constructing devices based on different technologies. Microsoft devices are based
on topological quantum computing Nayak et al. (2008), while Intel is exploring spin qubits
Vandersypen et al. (2017).

Over the last years, quantum devices have had a lot of progress. For example, the number
of qubits are increasing in each technology, the gate errors are reducing Schäfer et al. (2018)
and entanglement between them is becoming stronger Kues et al. (2017); Pirandola et al.
(2006). This progress has been giving hope to construct a powerful universal quantum
computer. That one day could have a great impact on our everyday life. But to validate
results as pretended, in this section a classical simulator has to be used. However, the same
simulator struggles to compute the outcomes, if the number of qubits used increases. As
mentioned before the complexity to simulate a quantum computer on a classical computer
is too high. Given that, a very simple Bayesian network (Figure 21) was selected for the
decision process.

Figure 21.: Bayesian network over 3 variables. Node L represents the evidence variable, A
the action variable and R the outcome variable.

4.4. Proof-of-concept implementation 39

The network was encoded to a quantum state with use of the tecnique presented in Low
et al. (2014), producing the circuit shown in Figure 22.

Figure 22.: Quantum circuit composed by rotations and controlled-rotations.

The subsequent application of Grover’s algorithm yields the quantum state corresponding
to equation:

|Ψnetwork〉 = α |r, A, l〉+ β |¬r, A, l〉 (66)

The incorporation of an utility function over the quantum state requires its normalization,
i.e.

U(R) =

{
7 , R = r
3 , R = ¬r

normalization−−−−−−−→ U(R) =

{
7
10 , R = r
3
10 , R = ¬r

(67)

The normalized utility function generates an isomorphic state whose bases are the domain
of the function and the amplitudes its images:

∣∣Ψutility
〉
=

√
7
10
∗ |r〉+

√
3
10
∗ |¬r〉 (68)

At this point the two states in the quantum registers, being mutually independent, can
be combined as follows,

|Ψtotal〉 = |Ψnetwork〉 ⊗
∣∣Ψutility

〉
= α ∗

√
7
10

∣∣r, A, l, r′
〉
+ β ∗

√
7
10

∣∣¬r, A, l, r′
〉

+α ∗
√

3
10

∣∣r, A, l,¬r′
〉
+ β ∗

√
3

10

∣∣¬r, A, l,¬r′
〉 (69)

State |Ψtotal〉 already contains all the relevant terms — all one has to do is to amplify them
resorting again to Grover’s algorithm. For the example at hands, such is the case when
r ∧ r′ and ¬r ∧ ¬r′ hold, yielding

4.4. Proof-of-concept implementation 40

|Ψtotal〉 =
α ∗
√

7
10

k
∣∣r, A, l, r′

〉
+

β ∗
√

3
10

k
∣∣¬r, A, l,¬r′

〉
(70)

The resulting state is exactly the one deduced in Equation (63). This state represents the
final state of the new algorithm developed during the work of this dissertation. Meaning
that the previously presented operations correspond to an possible implementation.

To compute the same algorithm on IBM’s quantum simulator, each part has be to con-
verted in a concrete quantum circuit. Every state has to be encoded, which in concept is
simple with the use of rotations and controlled-rotations. The major difficulty exists when
the rotation is controlled by more than one qubit. In such cases, this operation has to be
decomposed in simpler and available operations in the working framework. The existence
of an equivalent circuit is guaranteed by the fact that the simulator is a universal quantum
computer. Meaning that any possible computation is performed on that framework. In
concrete, some tools decompose complex operations into simpler Vartiainen et al. (2004);
Möttönen et al. (2004). For the Bayesian network chosen only one rotation (Figure 23a)
requires a decomposition (Figure 23b).

(a) Multiqubit controlled-rotation.

−→

(b) Multiqubit controlled-rotation on QISKIT.

Figure 23.: Decomposition of a two qubit controlled-rotation into available gates on QISKIT.

The next task is to create a circuit version of Grover’s search algorithm (Figure 24). To
do so, a phase inversion of the correct states has to be performed. In order to obtain the
correct circuit for this process the Programmer should make use of the tools referenced
before. After the phase inversion, the inversion about the mean is applied to all states. This
process can be obtained again by the same tools. Interestingly, the inversion about the mean
processes is equal for all Grover searches with the same dimension.

For the decision-making processes presented none of these tools were necessary. An ex-
ample of a 4-qubit Gover implementation was sufficient Strömberg and Blomkvist Karlsson
(2018).

4.5. Summary 41

...

Figure 24.: Circuit representation of Grover’s search algorithm for the decision-making pro-
cess.

Finally, these circuits have to be constructed on ”Qiskit” which runs on a ”jupyter note-
book” (Appendix A). The circuits created are sent as a job to IBM’s servers and the results
are sent back to the client. The number of times that the circuits are computed is deter-
mined by the user. It is important to mention that IBM imposes an upper limit on the
number of times that a submitted job is computed. This limit had no interference with our
example because only a small amount of samples was necessary.

Actually, a significant number of samples is generated. The number of samples for each
state of the action variable should be similar to the theoretical probability. Table 2 shows
that this is indeed the case: the experimental result is quite similar to the one foreseen by
theory.

The small discrepancies pointed out in Table 2 can be explained by deficiencies of the
implementation. First, note that Grover’s algorithm is probabilistic meaning that the result
is never entirely precise. On the other hand, the number of iterations in Grover’s algorithm
was an integer number; thus, if n.m non-integer iterations are required the usage of the
one bellow n or the one above n + 1, generates a small variation. Actually, it is possible to
perform a Grover search with a non-integer number of iterations Zekrifa et al. (2000), but it
would not be relevant for this example.

Table 2.: Comparison between theoretical and experimental results after sampling from
state (70).

States Theoretically expected probability Percentage of Samples

Action0 0,58 0.544

Action1 0,42 0.456

4.5 summary

Decision-making processes are part of the algorithms that benefit from quantum machines.
Especially, the decision-making processes supported by Bayesian networks take advantage

4.5. Summary 42

of inference algorithms created for such structures. Additionally, the decision-making pro-
cess can be optimized as seen in this chapter by exploring the quantum resources deeper
or in a different way.

Unfortunately, no quantum computer or quantum device in the world is able to run
the presented algorithms. The output of such machines would be majorly noise and the
information processed impossible to recover. Decoherence is nowadays the biggest problem
to solve in order to construct a faithful quantum computer.

5

C O M P L E X I T Y A N A LY S I S

In Chapter 4 different quantum enhanced algorithms were presented. The purpose of this
Chapter is to characterize those algorithms in terms of complexity. Complexity is the area of
computer science that divides problems in categories according to the computational work
involved. The computational work is defined not by absolute values but by the inherent
difficulty, which is quantified by the growth rates of the computational work with the
dimension of the problem. For instance, NP-problems are known to grow exponentially
with the dimension of the problem.

For the analyses, all the decision-making processes were considered. To simplify let us
denote by Process A the new quantum algorithm (section 4.3), the quantum inference algo-
rithm over the decision network by Process B and the decision-making process that com-
putes the conditional probabilities with the same quantum inference algorithm by Process
C.

All of these algorithms generate samples to determine which is the best action. The
number of operations (It) in each algorithm will be defined by the number of iterations per
sample (Is) and the number of samples (S) necessary, as in Equation (71).

It = S ∗ Is (71)

5.1 number of iterations

The number of iterations per sample of all three processes are defined by the number of
Grover iterations that are necessary to apply in each case. Also, the number of iterations
necessary to find the goal state in a Grover search is defined by the probability of this state:

Is =

√
1

P(state)
(72)

For Process A, it is the probability of the state which has already the utility function
applied to it is,

43

5.1. Number of iterations 44

P(state) = ∑
r

U(r) ∗ P(r, e) (73)

knowing that,

1 = ∑
r

U(r) (74)

Assuming that any distribution is possible for U(r) and P(r,e), we conclude that the proba-
bility of the state can be any value between 0 and P(e). We also know that the mean value
for U(r) is:

1
Nr

(75)

where Nr represents the dimension of the outcome variable. With that P(e,r) can be de-
scribed as:

P(e)
Nr

(76)

So the mean value for the product of the two values U(r) ∗ P(e, r) will be:

P(e)
Nr
∗ 1

Nr
=

P(e)
N2

r
(77)

if they are independent, which is true because the utility function is independent of the
information present in the Bayesian Network, the mean value for the sum can be done by
the sum over the mean terms

Mean(P(state)) = ∑
r

P(e)
N2

r
=

P(e) ∗ Nr

N2
r

=
P(e)
Nr

(78)

This mean value for the probability will be used to define the number of steps:

Is =

√
Nr

P(e)
(79)

defining this way the number of iterations necessary to obtain a sample with Process A.
The same has to be done for Process B, where the probabilty of the goal state is

P(state) = P(e, a) (80)

In this case, we have to apply the requirements determined by Process A described in (59)
and (61) to later make a correct comparison

P(e, a) = P(e) ∗ P(a) =
P(e)
Na

(81)

5.2. Number of samples 45

where Na is the dimension of action variable. Finally, we estimate the number of iterations
as:

Is =

√
Na

P(e)
(82)

As Process C has a goal state with the same probability of Process B, it shares the same
number of iterations.

Finally, the mean number of iterations by sample and by process is presented in Table 3.

Table 3.: Number of samples per iterations per sample and per process.

