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Resumo Nesta tese pretendemos estender de forma sistemática dualidades de Stone-
Halmos para categorias que incluem todos os espaços de Hausdorff com-
pactos. Para atingir este objectivo combinamos teoria de dualidades e teoria
de categorias enriquecidas em quantais. A nossa ideia principal é que ao
passar do espaço discreto com dois elementos para um cogerador da cat-
egoria de espaços de Hausdorff compactos, todas as restantes estruturas
envolvidas devem ser substituídas por versões enriquecidas correspondentes.
Desta forma, consideramos o intervalo unitário [0, 1] e desenvolvemos teoria
de dualidades para espaços ordenados compactos e categorias enriquecidas
em [0, 1] finitamente cocompletas (apropriadamente definidas). Na segunda
parte da tese estudamos limites em categorias de coalgebras cujo functor
subjacente é um functor de Vietoris polinomial — intuitivamente, uma ver-
são topológica de um functor polinomial de Kripke.
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Abstract In this thesis we aim for a systematic way of extending Stone-Halmos duality
theorems to categories including all compact Hausdorff spaces. To achieve
this goal, we combine duality theory and quantale-enriched category theory.
Our main idea is that, when passing from the two-element discrete space
to a cogenerator of the category of compact Hausdorff spaces, all other in-
volved structures should be substituted by corresponding enriched versions.
Accordingly, we work with the unit interval [0, 1] and present duality the-
ory for ordered compact spaces and (suitably defined) finitely cocomplete
categories enriched in [0, 1]. In the second part, we study limits in cate-
gories of coalgebras whose underlying functor is a Vietoris polynomial one
— intuitively, the topological analogue of a Kripke polynomial functor.
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Chapter 1

Introduction

Matisse, the French artist famous for using bright and expressive colours, once said: “I don’t
paint things. I only paint the differences between things.”. It is quite likely that this quote
feels familiar to a mathematician, but also a bit odd! After all, by painting (all) differences
we end up emphasising what is equal. For a category theorist, “emphasising equality” might
be perceived as the process of “painting equivalences” of categories. Of course, just like for
Matisse, it is the (apparent) perception of difference that makes painting exciting; in a similar
way that discovering an equation like eiω = cos(ω) + i sin(ω) is far more interesting than
realising that 3 = 3. Numerous examples of interesting equivalences of seemingly different
categories relate a category X and the dual of a category A. Such an equivalence is called
a dual equivalence or simply a duality, and is usually denoted by X ' Aop. Like every
other equivalence, a duality allows us to transport properties from one side to the other. The
presence of the dual category is often useful because our knowledge about a category is typically
asymmetric. Indeed, many “everyday categories” admit a representable and, therefore, limit
preserving functor to Set. In these categories limits are typically “easy”, however, colimits are
often “hard”. Then, an equivalence X ' Aop together with the knowledge of limits in A help us
understand colimits in X. The dual situation, where colimits are “easy” and limits are “hard”,
occurs frequently in the context of coalgebras.

The prime example of coalgebras motivating this thesis are coalgebras for the Vietoris
functor V on the categoy BooSp of Boolean spaces1 and continuous maps as investigated in
[Kupke et al., 2004]. In this case, it is easy to study limits by “changing the perspective”. It is
well-know that the category CoAlg(V ) of coalgebras for this Vietoris functor is equivalent to
the dual of the category BAO with objects Boolean algebras B with an operator h : B → B

satisfying the equations

h(⊥) = ⊥ and h(x ∨ y) = h(x) ∨ h(y),

1Also called Stone spaces in the literature.
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2 1. Introduction

and with morphisms the Boolean homomorphisms which also preserve the additional unary
operation. It is a trivial observation that BAO is a category of algebras over Set defined by
a (finite) set of operations and a collection of equations, and every such category is known
to be complete and cocomplete. Remarkably, the equivalence CoAlg(V ) ' BAOop allows to
conclude the non-trivial fact that CoAlg(V ) is complete. This argument also shows that,
starting with a category X, the category A in a dual equivalence X ' Aop does not need to be
a familiar category. It is certainly beneficial that A = BAO is a well-known category, however,
every algebraic category describable by a set of operations would be sufficient to conclude
completeness of X = CoAlg(V ).

This example lies exactly at the intersection of the main topics of this thesis. The Vietoris
functor on BooSp is part of a monad V, and, as advocated by Halmos in [Halmos, 1956], the
duality above as well as the classical Stone duality for Boolean algebras are consequences of a
general duality involving the Kleisli category of V.

Theorem (Halmos’ dual equivalence). The Kleisli category BooSpV of the Vietoris monad
on BooSp is dually equivalent to the category FinSupBA of Boolean algebras and finite suprema
preserving maps.

Halmos gives a direct proof for this result. He does not, however, talk about Kleisli
categories or even about monads; instead, he refers to Boolean relations which happen to
correspond precisely to morphisms in BooSpV as shown in Kupke et al. [2004]. This observa-
tion allows to tackle Halmos duality indirectly with the help of monad theory, and marks the
beginning of our journey into duality theory.

The main goal of this thesis is to illustrate how to combine monad theory and quantale-
enriched category theory to unify arguments and dualities involving Kleisli categories. More
concretely, we are looking to extend Halmos’ dual equivalence to categories including all
compact Hausdorff spaces in a way that the objects of the corresponding dual category appear
as generalisations of Boolean algebras. In the case of Halmos’ duality, our approach highlights
the role of the two-element discrete space as a cogenerator in the category BooSp. To pass
to the category CompHaus of compact Hausdorff spaces and continuous maps for example, we
would need to replace the two-element discrete space with a cogenerator of CompHaus such as
the unit interval. Together with the Vietoris functor on CompHaus , this idea by itself could
lead us to a Halmos version of Gelfand’s duality theorem (see [Gelfand, 1941]).

Theorem (Gelfand’s dual equivalence). The category CompHaus is dually equivalent to the
category C∗-Alg of C∗-algebras and homomorphisms.

But to pass from functions to continuous relations, what part of the structure of a C∗-
algebra the morphisms need to ignore? The answer is not obvious, and even if it were, at best
we would end up with a duality result where the objects of the dual category of CompHaus do
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not seem generalisations of Boolean algebras. To improve upon this, we resort to quantale-
enriched category theory. Our thesis is that the passage from the two-element space to the
compact Hausdorff space [0, 1] should be matched on the algebraic side of Halmos’ duality by
a move from ordered structures (2-categories) to metric structures ([0, 1]-categories).

Roughly speaking, in analogy with the results for the two-element space, we are looking
for an equivalence functor (or at least a full embedding)

CompHaus −→ (metric spaces with some (co)completeness properties)op

and, more generally, with StablyComp denoting the category of stably compact spaces and
spectral maps, a full embedding

StablyComp −→ (metric spaces with some (co)completeness properties)op,

that follow from a general result about a full embedding of the Kleisli category StablyCompV

of the Vietoris monad V on StablyComp:

StablyCompV −→ (“finitely cocomplete” metric spaces)op.

The notion of “finitely cocomplete metric space” should be considered as the metric counter-
part to semi-lattice, and “metric space with some (co)completeness properties” as the metric
counterpart to (distributive) lattice. Getting back to coalgebras, analogously to the case
of Halmos’ dual equivalence, the duality results that we are looking for should also give us
information on the dual of the category of coalgebras of a Vietoris functor on StablyComp.
Nevertheless, “changing the perspective” does not make everything easier all the time.

In the second part of this thesis, we deepen our understanding of limits in categories of
coalgebras over topological spaces using somewhat more direct methods. A systematic study
of limits is a natural research line in the context of coalgebras. Remarkbly, terminal coalgebras
encode a notion of canonical behaviour for all coalgebras, and equalisers provide a notion of
subystem which is essential to characterise systems induced by coequations.

Now, we are interested not only in coalgebras for the Vietoris functor V but more generally
for functors that are “polynomial” in V . Intuitively, these functors — called Vietoris polyno-
mial functors — are topological analogues of Kripke polynomial functors. It turns out that a
great deal of this part is devoted to the study of preservation of codirected limits by variations
of Vietoris functors. In particular, we show that the categories of (suitably defined) Vietoris
coalgebras over categories of stably compact spaces are complete. Moreover, we conclude that
categories of Vietoris coalgebras for all topological spaces have equalisers, (certain) codirected
limits and, under some conditions, a terminal object. This part of the thesis was developed in
collaboration with Renato Neves (HASLab, University of Minho). For an application of these
results in the context of hybrid programs, see [Neves, 2018].
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1.1 Roadmap

After this introduction, in Chapter 2 we briefly review the core concepts and results that we
shall need in Chapters 3 and 4. We begin in Section 2.1 by explaining how to prove equivalences
of categories using well-known (large) adjunctions that link monads and adjunctions over
a fixed category. Section 2.2 surveys the necessary material of quantale-enriched category
theory. Regarding topology, in this thesis we are mainly interested in stably compact spaces.
In 2.3 we collect some properties about them and show that the epimorphisms and regular
monomorphisms in the category of stably compact spaces and spectral maps are the surjective
maps and the subspace embeddings, respectively. Then, in 2.4 we introduce the lower and
the compact Vietoris monads on the category of all topological spaces and continuous maps,
and explain how they are related when restricted to some categories of stably compact spaces.
Finally, in 2.5 we combine some well-known results and standard arguments to design the
strategy employed later in Section 4.2 to prove the existence of limits in categories of Vietoris
coalgebras.

The heart of this thesis is Chapter 3. In 3.1 we discuss how to use the results of 2.1 to
deduce in a uniform way duality theorems involving Kleisli categories. We apply the resulting
ideas in 3.2. Guided by quantale-enriched category theory, we develop duality theory for
the Kleisli category of the Vietoris monad on the category of stably compact spaces and
spectral maps. In 3.2.1 we show that this category is embedded in ℵ1-ary quasivariety of
[0, 1]-categories. Then, in 3.2.2 we adapt the classical Stone–Weierstraß theorem to [0, 1]-
categories to obtain dual equivalences.

We conclude this thesis by studying properties of categories of Vietoris coalgebras in Chap-
ter 4. In 4.1 we prove that the dual of the category of coalgebras for the Vietoris functor on the
category of stably compact spaces is a ℵ1-ary quasivariety. In 4.2 we study limits in categories
of Vietoris coalgebras. In particular, we show that categories of Vietoris coalgebras defined on
several types of spaces are complete. Finally, we observe that categories of Vietoris coalgebras
over topological spaces and continuous maps have equalisers, (certain) codirected limits and,
under some conditions, a terminal object.



Chapter 2

Background

The aim of this chapter is to bring into notice certain concepts and ideas that occur
repeatedly throughout this work. Most of the material presented here is nicely handled in the
literature, so the exposition style will be that of a summary.

2.1 Kleisli adjunctions

It is known since [Huber, 1961] that one can turn adjunctions into monads by composing
the adjoint functors. On the other hand, one can turn monads into adjunctions in several ways,
the two extreme constructions are described in [Kleisli, 1965] and [Eilenberg and Moore, 1965].
An obvious question is whether the involved constructions by themselves give rise to (large)
adjunctions. The answer is positive, as explained in [Pumplün, 1970, 1988] and [Tholen,
1974]. A less known fact is that by identifying the fixed objects of these adjunctions one
obtains general principles to prove the equivalence of categories. In this section we explore
this idea that will be used extensively in Chapter 3. We begin with arguably the most
prosperous concept of category theory. In the words of Mac Lane “adjoint functors arise
everywhere” [MacLane, 1971].

Definition 2.1.1. An adjunction

X ⊥

F
((

G

hh A

consists of

• the left adjoint functor F : X→ A,

• the right adjoint functor G : A→ X,

• the unit natural transformation η : 1X → GF , and

5



6 2.1. Kleisli adjunctions

• the co-unit natural transformation ε : FG→ 1A

such that the diagrams

F
Fη //

1

FGF

εF
��
F

G
ηG //

1

GFG

Gε
��
G

commute. We denote additionally an adjoint situation by F a G and (F a G, η, ε) : X � A

according to the necessary level of detail.
For adjunctions (F a G, η, ε) : X � A and (F ′ a G′, η′, ε′) : X � A′ over a fixed base

category X, a right morphism of adjunctions is a functor J : A→ A′ with G = G′J , and
a left morphism of adjunctions is a functor J : A→ A′ with F ′ = JF .

We write
RAdj(X)

to denote the category of adjunctions and right morphisms of adjunctions over X, and

LAdj(X)

to denote the category of adjunctions and left morphisms of adjunctions over X.

Remark 2.1.2. Note that we do not require F ′ = JF in the definition of a right morphism
of adjunctions; still, there is a canonical natural transformation κ : F ′ → JF defined as the
composite

F ′
F ′η−−→ F ′GF = F ′G′JF

ε′JF−−→ JF.

Similarly, for a left morphism of adjunctions J we have a canonical natural transformation
ι : G→ G′J defined as the composite

G
η′G−−→ G′F ′G = G′JFG

G′Jε−−−→ G′J.

As we will see next, adjunctions and monads are closely related.

Definition 2.1.3. A monad T = (T,m, e) on a category X consists of a functor T : X → X

together with natural transformations e : 1X → T (unit) and m : TT → T (multiplication)
such that the diagrams

T 3 mT //

Tm
��

T 2

m

��
T 2

m
// T

T
eT //

1T   

T 2

m
��

T
Teoo

1T~~
T
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commute. For monads T,T′ on a category X, a monad morphism j : T→ T
′ is a natural

transformation j : T → T ′ such that the diagrams

1
e

��

e′

��
T

j
// T ′

TT
j2 //

m
��

T ′T ′

m′

��
T

j
// T ′

commute, where j2 = jT ′ · Tj = T ′j · jT .

The category of monads on X and monad morphisms is denoted by

Mon(X).

Examples 2.1.4. 1. The identity monad 1 = (1, 1, 1). Trivially, the identity functor
1: X → X together with the identity transformation 1: 1 → 1 forms a monad. It is the
initial monad: for every monad T = (T,m, e) on X, the unit e is the unique monad
morphism 1→ T.

2. The powerset monad P = (P,m, e) on the category Set of sets and functions. The
powerset functor P : Set → Set sends each set to its powerset PX and each function
f : X → Y to the direct image function Pf : PX → PY,A 7→ f [A]. The X-component
of the natural transformation e respectively m is given by “taking singletons” eX : X →
PX, x 7→ {x} and union mX : PPX → PX,A 7→

⋃
A.

3. The filter monad F = (F, e,m) on Set. The filter functor F : Set → Set sends a set
X to the set FX of all filters on X and, for f : X → Y , the map Ff sends a filter f on
X to the filter {B ⊆ Y | f−1[B] ∈ f} on Y . The natural transformations e : 1→ F and
m : FF → F are given by

eX(x) =
�
x = {A ⊆ X | x ∈ A} and mX(F) = {A ⊆ X | A# ∈ F},

for all sets X, F ∈ FFX and x ∈ X, where A# = {f ∈ FX | A ∈ f}.

4. The ultrafilter monad U = (U, e,m) on Set is the submonad of the filter monad that
maps a set X to the subset of FX of all ultrafilters of X.

5. The filter monad F = (Fτ , e,m) on the category Top of topological spaces and con-
tinuous maps. For a topological space X, FτX is the set of all filters on the lattice of
opens of X, equipped with the topology generated by the sets U#, for U ⊆ X open.
The continuous map Fτf : FτX → FτY , for f : X → Y in Top, and the unit and the
multiplication are defined as above. For more information see [Escardó, 1997].

In Section 2.4 we will describe topological counterparts of the powerset monad.
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In the remainder of this section we will construct adjunctions

RAdj(X) ⊥
((

hh Mon(X)op and Mon(X) ⊥
((

hh LAdj(X)

and identify their fixed objects.