Process A Process B Process C√
Nr

P(e)

√
Na

P(e)

√
Na

P(e)

5.2 number of samples

The next step is to obtain the number of samples necessary for each process. So, the
simultaneous error terms for a Multinomial Distribution are:

(pi− πi)
2 =

A ∗ πi(1− πi)

N
, (i = 1, 2, ..., k) (83)

The value A represents the upper α ∗ 100− th percentile of a Chi-Square Distribution (fig-
ure 25) with k-1 degrees of freedom, πi represent the probability of category i, N is the
number of samples and the difference on the left side of the equation represents the error
term Goodman (1965).

5.3. Total number of operations 46

Figure 25.: Chi-square distributions with different degrees of freedom (k).

Writing the same equation in function of N we obtain

N =
A ∗ πi(1− πi)

δ2 , (i = 1, 2, ..., k) (84)

Equation (84), defines the number of samples necessary for Process A and Process C.
Since, both processes are sampling from a quantum state with multiple bases. Process B
requires sampling from binomial states, for which the Wald Interval Schuld and Petruccione
(2018) will be used:

πi = pi± z

√
πi (1− πi)

N
(85)

in function of N,

N = z2 · πi (1− πi)

δ2 (86)

5.3 total number of operations

The total number of operations will be caracterized by the product of the terms deduced in
the previous sections and the number of operations necessary to encode the network as a
quantum state. The total number of operations for each process is shown in Table 4.

5.3. Total number of operations 47

Table 4.: Mean number of operations for each process.

Process A Process B Process C

n ∗ 2m′ ∗
√

Nr
P(e) ∗

A∗πi(1−πi)
δ2

a
n ∗ 2m′ ∗

√
Na

P(e) ∗
z2∗πi(1−πi)

δ2
b

n ∗ 2m ∗
√

Na
P(e) ∗

A∗πi(1−πi)
δ2

c

The computational work of all processes is caracterized as a function of the tree-width
of the network (m, m′), the number of nodes (n), the dimension of the result variable (Nr),
the dimension of the action variable (Na), the probability of the evidence variables (P(e)),
the error (δ) and the probability (πi) of the state. Additionally, the decision-making process
requires inequality (87) to be satisfied. It assures that the decision maker chooses with
certainty the best action.

∀n\{max}EU(actionmax)− EU(actionn) > δactionmax + δactionn (87)

At this point, with use of Table 4 and the restriction defined by expression (87), it is
possible to perform a fair comparison between the processes. Initially, it is important to refer
that the topology of the network determines if any of the quantum algorithm presented
performs the decision-making process faster then a classical one. This happens, because
the number of operations needed to encode the network grows exponentially with the the
value of tree-width. If the encoding term 2m is bigger than the quadratic speedup generated
by the quantum inference algorithm, than the decision-making process performs faster on a
classical computer. Moreover, the same factor destinguishes the between Process C and the
remaning ones because the tree-width can change when the utility function is considered. If
the utility node, in the decision network is too densely connected (Figure 26) then Process
A and Process B could be slower then the classical algorithms, while Process C remains
faster. Remark that Process A encodes the initial Bayesian network and the utility function
independently. However, when Grover’s algorithm is applied to select the correct states
(Equation 70) to amplify. It requires approximately the same number of operations than the
ones required to encode the decision network.

5.3. Total number of operations 48

Figure 26.: Decision network with a densly connected utility node.

As seen before, the exponential term 2m has the greatest impact on the number of iter-
ations of each processes. However, when this number is equal for all process, then other
factors are used to distinguish the presented processes. Apart from this term, it is easy to
understand that Process B is faster then Process C, because Process B implements the whole
decision process one step further with the quantum inference algorithm. Taking advantage
during that step from a quadratic speedup.

To compare Process A and Process C it is necessary to consider all terms that are different.
So, the error term δa for Process A is related to directly sampling values for the Expected
utilities, while in Process C the Expected Utility is determined indirectly. For this reason,
in Process C it is necessary to apply error propagation rules:

EU(a|e) + δEU(a|e) = ∑
R
(P(Result = r|a, e) + δc) ∗U(r) (88)

before we apply error propagation to this equation we need to normalize the equation in a
way that EU(a|e)/k is equal to P(a).

P(a) + δa = ∑
R
(P(Result = r|a, e) + δc) ∗ F(r) (89)

where the normalization function (F(r)) is expressed as,

F(r) =
U(r)

∑a ∑r U(r) ∗ P(r|a, e)
(90)

Here, again, the mean value of U(r) will be used:

5.3. Total number of operations 49

F(r) =
U(r)

∑a ∑r P(r|a, e) ∗U(r)
=

U(r)
∑a

1
Nr

=
U(r)

Na
Nr

=
Nr ∗U(r)

Na
(91)

F(r) =
1

Na
(92)

Now, writing down the equation that determines the error term δa in function of the error
term δc:

δa =
√

∑
R

δ2
c ∗ F(r)2 (93)

using equation 92 we obtain that:

δa =

√
∑
R

δ2
c ∗ (

1
Na

)
2

(94)

After that if we assume that δc is similar, which is in favor of Process C because it minimizes
the δa term:

δa =

√
Nr ∗ δ2

c ∗ (
1

Na
)

2
(95)

obtaining,

δa = (

√
Nr

Na
) ∗ δc (96)

With the relation between the error terms determined. It is possible to compare the
difference of the computational effort for both processes, assuming again the mean terms
for the probabilities: √

Na

Nr
∗

Ar,α ∗ 1
Nr
∗ (1− 1

Nr
) ∗ δ2

a ∗ Na

Aa,α ∗ 1
Na
∗ (1− 1

Na
) ∗ δ2

c
(97)

Using 96, √
Na

Nr
∗ Nr

Na
∗

Ar,α ∗ 1
Nr
∗ (1− 1

Nr
)

Aa,α ∗ 1
Na
∗ (1− 1

Na
)

(98)

also, √
Nr

Na
∗

Ar,α ∗ 1
Nr
∗ (1− 1

Nr
)

Aa,α ∗ 1
Na
∗ (1− 1

Na
)

(99)

and,

5.3. Total number of operations 50

√
Nr

Na
∗

Ar,α ∗ (1
Nr
− 1

N2
r
)

Aa,α ∗ (1
Na
− 1

N2
a
)

(100)

From Inglot (2010) we obtain a lower bound for Aα,k, these terms are different for distinct
values of α but we will consider the one where α is not tending to fast to zero:

Aα,k ≥ k + 2 ∗ log
1
α
− 5

2
(101)

With this equation it is possible to define a better value for the difference of the computa-
tional effort:

√
Nr

Na
∗
(Nr + 2 ∗ log 1

α −
7
2) ∗ (

1
Nr
− 1

N2
r
)

(Na + 2 ∗ log 1
α −

7
2) ∗ (

1
Na
− 1

N2
a
)

(102)

As
lim

Nr→∞
(Nr + 2 ∗ log

1
α
− 7

2
) ∗ (1

Nr
− 1

N2
r
) = 1 (103)

and,

lim
Na→∞

(Na + 2 ∗ log
1
α
− 7

2
) ∗ (1

Na
− 1

N2
a
) = 1 (104)

It is possible to approximate the expression to:

√
Nr

Na
∗
(Nr + 2 ∗ log 1

α −
7
2) ∗ (

1
Nr
− 1

N2
r
)

(Na + 2 ∗ log 1
α −

7
2) ∗ (

1
Na
− 1

N2
a
)
≈
√

Nr

Na
(105)

The result shows that A is faster when the result variable has a greater dimension than
the action variable. When the opposite happens then Process C is faster. Theoretically, if
the decision-making process is applied to a real world application. The dimension of the
environment should be exponentially greater then the number of actions that the agents
has at his disposal. Also, the number of possible results increases if the decision-making
process computes outcomes further in time. It is expected that Process A is faster then
Process C most of the times.

Finally, only one comparison is left. Process A has to be compared to Process B. Again
the error propagation rules are required. Both processes are sampling Expected utility but
their magnitudes are different:

P(a) + δa = (P(u|a, e) + δb) ∗ F(r) (106)

The mean value for P(a) is
1

Na
, while the mean value for P(u|a, e) is

1
2

. So the mean value

for F(r) has to be:

5.3. Total number of operations 51

F(r) =
2

Na
(107)

therefore,

δa =

√
(

2
Na

)
2
∗ δ2

b (108)

and,

δa = (
2

Na
) ∗ δb (109)

Repeating the processes as before, the relation between both process is described by:√
Na

Nr
∗

z ∗ 1
2 ∗ (1−

1
2) ∗ δ2

a ∗ Na

Aa,α ∗ 1
Na
∗ (1− 1

Na
) ∗ δ2

b

(110)

with 109, √
Na

Nr
∗

z ∗ 1
2 ∗ (1−

1
2) ∗ Na ∗ 4

Aa,α ∗ 1
Na
∗ (1− 1

Na
) ∗ N2

a
(111)

yielding, √
4

Nr ∗ Na
∗

z ∗ 1
2 ∗ (1−

1
2)

Aa,α ∗ 1
Na
∗ (1− 1

Na
)

(112)

using Equation 104 again, the total term tends to:√
c

Nr ∗ Na
, c = constant (113)

Meaning that as the dimension of the problem increases, Process B gets faster then Pro-
cess A. There will be values for Nr and Na for which Process A is faster, but in the long run
Process B solves most of the cases faster.

It is of utmost importance to refer that the comparison made was for decision problems
where the action with the highest expected utility is pretended, which is, in general, the
goal. However, some problems are slightly different and this can change which one of the
algorithms performs better.

For instance, in reinforcement learning the action with the highest expected utility is not
always desired. In these models, the agent selects one action from all possible actions, con-
sidering their expected utility. Thus, actions with higher expected utility are selected with
more frequency and vice versa. In order to do so, the agent has to compute the expected
utility for every action and then randomly choose one of the actions respecting the proba-

5.4. Summary 52

bility distribution. All classical solutions require this procedure and two of the quantum
algorithm developed too (Process B and Process C). However, Process A has a great advan-
tage for this problem. Their samples are obtained exactly by the distribution pretended,
which means that only one sample from Process A solves this decision problem. Therefore
Process A reveals itself to be both efficient and useful for applications in reinforcement
learning.

5.4 summary

The complexity of a problem determines if a solution is found in a reasonable amount of
time. There are problems that not even the best supercomputers in the world would find
a solution in our lifetime. So, it is important to know the complexity of the problems we
want to solve in the first place. Additionally, all extra information can help to reduce the
time of computation.

For the decision-making process, a precise definition of the complexity would enable us
to choose the fastest process to reach the optimal action. For all processes presented in the
previous chapter, there is now a precise definition (Table 4). Also, a complete comparison
between the processes was presented. Distinguishing when each of the processes has some
advantage over the remaining, in a typical decision problem.

6

P I C T U R I N G A Q U A N T U M B AY E S I A N A L G O R I T H M

6.1 string diagrams

In computer science, it is very important to verify the correctness of programs. Programs
should be considered correct not by repeated experimental verification but by mathematical
proof. In some applications, a software ”bug” could stay for months unseen and then cost
millions or even lifes. Due to that, a great amount of work was done in this direction Harton
et al. (2008); Jacobs (1999); Burstall (1972). Frameworks that help software developers to
verify their programs are now available.

The theory of software verification is strongly connected to category theory. Category
theory is a mathematical subject that formalizes mathematical structures. This kind of
abstraction applied to programs allows to understand their behaviour without computing
concrete values. Also, more generic proprieties are proved in this framework.

Formal program analysis is not limited to classical programs running on classical Tur-
ing machines. The same idea can be applied to quantum computers. To verify proprieties
about the quantum algorithms, a category that contains all basic proprieties of quantum
mechanics has to be considered. In Coecke (2010), Coecke considered the dagger monoidal
categories as a semantic framework for quantum computation. Additionally, he describes a
graphical language, known as string diagrams, which represents reasoning in such a cate-
gory. Every proof that can be performed in the categorical notation, can also be performed
in the corresponding graphical language, if the axioms of the category are respected by
the graphical language Coecke and Spekkens (2012). To understand how algorithms are
represented in this frameworks, a better understanding of categories is required.

A category C is constituted by objects A, B, C, ... and morphisms f : A→ B , g : B→ C,
Every object has an unique morphism to itself 1A : A→ A and morphisms are composable:

53

6.1. String diagrams 54

Figure 27.: Composition of morphisms.

The composition of morphisms is associative:

l • (g • h) = (l • g) • h (114)

These are the most basic elements of a category. The structure can be richer when dif-
ferent kinds of categories are considered. In the corresponding graphical language, the
morphisms are associated with boxes and the objects to strings. Thereby the composition
of morphisms and the identity morphism are represented as follows:

(a) Composition of morphism represented in
graphical language.

(b) Representation of the identity morphism in
graphical language.

From Figure 28a, it easy to see morphisms could represent processes and objects infor-
mation or data types. Also, the composition of morphism represents the sequential com-
position of processes. To include the notion of parallel composition a monoidal structure
is required. This category is equipped with a bifunctor (morphism between categories)
F : C⊗ C→ C and a unit object I. The functor respects associativity:

l ⊗ (g⊗ h) = (l ⊗ g)⊗ h (115)

and the unit object behaves as an identity element to the functor:

6.1. String diagrams 55

I ⊗ A = A = A⊗ I (116)

Additionally, a pair morphisms that are parallel composed are composable to:

(g⊗ f) • (h⊗ l) = (g • h)⊗ (f • l) (117)

in the graphical language the such a composition is represented as,

Figure 29.: Parallel composition of a pair of morphisms.

Monoidal categories are symmetric when the isomorphisms σA,B : A⊗ B → B⊗ A exist
for all objects A and B. Those isomorphisms are represented graphically as:

Figure 30.: The σA,B : A⊗ B → B⊗ A isomorphism represents the swap operator within a
process a theory

In the quantum case, the use of parallel composition enables the representation of multi-
partite systems and is known in the quantum formalism as the tensor product.

The representation of quantum operations is related to morphisms between states. States
are described by Coecke as a morphisms e : I→ A from the zero object (I) to another object
(A) Coecke and Kissinger (2017). In string diagrams, the representation of states is the
following:

6.1. String diagrams 56

Figure 31.: Representation of a state in a graphical language.

States and processes are described by a monoidal category without any fault. The notion
of a dagger category is required to describe the duality present in quantum mechanics. Such
a category has an involution functor Cop → C that associates each morphism f : A→ B
to his ”adjoint” morphism f† : B→ A. The same occurs for every state e : I→ A where
e† : A→ I. The ”adjoint” object of a state is called an effect in Coecke and Kissinger (2017).
For quantum algorithms, an effect behaves as a measurement and is represented in string
diagrams as:

Figure 32.: Representation of an effect (dagger state) in a graphical language.

A dagger category is structurally rich enough to represent complete quantum algorithms
and protocols, while string diagrams are used as a useful syntax. In Coecke and Kissinger
(2017), the most general quantum algorithms and protocols are represented and studied
with the corresponding graphical language. For instance, Grover’s search algorithm is
represented in this framework as in Figure 33. This abstract representation shows that
Grover’s algorithm is composed of equal unitary iterations. Also, every iteration can be
decomposed in a phase inversion, applied to the selected elements, and an inversion about
the mean.

6.2. Other uses of String diagrams 57

Figure 33.: Grover’s algorithm represented in string diagrams (from Coecke and Kissinger
(2017)).

Afterward, the authors used this representation to prove that any search algorithm com-
posed of unitary operations can not be faster than Grover’s search algorithm. Such a result
is very important to understand how faster a quantum computer can solve problems that
are search driven.

6.2 other uses of string diagrams

String diagrams are normally used to describe quantum processes or protocols. However,
their use extends to different applications. Some of these applications are of interest to this
dissertation. This happens, because they use string diagrams to describe topics discussed
in previous chapters.

In Coecke and Spekkens (2012), the authors present string diagrams for classical and
quantum Bayesian inference. They use symmetric monoidal categories with compact struc-
tures and Frobenius structures. With the considered category and structures they obtain a
very general framework to describe classical inference. For instance, the morphisms from
the zero object (I) to another object (A), e : I→ A, in this framework, are representations of
normalized states,

Figure 34.: Graphical representation of a normalizes state and its semantics in probability
theory (from Coecke and Spekkens (2012)).

and as before the monoidal structure equips the framework with the parallel composition,
used to represent multi-variable states,

6.2. Other uses of String diagrams 58

Figure 35.: Graphical representation of a normalizes multi-variable state (from Coecke and
Spekkens (2012)).

another important piece is the existence of modifiers, which are the representation of trans-
formations,

Figure 36.: Graphical representation of a state transformer (from Coecke and Spekkens
(2012)).

With the use of these elements, a conditional state can be constructed simply by,

Figure 37.: Conditional states in the graphical language (from Coecke and Spekkens (2012)).

and considering that it is a symmetric monoidal category, the morphism from Figure 30

exist for every pair of objects, allowing the construction of Bayes theorem as,

Figure 38.: Bayes Theorem written in a graphical language (from Coecke and Spekkens
(2012)).

Also, the notion of conditional independence is supported by this framework. The gen-
eral independence rules between the two elements are represented in this framework by
four graphical Equations (39). These equations are very different from the conditional in-
dependence rules that were presented in Chapter 2 for Bayesian networks. In a Bayesian

6.2. Other uses of String diagrams 59

network, testing conditional independence boils down to simple tests on the topology of
the network.

Figure 39.: Conditional independence rules written in Coecke and Spekkens (2012) graphi-
cal language.

For the quantum case, the authors presented a graphical calculi for dagger compact
categories. The description is oriented for the operators and traces. Allowing, therefore,
the representation of mixed states (mixed states are quantum states that are not correctly
defined by one wave function). Altogether, the authors depicted a very abstract version
of inference. This kind of abstraction can be helpful to find solutions and provide proofs
about those subjects.

Another interesting application was presented in Hedges et al. (2016). The authors ap-
plied string diagrams to the theoretical notion of game theory. String diagrams are a very
flexible language, they express completely different subjects by simply exchanging the un-
derlying category, changing with that their semantics. That work intends to study the
composability of games. Game theory studies the interaction of intelligent players in a
game. These games can be simple or complex. In some cases, a game can be formed by the
composition of smaller games. That work starts by defining simple games, which are called
open games. They are the building blocks and their algebraic expression is the following:

G : X⊗ S∗ → Y⊗ R∗ (118)

which in string diagrams has the following representation:

6.2. Other uses of String diagrams 60

Figure 40.: Open game depicted in a graphical language (from Hedges et al. (2016)).

The variables X, S, Y, R are representative of sets, having each of them their one role in the
game:

• X represents histories and observations possibles in G. The strategies of the players
in G may be defined by X. Also, X can be partial observable by a player in G.

• Y is the set of possible choices in G, meaning that Y works as an output value of G.

• R is the set of outcomes that each player in G is trying to optimize.

• S represents the utility generated by G and is called coutility. Players in G do not
generate coutilities but players outside G do. In this way, S serves as a mechanism to
communicate back to the earlier stages of the game.