Remark 2.1.5. An adjunction (F a G, η, ε) : X � A induces an equivalence between the
(possibly empty) full subcategories

Fix(X) = {X ∈ X | ηX is an isomorphism} and Fix(A) = {A ∈ A | εA is an isomorphism}.

For details, see [Porst and Tholen, 1991].

We explain now how these results can be used to establish equivalences of categories.

Every adjunction (F a G, η, ε) : X� A induces a monad T = (T,m, e) on X defined by

T = GF, e = η and m = GεF .

Furthermore, every right morphism J of adjunctions (F a G, η, ε) : X � A and (F ′ a
G′, η′, ε′) : X� A′ induces a monad morphism

j = G′κ : T′ → T

between the induced monads. These constructions define the object and the morphism part
of the functor MX : RAdj(X) → Mon(X)op. Likewise, every left morphism J of adjunctions
induces a monad morphism

j = ιF : T→ T
′

and we obtain a functor MX : LAdj(X) → Mon(X). As we show next, both functors have
adjoints given by well-known constructions.

Definition 2.1.6. Let T = (T,m, e) be a monad on a category X. A T-algebra or a
Eilenberg-Moore algebra for T is a pair (X,α) consisting of an X-object X and an X-
morphism α : TX → X making the diagrams

X
eX //

1X

TX

α
��
X

TTX
mX //

Tα
��

TX

α
��

TX α
// X

commute. Let (X,α) and (Y, β) be T-algebras. A map f : X → Y is a T-algebra homo-
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morphism if the diagram

TX

α
��

Tf // TY

β
��

X
f
// Y

commutes.

The category of T-algebras and T-algebra homomorphisms is denoted by XT. There is a
canonical forgetful functor GT : XT → X, (X,α) 7→ X with left adjoint FT : X → XT, X 7→
(TX,mX). Moreover, every monad morphism j : T→ T

′ induces a functor

Xj : XT
′ → XT, (X,α) 7→ (X,α · jX)

with GTXj = GT
′ , that is, Xj : (FT

′ a GT′
)→ (FT a GT) is a right morphism of adjunctions.

These constructions define indeed a functor

X(_) : Mon(X)op → RAdj(X).

It is easy to see that FT a GT induces T, that is, T = MX · X(_)(T). On the other
hand, for every adjunction (F a G, η, ε) : X� A with induced monad T we have a canonical
comparison functor K : A→ XT defined by K(A) = (GA,GεA) and Kf = Gf ; hence,

K : ((F a G, η, ε) : X� A)→ ((FT a GT, η, ε) : XT � X)

is a right morphism of adjunctions. For a right morphism J of adjunctions (F a G, η, ε) : X�

A and (F ′ a G′, η′, ε′) : X� A′, the diagram

A //

J
��

XT

Xj
��

A′ // XT
′

commutes, that is, the family of all comparison functors defines a natural transformation
1 → X(_)MX. In fact, this transformation together with the family (T = MXX(_)(T))T are
the units of the adjunction

RAdj(X) ⊥

MX

((

X(_)

hh Mon(X)op.

Clearly, Fix(Mon(X)op) = Mon(X)op; but deviating slightly from Remark 2.1.5, we let the
fixed subcategory Fix(RAdj(X)) consist of those objects whose component of the unit is an
equivalence of categories, rather than an isomorphism. An object of Fix(RAdj(X)) is called a
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monadic adjunction, these adjunctions are characterised by the following

Theorem 2.1.7 ([Beck, 1967]). An adjunction (F a G, η, ε) : X � A is monadic if and only
if G reflects isomorphisms and A has and G preserves all G-contractible coequaliser pairs.

Example 2.1.8. The canonical forgetful functor | − | : CompHaus → Set from the category
of compact Hausdorff spaces and continuous maps has a left adjoint given by Čech–Stone
compactification, and it is shown in [Manes, 1969] that this adjunction is monadic. The
induced monad on Set is the ultrafilter monad (see item 4 of Examples 2.1.4).

The “equivalence” between monads and monadic adjunctions provides a general principle
to prove equivalence of two categories: firstly, show that both categories are part of monadic
adjunctions over the same category X; and secondly, show that these adjunctions induce
isomorphic monads. This idea was used in [Negrepontis, 1971] to obtain the classical duality
theorems of Gelfand and Pontrjagin.

We will see now how MX : LAdj(X)→ Mon(X) is part of an adjunction.

Definition 2.1.9. Let T = (T,m, e) be a monad over X. The Kleisli category XT has the
same objects as X, and a morphism f : X −⇀ Y in XT is an X-morphism f : X → TY . Given
morphisms f : X −⇀ Y and g : Y −⇀ Z in XT, the composite g · f : X −⇀ Z is defined as

X
f−→ TY

Tg−−→ TTZ
mZ−−→ TZ.

Then eX : X → TX is the identity on X in XT.

We have a canonical adjunction FT a GT : XT � X, where

GT : XT → X, f : X −⇀ Y 7→ TX
Tf−−→ TTY

mY−−→ TY

and

FT : X→ XT, f : X → Y 7→ X
f−→ Y

eY−→ TY.

Example 2.1.10. For the powerset monad P on Set, the category SetP is equivalent to the
category Rel of sets and relations by interpreting a map f : X → PY as a relation X −→7 Y

from X to Y . Under this equivalence, FP : Set → SetP corresponds to the inclusion functor
Set→ Rel and GP : SetP → Set corresponds to the functor Rel→ Set which sends a set X to
its powerset PX and a relation r : X −→7 Y to the map PX → PY, A 7→ r[A].

Every monad morphism j : T → T
′ induces a functor Xj : XT → XT′ which acts as the

identity on objects and sends f : X −⇀ Y to X f−→ TY
jY−→ T ′Y . One clearly has FT′ = XjFT,
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hence Xj is a left morphism of adjunctions and we obtain a functor

KlX : Mon(X)→ LAdj(X).

As before, the induced monad of FT a GT is T again, that is, T = MX ·KlX(T). For every
adjunction (F a G, η, ε) : X � A with induced monad T we have a canonical comparison
functor C : XT → A sending an object X in XT to FX and a morphism f : X −⇀ Y to
FX

Ff−−→ FTY = FGFY
εFY−−→ FY . Since F = CFT, C is a left morphism of adjunctions.

For a left morphism J of adjunctions (F a G, η, ε) : X � A and (F ′ a G′, η′, ε′) : X � A′, the
diagram

(2.1.i) XT //

Xj
��

A

J
��

XT′ // A′

commutes. Therefore C is the ((F a G, η, ε) : X� A)-component of a natural transformation
KlXMX → 1; in fact, this transformation is the co-unit of the adjunction

Mon(X) ⊥

KlX
((

MX

hh LAdj(X).

where the unit 1→MXKlX is given by (T = MXKlX(T))T. By recalling that the comparison
functor C : XT → A is always fully faithful, we obtain an indirect method of proving that a
functor is fully faithful.

Theorem 2.1.11. Let J be a left morphism of adjunctions. If the monad morphism induced
by J is an isomorphism then J is fully faithful.

We call an adjunction a Kleisli adjunction whenever C is an equivalence. Unlike the
situation for monadic adjunctions, Kleisli adjunctions can be easily characterised.

Theorem 2.1.12. An adjunction F a G is a Kleisli adjunction if and only if F is essentially
surjective on objects.

As for monadic adjunctions, (2.1.i) gives a simple scheme to obtain an equivalence between
categories A and A′:

Theorem 2.1.13. A functor J : A→ A′ between Kleisli adjunctions (F a G, η, ε) : X� A and
(F ′ a G′, η′, ε′) : X � A′ is an equivalence provided that F ′ = JF and the morphism MX(J)

between the induced monads is a natural isomorphism.

We will illustrate this principle in Section 3.1 and apply it in Section 3.2 to develop duality
theory for categories involving compact Hausdorff spaces.
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2.2 Quantale-enriched categories

Lawvere showed in Lawvere [1973] that ordered sets and metric spaces share the same
underlying structure: they are quantale-enriched categories. This striking observation implies
that we can translate and unify arguments between order theory and metric theory if we
can “parameterise” them in terms of appropriate quantales. This idea is at the core of the
duality results presented in Chapter 3. In this section we survey the basic theory behind
quantale-enriched categories. All material presented here is well-known, most of it is covered
in the classical sources [Eilenberg and Kelly, 1966], [Lawvere, 1973] and [Kelly, 1982]. An
extensive presentation of this theory in the quantaloid-enriched case is in [Stubbe, 2005, 2006,
2007]. In [Kelly and Lack, 2000], [Kelly and Schmitt, 2005] and [Clementino and Hofmann,
2009] are studied certain colimits in enriched categories. Finally, quantale-enriched categories
are particular examples of (T,V)-algebras as introduced in [Clementino and Tholen, 2003;
Clementino and Hofmann, 2003].

Definition 2.2.1. A commutative and unital quantale V is a complete lattice which carries
the structure of a commutative monoid ⊗ : V ×V → V with unit element k ∈ V such that, for
every u ∈ V, u⊗− : V → V preserves suprema.

Therefore, every monotone map u⊗− : V → V has a right adjoint hom(u,−) : V → V that
is characterised by

u⊗ v ≤ w ⇐⇒ v ≤ hom(u,w),

for all v, w ∈ V.

Remark 2.2.2. A quantale is a commutative monoid in the monoidal category Sup of complete
lattices and suprema preserving maps.

Definition 2.2.3. Let V be a quantale. A V-category is a pair (X, a) consisting of a set X
and a map a : X ×X → V that for all x, y, z ∈ X satisfies the inequalities

k ≤ a(x, x) and a(x, y)⊗ a(y, z) ≤ a(x, z).

Given V-categories (X, a) and (Y, b), a V-functor f : (X, a) → (Y, b) is a map f : X → Y

such that, for all x, y ∈ X,
a(x, y) ≤ b(f(x), f(y)),

For every V-category (X, a), a◦(x, y) = a(y, x) defines another V-category structure on
X, and the V-category (X, a)op := (X, a◦) is called the dual of (X, a). Clearly, V-categories
and V-functors define a category, denoted as V-Cat. The category V-Cat is complete and
cocomplete, and the canonical forgetful functor V-Cat → Set preserves limits and colimits.
The quantale V becomes a V-category when equipped with structure hom: V × V → V. In
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fact, for every set S, we can form the S-power VS of V which has as underlying set all functions
h : S → V and with V-category structure [−,−] given by

[h, l] =
∧
s∈S

hom(h(s), l(s)),

for all h, k : S → V.

Examples 2.2.4. Our principal examples are the following.

1. The two-element Boolean algebra 2 = {0, 1} of truth values with ⊗ given by “and” &.
Then hom(u, v) = (u =⇒ v) is implication. A 2-category is an ordered set, that is, a
set equipped with a reflexive and transitive relation.The category 2-Cat is equivalent to
the category Ord of ordered sets and monotone maps.

2. The complete lattice [0,∞] ordered by the “greater or equal” relation > with multiplica-
tion ⊗ = +. Note that the infimum of two numbers is their maximum and the supremum
of S ⊆ [0,∞] is inf S, In this case we have

hom(u, v) = v 	 u : = max(v − u, 0).

For this quantale, a [0,∞]-category is a generalised metric space à la Lawvere and a
[0,∞]-functor is a non-expansive map (see Lawvere [1973]). We denote this category by
Met.

3. Of particular interest to us is the complete lattice [0, 1] with the usual “less or equal”
relation ≤, which is isomorphic to [0,∞] via the map [0, 1]→ [0,∞], u 7→ − ln(u) where
− ln(0) = ∞. As the examples below show, metric, ultrametric and bounded metric
spaces appear as categories enriched in a quantale based on this lattice. In more detail,
we consider the following quantale operations on [0, 1] with neutral element 1.

(a) The tensor ⊗ = ∗ is the multiplication and then

hom(u, v) = v � u : =

min( vu , 1) if u 6= 0,

1 otherwise.

Via the isomorphism [0, 1] ' [0,∞], this quantale is isomorphic to the quantale
[0,∞] described above, hence [0, 1]-Cat ' Met.

(b) The tensor ⊗ = ∧ is infimum and then

hom(u, v) =

1 if u ≤ v,

v otherwise.
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In this case, the isomorphism [0, 1] ' [0,∞] establishes an equivalence between
[0, 1]-Cat and the category UMet of ultrametric spaces and non-expansive maps.

(c) The tensor ⊗ = � is the Łukasiewicz tensor given by u� v = max(0, u+ v− 1),
here hom(u, v) = min(1, 1−u+v) = 1−max(0, u−v). Via the lattice isomorphism
[0, 1] → [0, 1], u 7→ 1 − u, this quantale is isomorphic to the quantale [0, 1] with
“greater or equal” relation > and tensor u⊗ v = min(1, u+ v) truncated addition.
This observation identifies [0, 1]-Cat as the category BMet of bounded-by-1 metric
spaces and non-expansive maps.

Every V-category (X, a) carries a natural order defined by

x ≤ y whenever k ≤ a(x, y),

which is extended pointwise to V-functors making V-Cat a 2-category. Therefore we can talk
about adjoint V-functors; as usual, f : (X, a) → (Y, b) is left adjoint to g : (Y, b) → (X, a),
written as f a g, whenever 1X ≤ gf and fg ≤ 1Y . Equivalently, f a g if and only if

b(f(x), y) = a(x, g(y)),

for all x ∈ X and y ∈ Y . Note that maps f and g between V-categories satisfying the equation
above are automatically V-functors.

The natural order of V-categories defines a faithful functor V-Cat → Ord. A V-category
is called separated whenever its underlying ordered set is anti-symmetric, and we denote by
V-Catsep the full subcategory of V-Cat defined by all separated V-categories. Tautologically,
an ordered set is separated if and only if it is anti-symmetric. Hence,

Ordsep

denotes the category of all separated ordered sets and monotone maps. In the sequel we will
frequently consider separated V-categories to guarantee that adjoints are unique. We note
that the underlying order of the V-category V is just the order of the quantale V, and the
order of VS is calculated pointwise. In particular, VS is separated.

Definition 2.2.5. A V-category (X, a) is called V-copowered if for every x ∈ X, the V-
functor a(x,−) : (X, a)→ (V,hom) has a left adjoint x⊗− : (V,hom)→ (X, a) in V-Cat.

This operation is better known under the name “V-tensored”; however, we will use the
designation “V-copowered” since it is a special case of a colimit. Elementwise, this means that
for all x ∈ X and u ∈ V, there is an element x⊗ u ∈ X, called the u-copower of x, such that
for every y ∈ Y

a(x⊗ u, y) = hom(u, a(x, y)).
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Example 2.2.6. The V-category V is V-copowered, with copowers given by the multiplication
of the quantale V. More generally, for every set S, the V-category VS is V-copowered: for
every h ∈ VS and u ∈ V, the u-copower of h is the map h⊗ u defined by x 7→ h(x)⊗ u.

Remark 2.2.7. If (X, a) is a V-copowered V-category with bottom element ⊥, then, for every
x ∈ X we have

a(x⊗⊥, y) = hom(⊥, a(x, y)) = k

for every y ∈ X. In particular, this means that x⊗⊥ is a bottom element of the V-category
(X, a).

Every V-copowered and separated V-category comes equipped with an action ⊗ : X×V →
X of the quantale V satisfying

1. x⊗ k = x,

2. (x⊗ u)⊗ v = x⊗ (u⊗ v),

3. x⊗
∨
i∈I

ui =
∨
i∈I

(x⊗ ui);

for all x ∈ X and u, v, ui ∈ V. Conversely, given a separated ordered set X with an action
⊗ : X ×V → X satisfying the three conditions above, one defines a map a : X ×X → V using
the adjunction x ⊗ − a a(x,−), for all x ∈ X. It is easy to see that (X, a) is a V-copowered
V-category whose order is the order of X and with copowers given by the action of X.