These games are composable in both ways, sequential:

6.2. Other uses of String diagrams 61

Figure 41.: Sequential composition of open games (from Hedges et al. (2016)).

and in parallel, with a tensor product:

Figure 42.: Parallel composition of open games (from Hedges et al. (2016)).

These games are able to represent decision problems like the one discussed in Chapter 4.
For that, a game will be simplified to one player making only one move. In Figure 43, a
single-player decision problem is presented. The player receives observations X, then he
makes a decision and outputs and action Y. Afterward, the player receives a utility value
for that action. It is important to notice that the player needs a relational order for utility
values. Without a relational order, the player would not distinguish good choices from bad
ones.

6.3. Algorithmic analysis 62

Figure 43.: Graphical representation of a decision problem (from Hedges et al. (2016)).

Furthermore, the same paper uses the definitions presented before to study the compo-
sition and coordination of games composed of a higher number of elements. These cases
are difficult to study, but with this graphical framework, some operations are made simpler.
For instance, the composition of games becomes something very simple to perform and
analyze.

6.3 algorithmic analysis

A new algorithm for decision-making processes and its implementation was presented in
section 4.3 and section 4.4, respectively. It is based on a quantum inference algorithm com-
posed with the application of a utility function. Both processes involve the use of Grover’s
search algorithm. Due to that, it would be of interest to prove that two composed quantum
search algorithms are equivalent to one search with the union of the restrictions. If the
previous affirmation holds then the new decision-making process can be done with only
one Grover search.

First, the composition of two quantum-maps will be analyzed. Quantum-maps are pro-
cesses used in quantum algorithms to invert the phase of certain elements. Grover’s search
algorithms use these processes to select the elements intended to be found. Afterward,
the same elements are amplified by a process called inversion about the mean. So, is the
composition of two quantum-maps equivalent to a quantum-map with the union of the
restrictions? In Figure 44, a quantum map is represented in string diagrams with two dif-
ferent abstractions. This abstraction will help us to find an answer to the previous question.

6.3. Algorithmic analysis 63

Figure 44.: Unitary transformation represented in string diagrams.

So, the composition of two quantum maps is:

Figure 45.: Composition of unitary transformations in a string diagrams.

The string diagrams on the right hand side can be modeled in a way to respect the axioms
of the underlying category:

Figure 46.: Equivalent diagrams obtained by one graphical transformation.

While the quantum map with the union of the restrictions is represented by:

6.3. Algorithmic analysis 64

Figure 47.: Equivalent representation of the an unitary tansformation.

and after decomposing the same in simpler operations,

Figure 48.: Equivalent representation after a decomposition in simpler operations.

and,

Figure 49.: Equivalent diagrams with use of one graphical transformation.

Since the two branches are different with respect to the AND operator, the processes are
not equivalent. Another way to obtain the same result is to use the definition of the elements
in the string diagram and show that they are not equivalent. From Coecke and Kissinger

6.3. Algorithmic analysis 65

(2017), the white dot operates as copy process, while the grey dot works as XOR process,
meaning that the branch generated by the composition of maps (Figure 46) translates to:

XOR • (f1 ⊗ f2) • COPY(x) =

= XOR • (f1 ⊗ f2) • (x⊗ x) =

= XOR • (f1(x)⊗ f2(x)) =

= XOR(f1(x), f2(x))

(119)

While the same branch for the quantum map with the union of the restriction translates to:

AND • (f1 ⊗ f2) • COPY(x) =

= AND • (f1 ⊗ f2) • (x⊗ x) =

= AND • (f1(x)⊗ f2(x)) =

= AND(f1(x), f2(x))

(120)

Demonstrating that the branches are different:

XOR(f1(x), f2(x)) 6= AND(f1(x), f2(x)) (121)

With that, a second proof was given. The composition of two quantum maps does not
correspond to the quantum map with the union of the restrictions. There is an easy
intuition to understand why these processes are not equivalent. Imagine that some element
is selected by the first quantum map and is again selected by the second quantum map. It
obtains a phase shift twice which is equivalent to none. Consequently, the elements that we
are searching with the union of the restrictions are not selected.

Now we pursue to verify if something similar is true when we compose Grover’s algo-
rithm. Classically, there is no doubt that if a search process is composed with another one,
then the outcome is the same as a search with the union of the restrictions. The intent is
to prove the same for a quantum search. In string diagrams, we want to prove that the
equivalence shown in Figure 50 is true.

Figure 50.: Illustration 1.

6.3. Algorithmic analysis 66

The left hand side of Figure 50 generates as result the state represented in Figure 51.

Figure 51.: Illustration 2.

To prove the equivalence in Figure 50 holds, then the right hand side has to reduce to the
same final state. For that, the string diagram can be transformed as shown in Figure 52.

Figure 52.: Illustration 3.

Proceeding with the transformations, the first block of operations in the last diagram of
Figure 52 can be reduces to the state in Figure 53.

Figure 53.: Illustration 4.

6.3. Algorithmic analysis 67

Which can be composed to the second block of operations, as shown in Figure 54.

Figure 54.: Illustration 5.

Using a decomposition method presented in Coecke and Kissinger (2017), the same can be
represented as in Figure 55.

Figure 55.: Illustration 6.

This decomposition can be taken one step further as shown in Figure 56.

Figure 56.: Illustration 7.

Resulting in the final state, which is represented in Figure 57.

6.4. Summary 68

Figure 57.: Illustration 8.

The final state contains exactly the base elements pretended. The only difference is the
scalar value 4 which has no impact on the result. This proves that two composed quantum
search algorithms are equivalent to one search with the union of the restrictions.

For the new algorithm presented in section 4.3, this means that the two different imple-
mentations generate the same result. Therefore, the utility function can be applied after the
Grover search for the correct values of the evidence variables or within. The computational
complexity of both implementations is exactly the same. So the Programmer should choose
the one he prefers.

6.4 summary

In computer science, the use of formal methods to verify the correctness of algorithms is
well known. However, their use does not only extend to academic research, but also a
variety of industrial applications rely on them to provide the safety of their workers or
clients. For instance, the software running on airplanes should never fail, for the safety of
the occupants.

With the increasing investment in quantum computers and quantum software, the re-
search of formal methods applied to quantum algorithms has grown. This chapter focused
on string diagrams which are a graphical framework used to verify and prove proprieties
about algorithms. They revealed themselves a very powerful tool, since they have the ca-
pacity to describe an algorithm at different levels of abstraction in a graphical way.

7

C O N C L U S I O N

7.1 conclusions

The dissertation aimed to study quantum variants of Bayesian networks and its correspond-
ing algorithms. The review of the classical literature, demonstrated that Bayesian networks
are a powerful tool to describe probabilistic systems. Therefore, they are found in a variety
of domains and applications. Unfortunately, inference over those structures revealed to be
an NP-complete problem. Meaning that the amount of computational work grows expo-
nentially with the dimension of the problem. As a result, none of the classical algorithms
developed to perform inference over Bayesian networks represents an efficient solution.

In the quantum domain, a quantum version of a Bayesian network was presented, with
the capacity to model human behaviour. The advantage of such a quantum Bayesian net-
work was an exponential reduction in the dimension of the model. For the inference prob-
lem, no quantum algorithm has an exponential speedup. However, a quantum algorithm
for Bayesian inference was analyzed, which has a quadratic speedup for some networks.

On a second contribution, quantum algorithms for decision-making processes were devel-
oped. These algorithms are based on the quantum algorithm for inference previously pre-
sented. They take advantage of a quadratic speedup during the inference process, which is
a subprocess of the whole process. Additionally, the possibility to further explore the quan-
tum resources was considered and resulted in a completely ”quantum” decision-making
processes. In general, quantum computing has a great impact on artificial intelligence
Schuld and Petruccione (2018), since it provides speedups for a variety of techniques. Some
of the algorithms employ the quantum machine for subprocesses, while others are com-
pletely quantum driven.

It was under the scope of this dissertation to figure out the computational complexity
of the algorithms developed. Therefore, the computational work was quantified for each
one of the algorithms, allowing with it an optimal choice between them, when the decision
problem is well defined. The results showed that not all cases benefit from the use of a quan-
tum device. However, the ones who showed themselves to be candidates for computational
speed-up are promising.

69

7.2. Prospects for future work 70

Later on, a formal analysis was performed on one of the algorithms. In order to do
so, string diagrams were studied. These are a mathematical framework to study quantum
algorithms and protocols. The results demonstrated that two different implementations
generated the same result, thus offering the “quantum Programmer” a choice between
both options.

In conclusion, quantum computing is an active research topic and new discoveries are
expected in the next years. The work performed during this dissertation expanded the
domain knowledge, with an algorithm that benefits from the structure present in the data,
which no classical algorithm could benefit from. Therefore, it should serve as an exam-
ple that new and completely different solutions are expected, as a result of the intrinsic
differences that exist amongst classical and quantum computations.

7.2 prospects for future work

Although the work presented in this dissertation led to a real application, some ideas could
be further extended. For instance, the decision-making process discussed here was related
to a static model, in which, neither the utility function nor the Bayesian network changed
in time. It would be of interest to verify if the decision-making process could benefit from
an additional learning process Jonsson and Barto (2007); Robinson and Hartemink (2010);
Tong and Koller (2001). Enabling an intelligent agent to adapt its behaviour to a changing
environment, would result in better outcomes, raising with that the number of possible
applications. Additionally, it should be considered to be performed on the quantum device
for potential speedups or even better results.

Another idea that could be further explored is the use of a quantum device to build
a Bayesian network from data. This task has great applications in data science and is
known to be a computationally difficult problem. The review of the literature revealed that
there are some approaches to solve this problem more efficiently using a quantum device
O’Gorman et al. (2014); Tucci (2014). However, the number of solutions is small compared
to what is already known in a classical setting. It would be worth checking for more efficient
solutions and its implications for quantum complexity theory.

B I B L I O G R A P H Y

Gustavo Arroyo-Figueroa and Luis Enrique Sucar. A Temporal Bayesian Network for Diag-
nosis and Prediction. In Proceedings of the Fifteenth Conference on Uncertainty in Artificial
Intelligence, UAI’99, pages 13–20, San Francisco, CA, USA, 1999. Morgan Kaufmann Pub-
lishers Inc. ISBN 1-55860-614-9. URL http://dl.acm.org/citation.cfm?id=2073796.

2073798.

Alain Aspect, Philippe Grangier, and Gérard Roger. Experimental Tests of Realistic Lo-
cal Theories via Bell’s Theorem. Phys. Rev. Lett., 47(7):460–463, 1981. doi: 10.1103/
PhysRevLett.47.460. URL https://link.aps.org/doi/10.1103/PhysRevLett.47.460.

Fahiem Bacchus, Shannon Dalmao, and Toniann Pitassi. Solving #SAT and Bayesian Infer-
ence with Backtracking Search. Journal of Artificial Intelligence Research, page 52, 2009.

Jennifer Barry, Daniel T. Barry, and Scott Aaronson. Quantum partially observable Markov
decision processes. Physical Review A, 90, 2014. doi: 10.1103/PhysRevA.90.032311.

J Bongard. Probabilistic Robotics. Sebastian Thrun, Wolfram Burgard, and Dieter Fox. (2005,
MIT Press.) 647 pages. Artificial Life, 14(2):227–229, 2008. ISSN 1064-5462. doi: 10.1162/
artl.2008.14.2.227.

Hans J Briegel and Gemma De las Cuevas. Projective simulation for artificial intelligence.
Scientific Reports, 2:400, may 2012. URL https://doi.org/10.1038/srep00400http://

10.0.4.14/srep00400.

Rod M Burstall. An Algebraic Description of Programs with Assertions, Verification and
Simulation. SIGPLAN Not., 7(1):7–14, 1972. ISSN 0362-1340. doi: 10.1145/942578.807068.
URL http://doi.acm.org/10.1145/942578.807068.

Peter C. Fishburn. The Foundations of Expected Utility Theory. 1982. doi: 10.1007/
978-94-017-3329-8.

C.Huang and A.Darwiche. Inference in belief networks: A procedual guide. International
Journal of Approximate Reasoning, pages 225–263, 1996.

B Coecke and A Kissinger. Picturing Quantum Processes: {A} First Course in Quantum Theory
and Diagrammatic Reasoning. Cambridge University Press, 2017.

71

http://dl.acm.org/citation.cfm?id=2073796.2073798
http://dl.acm.org/citation.cfm?id=2073796.2073798
https://link.aps.org/doi/10.1103/PhysRevLett.47.460
https://doi.org/10.1038/srep00400 http://10.0.4.14/srep00400
https://doi.org/10.1038/srep00400 http://10.0.4.14/srep00400
http://doi.acm.org/10.1145/942578.807068

Bibliography 72

Bob Coecke. Quantum picturalism. Contemporary Physics, 51(1):59–83, jan 2010. doi: 10.
1080/00107510903257624.

Bob Coecke and Robert W Spekkens. Picturing classical and quantum Bayesian inference.
Synthese, 186(3):651–696, jun 2012. ISSN 1573-0964. doi: 10.1007/s11229-011-9917-5. URL
https://doi.org/10.1007/s11229-011-9917-5.

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduc-
tion to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009. ISBN 0262033844,
9780262033848.

A. Darwiche. Chapter 11 Bayesian Networks. Foundations of Artificial Intelligence, 3(07):
467–509, 2008. ISSN 15746526. doi: 10.1016/S1574-6526(07)03011-8.

Alan Mackworth David Poole. Artificial Intelligence - foundations of computational agents
– 9.3.1 Decision Networks, 2010. URL https://artint.info/html/ArtInt{_}219.html.

Arnaud Doucet, Nando de Freitas, Kevin P Murphy, and Stuart J Russell. Rao-Blackwellised
Particle Filtering for Dynamic Bayesian Networks. In Proceedings of the 16th Conference
on Uncertainty in Artificial Intelligence, UAI ’00, pages 176–183, San Francisco, CA, USA,
2000. Morgan Kaufmann Publishers Inc. ISBN 1-55860-709-9. URL http://dl.acm.org/

citation.cfm?id=647234.720075.

A Einstein, B Podolsky, and N Rosen. Can Quantum-Mechanical Description of Physical
Reality Be Considered Complete? Phys. Rev., 47(10):777–780, 1935. doi: 10.1103/PhysRev.
47.777. URL https://link.aps.org/doi/10.1103/PhysRev.47.777.

Richard P Feynman. Feynman and Computation. chapter Simulating, pages 133–153.
Perseus Books, Cambridge, MA, USA, 1999. ISBN 0-7382-0057-3. URL http://dl.acm.

org/citation.cfm?id=304763.305688.

Dan Geiger, Thomas Venna, and Judea Pearl. -separation: from theorems to algorithms. In
Procedings of the Sixth Conference on Uncertainty in Artificial Intelligence, number 1, pages
138–148, 1990. URL http://arxiv.org/abs/1405.2572http://dx.doi.org/10.1088/

1367-2630/16/11/113043.

Leo A Goodman. On Simultaneous Confidence Intervals for Multinomial Proportions.
Technometrics, 7(2):247–254, 1965. doi: 10.1080/00401706.1965.10490252. URL https:

//amstat.tandfonline.com/doi/abs/10.1080/00401706.1965.10490252.

Lov K Grover. A Fast Quantum Mechanical Algorithm for Database Search. In Proceedings
of the Twenty-eighth Annual ACM Symposium on Theory of Computing, STOC ’96, pages 212–
219, New York, NY, USA, 1996. ACM. ISBN 0-89791-785-5. doi: 10.1145/237814.237866.
URL http://doi.acm.org/10.1145/237814.237866.

https://doi.org/10.1007/s11229-011-9917-5
https://artint.info/html/ArtInt{_}219.html
http://dl.acm.org/citation.cfm?id=647234.720075
http://dl.acm.org/citation.cfm?id=647234.720075
https://link.aps.org/doi/10.1103/PhysRev.47.777
http://dl.acm.org/citation.cfm?id=304763.305688
http://dl.acm.org/citation.cfm?id=304763.305688
http://arxiv.org/abs/1405.2572 http://dx.doi.org/10.1088/1367-2630/16/11/113043
http://arxiv.org/abs/1405.2572 http://dx.doi.org/10.1088/1367-2630/16/11/113043
https://amstat.tandfonline.com/doi/abs/10.1080/00401706.1965.10490252
https://amstat.tandfonline.com/doi/abs/10.1080/00401706.1965.10490252
http://doi.acm.org/10.1145/237814.237866

Bibliography 73

Heather K Harton, Murali Sitaraman, and Joan Krone. Formal Program Verification. In
Wiley Encyclopedia of Computer Science and Engineering, 2008.

Jules Hedges, Evguenia Shprits, Viktor Winschel, and Philipp Zahn. Compositionality and
String Diagrams for Game Theory. 2016.

Joe Henson, Raymond Lal, and Matthew F Pusey. Theory-independent limits on correla-
tions from generalised Bayesian networks. New J.Phys., 2014. doi: 10.1088/1367-2630/
16/11/113043. URL http://arxiv.org/abs/1405.2572http://dx.doi.org/10.1088/

1367-2630/16/11/113043.

J E House. Fundamentals of Quantum Mechanics. Elsevier Science, 2017. ISBN 9780128092552.
URL https://books.google.pt/books?id=YLkxDQAAQBAJ.

Tadeusz Inglot. Inequalities for quantiles of the chi-square distribution. Probability and
Mathematical Statistics, 30, 2010.

Bart Jacobs. Coalgebras in Specification and Verification for Object-Oriented Languages.
1999.

Finn V Jensen and Thomas D Nielsen. Bayesian Networks and Decision Graphs. Springer
Publishing Company, Incorporated, 2nd edition, 2007. ISBN 9780387682815.

Anders Jonsson and Andrew Barto. Active Learning of Dynamic Bayesian Networks in
Markov Decision Processes. In Proceedings of the 7th International Conference on Abstrac-
tion, Reformulation, and Approximation, SARA’07, pages 273–284, Berlin, Heidelberg, 2007.
Springer-Verlag. ISBN 978-3-540-73579-3. URL http://dl.acm.org/citation.cfm?id=

1770681.1770705.

Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An
Introduction to Variational Methods for Graphical Models. Machine Learning, 37(2):
183–233, nov 1999. ISSN 1573-0565. doi: 10.1023/A:1007665907178. URL https:

//doi.org/10.1023/A:1007665907178.

Charles E Kahn, Lisa M Roberts, Katherine A Shaffer, and Peter Haddawy. Construction of
a Bayesian network for mammographic diagnosis of breast cancer. Computers in biology
and medicine, 27 1:19–29, 1997.

Priyanka Kapoor. Wave functions for the quantum harmonic oscilla-
tor, 2012. URL https://priyankacool10.wordpress.com/2012/05/28/

wave-functions-for-the-quantum-harmonic-oscillator/.

Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography, Second Edition.
Chapman & Hall/CRC, 2nd edition, 2014. ISBN 1466570261, 9781466570269.

http://arxiv.org/abs/1405.2572 http://dx.doi.org/10.1088/1367-2630/16/11/113043
http://arxiv.org/abs/1405.2572 http://dx.doi.org/10.1088/1367-2630/16/11/113043
https://books.google.pt/books?id=YLkxDQAAQBAJ
http://dl.acm.org/citation.cfm?id=1770681.1770705
http://dl.acm.org/citation.cfm?id=1770681.1770705
https://doi.org/10.1023/A:1007665907178
https://doi.org/10.1023/A:1007665907178
https://priyankacool10.wordpress.com/2012/05/28/wave-functions-for-the-quantum-harmonic-oscillator/
https://priyankacool10.wordpress.com/2012/05/28/wave-functions-for-the-quantum-harmonic-oscillator/

Bibliography 74

H J Kimble. The quantum internet. Nature, 453:1023, jun 2008. URL https://doi.org/10.

1038/nature07127http://10.0.4.14/nature07127.

Michael Knap. Collective Quantum Dynamics. URL http://users.ph.tum.de/ga32pex/.

Michael Kues, Christian Reimer, Piotr Roztocki, Luis Romero Cortés, Stefania Sciara, Ben-
jamin Wetzel, Yanbing Zhang, Alfonso Cino, Sai T Chu, Brent E Little, David J Moss,
Lucia Caspani, José Azaña, and Roberto Morandotti. On-chip generation of high-
dimensional entangled quantum states and their coherent control. Nature, 546:622, jun
2017. URL https://doi.org/10.1038/nature22986http://10.0.4.14/nature22986.

Tomasz Kulaga. The Markov Blanket Concept in Bayesian Networks and Dynamic Bayesian
Networks and Convergence Assessment in Graphical Model Selection Problems.
(October), 2006.

Matthew Leifer and David Poulin. Quantum Graphical Models and Belief Propagation.
Annals of Physics, 323:1899–1946, 2007. doi: 10.1016/j.aop.2007.10.001.

M.˜S. Leifer and R.˜W. Spekkens. Towards a Formulation of Quantum Theory as a Causally
Neutral Theory of Bayesian Inference. arXiv e-prints, page arXiv:1107.5849, jul 2011.

Chongxuan Li, Max Welling, Jun Zhu, and Bo Zhang. Graphical Generative Adversarial
Networks. CoRR, abs/1804.0, 2018. URL http://arxiv.org/abs/1804.03429.

Guang Hao Low, Theodore J Yoder, and Isaac L Chuang. Quantum inference on Bayesian
networks. Phys. Rev. A, 89(6):62315, jun 2014. doi: 10.1103/PhysRevA.89.062315. URL
https://link.aps.org/doi/10.1103/PhysRevA.89.062315.

Catarina Moreira and Andreas Wichert. Are quantum-like Bayesian networks more power-
ful than classical Bayesian networks? Journal of Mathematical Psychology, 82:73–83, 2018.
ISSN 10960880. doi: 10.1016/j.jmp.2017.11.003. URL https://doi.org/10.1016/j.jmp.

2017.11.003.

Mikko Möttönen, Juha J Vartiainen, Ville Bergholm, and Martti M Salomaa. Quantum
Circuits for General Multiqubit Gates. Phys. Rev. Lett., 93(13):130502, 2004. doi: 10.
1103/PhysRevLett.93.130502. URL https://link.aps.org/doi/10.1103/PhysRevLett.

93.130502.

Sucheta Nadkarni and Prakash P Shenoy. A Causal Mapping Approach to Construct-
ing Bayesian Networks. Decis. Support Syst., 38(2):259–281, 2004. ISSN 0167-9236. doi:
10.1016/S0167-9236(03)00095-2. URL http://dx.doi.org/10.1016/S0167-9236(03)

00095-2.

https://doi.org/10.1038/nature07127 http://10.0.4.14/nature07127
https://doi.org/10.1038/nature07127 http://10.0.4.14/nature07127
http://users.ph.tum.de/ga32pex/
https://doi.org/10.1038/nature22986 http://10.0.4.14/nature22986
http://arxiv.org/abs/1804.03429
https://link.aps.org/doi/10.1103/PhysRevA.89.062315
https://doi.org/10.1016/j.jmp.2017.11.003
https://doi.org/10.1016/j.jmp.2017.11.003
https://link.aps.org/doi/10.1103/PhysRevLett.93.130502
https://link.aps.org/doi/10.1103/PhysRevLett.93.130502
http://dx.doi.org/10.1016/S0167-9236(03)00095-2
http://dx.doi.org/10.1016/S0167-9236(03)00095-2

Bibliography 75

Chetan Nayak, Steven H Simon, Ady Stern, Michael Freedman, and Sankar Das Sarma.
Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys., 80(3):1083–
1159, 2008. doi: 10.1103/RevModPhys.80.1083. URL https://link.aps.org/doi/10.

1103/RevModPhys.80.1083.

Richard Neapolitan. Learning Bayesian Networks. 2003. doi: 10.1145/1327942.1327961.

Chris J Needham, James R Bradford, Andrew J Bulpitt, and David R Westhead. A Primer
on Learning in Bayesian Networks for Computational Biology. PLOS Computational Biol-
ogy, 3(8):1–8, 2007. doi: 10.1371/journal.pcbi.0030129. URL https://doi.org/10.1371/

journal.pcbi.0030129.

Bayesian Networks, F Faltin, and R Kenett. 35 Bayesian Networks. Encyclopedia of Statistics
in Quality & Reliability, 1(1):4, 2007. ISSN 18780326. doi: 10.1002/wics.48.

Ann Nicholson. A Case Study in Dynamic Belief Networks: Monitoring Walking, Fall
Prediction and Detection. Lect. Notes Comput. Sci., 1114, 1997.

M A Nielsen and I L Chuang. Quantum Computation and Quantum Information (10th Anniver-
sary Edition). Cambridge University Press, 2010.

Bryan O’Gorman, Alejandro Perdomo-Ortiz, Ryan Babbush, Alán Aspuru-Guzik, and
V Smelyanskiy. Bayesian Network Structure Learning Using Quantum Annealing. The
European Physical Journal Special Topics, 224, 2014. doi: 10.1140/epjst/e2015-02349-9.

Ivan Oliveira, Roberto Sarthour, Tito Bonagamba, Eduardo Azevedo, and Jair C C Freitas.
NMR Quantum Information Processing. Elsevier Science, San Diego, USA, 1st edition, 2007.
ISBN 0444527826, 9780444527820.

Giuseppe Davide Paparo, Vedran Dunjko, Adi Makmal, Miguel Angel Martin-Delgado, and
Hans J Briegel. Quantum Speedup for Active Learning Agents. Phys. Rev. X, 4(3):31002,
jul 2014. doi: 10.1103/PhysRevX.4.031002. URL https://link.aps.org/doi/10.1103/

PhysRevX.4.031002.

James Park and Adnan Darwiche. A differential semantics for jointree algorithms. Artificial
Intelligence, 156:197–216, 2004. doi: 10.1016/j.artint.2003.04.004.

Judea Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press, New
York, NY, USA, 2nd edition, 2009. ISBN 052189560X, 9780521895606.

Stefano Pirandola, David Vitali, Paolo Tombesi, and Seth Lloyd. Macroscopic Entan-
glement by Entanglement Swapping. Phys. Rev. Lett., 97(15):150403, 2006. doi: 10.
1103/PhysRevLett.97.150403. URL https://link.aps.org/doi/10.1103/PhysRevLett.

97.150403.

https://link.aps.org/doi/10.1103/RevModPhys.80.1083
https://link.aps.org/doi/10.1103/RevModPhys.80.1083
https://doi.org/10.1371/journal.pcbi.0030129
https://doi.org/10.1371/journal.pcbi.0030129
https://link.aps.org/doi/10.1103/PhysRevX.4.031002
https://link.aps.org/doi/10.1103/PhysRevX.4.031002
https://link.aps.org/doi/10.1103/PhysRevLett.97.150403
https://link.aps.org/doi/10.1103/PhysRevLett.97.150403

Bibliography 76

Emmanuel Pothos and Jerome Busemeyer. Quantum probability explanation for violations
of ‘rational’ decision theory. Proceedings. Biological sciences / The Royal Society, 276:2171–
2178, 2009. doi: 10.1098/rspb.2009.0121.

Oliver Pourret, Patrick Naim, and Bruce Marcot. Bayesian Networks. A Practical Guide to
Applications. 2008. doi: 10.1002/9780470994559.

John Preskill. Quantum {C}omputing in the {NISQ} era and beyond. Quantum, 2:79,
2018. ISSN 2521-327X. doi: 10.22331/q-2018-08-06-79. URL https://doi.org/10.22331/

q-2018-08-06-79.

Frank Grotelüschen Ralf Krauter. Quanteninternet - Das Web
Q.0 nimmt Gestalt an. URL https://www.deutschlandfunk.de/

quanteninternet-das-web-q-0-nimmt-gestalt-an.740.de.html?dram:

article{_}id=425283.

Joshua W Robinson and Alexander J Hartemink. Learning Non-Stationary Dynamic
Bayesian Networks. J. Mach. Learn. Res., 11:3647–3680, 2010. ISSN 1532-4435. URL
http://dl.acm.org/citation.cfm?id=1756006.1953047.