The construction above yields an isomorphism between the category V-CoPowsep of V-
copowered and separated V-categories and copower-preserving V-functors and the category
OrdVsep of separated ordered sets equipped with an action from V satisfying the three conditions
above and action-preserving monotone maps

V-CoPowsep ' OrdVsep.

Remark 2.2.8. The identification of certain metric spaces as ordered sets equipped with an
action of [0, 1] allows to spot the appearance of metric spaces where it does not seem obvious
at first sight. For instance, [Banaschewski, 1983] studies the functor that maps a compact
Hausdorff space X to its lattice DX of continuous functions into [0, 1], and maps a continu-
ous function f to the lattice homomorphism “composition with f ”. In [Banaschewski, 1983,
Proposition 2] it is shown that a lattice homomorphism is in the image of D if and only if it
preserves constant functions. And eventually Banaschewski obtains a duality result for com-
pact Hausdorff spaces by considering the algebraic theory of distributive lattices augmented
by constants, one for each element of [0, 1]. Motivated by the considerations in this section,
instead of adding constants we will consider DX as a lattice equipped with the action of [0, 1]

defined by
(f ⊗ u)(x) = f(x) ∧ u,
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Then [Banaschewski, 1983, Proposition 2] tells us that the lattice homomorphisms that are in
the image of D are precisely the action-preserving ones. This way, we interpret Banaschewski’s
result in terms of [0, 1]-copowered ultrametric spaces.

The notion of copower in a V-category (X, a) is a special case of the notion of weighted
colimit in (X, a), which we recall next. In the remainder of this section, we denote by G the
V-category (1, k). Note that G is a generator in V-Cat.

For a quantale V and sets X, Y , a V-relation from X to Y is a map X × Y → V and it
will be represented by X −→7 Y . As for ordinary relations, V-relations can be composed via
“matrix multiplication”. That is, for r : X −→7 Y and s : Y −→7 Z, the composite s · r : X −→7 Z
is calculated pointwise by

(s · r)(x, z) =
∨
y∈Y

r(x, y)⊗ s(y, z),

for every x ∈ X and z ∈ Z. Note that the structure of a V-category is by definition a reflexive
and transitive V-relation, since the axioms dictate that, for a V-category (X, a), 1X ≤ a

and a · a ≤ a. A V-relation r : X −→7 Y between V-categories (X, a) and (Y, b) is called a
V-distributor (called bimodule in [Lawvere, 1973]) if r · a ≤ r and b · r ≤ r, and we write
r : (X, a) −→◦ (Y, b).

A weighted colimit diagram in X consists of a V-functor h : A→ X and a V-distributor
ψ : A −→◦ G called the weight of the diagram. A colimit of such diagram is an element x0 ∈ X
that for every x ∈ X satisfies the equality

a(x0, x) =
∧
z∈A

hom(ψ(z), a(h(z), x)).

Colimits of weighted colimit diagrams are unique up to equivalence. A V-functor f : X → Y

between V-categories preserves a weighted colimit x0 whenever f(x0) is a colimit of the
weighted colimit diagram in Y determined by fh : A → Y and ψ : A −→◦ G (for more details
see [Kelly, 1982]).

Examples 2.2.9. 1. For A = G, a weighted colimit diagram in X consists of an element
x : G → X and an element u : G −→◦ G in V; a colimit of this diagram is the u-copower
x⊗ u of x.

2. For a family h : I → X, i 7→ xi in X take the distributor ψ : I −→◦ G defined by ψ(z) = k,
for all z ∈ I. Then x̄ is a colimit of this diagram precisely when

a(x̄, x) =
∧
i∈I

a(xi, x),

for all x ∈ X; that is, x̄ is an order-theoretic supremum of (xi)i∈I preserved by every
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a(−, x) : X → Vop. Such supremum is called conical supremum.

Recall that a V-copowered V-category (X, a) can be interpreted as an ordered set
equipped with an action from V. In terms of this structure, (X, a) has all conical
suprema of a given shape I if and only if every family (xi)i∈I has a supremum in the
ordered set X and, moreover, for every u ∈ V(∨

i∈I
xi

)
⊗ u '

∨
i∈I

(xi ⊗ u).

This follows from the facts that
∨
i∈I xi ⊗− is left adjoint to a(

∨
i∈I xi,−) and

V ∆V−−→ VI
∏
i∈I(xi⊗−)

−−−−−−−−→ XI
∨
−→ X

is left adjoint to

X
∆X−−−→ XI

∏
i∈I a(xi,−)

−−−−−−−−→ VI
∧
−→ V.

A V-category is called cocomplete if every weighted colimit diagram admits a colimit.
One can show that a V-category is cocomplete if and only if has the two types of colimits
described above; in this case the colimit x0 of an arbitrary diagram (h : A → X,ψ : A −→◦ G)

is calculated as
x0 =

∨
z∈A

h(z)⊗ ψ(z),

since
a(
∨
z∈A

h(z)⊗ ψ(z), x) =
∧
z∈A

a(h(z)⊗ ψ(z), x) =
∧
z∈A

hom(ψ(z), a(h(z), x)).

In particular, we have that the V-category V is cocomplete, as well as all of its powers VS .
A V-functor f : X → Y between cocomplete V-categories is called cocontinuous whenever

f preserves all colimits of weighted colimit diagrams; which means that f is cocontinuous if
and only if f preserves copowers and order-theoretic suprema.

Definition 2.2.10. A V-category is finitely cocomplete if it has all colimits of weighted
colimit diagrams whose underlying set of the domain of the weight is finite. We call a V-
functor between finitely cocomplete V-categories finitely cocontinuous if those colimits are
preserved.

Therefore:

• A V-categoryX is finitely cocomplete if and only ifX has all copowers, a bottom element,
all order-theoretic binary suprema and, moreover, all V-functors a(−, x) : X → Vop

preserve these suprema.
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• A map between finitely cocomplete V-categories is a finitely cocontinuous V-functor if
and only if it preserves copowers and binary suprema. Note that, by Remark 2.2.7, the
preservation of copowers guarantees the preservation of the bottom element.

In the sequel we write V-FinSup to denote the category of separated finitely cocomplete
V-categories and finitely cocontinuous V-functors. We also recall that the inclusion functor
V-FinSup → V-Cat is monadic; in particular, this means that V-FinSup is complete and that
V-FinSup→ V-Cat preserves limits.

Remark 2.2.11. The interpretation of finitely cocomplete V-categories as certain ordered sets
equipped with an action of V highlights that the category V-FinSup can be seen as a qua-
sivariety (for more information on algebraic categories see [Adámek and Rosický, 1994] and
[Adámek et al., 2010]). The first step is to observe that a separated order set with finite
suprema is characterised algebraically as a set X equipped with a nullary operation ⊥ and a
binary operation ∨ (for example, see [Johnstone, 1986]), subject to the following equations:

x ∨ x = x, x ∨ y = y ∨ x, x ∨ (y ∨ z) = (x ∨ y) ∨ z, x ∨ ⊥ = x.

Then, to describe the action of V, we need to add for every u ∈ V a unary operation − ⊗ u,
the equations

x⊗ k = x, (x⊗ u)⊗ v = x⊗ (u⊗ v), ⊥⊗ u = ⊥, (x ∨ y)⊗ u = (x⊗ u) ∨ (y ⊗ u)

and, for all x ∈ X and S ⊆ V with v =
∨
S to somehow impose the conditions

x⊗ v =
∨
u∈S

(x⊗ u);

however, the latter conditions are not formulated using just the operations above. Still, writing
x ≤ y as an abbreviation for the equation y = x ∨ y, we can express the condition “x ⊗ v is
the supremum of {x⊗ u | u ∈ S}” by the covert equational conditions

x⊗ u ≤ x⊗ v, (u ∈ S)

and the implication ∧
u∈S

(x⊗ u ≤ y) =⇒ (x⊗ v ≤ y).

The last step is to observe that the next equations encode the preservation of finite suprema
by the functors a(−, x) : X → Vop

⊥⊗ u = ⊥, (x ∨ y)⊗ u = (x⊗ u) ∨ (y ⊗ u).

The morphisms of V-FinSup correspond precisely to the maps preserving these operations.
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Therefore, with λ denoting the smallest regular cardinal larger than the size of V, the category
V-FinSup is equivalent to a λ-ary quasivariety. From that we conclude that V-FinSup is also
cocomplete. Finally, whenever the underlying lattice of the quantale V is the lattice [0, 1], it
is enough to consider countable subsets S ⊆ V; therefore, V-FinSup is equivalent to a ℵ1-ary
quasivariety.

Another important class of colimit weights is the class of all right adjoint V-distributors
with codomain G.

Definition 2.2.12. A V-category X is called Cauchy-complete if every diagram (h : A →
X,ψ : A −→◦ G) with ψ right adjoint has a colimit in X.

The designation “Cauchy-complete” has its roots in Lawvere’s amazing observation that, for
metric spaces interpreted as [0,∞]-categories, this notion coincides with the classical notion
of Cauchy-completeness (see [Lawvere, 1973]). We hasten to remark that every V-functor
preserves colimits weighted by right adjoint V-distributors.

In this context, [Hofmann and Tholen, 2010] introduces a closure operator (−) on V-Cat
which facilitates working with Cauchy-complete V-categories. As usual, a subset M ⊆ X of a
V-category (X, a) is closed whenever M = M and is dense in X whenever M = X. Below
we recall the relevant facts about this closure operator.

Theorem 2.2.13. The following assertions hold.

1. For every V-category (X, a), x ∈ X andM ⊆ X, x ∈M ⇐⇒ k ≤
∨
z∈M

a(x, z)⊗ a(z, x).

2. If V is completely distributive (see [Raney, 1952] and [Wood, 2004]) with totally below
relation � and k ≤

∨
u�k u ⊗ u, then x ∈ M if and only if, for every u � k, there is

some z ∈ M with u ≤ a(x, z) and u ≤ a(z, x). By [Flagg, 1992, Theorem 1.12], the
quantale V satisfies k ≤

∨
u�k u⊗ u provided that the subset A = {u ∈ V | u� k} of V

is directed.

3. The V-category V is Cauchy-complete.

4. The full subcategory of V-Cat defined by all Cauchy-complete V-categories is closed under
limits in V-Cat.

5. Let X be a Cauchy-complete and separated V-category and M ⊆ X. Then the V-
subcategory M of X is Cauchy-complete if and only if the subset M ⊆ X is closed
in X.

The notion of weighted colimit is dual to the one of weighted limit, of the latter we only
need the special case of u-powers, with u ∈ V.

Definition 2.2.14. A V-category (X, a) is called V-powered if for every x ∈ X, the V-functor
a(−, x) : (X, a)op → (V,hom) has a left adjoint in V-Cat.
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Elementwise, this amounts to saying that, for every x ∈ X and every u ∈ V, there is an
element x t u ∈ X, called the u-power of x, that for every y ∈ X satisfies

hom(u, a(y, x)) = a(y, x t u).

The V-category V is V-powered where w t u = hom(u,w); more generally, VS is V-powered
with (h t u)(x) = hom(u, h(x)), for all h ∈ VS , u ∈ V and x ∈ S.

Remark 2.2.15. For every V-functor f : X → Y , x ∈ X and u ∈ V, f(u t x) ≤ u t f(x).

2.2.1 Continuous quantale structures on the unit interval

In this thesis we are particularly interested in quantales based on the complete lattice [0, 1].
Here, we succinctly review the classification of all continuous quantale structures ⊗ : [0, 1] ×
[0, 1]→ [0, 1] on [0, 1] with neutral element 1 and the usual euclidean topology; such quantale
structures are also known as continuous t-norms. . The results obtained in [Faucett, 1955]
and [Mostert and Shields, 1957] show that every such tensor is a combination of the three
structures mentioned in Examples 2.2.4 (3). A more detailed presentation of this material is
in [Alsina et al., 2006].

We start by recalling some standard notation. An element x ∈ [0, 1] is called idempotent
whenever x ⊗ x = x and nilpotent whenever x 6= 0 and, for some n ∈ N, xn = 0. The
number of idempotent and nilpotent elements characterises the three tensors ∧, � and ⊗ on
[0, 1] among all continuous t-norms.

Proposition 2.2.16. Assume that 0 and 1 are the only idempotent elements of [0, 1] with
respect to a given continuous t-norm. If

1. [0, 1] has no nilpotent elements, then ⊗ = ∗ is multiplication.

2. [0, 1] has a nilpotent element, then ⊗ = � is the Łukasiewicz tensor. In this case, every
element x with 0 < x < 1 is nilpotent.

To deal with the general case, for a continuous t-norm ⊗ consider the subset E = {e ∈
[0, 1] | e is idempotent}. Note that E is closed in [0, 1] since it is an equaliser of the diagram

[0, 1]
identity//
−⊗−

// [0, 1]

in CompHaus.

Lemma 2.2.17. Let ⊗ be a continuous t-norm on [0, 1], x, y ∈ [0, 1] and e ∈ E such that
x ≤ e ≤ y. Then x⊗ y = x.

Corollary 2.2.18. Let ⊗ be a continuous t-norm on [0, 1] such that every element is idem-
potent. Then ⊗ = ∧.
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Before the main result of this section, note that for idempotents e < f in [0, 1], the closed
interval [e, f ] is a quantale with tensor defined by the restriction of the tensor on [0, 1] and
neutral element f .

Theorem 2.2.19 ([Mostert and Shields, 1957, Theorem B]). Let ⊗ be a continuous t-norm
on [0, 1]. For every non-idempotent x ∈ [0, 1], there exist idempotent elements e, f ∈ [0, 1],
with e < x < f , such that the quantale [e, f ] is isomorphic to the quantale [0, 1] with either
multiplication or Łukasiewicz tensor.

Remark 2.2.20. Every isomorphism [e, f ]→ [0, 1] of quantales is necessarily a homeomorphism.

The following consequence of Theorem 2.2.19 will be particularly useful in Chapter 3.

Corollary 2.2.21. Let (u, v) ∈ [0, 1] × [0, 1] with u ⊗ v = 0. Then either u = 0 or for some
n ∈ N, vn = 0. Therefore, if there are no nilpotent elements, then u = 0 or v = 0.

Proof. Assume u > 0. The assertion is clear if there is some idempotent e with 0 < e ≤ u. If
there is no e ∈ E with 0 < e ≤ u, then there is some f ∈ E with u < f and [0, f ] is isomorphic
to [0, 1] with either multiplication or Łukasiewicz tensor. Since u ⊗ v = 0, v < f . If [0, f ]

is isomorphic to [0, 1] with multiplication, then v = 0; otherwise there is some n ∈ N with
vn = 0.

In conclusion, the results of this section show that every continuous t-norm on [0, 1] is
obtained as a combination of infimum, multiplication and Łukasiewicz tensor. Conversely, the
next theorem (see [Alsina et al., 2006, Theorem 2.4.2]) states that piecewise combinations of
these structures produce continuous t-norm.

Theorem 2.2.22. Let ⊗i (i ∈ I) be a family of continuous quantale structures on [0, 1] with
neutral element 1 and let (ai)i∈I and (bi)i∈I be families of elements of [0, 1] such that the open
intervals ]ai, bi[ are pairwise disjoint. These data defines a continuous quantale structures on
[0, 1]

x⊗ y =

ai + (bi − ai) ·
((

x−ai
bi−ai

)
⊗i
(
y−ai
bi−ai

))
if x, y ∈ [ai, bi],

x ∧ y otherwise

with neutral element 1 where

hom(x, y) =


1 if x ≤ y,

ai + (bi − ai) · homi

(
x−ai
bi−ai ,

y−ai
bi−ai

)
if x, y ∈ [ai, bi],

y otherwise.

2.3 Order and topology

Every topological space comes equipped with a natural order defined by x ≤ y if x
belongs to every neighbourhood of y; in other words, if the principal ultrafilter �x converges to
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y. This construction determines the coreflector in the “fundamental adjunction linking order
and topology” [Tholen, 2009]

Ord ⊥
((

hh Top,

where ordered sets are interpreted as topological spaces using the Alexandroff topology. This
way, we can study topology with the help of order theoretic notions. But this only makes sense
for spaces below the T1 separation axiom, as T1-spaces are already characterised by having a
discrete natural order. In this work we are mainly interested in stably compact spaces, a class
of T0-spaces “in which compact sets behave in the same way as in the Hausdorff setting” Jung
[2004]. This section collects some properties about them with special focus on their alter
ego: Nachbin’s separated order compact spaces [Nachbin, 1965]. A detailed overview of the
concepts and constructions presented here can be found in[Jung, 2004] and [Lawson, 2011].
We begin by introducing some nomenclature.

To distinguish between order closed and topological closed sets we say that a subset A of
an ordered set (X,≤) is upper if

A = ↑A = {x ∈ X | ∃a ∈ A : a ≤ x}

and lower whenever
A = ↓A = {x ∈ X | ∃a ∈ A : x ≤ a}.

A subset A of a topological space X is saturated if it is a lower set with respect to the
natural order of X; in purely topological terms this means that intersecting all open subsets
that contain A results in the subset A.

Definition 2.3.1. A stably compact space is a T0-space that is:

• locally compact - every open neighbourhood of a point x contains a compact neigh-
bourhood of x;

• coherent - the finite intersection of compact saturated sets is compact;

• well-filtered - if the intersection of a down-directed family of compact saturated sets is
contained in an open set U , then some member of the family is already contained in U .

Remark 2.3.2. Being coherent, every stably compact space is compact. Moreover, in the
definition of locally compact we can consider without loss of generality that the compact
neighbourhood is saturated.

Stably compact spaces are the objects of the category

StablyComp,
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whose morphisms are the continuous maps with the property that the preimage of a compact
saturated subset is compact. A map of this kind between stably compact spaces is called a
spectral map; the designation proper map is also used in the literature (for instance in [Gierz
et al., 2003]) but clashes with the classical notion of proper map in topology (see [Bourbaki,
1966]).

Examples 2.3.3. The notion of stably compact space is rich in familiar examples.

• The category CompHaus of compact Hausdorff spaces and continuous maps is a full
subcategory of the category StablyComp.

• A spectral space is a T0, well-filtered space where the compact open subsets are closed
under finite intersections and form a base for the topology. We denote by Spec the
category of spectral spaces and spectral maps.

• A Boolean space, also known as Stone space in the literature, is a Hausdorff spectral
space. Boolean spaces and continuous functions form a category that we identify by
BooSp.

Theorem 2.3.4. The category StablyComp is complete and wellpowered. The inclusion func-
tor StablyComp→ Top preserves limits, finite coproducts and preserves and reflects monocones.

Proof. It is straightforward to check that the finite coproduct of stably compact spaces is
stably compact (see [Goubault-Larrecq, 2013, Proposition 9.2.1]). The other claims follow
from monadicity of StablyComp → Top which is shown in Simmons [1982], where stably
compact spaces are studied under the designation of well-compacted spaces.

There is a close connection between stably compact spaces and Nachbin’s separated ordered
compact spaces [Nachbin, 1950] which was first exposed in [Gierz et al., 1980].

Definition 2.3.5. A separated ordered compact space consists of a compact space X
equipped with a separated order ≤ such that the set

{(x, y) ∈ X ×X | x ≤ y}

is a closed subset of the product space X ×X.

Remark 2.3.6. The function defined by (x, y) 7→ (y, x) is an automorphism of X ×X in Top,
thus the dual order ≥ is closed in X ×X. This implies that every separated ordered compact
space is Hausdorff since the diagonal

∆ = {(x, y) | x ≤ y} ∩ {(x, y) | y ≤ x}

is a closed subset of X ×X.
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We denote by
SepOrdComp

the category of separated ordered compact spaces and monotone continuous maps. The cat-
egory SepOrdComp is isomorphic to the category StablyComp, for details see [Gierz et al.,
2003]. Under this isomorphism, a separated ordered compact space X corresponds to the
stably compact space with the same underlying set and with open sets the open lower subsets
of X. In the reverse direction, a stably compact space X defines a separated ordered compact
space whose order relation is the natural order of X, and whose compact Hausdorff topol-
ogy is the so called (generalised) patch topology that is generated by the open subsets and
the complements of the compact saturated subsets of X. We will jump freely between both
descriptions.

Given a separated ordered compact space X, keeping its topology but taking now its dual
order produces another separated ordered compact space, called the dual space of X and
denoted by Xop. The separated ordered compact space [0, 1] with the Euclidean topology
and the usual “less or equal” relation plays a special role in the theory of ordered compact
spaces as we will see next. Note that [0, 1] is isomorphic to its dual separated ordered compact
space [0, 1]op. Below we collect some facts about these structures which are in, or follow from,
[Nachbin, 1965, Proposition 4 and Theorems 1, 4 and 6].

Proposition 2.3.7. If A is a compact subset of a separated ordered compact space, then the
sets ↑A and ↓A are closed.

Corollary 2.3.8. For every subset A of a separated ordered compact space, the set ↑A is the
smallest closed upper subset that contains A.

Proposition 2.3.9 (order Urysohn lemma). Let A and B be subsets of a separated ordered
compact space X such that A is a closed upper set, B is a closed lower set and A ∩ B = ∅.
Then there is a continuous and monotone function ψ : X → [0, 1] such that ψ(x) = 1 for every
x ∈ A, and ψ(x) = 0 for every x ∈ B.

Corollary 2.3.10. Every separated ordered compact space satisfies a separation condition on
each pair of its points: if x 6≤ y then there is an open upper set that contains x and a open
lower set that contains y that are disjoint.

Proposition 2.3.11 (order Tietze extension theorem). Let A be a closed subset of a separated
ordered compact space X. Every continuous and monotone [0, 1]-valued function on A can be
extended to a continuous and monotone [0, 1]-valued function on X.

Using the results above, we are able to characterise epimorphisms and regular monomor-
phisms in SepOrdComp.

Proposition 2.3.12. The regular monomorphisms in SepOrdComp are precisely the embed-
dings.
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Proof. Clearly, every regular monomorphism is an embedding. We show that the converse
implication follows from Proposition 2.3.11. Let f : X → Y be an embedding in SepOrdComp

and assume that z /∈ A where A = f [X]. Consider the sets

A0 = A ∩ ↓z, A1 = A ∩ ↑z.

The sets A0 and A1 are closed and every element of A0 is strictly below every element of A1.
Therefore the map

g : A0 ∪A1 −→ [0, 1], x 7−→

0 if x ∈ A0,

1 if x ∈ A1

is monotone and continuous. By Proposition 2.3.11, g can be extended to a continuous and
monotone map g : A → [0, 1], and, with g0(z) = 0 respectively g1(z) = 1, g extends to
continuous and monotone maps g0, g1 : A ∪ {z} → [0, 1]. Applying Proposition 2.3.11 again
yields morphisms g0, g1 : Y → [0, 1], therefore we can construct morphisms g0, g1 : Y → [0, 1]

with g0(z) 6= g1(z) that coincide on the elements of A.

Corollary 2.3.13. The epimorphisms in SepOrdComp are precisely the surjections.

Proof. Clearly, every surjective morphism of SepOrdComp is an epimorphism. Let f : X → Y

be an epimorphism in SepOrdComp. Consider its factorisation f = m · e in SepOrdComp with
e surjective and m an embedding. Since m is a regular monomorphism and an epimorphism,
we conclude that m is an isomorphism and therefore f is surjective.

Theorem 2.3.14. The category SepOrdComp is cocomplete and has an (Epi, RegMono)-
factorisation structure.

Proof. The first claim follows from [Tholen, 2009, Corollary 2], the second from Proposi-
tion 2.3.12 and Corollary 2.3.13.

To conclude this section, we discuss some properties of cones of stably compact spaces.
The following definition is quite general. The paradigmatic example comes from the functor
Top→ Set.

Definition 2.3.15. Let F : A → B be a functor. A cone C = (C → Xi)i∈I in A is said
to be initial with respect to F if for every cone D = (D → Xi)i∈I and every morphism
h : FD → FC such that FD = FC · h, there exists a unique A-morphism h̄ : D → C with
D = C · h̄ and h = Fh̄.

We simply say that the cone is initial whenever no ambiguities arise.

Examples 2.3.16. 1. A cone (fi : X → Xi) in Top is initial with respect to the forget-
ful functor Top → Set precisely when X is equipped with the so called initial (weak)
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topology; that is, the topology of X is generated by the subbasis

f−1
i (U) (i ∈ I, U ⊆ Xi open).

2. A monocone of compact Hausdorff spaces and continuous maps is initial in Top (for
example, see [Goubault-Larrecq, 2013, Theorem 4.4.27]). The converse also holds, as a
initial cone in Top whose domain is a T0 space is necessarily mono.

3. A monocone in StablyComp is initial with respect to the forgetful functor StablyComp→
Set if and only if is initial with respect to the forgetful functor Top→ Set.

4. A cone (fi : (X,≤) → (Xi,≤i)) in Ord is initial with respect to the forgetful functor
Ord→ Set if and only if for every pair of elements x, y ∈ X, the order of X satisfies the
condition: fi(x) ≤ fi(y) for every i ∈ I implies x ≤ y.

5. A monocone in SepOrdComp is initial with respect to the forgetful functor into CompHaus

if and only if it is initial with respect to the functor Ord→ Set.

6. A monocone in SepOrdComp is initial with respect to the forgetful functor into Set if and
only if is initial with respect to the forgetful functor into CompHaus, by Example 2, if
and only if is initial with respect to the functor Ord→ Set. The previous statements are
equivalent to the corresponding cone of stably compact spaces being initial with respect
to Top→ Set.

Remark 2.3.17. In Example 2.3.16(1) the subbasis is actually a basis if the cone is codirected.

Theorem 2.3.18. Let F : A → B be a limit preserving faithful functor and D : I → A a
diagram. A cone C for D is a limit of D if and only if the cone FC is a limit of FD and C is
initial with respect to F .

Proof. For instance, see [Adámek et al., 1990, Proposition 13.15].

Definition 2.3.19. Let A be a category equipped with a faithful functor U : A→ Set. An A-
object C is an initial cogenerator in A if for every A-object A, the cone (f : A→ G)f∈A(A,C)

is point-separating and initial with respect to U .

Examples 2.3.20. The categories BooSp, Spec and CompHaus are the largest full subcat-
egories of StablyComp where the two-element discrete space, the Sierpiński space and the
space [0, 1] equipped with the Euclidean topology are initial-cogenerators in the respective
categories.

Regarding the category of all stably compact spaces, we obtain

Proposition 2.3.21. The separated ordered compact spaces [0, 1] and [0, 1]op are initial co-
generators in the category SepOrdComp.
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Proof. Immediate consequence of Example 6 and Proposition 2.3.9.

The description of the categories BooSp, CompHaus and Spec of the previous example
makes it easy to identify their image under the isomorphism StablyComp ' SepOrdComp. Not
surprisingly, compact Hausdorff (Stone) spaces are discrete ordered compact Hausdorff (Stone)
spaces. The image of the category Spec is far more interesting: it is the full subcategory of
SepOrdComp where the ordered Boolean space {0 ≤ 1} is an initial cogenerator. In other
words, it is the full subcategory of SepOrdComp determined by the spaces where we can
formulate the separation condition of Corollary 2.3.10 in terms of clopens instead of opens;
we denote this category by Priest as these spaces are typically known as Priestley spaces.

Theorem 2.3.22 ([Priestley, 1970, 1972]). The categories Spec and Priest are isomorphic.

Another advantage of the description of Examples 2.3.20 is that it also makes it easy to
reason about limits.

Lemma 2.3.23. The categories BooSp, CompHaus and Spec are closed under initial cones
in StablyComp; that is, if the codomain of an initial cone in StablyComp lives in one of the
subcategories considered then also the domain lives in that subcategory. Therefore, the inclusion
functors from the categories BooSp, CompHaus and Spec into StablyComp create limits.

Proof. Follows from Examples 2.3.20 since initial cones are closed under composition.

Furthermore, every limit preserving functor from a complete category that admits a co-
generator is “always” a right adjoint.

Proposition 2.3.24. The categories BooSp, CompHaus and Spec are reflective subcategories
of the category StablyComp. The category BooSp is also a reflective subcategory of the category
Spec.

Proof. The claim follows from the Special Adjoint Functor Theorem. By Proposition 2.3.23
every subcategory considered is complete and the inclusion functors preserve limits. Moreover,
since in each of these cases, the forgetful functor into Set is representable by the one-element
space, the injective morphisms are precisely the monomorphisms and, therefore, coincide with
monomorphisms in StablyComp. This implies that each subcategory is wellpowered. Finally,
in Examples 2.3.20 we saw that the categories have a cogenerator.

A quick calculation reveals that the inclusion functors CompHaus → StablyComp and
BooSp → Spec are also left adjoints to the corresponding functors that “take the patch of a
space”. In the language of ordered compact spaces, this reads as

CompHaus ⊥

discrete
((

forgetful

hh SepOrdComp,



28 2.4. Vietoris monads

and

BooSp ⊥

discrete
((

forgetful

hh Priest.

Therefore, by recalling that the category Spec is closed under finite coproducts in the
category StablyComp (for instance, see [Goubault-Larrecq, 2013, page 433]), we collect the
following useful properties:

Proposition 2.3.25. The categories BooSp, CompHaus and Spec are complete, cocomplete,
wellpowered and inherit the (Surjective, Embedding)-factorisation structure from the category
StablyComp. The inclusion functors into StablyComp preserve finite coproducts.

Remark 2.3.26. The regular monomorphisms in Spec are precisely the subspace embeddings.
A proof without referring to Priestley duality (see [Priestley, 1970, 1972]) can be found in
[Hofmann, 1999]. Therefore, with the same argument of Corollary 2.3.13, we get that the
factorisation structures of the proposition above are actually (Epi,RegMono)-factorisation
structures.

To conclude, we summarise the relationship between the categories introduced in this
section in the diagram below.

Top

CompHaus �
� //

77

StablyComp

OO

' SepOrdComp

hh

BooSp �
� //?�

OO

Spec
?�

OO

' Priest
?�

OO

2.4 Vietoris monads

The Vietoris construction has its roots in [Vietoris, 1922] and various generalisations of
this “power construction” are extensively studied in [Schalk, 1993]. At a categorical level, a
particular variant has been characterised in concrete categories equipped with a closure oper-
ator in [Clementino and Tholen, 1997]. As a source of topological analogues of the powerset
monad, the Vietoris construction plays an important role in the results presented in Chap-
ters 3 and 4. In this section we discuss two variants of Vietoris monads and their restrictions
to the subcategories of stably compact spaces introduced in the previous section.

For a topological space X, the lower Vietoris space V X is the hyperspace of closed
subsets of X equipped with the lower Vietoris topology that is generated by declaring that
for every open set U ⊆ X the set

U3 = {A ∈ V X | A ∩ U 6= ∅}
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is open. This space is seldom studied by itself. Arguably, because topologists are usually
interested in establishing properties connecting a space and its hyperspace. Indeed, from this
perspective it is not a very interesting space. For instance, independently of the properties of
the space X, the space V X is always compact, and it is T1 precisely when X is the empty
space. The lower Vietoris topology is typically introduced together with the upper Vietoris
topology that is generated by requiring that for every open set U ⊆ X, the set

U2 = {A ∈ V X | A ⊆ U}

is open; instead of studying the lower or the upper Vietoris topologies individually, usually,
topologists are far more interested in the Vietoris topology that is the supremum of both
them, and was first introduced by Vietoris[Vietoris, 1922] in the context of compact Haus-
dorff spaces. Nevertheless, as the example below shows, the lower Vietoris space is the only
construction mentioned above that becomes an endofunctor on Top by mapping a continu-
ous function X → Y to the function V f : V X → V Y , defined by A 7→ fA; we call it the
lower Vietoris functor. In fact, this functor is even part of a monad V = (V, e,m) on Top

(see [Schalk, 1993, Section 6.3]), the so called lower Vietoris monad. The X-component
of the unit e : X → V X is defined by x 7→ ↑{x} and the X-component of the multiplication
m : VVX → V X is given by A 7→

⋃
A.

Remark 2.4.1. The Vietoris topology on the hyperspace of closed subsets does not define an
obvious functor on Top. Consider the set {1, 2, 3} equipped with the topology generated by
the sets {1, 2} and {2, 3}. For the subspace embedding i : {1, 2} → {1, 2, 3}, (V i)−1[{1, 2}2] =

{∅, {1}}. However, every open set of V{1, 2} that contains {1} contains {1, 2}.

The remark above shows that it is naive to move directly the definition of Vietoris space
from CompHaus to Top. Alternatively, we can use that closed subsets of compact Hausdorff
spaces correspond exactly to compact subsets. The compact Vietoris functor sends a space
X to the hyperspace V X of compact subsets of X with topology generated by declaring that
for every open set U ⊆ X the sets

U3 ={A ∈ V X | A ∩ U 6= ∅}

U2 ={A ∈ V X | A ⊆ U}

are open. As the lower Vietoris functor, the compact Vietoris functor is also part of a monad,
but with unit and multiplication defined as in the powerset monad; the monads are seemingly
unrelated on Top, yet, as we will see in the remainder of the section, they are closely related
when restricted to StablyComp and CompHaus respectively.

Proposition 2.4.2 ([Schalk, 1993]). The lower Vietoris monad restricts to the category
StablyComp and Spec.
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Since the category StablyComp is isomorphic to the category SepOrdComp of separated
ordered compact spaces and monotone maps (see Section 2.3) we obtain a new Vietoris monad
on the category SepOrdComp that we denote by V = (V : SepOrdComp→ SepOrdComp,m, e).

Proposition 2.4.3. Under the isomorphism StablyComp ' SepOrdComp, the lower Vietoris
monad on StablyComp corresponds to the monad

V = (V : SepOrdComp→ SepOrdComp,m, e)

whose functor
V : SepOrdComp→ SepOrdComp

sends a separated ordered compact space X to the space VX of all upper-closed subsets of X,
with order containment ⊇, and compact topology generated by the sets

{A ∈ V X | A ∩ U 6= ∅} (U ⊆ X lower-open),(2.4.i)

{A ∈ V X | A ∩K = ∅} (K ⊆ X lower-closed).

Given a map f : X → Y in SepOrdComp, the functor returns the map V f that sends a upper-
closed subset A ⊆ X to the up-closure ↑f [A] of f [A]. The X-component of the unit sends a
point of x to the set ↑{x} and the X-component of the multiplication maps a subset A ⊆ V V X
to the subset

⋃
A ⊆ V X.

Proof. Let (X,≤, τ) be a separated ordered compact space with corresponding stably compact
space (X,σ). Clearly, the underlying set of V(X,σ) is the set of all upper-closed subsets of
X. We will show that the patch topology of V(X,σ) coincides with the topology defined by
(2.4.i). First note that every set of the form

{A ⊆ X | A upper-closed and A ∩ U 6= ∅} (U ⊆ X lower-open),

is open in V(X,σ) and, therefore, is also open in the patch topology. For K ⊆ X lower-closed,
the complement of the set

{A ⊆ X | A upper-closed and A ∩K = ∅}

is equal to K3. Using Alexander’s Subbase Theorem, it is straightforward to verify that K3

is compact in V(X,σ). Since the natural order of V(X,σ) is subset containment, K3 is also
saturated. Hence, the topology defined by (2.4.i) is coarser than the patch topology of V(X,σ).
Since it is also Hausdorff, by [Jung, 2004, Lemma 2.2], both topologies coincide (see Engelking
[1989]). In particular, the construction of the proposition defines indeed a separated ordered
compact space.

In regard to maps in SepOrdComp, Proposition 2.3.7 tells that for every map f : X → Y
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in SepOrdComp and every upper-closed subset A ⊆ X, the up-closure ↑f [A] of f [A] is closed
in Y , and therefore coincides with the closure of f [A] in the stably compact topology of Y .
The description of the unit and multiplication follow by routine calculation.

Therefore, by transporting the Vietoris monad in SepOrdComp along the adjunction

SepOrdComp >

forgetful
((

discrete

hh CompHaus,

we recover the classical (compact) Vietoris monad on the category of compact Hausdorff
spaces; we can even restrict this monad further to the category of Boolean spaces since the
Vietoris monad in SepOrdComp also restricts to Priest, as we have seen in Proposition 2.4.2,
and the adjunction above restricts to

Priest >

forgetful
((

discrete

hh BooSp.

Remark 2.4.4. In Chapter 3 we will be interested in the Kleisli categories SepOrdCompV and
CompHausV. A morphism X → V Y in CompHaus corresponds to a relation X −→7 Y , and a
morphism X → V Y in SepOrdComp corresponds to a distributor between the underlying sep-
arated ordered sets. In both cases composition in the respective Kleisli categories corresponds
to relational composition.

2.5 Coalgebras

Coalgebras [Rutten, 2000; Adámek, 2005], which are duals of algebras, form a powerful
theory especialy suited to model transition systems such as Kripke frames, stream automata,
or labelled transition systems. In this section we sketch the strategy employed in Section 4.2
to study limits in categories of coalgebras. We start with some categorical notions that the
reader may not frequently meet.

Definition 2.5.1. A diagram D : I → C is said to be codirected whenever I is a codirected
separated ordered set, that is, I is non-empty and for all i, j ∈ I there is some k ∈ I with k → i

and k → j. A cone for a codirected diagram is called a codirected cone, and a limit of such
diagram is said to be a codirected limit.

Example 2.5.2. 1. Inverse sequence diagrams, which have the shape depicted below, are
codirected.

· ←− · ←− · ←− . . .
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Inverse sequence diagrams play a central role in showing that a given functor admits a
terminal coalgebra (see Theorem 2.5.11).

2. A codirected limit of a diagram D : I→ Set is given by the subset{
(xi)i∈I ∈

∏
i∈I

D(i) | ∀j → i ∈ I, D(j → i)(xj) = xi

}

of the product
∏
i∈ID(i) together with the restrictions of the projection maps.

Codirectedness plays particularly well with compactness as illustrated in the characterisa-
tion of codirected limits of compact Hausdorff spaces below. This result is hinted in [Bourbaki,
1942] and proved in Hofmann [1999] (in German) but it seems to be rarely used in the litera-
ture.

Theorem 2.5.3. Let D : I→ CompHaus be a codirected diagram and C = (pi : L→ D(i))i∈I a
cone for D. The following conditions are equivalent:

1. The cone C is a limit of D.

2. The cone C is mono and, for every i ∈ I, the image of pi contains the intersection of the
images of all D(j → i), in symbols

im pi ⊇
⋂
j→i

imD(j → i).

Proof. Assume first that (pi : L → D(i))i∈I satisfies the two conditions and let (fi : X →
D(i))i∈I be a cone for D. Let x ∈ X, and, for every i ∈ I, put Ai = p−1

i (fi(x)). Clearly, Ai is
closed, moreover, Ai is non-empty since

im fi ⊆
⋂
j→i

imD(j → i) = im pi

Since the family (Ai)i∈I is codirected and L is compact, there is some z ∈
⋂
i∈IAi. We put

f(x) = z, this way we define a map f : X → L with pi · f = fi, for all i ∈ I. Since (pi : L →
D(i))i∈I is a monocone, we conclude that (pi : L → D(i))i∈I is a limit of D. Conversely,
if (pi : L → D(i))i∈I is a limit, then it is clearly a monocone. Let now i0 ∈ I and x ∈⋂
j→i0 imD(j → i0). We may assume that i0 is final in I. For each i ∈ I, we put

Ai = {(xi)i∈I ∈
∏
i∈I

D(i) | xi0 = x and, for all i→ j ∈ I, xj = D(i→ j)(xi)}.

Then Ai is non-empty, and it is a closed subset of
∏
i∈ID(i) since it is an equaliser of continuous

maps between Hausdorff spaces. Furthermore, for i → j ∈ I, Ai ⊆ Aj . Hence there is some
z ∈

⋂
i∈IAi; by construction, z ∈ L and pi0(z) = x.
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Remark 2.5.4. For every cone (pi : C → D(i))i∈I the inequality im pi ⊆
⋂
j→i imD(j → i)

holds. Thus, in the theorem above, the reverse inequality distinguishes monocones from limit
cones.

Definition 2.5.5. A category C is said to be connected if it is non-empty and every two
objects A,B ∈ C are connected by a finite zig-zag of morphisms as depicted below.

A← · → · · · ← · → B

A diagram D : I → C with I connected is called a connected diagram and a limit of such
diagram is said to be a connected limit.

Examples 2.5.6. Equalisers and codirected limits are two examples of connected limits.

As we will see in the remainder of the section, the concepts introduced before play an
important role in the theory of coalgebras.

Definition 2.5.7. Let F : C→ C be a functor. A coalgebra of F , or an F -coalgebra, consists
of a C-object X together with a C-morphism of type X → FX.

The collection of coalgebras of a functor form a category in a natural way.

Definition 2.5.8. Let F : C → C be a functor. The category CoAlg(F ) has as objects
the F -coalgebras; a morphism f : (A, a) → (B, b) in CoAlg(F ) is a C-morphism such that
Ff · a = b · f .

We can easily construct colimits in categories of coalgebras from colimits in the base
category, for the exact same reason that is easy to construct limits in categories of algebras
(for instance, see [Barr and Wells, 1985]).

Theorem 2.5.9. Let F : C → C be a functor. The forgetful functor CoAlg(F ) → C creates
colimits.

The study of limits is usually much more complex, except, if the underlying functor pre-
serves those limits.

Theorem 2.5.10. If a functor F : C→ C preserves limits of a certain type then the forgetful
functor CoAlg(F )→ C creates limits of the same type.

In practise, it is often too much to ask for the functor to preserve all the limits that we
are interested in. In particular, in this context it is rare for a functor to preserve terminal
objects , nevertheless, with the next result we can determine terminal coalgebras if the functor
preserves a specific codirected limit.
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Theorem 2.5.11. Let C be a category with a terminal object 1 and F : C → C a functor. If
the category C has a limit L of the diagram

1←− F1←− FF1←− . . .

and F preserves it, then the canonical isomorphism L→ FL is a terminal F -coalgebra.

Proof. For instance, see [Adámek, 2005].

The next notions and results summarise the strategy employed in Section 4.2 to prove
completeness in categories of coalgebras.

Definition 2.5.12. A functor F : C→ C is said to be a covarietor if the canonical forgetful
functor CoAlg(F )→ C is left adjoint.

Theorem 2.5.13. Let C be a cocomplete category with finite limits and limits of countable
chains. Every endofunctor on C that preserves limits of countable chains is a covarietor.

Proof. For example, see [Barr and Wells, 1985, Proposition 7 of Section 9.4]

This adjoint situation allows to take advantage of the theory of (co)monads to simplify
proving completeness.

Theorem 2.5.14 ([Linton, 1969]). Let F be a covarietor over a complete category. If the
category CoAlg(F ) has equalisers then it is complete.

Related to this, Hughes proved the following theorem

Theorem 2.5.15 ([Hughes, 2001, Theorem 2.4.2]). Let C be a regularly wellpowered, cocom-
plete category with equalisers. Moreover, assume that it has an (Epi, RegMono)-factorisation
structure, and that the functor F : C→ C preserves regular monomorphisms. Then CoAlg(F )

has equalisers.

Motivated by the previous result, in the sequel we briefly study limits in categories that
admit a factorisation structure for cones or morphisms. As a general reference for factorisation
structures, see [Adámek et al., 1990].

Definition 2.5.16. Fix a small category I. Consider a category C and a classM of cones of
shape I in C. The category C isM-wellpowered if for every diagram D : I→ C the collection,
up to isomorphism, of cones for D inM is a set.

The next lemma follows from standard arguments; it is in the spirit of [Adámek et al.,
1990, Section 12] and shows that “cocompleteness almost implies completeness”.

Lemma 2.5.17. Let C be a cocomplete category and I a small category. Furthermore, let E
be a class of C-morphisms and M be a class of cones of shape I in C. If C is M-wellpowered
and every cone of shape I has a (E,M)-factorisation, then C has limits of shape I.
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Proof. We will show that the diagonal functor

∆: C→ CI

has a right adjoint, using Freyd’s General Adjoint Functor Theorem (see MacLane [1971]). By
assumption C is cocomplete and it is clear that the functor ∆ preserves colimits, so we just
need to show that the Solution Set Condition holds. In this case it unfolds into the following
condition: for every functor D : I→ C, there is a set S of cones for D such that every cone for
D factors through a cone in S.

Since C isM-wellpowered we have a set S of representants of cones for D inM. This set
has the desired property because, by assumption, every cone for I has an (E,M)-factorisation,
which means that a cone (fi : C → D(i))i∈I factors through a cone (gi : A→ D(i))i∈I in S as
depicted below.

C
fi //

e
��

D(i)

A

gi

==

In practise it might be easier to obtain factorisations for cones from factorisations for
morphisms. The following proposition describes two situations where this is possible and can
be applied to many “everyday categories” like Set, Top or even StablyComp.

Proposition 2.5.18. Fix a category I. Consider a category C and classes E and M of C-
morphisms such that every morphism of C is (E,M)-factorisable, E is contained in the class
of C-epimorphisms and C is M -wellpowered.

If one of the conditions below is satisfied, then there is a classM of cones of shape I such
that every cone of shape I is (E,M)-factorisable and C isM-wellpowered.

1. C has products;

2. I is the category 1⇒ 2.

Proof. In the first case we can choose

M =

{
all cones (fi : X → D(i))i∈I of shape I where 〈fi〉i∈I : X →

∏
i∈I

D(i) is in M

}
.

Then, it is clear that every cone for I is (E,M)-factorisable (see [Adámek et al., 1990, Propo-
sition 15.19]), and C isM-wellpowered.

For the second case, it is straightforward to verify that the class of cones

M = {all cones (fi : X → D(i))i∈I of shape I with f1 in M} ,
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makes every cone of shape I (E,M)-factorisable and that the category C isM-wellpowered.

Remark 2.5.19. In the proposition above, if we consider that C is (E,M)-structured we obtain
that C is (E,M)-structured for cones of shape I.

Corollary 2.5.20. Let C be a cocomplete category and E and M classes of C-morphisms such
that every morphism of C is (E,M)-factorisable, E is contained in the class of C-epimorphisms
and C is M -wellpowered. Then, the category C has equalisers.

Remark 2.5.21. Corollary 2.5.20 above shows that it is redundant to assume the existence of
equalisers in Hughes’ theorem (Theorem 2.5.15).

Now, to apply Lemma 2.5.17 to categories of coalgebras we can use well-known results
that lift factorisation structures from a base category to its categories of coalgebras.

Theorem 2.5.22. Let I be a small category and F an endofunctor over a cocomplete category
C. If C is (E,M)-structured for cones of shape I,M-wellpowered and F sends cones inM to
cones inM, then CoAlg(F ) has limits of shape I.

Proof. The assumptions guarantee that the factorisation system in C lifts to CoAlg(F ) (for
instance, see Adámek [2005]; Chen [2014]). The claim then follows from Lemma 2.5.17.

Combining Proposition 2.5.18, Remark 2.5.19 and Theorem 2.5.22, we obtain

Theorem 2.5.23. Let F be an endofunctor over a cocomplete category C with products and
an (E,M)-factorisation structure such that E is contained in the class of C-epimorphisms and
C is M -wellpowered. If F preserves products and sends morphisms in M to morphisms in M ,
then CoAlg(F ) is complete.

Theorem 2.5.24. Let F be an endofunctor over a cocomplete category C that has an (E,M)-
factorisation structure such that E is contained in the class of C-epimorphisms and C is M -
wellpowered. If F sends morphisms in M to morphisms in M , then CoAlg(F ) has equalisers.

This result slightly generalises Hughes’ theorem and shows that we do not need to assume
the existence of equalisers in the base category, although, they always exist as stated in
Remark 2.5.21.

Corollary 2.5.25. Let F be an endofunctor over a cocomplete category C. If C is regularly
wellpowered, has an (Epi, RegMono)-factorisation structure and F preserves regular monomor-
phisms, then CoAlg(F ) has equalisers.

Finally, the next result summarises the strategy that we will use in Section 4.2 to prove
completeness in categories of coalgebras.

Theorem 2.5.26. Let C be a category that
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• is complete,

• cocomplete,

• has an (E,M)-factorisation structure such that C is M -wellpowered and E is contained
in the class of C-epimorphisms.

If a functor F : C → C sends morphisms in M to morphisms in M and preserves codirected
limits then the category of coalgebras of F is complete.

Proof. The category C satisfies all the conditions necessary to apply Theorem 2.5.13 and
Theorem 2.5.24. Thus, since F preserves codirected limits, it is a covarietor and because
preserves morphisms in M the category CoAlg(F ) has equalisers. Therefore, the claim follows
by Theorem 2.5.14.
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Chapter 3

Duality theory

The main goal of this chapter is to extend Halmos’ dual equivalence to categories including
all compact Hausdorff spaces in a way that the objects of the corresponding dual category
appear as generalisations of Boolean algebras. Part of this work has already been published
in [Hofmann and Nora, 2015] and [Hofmann and Nora, 2018].

Theorem (Halmos’ dual equivalence). The Kleisli category BooSpV of the Vietoris monad
on BooSp (see section 2.4) is dually equivalent to the category FinSupBA of Boolean algebras
and finite suprema preserving maps.

Halmos gives a direct proof for this result in [Halmos, 1956]. He does not, however, talk
about Kleisli categories or even about monads; instead, he refers to Boolean relations which
happen to correspond precisely to morphisms in BooSpV as shown in Kupke et al. [2004].
This observation allows to tackle Halmos duality indirectly with the help of monad theory.
We discuss how in Section 3.1, where we approach the problem of deducing in a uniform
way duality theorems involving categories of relations. In the case of Halmos’ duality, our
approach highlights the role of the two-element discrete space as an initial cogenerator in the
category BooSp. To pass to the category CompHaus for example, we would need to replace the
two-element discrete space with an initial cogenerator of CompHaus such as the unit interval.
Together with the Vietoris functor on CompHaus , this idea by itself could lead us to a Halmos
version of Gelfand’s duality theorem (see [Gelfand, 1941]).

Theorem (Gelfand’s dual equivalence). The category CompHaus is dually equivalent to the
category C∗-Alg of C∗-algebras and homomorphisms.

But to pass from functions to continuous relations, what part of the structure of a C∗-
algebra the morphisms need to ignore? The answer is not obvious, and even if it were, at best
we would end up with a duality result where the objects of the dual category of CompHaus do
not seem generalisations of Boolean algebras. To improve upon this, we resort to quantale-
enriched category theory. Our thesis is that the passage from the two-element space to the

39
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compact Hausdorff space [0, 1] should be matched on the algebraic side of Halmos’ duality
by a move from ordered structures (2-categories) to metric structures ([0, 1]-categories). In
Section 3.2 we explore this idea to develop duality theory for the categories SepOrdCompV,
SepOrdComp and CompHaus according to the possible choice of quantale structure on the
unit interval. The duality results of this section will be used in Section 4.1 to show that the
category of coalgebras of the Vietoris monad on SepOrdComp is an ℵ1-ary quasivariety.

3.1 The point of view of triples

We start with some well-known results about the structure and construction of dual ad-
junctions. There is a vast literature on this subject, notably [Lambek and Rattray, 1978,
1979], [Dimov and Tholen, 1989], [Porst and Tholen, 1991], [Johnstone, 1986] and [Clark and
Davey, 1998].

Consider an adjunction

(3.1.i) X ⊥

F
((

G

hh Aop

between a category X and the dual of a category A. In general, such an adjunction is not an
equivalence. Nevertheless, as mentioned in Section 2.1.5 one can always consider its restriction
to the full subcategories Fix(X) and Fix(A) of X and A, defined by the classes of objects

{X | ηX is an isomorphism} and {A | εA is an isomorphism},

where it yields an equivalence Fix(X) ' Fix(A)op (see [Porst and Tholen, 1991]). The passage
from X to Fix(X) is useful only if we keep all the “interesting objects”. However, this is
not always the case as Fix(X) can be even empty. En passant we mention that these fixed
subcategories are reflective in A, respectively in X, if the monad induced by the adjunction
(3.1.i) on A, respectively X, is idempotent (see [Lambek and Rattray, 1979, Theorem 2.0] for
details).

We can prove the classical Stone duality theorem for Boolean algebras in this way. The
categories CompHaus and BA are linked by the adjunction where the left adjoint sends a
compact Hausdorff space to its Boolean algebra of clopen sets, and maps a continuous function
f to the algebra homomorphism that “takes the inverse image by f ”.

Considering the two-element discrete space and the two-element Boolean algebra this
amounts to saying that the respective liftings of the hom(−, 2) functors are adjoint.



3.1. The point of view of triples 41

(3.1.ii) CompHaus ⊥

hom(−,2)
((

hom(−,2)

hh BAop

Stone’s representation theorem affirms that Fix(A) is actually the category BA and, as we
will see later in this section, Fix(X) is the category BooSp of Boolean spaces and continuous
maps.

Like other “everyday categories”, the categories CompHaus and BA come equipped with
faithful representable functors into Set. This property allows to follow categorical guidance
further when it comes to construct dual adjunctions. For this reason, throughout this chapter
we assume that X and A are equipped with faithful functors

| − | : X −→ Set and | − | : A −→ Set.

Definition 3.1.1. The adjunction (3.1.i) is induced by the dualising object (X̃, Ã), with
objects X̃ in X and Ã in A, when |X̃| = |Ã|, |F | = hom(−, X̃), |G| = hom(−, Ã) and the units
are given by

ηX : X −→ GFX and εA : A −→ FGA;(3.1.iii)

x 7−→ evx a 7−→ eva

with evx and eva denoting the evaluation maps.

If the forgetful functors to Set are representable by objects X0 in X and A0 in A, then
every adjunction (3.1.i) is of this form, up to natural equivalence (see [Dimov and Tholen,
1989] and [Porst and Tholen, 1991]).

Remark 3.1.2. Consider an adjunction (3.1.i) induced by a dualising object (X̃, Ã). For every
ψ : X → X̃ and ϕ : A→ Ã, the diagrams

X
ηX //

ψ ""

GFX

evψ
��

X̃

and A
εA //

ϕ
""

FGA

evϕ
��

Ã

commute.

We turn now to the question “How to construct dual equivalences?”. Motivated by the
considerations above, we assume that X̃ and Ã are objects in X and A respectively, with the
same underlying set |X̃| = |Ã|. To obtain a dual adjunction, we need to lift the hom-functors
hom(−, X̃) : Xop → Set and hom(−, Ã) : Aop → Set to functors F : Xop → A and G : Aop → X
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in such a way that the maps (3.1.iii) underlie an X-morphism respectively and A-morphism.
To this end, we consider the following two conditions.

(Init X) For every object X in X, the cone (evx : hom(X, X̃) → |Ã|, ψ 7→ ψ(x))x∈|X|

admits an initial lift (evx : F (X)→ Ã)x∈|X|.

(Init A) For every object A in A, the cone (eva : hom(A, Ã)→ |X̃|, ψ 7→ ψ(a))a∈|A| admits
an initial lift (eva : G(A)→ X̃)a∈|A|.

The following result can be found in [Porst and Tholen, 1991].

Theorem 3.1.3. If conditions (Init X) and (Init A) are fulfilled, then the initial lifts above
define the object part of a dual adjunction (3.1.i) induced by (X̃, Ã).

Clearly, if the forgetful functors to Set are topological (see [Adámek et al., 1990]), then (Init
X) and (Init A) are fulfilled. The following proposition describes a typical situation and it is
our main weapon to construct dual adjunctions.

Proposition 3.1.4. Let A be the category of algebras for a signature Ω of operation symbols
and assume that X is complete and | − | : X → Set preserves limits. Furthermore, assume
that, for every operation symbol ω ∈ Ω, the corresponding operation |Ã|

I
→ |Ã| underlies an

X-morphism X̃I → X̃. Then both (Init X) and (Init A) are fulfilled.

Proof. This result is essentially proven in [Lambek and Rattray, 1979, Proposition 2.4]. Firstly,
since all operations on Ã are X-morphisms, the algebra structure on hom(X, X̃) can be defined
pointwise. Secondly, for each algebra A, the canonical inclusion hom(A, Ã) → |X̃||A| is the
equaliser of a pair of X-morphisms between powers of X̃. In fact, a map f : |A| → |Ã| is an
algebra homomorphism whenever, for every operation symbol ω ∈ Ω with arity I and every
h ∈ |A|I ,

f(ωA(h)) = ω
Ã

(f · h).

In other words, the set of maps f : |A| → |Ã| which preserve the operation ω is precisely the
equaliser of

πωA(h) : |Ã|
|A|
−→ |Ã|

and the composite
|Ã|
|A| −·h−−−→ |Ã|

I ω
Ã−−→ |Ã|.

Since both maps underlie X-morphisms X̃ |A| → X̃, the assertion follows.

Remark 3.1.5. The result above remains valid if

• the objects of A admit an order relation and some of the operations are only required
to be preserved laxly, and
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• the order relation R→ |Ã| × |Ã| of Ã underlies an X-morphism R′ → X̃ × X̃.

In fact, using the notation of the proof above, the set of maps f : |A| → |Ã| with

f(ωA(h)) ≤ ω
Ã

(f · h)

for all h ∈ |A|I can be described as the pullback of the diagram

R

��

|Ã|
|A| // |Ã| × |Ã|.

Clearly, for every object X ∈ X, the unit ηX : X → GF (X) is an isomorphism if and only
if ηX is surjective and an embedding. If the dual adjunction is constructed using (Init X)
and (Init A), then, by Remark 3.1.2,

ηX is an embedding if and only if the cone (ψ : X → X̃)ψ is point-separating and initial.

We hasten to remark that the latter condition only depends on X̃ and is independent
of the choice of A. If η is not componentwise an embedding, we can replace X by its full
subcategory defined by all those objects X where (ψ : X → X̃)ψ is point-separating and
initial; by construction, the functor G corestricts to this subcategory. Again, this procedure
is only useful if this subcategory has all “interesting spaces”, otherwise it is probably best to
use a different dualising object. Getting back to adjunction (3.1.ii) we can easily conclude
the proof of Stone’s duality theorem. It is just a matter of observing that saying that X is a
compact Hausdorff space such that the cone (ψ : X → 2)ψ is point-separating and initial is just
a different way of saying that X is a Boolean space. This also means that we cannot obtain
a dual equivalence for the category of compact Hausdorff spaces in a natural way by starting
with a dual adjunction based on the two-element set; to keep all the interesting objects in
Fix(X) the two-element discrete space would need to be an initial cogenerator in the category
CompHaus. For exactly this reason, in Section 3.2 we will consider the compact Hausdorff
space [0, 1] instead of the discrete two-element space.

We assume now that η is componentwise an embedding. Then the functor F : X → Aop

is faithful, and η is an isomorphism if and only if F is also full. Put differently, if η is
not an isomorphism, then A has too many arrows. A possible way to fix this problem is to
enrich the structure of A. For instance, in [Johnstone, 1986, VI.4.4] it is shown that, under
mild conditions, A can be substituted by the category of Eilenberg–Moore algebras for the
monad on A induced by the dual of the adjunction (3.1.i). In this thesis we take a different
approach: instead of saying “A has too many morphisms”, one might also think that “X has
too few morphisms”. One way of adding morphisms to a category is to replace it by the Kleisli
category of a suitable monad on it. In fact, and rather trivially, for the monad T induced by
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the adjunction (3.1.i), the comparison functor XT → Aop is fully faithful. However, in general,
this procedure will not be of practical interest since our knowledge about the monad induced
by F a G might be very limited. The situation improves if we take a different, better known
monad T on X isomorphic to the monad induced by F a G. We are then left with the task
of identifying the X-morphisms inside XT in a purely categorical way, to be translated across
a duality.

Example 3.1.6. Consider the powerset monad P on Set whose Kleisli category SetP is equiv-
alent to the category Rel of sets and relations. Within Rel, the following two fundamentally
different properties identify functions.

• A relation is a function if and only if it has a right adjoint in the ordered category Rel.
This is actually a 2-categorical property; if we want to use it in a duality we must make
sure that the involved equivalence functors are locally monotone.

• A relation r : X −→7 Y is a function if and only if r is a homomorphism of comonoids in
the monoidal category Rel, that is, the diagrams

X �r //

�
>   

Y

_>
��
1

and X ×X �r×r // Y × Y

X

_∆

OO

�
r

// Y

_∆

OO

commute. In the second diagram, X ×X denotes the set-theoretical product which can
be misleading since it is not the categorical product in Rel. To use this description in a
duality result, one needs to know the corresponding operation on the other side.

In the next chapter we build up on the idea above to develop duality theory for categories
containing all compact Hausdorff spaces. If we focused in the category BooSp, we could use
Proposition 3.1.4 to quickly obtain the natural dual adjunction

(3.1.iv) BooSp ⊥

hom(−,2)
((

hom(−,2)

hh FinSupop
BA.

By starting with the adjunction above instead of the adjunction (3.1.ii) we ensure that everyX-
component of η is an embedding since the two-element discrete space is an initial cogenerator
in BooSp. But now, the category BooSp “has too few morphisms”. In the spirit of this work,
we should replace it by the Kleisli category of a monad on BooSp. A suitable candidate is the
classical Vietoris monad on BooSp (see Section 2.4). This choice leads us to sketch a proof of
Halmos’ duality theorem.
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Theorem 3.1.7 ([Halmos, 1956]). The Kleisli category of the Vietoris monad on BooSp

(see Section 2.4) is dually equivalent to the category FinSupBA of Boolean algebras with fi-
nite suprema preserving maps.

Proof. Observe that:

1. The functor hom(−, 1) : BooSpV → FinSupop
BA extends the functor hom(−, 2) : BooSp→

FinSupop
BA so that the diagram below commutes.

BooSpV
hom(−,1) // FinSupop

BA

BooSp

ee

hom(−,2)

99

2. The monad morphism induced by hom(−, 1) is a natural isomorphism, therefore, by
Theorem 2.1.11, the functor hom(−, 1) is fully faithful.

3. Stone’s representation theorem guarantees that the functor hom(−, 1) is essentially sur-
jective on objects.

To pass from Halmos’ duality theorem to Stone’s duality theorem we are left we the task
of identifying the relations in BooSpV that are functions in a way that can translated across
the duality. In [Hofmann and Nora, 2015] this is achieved using the description of relations as
comonoids in the monoidal category Rel of Examples 3.1.6.

Theorem 3.1.8 ([Stone’s dual equivalence]Stone [1936]). The categories BooSp and BA are
dually equivalent.

In the considerations above, the Kleisli category XT was only introduced to support the
study of X; however, at some occasions our primary interest lies in XT itself. In this case,
a monad T on X is typically given before-hand, and we wish to find an adjunction (3.1.i)
so that the induced monad is isomorphic to T. If a dualising object (X̃, Ã) induces this
adjunction, we speak of a functional representation of T. Looking again at the example
CoAlg(V ) ' BAOop of Chapter 1, by observing that V is part of a monad V = (V,m, e)

on BooSp, we can think of the objects of CoAlg(V ) as Boolean spaces X equipped with an
endomorphism r : X −→7 X in BooSpV; the morphisms of CoAlg(V ) are those morphisms of
BooSp commuting with this additional structure. The duality CoAlg(V ) ' BAOop follows
now from both Halmos’ duality and the classical Stone duality BooSp ' BAop [Stone, 1936].

As in the proof of Halmos duality theorem above, our aim is to construct and analyse
functors F : XT → Aop which extend a given functor F : X→ Aop that is part of an adjunction
F a G induced by a dualising object (X̃, Ã). It is well-known that such functors F : XT → Aop
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correspond precisely to monad morphisms from T to the monad induced by F a G, and that
monad morphisms into a “double dualisation monad” are in bijection with certain algebra
structures on X̃ (see [Kock, 1971], for instance). In the remainder of this section, we explain
these correspondences in the specific context of this thesis.

Let X and A be categories with representable faithful functors

| − | ' hom(X0,−) : X −→ Set and | − | ' hom(A0,−) : A −→ Set,

T = (T,m, e) a monad on X and F a G an adjunction

X ⊥

F
((

G

hh Aop

induced by (X̃, Ã). We denote by D the monad induced by F a G. The next result establishes
a connection between monad morphisms j : T→ D and T-algebra structures on X̃ compatible
with the adjunction F a G.

Theorem 3.1.9. In the setting described above, the following data are in bijection.

1. Monad morphisms j : T→ D.

2. Functors F : XT → Aop making the diagram

XT
F // Aop

X

FT

OO

F

<<

commutative.

3. T-algebra structures σ : TX̃ → X̃ such that the map

hom(X, X̃) −→ hom(TX, X̃), ψ 7−→ σ · Tψ

is an A-morphism κX : FX → FTX, for every object X in X.

Proof. The equivalence between the data described in (1) and (2) is well-known, see [Pumplün,
1970], for instance. We recall here that, for a monad morphism j : T→ D, the corresponding
functor F : XT → Aop can be obtained as

XT
composition with j−−−−−−−−−−−→ XD

comparison−−−−−−−→ Aop.

To describe the passage from (1) to (3), we recall from [Johnstone, 1986, Lemma VI.4.4] that
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X̃ becomes a D-algebra since X̃ ' GA0 and G : Aop → X factors as

Aop

G
''

comparison // XD

forgetful
��
X.

A little computation shows that the D-algebra structure on X̃ is

GFX̃
ev1

X̃−−−→ X̃.

Composing ev1
X̃

with j
X̃

gives a T-algebra structure σ : TX̃ → X̃. Furthermore, the functor
F : XT → Aop sends 1TX : TX −→7 X in XT to the A-morphism FjX ·εFX : FX → FTX which
sends ψ ∈ FX to FjX(evψ) = evψ ·jX . On the other hand,

σ · Tψ = ev1
X̃
·j
X̃
· Tψ = ev1

X̃
·GFψ · jX = evψ ·jX ;

which shows that κX = FjX · εFX is an A-morphism. For a compatible T-algebra structures
σ : TX̃ → X̃ as in (3),

(ϕ : X → TY ) 7−→ (FY
κY−−→ FTY

Fϕ−−→ FX)

defines a functor F : XT → Aop making the diagram

XT
F // Aop

X

FT

OO

F

<<

commutative. The induced monad morphism j : T→ D is given by the family of maps

jX : |TX| −→ hom(FX, Ã), x 7−→ (ψ 7→ σ · Tψ(x)).

Furthermore, the T-algebra structure induced by this j is indeed

ev1
X̃
·j
X̃

= σ · T1
X̃

= σ.

Finally, for a monad morphism j : T→ D, the monad morphism induced by the corresponding
algebra structure σ has as X-component the map sending x ∈ TX to

σ · Tψ(x) = evψ ·jX(x) = jX(x)(ψ).

Remark 3.1.10. The constructions described above seem to be more natural if X̃ = TX0 with
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T-algebra structure mX0 , see [Hofmann and Nora, 2015, Proposition 4.3]. In this case, the
functor F : XT → Aop is a lifting of the hom-functor hom(−, X0) : XT → Setop. Furthermore,
interpreting the elements of TX as morphisms ϕ : X0 −→7 X in the Kleisli category XT allows
to describe the components of the monad morphism j using composition in XT:

jX : |TX| −→ hom(FX, Ã), ϕ 7−→ (ψ 7→ ψ · ϕ).

3.2 Enriched Halmos dualities

With the arguments of the previous section in mind, in this section we develop duality
theory for separated ordered compact spaces. More specifically, we apply the results presented
in Section 2.1 and Section 3.1 to the Vietoris monad (see Section 2.4) V on X = SepOrdComp,
with X̃ = [0, 1]op and V-algebra structure

V ([0, 1]op) −→ [0, 1]op, A 7−→ sup
x∈A

x.

We begin by filling all the details that, for a category A unknown at the moment, lead to the
construction of a commutative diagram

SepOrdCompV
C // Aop,

SepOrdComp

hh

C

88

where

SepOrdComp ⊥

C
((

G

hh Aop

is an adjunction induced by ([0, 1]op, [0, 1]) compatible with theV-algebra structure on [0, 1]op.
Denoting by D the monad induced by the adjunction above, it follows that the corresponding
monad morphism j : V→ D has as components the maps

jX : V X −→ GC(X), A 7−→ (ΦA : CX → [0, 1], ψ 7→ sup
x∈A

ψ(x)).

In Section 3.2.1 we discuss how to turn j into an isomorphism. Finally, in Section 3.2.2,
we use a Stone–Weierstraß type of theorem to obtain the duality results.

Assumption 3.2.1. From now on ⊗ is a quantale structure on [0, 1] with neutral element 1.
Note that then necessarily u⊗ v ≤ u∧ v, for all u, v ∈ [0, 1]. To combine continuous functions
ψ1, ψ2 : X → [0, 1], we assume that ⊗ : [0, 1]× [0, 1]→ [0, 1] is continuous with respect to the
Euclidean topology on [0, 1]. In other words, we consider a continuous t-norm on [0, 1].
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The first step to identify an appropriate category A is to introduce [0, 1]-enriched notions
analogous to the 2-enriched notions of distributive lattice and Boolean algebra appearing in
the classical duality theorems of Stone and Halmos. A distributive lattice X is in particular a
finite sup-lattice equipped with a commutative monoid structure ∧ : X×X → X with neutral
element the top-element of X and where, moreover, the maps x ∧ − : X → X preserve finite
suprema. Also note that every monotone map f : X → Y between lattices laxly preserves
infima, that is, for all x, x′ ∈ X the inequality f(x∧ x′) ≤ f(x)∧ f(x′) holds. By interpreting
a finite sup-lattice as a finitely cocomplete 2-category, we can translate the description above
naturally to the [0, 1]-enriched setting. Below we introduce a [0, 1]-enriched counterpart of
distributive lattices where the monoid structure is not necessarily the infimum since the tensor
product on [0, 1] need not be the infimum. We think of these [0, 1]-categories as generalised
[0, 1]-enriched (distributive) lattices.

• The category
[0, 1]-GLat

has as objects separated finitely cocomplete [0, 1]-categories X equipped with an asso-
ciative and commutative operation } : X ×X → X with unit element which is also the
top-element of X and such that, for every x ∈ X, the map x}− : X → X is a finitely
cocontinuous [0, 1]-functor; the morphisms of [0, 1]-GLat are the finitely cocontinuous
[0, 1]-functors preserving the unit and the multiplication }.

• The category
[0, 1]-LaxGLat

has the same objects as [0, 1]-GLat; the morphisms are finitely cocontinuous [0, 1]-
functors f : X → Y preserving laxly the monoid structure, that is, for all x, x′ ∈ X,

f(x} x′) ≤ f(x)} f(x′)

If we had chosen the quantale 2 over a quantale in [0, 1] in the definitions above, we would
recover every distributive lattice as an object of 2-GLat. However, not every object of 2-GLat
comes from a distributive lattice.

Example 3.2.2. Every quantale in [0, 1] with neutral element 1 is an object of 2-GLat.

Remark 3.2.3. Every finitely cocomplete V-category is copowered, and every copowered V-
category can be interpreted as an ordered set equipped with an action from V (for details,
see Section 2.2). In this perspective, we can think of } : X × X → X as an “extension” of
⊗ : X × [0, 1] → X and write x ⊗ x′ instead of x } x′. The reason is that for every u ∈ [0, 1]

and x ∈ X, we have
x} (1⊗ u) = (x} 1)⊗ u = x⊗ u.
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In the remainder of the chapter we will use this description extensively.

We recall that [0, 1]-FinSup denotes the category of separated finitely cocomplete [0, 1]-
categories and finite colimit preserving [0, 1]-functors; the unit interval [0, 1] equipped with
hom: [0, 1]× [0, 1]→ [0, 1] is an object of [0, 1]-FinSup.

Remark 3.2.4. Thinking more in algebraic terms, [0, 1]-GLat is a ℵ1-ary quasivariety; in fact, by
adding to the algebraic theory of [0, 1]-FinSup (see Remark 2.2.11) the operations and equations
describing the monoid structure, we obtain a presentation by operations and implications. In
particular, this means that [0, 1]-GLat is complete and cocomplete.

Regarding limits, the following result can be verified by routine calculation.

Proposition 3.2.5. The forgetful functors

[0, 1]-GLat −→ [0, 1]-FinSup [0, 1]-GLat −→ [0, 1]-LaxGLat

preserve limits.

The next step in our argument is to construct a dual adjunction linking the categories
SepOrdComp and [0, 1]-GLat. The starting point to do so is the well-known fact that (V,hom)

is a V-category. In the sequel we consider the [0, 1]-category [0, 1] as an object of [0, 1]-GLat
with multiplication given by the tensor product ⊗ : [0, 1]× [0, 1]→ [0, 1] of [0, 1].

Proposition 3.2.6. The dualising object ([0, 1]op, [0, 1]) induces a natural dual adjunction

SepOrdComp ⊥

C
((

G

hh [0, 1]-LaxGLatop.

Here CX is given by SepOrdComp(X, [0, 1]op) with all operations defined pointwise, and GA is
the space [0, 1]-LaxGLat(A, [0, 1]) equipped with the initial topology with respect to all evaluation
maps

eva : [0, 1]-LaxGLat(A, [0, 1]) −→ [0, 1]op, Φ 7−→ Φ(a).

Proof. In terms of the algebraic presentation of the [0, 1]-category [0, 1] of Remark 2.2.11, the
operations ∨ and − ⊗ u are morphisms ∨ : [0, 1]op × [0, 1]op → [0, 1]op and − ⊗ u : [0, 1]op →
[0, 1]op in SepOrdComp, and the order relation of [0, 1]op is closed in [0, 1]op× [0, 1]op. Further-
more, ⊗ : [0, 1]op × [0, 1]op → [0, 1]op is a morphism in SepOrdComp. Therefore, the assertion
follows from Theorem 3.1.3, Proposition 3.1.4 and Remark 3.1.5.

Before proceeding we need to identify the V-algebra structure of the separated ordered
compact space [0, 1]op.
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Proposition 3.2.7. The separated ordered compact space [0, 1]op is a V-algebra with algebra
structure sup: V ([0, 1]op)→ [0, 1]op. Furthermore, the function

hom(X, [0, 1]op) −→ hom(V X, [0, 1]op), ψ 7−→ (A 7→ sup
x∈A

ψ(x))

is a morphism CX → CV X in [0, 1]-LaxGLat.

Finally, by Theorem 3.1.9 and Remark 3.1.10, we arrive at the commutative diagram of
functors

SepOrdCompV
C // [0, 1]-LaxGLatop;

SepOrdComp

hh

C

66

where, for ϕ : X −→◦ Y in SepOrdCompV ,

Cϕ : CY −→ CX

ψ 7−→
(
x 7→ sup

xϕ y
ψ(y)

)
.

In the next section we discuss how to turn the monad morphism j : V → D induced by
C : SepOrdCompV → [0, 1]-LaxGLatop into an isomorphism.

Proposition 3.2.8. The monad morphism j : V→ D is defined by the family of maps

jX : V X −→ [0, 1]-LaxGLat(CX, [0, 1]), A 7−→ ΦA,

with
ΦA : CX −→ [0, 1], ψ 7−→ sup

x∈A
ψ(x).

Proof. See the proof of Theorem 3.1.9.

3.2.1 The natural transformation j : V→ D is an isomorphism

Our first inspiration to turn j into an isomorphism stems from [Shapiro, 1992] where the
following result is proven.

Theorem 3.2.9. Consider the subfunctor V1 : CompHaus → CompHaus of V sending X to
the space of all non-empty closed subsets of X. The functor V1 : CompHaus → CompHaus is
naturally isomorphic to the functor which sends X to the space of all functions

Φ: C(X,R+
0 ) −→ R+

0

that, for all ψ,ψ1, ψ2 ∈ C(X,R+
0 ) and u ∈ R+

0 , satisfy the conditions:
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1. Φ is monotone,

2. Φ(u ∗ ψ) = u ∗ Φ(ψ),

3. Φ(ψ1 + ψ2) ≤ Φ(ψ1) + Φ(ψ2),

4. Φ(ψ1 · ψ2) ≤ Φ(ψ1) · Φ(ψ2),

5. Φ(ψ1 + u) = Φ(ψ1) + u,

6. Φ(u) = u.

The topology on the set of all maps Φ: C(X,R+
0 )→ R+

0 satisfying the conditions above is the
initial one with respect to all evaluation maps evψ, where ψ ∈ C(X,R+

0 ). The X-component of
the natural isomorphism sends a closed non-empty subset A ⊆ X to the map ΦA : C(X,R+

0 )→
R+

0 defined by
ΦA(ψ) = sup

x∈A
ψ(x).

Shapiro’s result shows that the subfunctor V1 is isomorphic to a functor that resembles
the one that we get from the adjunction of Proposition 3.2.6. Of course, to fit better into
our framework, in the sequel we will consider functions into [0, 1] instead of R+

0 , and binary
suprema ∨ instead of + in (3). The empty space is excluded in the definition of V1, and at
first sight it seems that allowing it in the definition of V might be problematic. After all,
it is immediate to see that for A = ∅, the map ΦA does not satisfy the last two axioms
above. However, as we will see later, the condition (5) is not necessary for Shapiro’s result;
moreover, thanks to (2), the condition (6) can be equivalently expressed as Φ(1) = 1, and
this is purely related to A 6= ∅ (see Proposition 3.2.17). Therefore, the case A = ∅ is not
problematic at all. Finally, condition (2) hints that Shapiro’s formulation is consistent with
the interpretation of copowered [0, 1]-categories as ordered sets equipped with an action from
[0, 1]. In the sequel we follow this perspective and, like Shapiro, we also refer individually to
the components of the structure of CX. In particular, we consider the following conditions
on a map Φ: CX → [0, 1].

(Mon) Φ is monotone.

(Act) For every u ∈ [0, 1] and ψ ∈ CX, Φ(u⊗ ψ) = u⊗ Φ(ψ).

(Sup) For every ψ1, ψ2 ∈ CX, Φ(ψ1 ∨ ψ2) = Φ(ψ1) ∨ Φ(ψ2).

(Ten)lax For every ψ1, ψ2 ∈ CX, Φ(ψ1 ⊗ ψ2) ≤ Φ(ψ1)⊗ Φ(ψ2).

(Ten) For every ψ1, ψ2 ∈ CX, Φ(ψ1 ⊗ ψ2) = Φ(ψ1)⊗ Φ(ψ2).

(Top) Φ(1) = 1.
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Remark 3.2.10. 1. The condition (Act) implies Φ(0) = 0 and (Sup) and implies (Mon).
Also note that, by (Mon) and (Act), if, for every x ∈ X, ψ(x) ≤ u then Φ(ψ) ≤ u.
Finally, if ⊗ = ∧, then (Ten)lax is a consequence of (Mon).

2. A function Φ: CX → [0, 1] is a morphism in [0, 1]-LaxGLat if and only if satisfies (Mon),
(Act), (Sup) and (Ten)laxand is a morphism in [0, 1]-GLat if and only if satisfies the
conditions(Mon), (Act), (Sup), (Top) and (Ten).

Our next goal is to invert the process A 7→ ΦA. Firstly, following [Shapiro, 1992], we
introduce the subsequent notation.

• For every map ψ : X → [0, 1], Z(ψ) = {x ∈ X | ψ(x) = 0} denotes the zero-set of ψ.
If ψ is a monotone and continuous map ψ : X → [0, 1]op, then Z(ψ) is an closed upper
subset of X.

• For every map Φ: CX → [0, 1], we put

Z(Φ) =
⋂
{Z(ψ) | ψ ∈ CX, Φ(ψ) = 0}.

Note that Z(Φ) is a closed upper subset of X.

There is arguably a more natural candidate for an inverse of jX . Note that, given a set
{Ai | i ∈ I} of closed upper subsets of X with A =

⋃
i∈I Ai, for every ψ ∈ CX one verifies

ΦA(ψ) = sup
x∈

⋃
i∈I Ai

ψ(x) = sup
i∈I

ΦAi(ψ).

Hence, the monotone map jX preserves infima; 1 therefore it has a left adjoint which sends a
morphism Φ: CX → [0, 1] to

A(Φ) =
⋂

ψ∈CX
ψ−1[0,Φ(ψ)].

In the sequel it will be convenient to consider the maps Z and A defined on the set of all
maps from CX to [0, 1]. We have the following elementary properties.

Lemma 3.2.11. Let X be a separated ordered compact space X.

1. The maps A,Z : {Φ: CX → [0, 1]} → V X are monotone.

2. For every map Φ: CX → [0, 1], A(Φ) ⊆ Z(Φ).

3. For every A ∈ V X, Z ·jX(A)) = A = A ·jX(A)).

4. For every map Φ: CX → [0, 1] and every ψ ∈ CX, jX · A(Φ)(ψ) ≤ Φ(ψ).
1Note that the order is reversed.



54 3.2. Enriched Halmos dualities

Corollary 3.2.12. For every separated ordered compact space X, the map jX : V X → GCX

is an order-embedding.

Now, we discuss conditions to impose on the functions Φ: CX → [0, 1] so that jX restricts
to a bijection between V X and the subset of {Φ: CX → [0, 1]} defined by them. The condi-
tions (Mon) and (Sup) hint that for a given value it would be convenient to find a ψ that in
a subset of our space takes values as high as we want while keeping Φ(ψ) close enough to the
given value. With the definitions of Z and A in mind, we consider:

(A) For every x ∈ X and every ψ ∈ CX, if ψ(x) > Φ(ψ) = 0, then there exists some ψ̄ ∈ CX
with ψ̄(x) = 1 and Φ(ψ̄) = 0.

Lemma 3.2.13. Let X be a separated ordered compact space.

1. If Φ: CX → [0, 1] satisfies (Mon), (Act) and (Ten)lax, then Φ satisfies (A).

2. If the quantale [0, 1] does not have nilpotent elements and Φ: CX → [0, 1] satisfies (Mon)
and (Act), then Φ satisfies (A).

Proof. Assume ψ(x) > Φ(ψ) = 0. Put v = ψ(x) and take u with 0 < u < v. Put A =

ψ−1([0, u]). By Proposition 2.3.9, there is some ψ′ ∈ CX with A ⊆ Z(ψ′) and ψ′(x) = 1.
Furthermore,

u⊗ ψ′ ≤ u ∧ ψ′ ≤ ψ

and therefore u⊗Φ(ψ′) ≤ Φ(ψ) = 0. Since u 6= 0, we get Φ(ψ′)n = 0 for some n ∈ N. If there
are no nilpotent elements, then Φ(ψ′) = 0. In general, using condition (Ten)lax we obtain
Φ(ψ′n) ≤ Φ(ψ′)n = 0 and ψ′n(x) = 1.

In the next result we show that if Φ: CX → [0, 1] satisfies (Mon), (Sup) and (A) then for
every ψ ∈ CX, the inequality Φ(ψ) ≤ supx∈Z(Φ) ψ(x) holds. For a finite space we could prove
this by using (A) to find functions ψ1, . . . , ψn ∈ CX such that ψ ≤ ψ1 ⊗ψ ∨ · · · ∨ψn ⊗ψ and
Φ(ψi) ≤ supx∈Z(Φ) ψ(x). Then, the result would follow by applying (Mon) and (Sup). The
core idea behind the proof of the general case is the same, however, the passage from the finite
to the infinite case poses additional technical challenges.

Proposition 3.2.14. Let X be a separated ordered compact space. For every Φ: CX → [0, 1]

satisfying (Mon), (Act), (Sup) and (A),

Φ(ψ) ≤ jX · Z(Φ)(ψ),

for all ψ ∈ CX.
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Proof. Let ψ ∈ CX, we wish to show that Φ(ψ) ≤ supx∈Z(Φ) ψ(x). To this end, consider an
element u ∈ [0, 1] with supx∈Z(Φ) ψ(x) < u. Put

U = {x ∈ X | ψ(x) < u}.

Clearly, U is open and Z(Φ) ⊆ U . Let now x ∈ X \ Z(Φ). There is some ψ′ ∈ CX with
Φ(ψ′) = 0 and ψ′(x) 6= 0; by (A) we may assume ψ′(x) = 1. Let now α < 1. For every
ψ′ ∈ CX we put

suppα(ψ′) = {x ∈ X | ψ′(x) > α}.

By the considerations above,

X = U ∪
⋃
{suppα(ψ′) | ψ′ ∈ C(X),Φ(ψ′) = 0};

since X is compact, we find ψ1, . . . , ψn with Φ(ψi) = 0 and

X = U ∪ suppα(ψ1) ∪ · · · ∪ suppα(ψn).

Hence,
α⊗ ψ ≤ u ∨ (ψ1 ⊗ ψ) ∨ · · · ∨ (ψn ⊗ ψ),

and therefore

α⊗ Φ(ψ) ≤ u ∨ Φ(ψ1 ⊗ ψ) ∨ · · · ∨ Φ(ψn ⊗ ψ) ≤ u ∨ Φ(ψ1) ∨ . . .Φ(ψn) = u.

Hence, under the conditions of the proposition above, for every ψ ∈ CX, we have

sup
x∈A(Φ)

ψ(x) ≤ Φ(ψ) ≤ sup
x∈Z(Φ)

ψ(x).

Now we look for conditions that guarantee that the equality Z(Φ) = A(Φ) holds.

Proposition 3.2.15. Assume that ⊗ = ∗ is the multiplication or ⊗ = � is the Łukasiewicz
tensor. If Φ satisfies (Mon), (Act) and (Ten)lax then Z(Φ) = A(Φ).

Proof. We consider first ⊗ = ∗, in this case the proof is essentially taken from [Shapiro, 1992].
For every ψ ∈ CX and every open lower subset U ⊆ X with U ∩ Z(Φ) 6= ∅, we show that
infx∈U ψ(x) ≤ Φ(ψ). To see this, put u = infx∈U ψ(x). Since there exists z ∈ U ∩Z(Φ), there
is some ψ′ ∈ CX with U{ ⊆ Z(ψ′) and ψ′(z) = 1; thus Φ(ψ′) 6= 0. Then u ∗ ψ′ ≤ ψ ∗ ψ′ and
therefore u ∗ Φ(ψ′) ≤ Φ(ψ) ∗ Φ(ψ′). Since Φ(ψ′) 6= 0, we obtain u ≤ Φ(ψ).

Let x ∈ Z(Φ), ψ ∈ CX and v > Φ(ψ). Put U = {x ∈ X | ψ(x) > v}. By the discussion
above, U ∩ Z(Φ) = ∅, hence ψ(x) ≤ v. Therefore we conclude that x ∈ A(Φ).

Consider now ⊗ = �. Let x /∈ A(Φ). Then, there is some ψ ∈ CX with ψ(x) > Φ(ψ).
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With u = ψ(x), we obtain

hom(u, ψ(x)) = 1 > hom(u,Φ(ψ)) = u t Φ(ψ) ≥ Φ(u t ψ),

using Remark 2.2.15 and that hom(u,−) : [0, 1]→ [0, 1] is monotone and continuous. Therefore
we may assume that ψ(x) = 1. Since Φ(ψ) < 1, there is some n ∈ N with Φ(ψ)n = 0, hence
ψn(x) = 1 and Φ(ψn) = 0. We conclude that x /∈ Z(Φ).

From the results above we obtain a [0, 1]-enriched counterpart of step 2 of the proof of
Halmos’ duality theorem (see Theorem 3.1.7).

Theorem 3.2.16. Assume that ⊗ = ∗ is the multiplication or ⊗ = � is the Łukasiewicz
tensor. Then the monad morphism j between the monad V on SepOrdComp and the monad
induced by the adjunction C a G of Proposition 3.2.6 is an isomorphism. Therefore the functor

C : SepOrdCompV −→ [0, 1]-LaxGLatop

is fully faithful.

For Φ: CY → CX in [0, 1]-LaxGLat, the corresponding distributor ϕ : X −→◦ Y is given by

xϕ y ⇐⇒ y ∈
⋂

Φ(ψ)(x)=0

Z(ψ).

As described in Section 3.1, to pass from Halmos’ duality theorem to Stone’s duality
theorem we need to identify the functions among the relations in BooSpV.

Proposition 3.2.17. Let X be a separated ordered compact space and A ⊆ X a closed upper
subset of X. The following assertions hold.

1. A 6= ∅ if and only if ΦA satisfies (Top).

2. A is irreducible as a subset of the corresponding stably compact space of X if and only
if ΦA satisfies (Ten).

Proof. (1) is clear, and so is the implication “ =⇒ ” in (2). Assume now that ΦA satisfies
(Ten) and let A1, A2 ⊆ X be closed upper subsets with A1 ∪A2 = A. Let x /∈ A1 and y /∈ A2.
We find ψ1, ψ2 ∈ CX with

ψ1(x) = 1, ψ2(y) = 1, ∀z ∈ A .ψ1(z) = 0 or ψ2(z) = 0.

Therefore
0 = ΦA(ψ1 ⊗ ψ2) = ΦA(ψ1)⊗ ΦA(ψ2).

By Corollary 2.2.21, ΦA(ψ1) = 0 or, for some n ∈ N, ΦA(ψn2 ) = ΦA(ψ2)n = 0, hence x /∈ A or
y /∈ A. We conclude that A = A1 or A = A2.
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We recall from Example 3.1.6 that a relation is a function if and only if it is a comonoid
in the monoidal category Rel.

Corollary 3.2.18. Let ϕ : X −→◦ Y in SepOrdCompV. Then:

1. ϕ is a total relation if and only if Cϕ preserves 1.

2. ϕ is a partial function if and only if Cϕ preserves ⊗.

From Corollary 3.2.18 we obtain

Corollary 3.2.19. Assume that ⊗ = ∗ is the multiplication or ⊗ = � is the Łukasiewicz
tensor. Then the functor

C : SepOrdComp −→ [0, 1]-GLatop

is fully faithful.

The following examples show that Theorem 3.2.16 and Corollary 3.2.19 cannot be gener-
alised to arbitrary continuous quantale structures on [0, 1]; not even if, in the case of The-
orem 3.2.16, we restrict SepOrdCompV to the full subcategory CompHausV. However, in
Theorem 3.2.27 we show that Corollary 3.2.19 still holds if we restrict SepOrdComp to the full
subcategory CompHaus.

Examples 3.2.20. Consider ⊗ = ∧.

• For X = 1, the set V 1 contains two elements; however, for every α ∈ [0, 1], the map
Φ = α ∧ − : [0, 1]→ [0, 1] satisfies (Mon), (Act), (Sup) and (Ten)lax.

• For the compact Hausdorff space X = {0, 1}, the set V X contains four elements; how-
ever, for every α ∈ [0, 1], the map

Φα : [0, 1]× [0, 1] −→ [0, 1], (u, v) 7−→ u ∨ (α ∧ v)

satisfies (Mon), (Act), (Sup) and (Ten)lax (but, in general, not (Ten)); moreover, α =

Φα(0, 1) and therefore Φα 6= Φβ for α 6= β.

• For the separated ordered compact space X = {0 ≥ 1}, CX = {(u, v) ∈ [0, 1] × [0, 1] |
u ≤ v} and V X contains three elements; however, for every α ∈ [0, 1], the map

Φα : CX −→ [0, 1], (u, v) 7−→ u ∨ (α ∧ v)

satisfies (Mon), (Act), (Sup), (Ten) and (Top). In comparison with the previous example,
the non-discrete order of X allows to show that Φα satisfies (Ten). To see this, take
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(u, v), (u′, v′) ∈ CX. Then,

Φα(u, v) ∧ Φα(u′, v′) = (u ∧ u′) ∨ (α ∧ u ∧ v′) ∨ (α ∧ v ∧ u′) ∨ (α ∧ v ∧ v′)

= (u ∧ u′) ∨ (α ∧ v ∧ v′) = Φα

(
(u, v) ∧ (u′, v′)

)
.

To deal with the general case, we introduce the following condition on a map Φ: CX →
[0, 1] where 	 denotes truncated minus on [0, 1].

(Min) For every u ∈ [0, 1] and every ψ ∈ CX, Φ(ψ 	 u) = Φ(ψ)	 u.

This condition is reminiscent of Shapiro’s condition 5; however, contrary to what happens
with 5, the condition (Min) is satisfied by ΦA : CX → [0, 1] for every closed upper subset
A ⊆ X. Clearly, for every closed upper subset A ⊆ X, the map ΦA : CX → [0, 1] satisfies
(Min).

Proposition 3.2.21. Let X be a separated ordered compact space and Φ: CX → [0, 1] a map
satisfying (Min). Then

A(Φ) = Z(Φ).

Proof. Assume x /∈ A(Φ). Then there is some ψ ∈