Stuart Russel and Peter Norvig. Artficial Intelligence : a modern approach. Upper Saddle River,
NJ : Prentice Hall, ed, 3rd edition, 2010.

Perry Sakkaris. QuDot Nets: Quantum Computers and Bayesian Networks. 2016.

V M Schäfer, C J Ballance, K Thirumalai, L J Stephenson, T G Ballance, A M Steane, and
D M Lucas. Fast quantum logic gates with trapped-ion qubits. Nature, 555:75, feb 2018.
URL https://doi.org/10.1038/nature25737http://10.0.4.14/nature25737.

M Schuld and F Petruccione. Supervised Learning with Quantum Computers. Springer, 2018.

Eldar Shafir and Amos Tversky. Thinking through uncertainty: Nonconsequential rea-
soning and choice. Cognitive Psychology, 24(4):449–474, 1992. ISSN 0010-0285. doi:
10.1016/0010-0285(92)90015-T.

Peter W Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete Loga-
rithms on a Quantum Computer. arXiv e-prints, pages quant–ph/9508027, 1995.

Th Sriarunothai, S Wölk, G S Giri, N Friis, V Dunjko, H J Briegel, and Ch Wunderlich.
Speeding-up the decision making of a learning agent using an ion trap quantum pro-
cessor. Quantum Science and Technology, 4(1):15014, 2018. doi: 10.1088/2058-9565/aaef5e.
URL https://doi.org/10.1088{%}2F2058-9565{%}2Faaef5e.

https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://www.deutschlandfunk.de/quanteninternet-das-web-q-0-nimmt-gestalt-an.740.de.html?dram:article{_}id=425283
https://www.deutschlandfunk.de/quanteninternet-das-web-q-0-nimmt-gestalt-an.740.de.html?dram:article{_}id=425283
https://www.deutschlandfunk.de/quanteninternet-das-web-q-0-nimmt-gestalt-an.740.de.html?dram:article{_}id=425283
http://dl.acm.org/citation.cfm?id=1756006.1953047
https://doi.org/10.1038/nature25737 http://10.0.4.14/nature25737
https://doi.org/10.1088{%}2F2058-9565{%}2Faaef5e

Bibliography 77

M Steffen, D P DiVincenzo, J M Chow, T N Theis, and M B Ketchen. Quantum computing:
An IBM perspective. IBM Journal of Research and Development, 55(5):13:1–13:11, 2011. doi:
10.1147/JRD.2011.2165678.

Philip Strömberg and Vera Blomkvist Karlsson. 4-qubit Grover’s algorithm implemented
for the ibmqx5 architecture, 2018.

Mehmet Suzen. Pratical Kullback-Leiber Divergence: Discrete Case, 2017. URL http://

memosisland.blogspot.com/2015/08/practical-kullback-leibler-kl.html.

Simon Tong and Daphne Koller. Active Learning for Parameter Estimation in Bayesian
Networks. Proc 13th Conf Neural Information Processing, 2001.

Robert Tucci. Quantum Circuit For Discovering from Data the Structure of Classical
Bayesian Networks. 2014.

Robert R Tucci. Quantum Bayesian Nets. International Journal of Modern Physics B, 9(3):
295–337, jan 1995. doi: 10.1142/S0217979295000148.

Lieven M K Vandersypen, Hansjoachim Bluhm, Jennifer S Clarke, Andrew Dzurak, R Ishi-
hara, Andrea Morello, David J Reilly, Lars R Schreiber, and Menno Veldhorst. Interfacing
spin qubits in quantum dots and donors—hot, dense, and coherent. npj Quantum Infor-
mation, 3:1–10, 2017.

Juha J Vartiainen, Mikko Möttönen, and Martti M Salomaa. Efficient Decomposition of
Quantum Gates. Phys. Rev. Lett., 92(17):177902, 2004. doi: 10.1103/PhysRevLett.92.177902.
URL https://link.aps.org/doi/10.1103/PhysRevLett.92.177902.

B Walsh. Markov Chain Monte Carlo and Gibbs Sampling. Lecture Notes for EEB 581, version
26, April, 2004.

Philippe Weber, Gabriela Medina-Oliva, Christophe Simon, and Benoı̂t Iung. Overview on
Bayesian networks applications for dependability, risk analysis and maintenance areas.
Engineering Applications of Artificial Intelligence, 25:671–682, 2012. doi: 10.1016/j.engappai.
2010.06.002.

Shenggang Ying and Mingsheng Ying. Reachability analysis of quantum Markov decision
processes. ArXiv, abs/1406.6146, 2014.

Djabeur Mohamed Seifeddine Zekrifa, Peter Hoyer, Michele Mosca, and Alain Tapp. Quan-
tum Amplitude Amplification and Estimation. AMS Contemporary Mathematics Series, 305,
2000. doi: 10.1090/conm/305/05215.

http://memosisland.blogspot.com/2015/08/practical-kullback-leibler-kl.html
http://memosisland.blogspot.com/2015/08/practical-kullback-leibler-kl.html
https://link.aps.org/doi/10.1103/PhysRevLett.92.177902

A
Q I S K I T I M P L E M E N TAT I O N

To illustrate the Qiskit implementation of the algorithm proposed in this dissertation a
Bayesian network will be used in the context of a decision problem. The Network will be
as simple as possible, containing only 3 binary variables. The first is the evidence variable
(L), another one the action variable (A) and still another which depends on the first two is
the result variable (R). Every variable/node has a conditional probability table that maps
the dependencies between them. The agent will use the network to decide which are the
best actions to take knowing the evidence that he obtains.

The agent only needs to perform the following calculations to find out which is the best
action to take:

EU(a|e) = ∑
S

P(Result = s|a, e) ∗U(s)

action = argmaxaEU(a|e)

To confirm that this process is doing what is expected, the results for this problem are
determined :

-First, we assume action a0 when variable A is false and a1 when true;
-The evidence variable L takes value False;

78

79

The utility function is given by:

U(R)

{
7 R = True
3 R = False

Thus the expected utilities of the actions are:

EU(a0) = P(R = True|L = False, A = False) ∗U(R = True)

+P(R = False|L = False, A = False) ∗U(R = False)

EU(a0) =
3
5
∗ 7 +

2
5
∗ 3 = 5, 4

In percentage:
EU(a0) ≈ 58%

EU(a1) = P(R = True|L = False, A = True) ∗U(R = True)

+P(R = False|L = False, A = True) ∗U(R = False)

EU(a1) =
1
5
∗ 7 +

4
5
∗ 3 = 3, 8

In percentage of the total utility of the actions:

EU(a1) ≈ 42%

These percentages are the relationships from where one should sample the actions with the
used technique.

In [1]: import matplotlib.pyplot as plt

%matplotlib inline

import numpy as np

from math import pi

from qiskit import QuantumCircuit,

ClassicalRegister, QuantumRegister, execute

from qiskit.tools.visualization import circuit_drawer

from qiskit.quantum_info import state_fidelity

from qiskit.tools.visualization import plot_histogram

from qiskit.tools.monitor import job_monitor, backend_monitor,

backend_overview

80

In [2]: from qiskit import IBMQ

IBMQ.enable_account(’1657029970d40f6aca619ea0b546e547c280ce69242dd’,

url=’https://q-console-api.mybluemix.net/api’,

hub=’ibm-q-academic’,

group=’univ-minho’,

project=’quantalab’)

a.0.1 Preparation of the Quantum Registers

In [3]: q_v = QuantumRegister(4, name=’qv’)

q_ext = QuantumRegister(14, name=’qext’)

c_v = ClassicalRegister(4)

c_ext = ClassicalRegister(14)

circuit = QuantumCircuit(q_v,q_ext,c_v, c_ext)

a.0.2 Preparation of the state of the Bayesian Network

In [4]: #Variable L

circuit.u3(1.23,0,0,q_v[0])

#Variable A

circuit.h(q_v[1])

#Variable R

circuit.ccx(q_v[0],q_v[1],q_ext[0])

circuit.cu3(1.71,0,0,q_ext[0],q_v[2])

circuit.ccx(q_v[0],q_v[1],q_ext[0])

circuit.barrier(q_v,q_ext)

circuit.x(q_ext[1])

circuit.cx(q_v[0],q_ext[1])

circuit.ccx(q_ext[1],q_v[1],q_ext[2])

circuit.cu3(0.927,0,0,q_ext[2],q_v[2])

circuit.ccx(q_ext[1],q_v[1],q_ext[2])

circuit.cx(q_v[0],q_ext[1])

circuit.x(q_ext[1])

81

circuit.barrier(q_v,q_ext)

circuit.x(q_ext[3])

circuit.cx(q_v[1],q_ext[3])

circuit.ccx(q_v[0],q_ext[3],q_ext[4])

circuit.cu3(0.722,0,0,q_ext[4],q_v[2])

circuit.ccx(q_v[0],q_ext[3],q_ext[4])

circuit.cx(q_v[1],q_ext[3])

circuit.x(q_ext[3])

circuit.barrier(q_v,q_ext)

circuit.x(q_ext[5])

circuit.x(q_ext[6])

circuit.cx(q_v[0],q_ext[5])

circuit.cx(q_v[1],q_ext[6])

circuit.ccx(q_ext[5],q_ext[6],q_ext[7])

circuit.cu3(1.77,0,0,q_ext[7],q_v[2])

circuit.ccx(q_ext[5],q_ext[6],q_ext[7])

circuit.cx(q_v[1],q_ext[6])

circuit.cx(q_v[0],q_ext[5])

circuit.x(q_ext[6])

circuit.x(q_ext[5])

circuit.barrier(q_v,q_ext)

a.0.3 Preparation of the Utility function

In [5]: circuit.u3(2,0,0,q_v[3])

circuit.barrier(q_v,q_ext)

a.0.4 Application of the Utility function

Grover’s algorithm will be performed. The probability related to the correct state after k
iterations is obtained using the expression:

sin2
((

k +
1
2

)
θ

)

82

Knowing that the value of θ = 1, 17rad , after 1 iteration we obtain the envisaged state with
96, 6% of certainty. A better result would require k to be a rational number, although an
iteration can be applied an integer number of times.

In [6]: ######################################

Oracle for 0000,0011,0100,1110

######################################

#0000

circuit.x(q_v[0])

circuit.x(q_v[1])

circuit.x(q_v[2])

circuit.x(q_v[3])

circuit.cu1(pi/4, q_v[0], q_v[3])

circuit.cx(q_v[0], q_v[1])

circuit.cu1(-pi/4, q_v[1], q_v[3])

circuit.cx(q_v[0], q_v[1])

circuit.cu1(pi/4, q_v[1], q_v[3])

circuit.cx(q_v[1], q_v[2])

circuit.cu1(-pi/4, q_v[2], q_v[3])

circuit.cx(q_v[0], q_v[2])

circuit.cu1(pi/4, q_v[2], q_v[3])

circuit.cx(q_v[1], q_v[2])

circuit.cu1(-pi/4, q_v[2], q_v[3])

circuit.cx(q_v[0], q_v[2])

circuit.cu1(pi/4, q_v[2], q_v[3])

circuit.x(q_v[0])

circuit.x(q_v[1])

circuit.x(q_v[2])

circuit.x(q_v[3])

##1100

circuit.x(q_v[0])

circuit.x(q_v[1])

83

circuit.cu1(pi/4, q_v[0], q_v[3])

circuit.cx(q_v[0], q_v[1])

circuit.cu1(-pi/4, q_v[1], q_v[3])

circuit.cx(q_v[0], q_v[1])

circuit.cu1(pi/4, q_v[1], q_v[3])

circuit.cx(q_v[1], q_v[2])

circuit.cu1(-pi/4, q_v[2], q_v[3])

circuit.cx(q_v[0], q_v[2])

circuit.cu1(pi/4, q_v[2], q_v[3])

circuit.cx(q_v[1], q_v[2])

circuit.cu1(-pi/4, q_v[2], q_v[3])

circuit.cx(q_v[0], q_v[2])

circuit.cu1(pi/4, q_v[2], q_v[3])

circuit.x(q_v[0])

circuit.x(q_v[1])

#0100

circuit.x(q_v[0])

circuit.x(q_v[2])

circuit.x(q_v[3])

circuit.cu1(pi/4, q_v[0], q_v[3])

circuit.cx(q_v[0], q_v[1])

circuit.cu1(-pi/4, q_v[1], q_v[3])

circuit.cx(q_v[0], q_v[1])

circuit.cu1(pi/4, q_v[1], q_v[3])

circuit.cx(q_v[1], q_v[2])

circuit.cu1(-pi/4, q_v[2], q_v[3])

circuit.cx(q_v[0], q_v[2])

circuit.cu1(pi/4, q_v[2], q_v[3])

circuit.cx(q_v[1], q_v[2])

circuit.cu1(-pi/4, q_v[2], q_v[3])

circuit.cx(q_v[0], q_v[2])

circuit.cu1(pi/4, q_v[2], q_v[3])

circuit.x(q_v[0])

84

circuit.x(q_v[2])

circuit.x(q_v[3])

#0111

circuit.x(q_v[0])

circuit.cu1(pi/4, q_v[0], q_v[3])

circuit.cx(q_v[0], q_v[1])

circuit.cu1(-pi/4, q_v[1], q_v[3])

circuit.cx(q_v[0], q_v[1])

circuit.cu1(pi/4, q_v[1], q_v[3])

circuit.cx(q_v[1], q_v[2])

circuit.cu1(-pi/4, q_v[2], q_v[3])

circuit.cx(q_v[0], q_v[2])

circuit.cu1(pi/4, q_v[2], q_v[3])

circuit.cx(q_v[1], q_v[2])

circuit.cu1(-pi/4, q_v[2], q_v[3])

circuit.cx(q_v[0], q_v[2])

circuit.cu1(pi/4, q_v[2], q_v[3])

circuit.x(q_v[0])

In [7]: #######################

Amplification

#######################

circuit.h(q_v[0])

circuit.h(q_v[1])

circuit.h(q_v[2])

circuit.h(q_v[3])

circuit.x(q_v[0])

circuit.x(q_v[1])

circuit.x(q_v[2])

circuit.x(q_v[3])

######## cccZ #########

circuit.cu1(pi/4, q_v[0], q_v[3])

circuit.cx(q_v[0], q_v[1])

circuit.cu1(-pi/4, q_v[1], q_v[3])

85

circuit.cx(q_v[0], q_v[1])

circuit.cu1(pi/4, q_v[1], q_v[3])

circuit.cx(q_v[1], q_v[2])

circuit.cu1(-pi/4, q_v[2], q_v[3])

circuit.cx(q_v[0], q_v[2])

circuit.cu1(pi/4, q_v[2], q_v[3])

circuit.cx(q_v[1], q_v[2])

circuit.cu1(-pi/4, q_v[2], q_v[3])

circuit.cx(q_v[0], q_v[2])

circuit.cu1(pi/4, q_v[2], q_v[3])

####### end cccZ #######

circuit.x(q_v[0])

circuit.x(q_v[1])

circuit.x(q_v[2])

circuit.x(q_v[3])

circuit.h(q_v[0])

circuit.h(q_v[1])

circuit.h(q_v[2])

circuit.h(q_v[3])

In [8]: circuit.barrier(q_v,q_ext)

circuit.measure(q_v[1],c_v[1])

In [9]: circuit.draw(output=’mpl’,scale=0.5)

Out[9]:

Figure 58.: State preparation circuit (part 1).

86

Figure 59.: State preparation circuit (part 2).

Figure 60.: Grover search circuit (part 1)

Figure 61.: Grover search circuit (part 2)

87

Figure 62.: Grover search circuit (part 3)

Figure 63.: Grover search circuit (part 4)

88

Figure 64.: Grover search circuit (part 5)

In [10]: backend = IBMQ.get_backend(’ibmq_qasm_simulator’)

backend = IBMQ.get_backend(’ibmq_qasm_simulator’)

backend.name()

job = execute(circuit, backend,shots=5000)

job_monitor(job, interval=5)

HTML(value="<p style='font-size:16px;'>Job Status: job is being initialized </p>")

In [11]: counts=job.result().get_counts(circuit)

job.result().get_counts(circuit)

89

Out[11]: {'00000000000000 0010': 2320, '00000000000000 0000': 2680}

From the measurements, it is possible to conclude that the action a0 has the biggest co-
efficient. So the action chosen by the agent will be the first. The values are not exactly
those theoretically expected but the difference can be justified by the fact that the Grover’s
algorithm is probabilistic and gives the result only up to a certain level. The initial state of
Bayesian Network after applying the utility function can be found in ”Quantum Bayesian
Decisions (Initial State)”, and the hole state after applying the Grover algorithm in ”Quan-
tum Bayesian Decisions Verification”. The second file measures states that are not measured
by the algorithm, but their outcomes are used to validate the results.

In [12]: plot_histogram(counts)

Out[12]:

Figure 65.: Results obtained after 5000 runs.

https://github.com/MichaelOliveira1994/Quantum-Bayesian-Decisions
https://github.com/MichaelOliveira1994/Quantum-Bayesian-Decisions
https://github.com/MichaelOliveira1994/Quantum-Bayesian-Decisions
https://github.com/MichaelOliveira1994/Quantum-Bayesian-Decisions

This MSc project was funded by the SmartEGOV project (NORTE-01-0145-FEDER-000037) supported by Norte
Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement,
through the European Regional Development Fund (EEDF). Part of the results were framed within the KLEE
project (POCI-01-0145-FEDER-030947 - PTDC/CCI-COM/30947/2017), funded by ERDF through the Opera-
tional Programme for Competitiveness and Internationalisation, COMPETE2020 Programme and by National
Funds through the Portuguese funding agency, FCT.

	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Contributions
	1.4 Outline

	2 Background
	2.1 Classical Bayesian Networks
	2.1.1 Definition
	2.1.2 Conditional independence
	2.1.3 Inference

	2.2 Dynamic Bayesian Networks

	3 Quantum Bayesian Networks
	3.1 Bayesian networks as a tool for quantum modeling
	3.2 Quantum analogs for Bayesian networks
	3.3 Other models and applications
	3.4 Summary

	4 Quantum Bayesian Decision-Making
	4.1 Decision Making
	4.2 Quantum assisted Decision Making
	4.3 A new quantum algorithm for decision-making
	4.4 Proof-of-concept implementation
	4.5 Summary

	5 Complexity analysis
	5.1 Number of iterations
	5.2 Number of samples
	5.3 Total number of operations
	5.4 Summary

	6 Picturing a Quantum Bayesian algorithm
	6.1 String diagrams
	6.2 Other uses of String diagrams
	6.3 Algorithmic analysis
	6.4 Summary

	7 Conclusion
	7.1 Conclusions
	7.2 Prospects for future work

	A Qiskit implementation
	A.0.1 Preparation of the Quantum Registers
	A.0.2 Preparation of the state of the Bayesian Network
	A.0.3 Preparation of the Utility function
	A.0.4 Application of the Utility function

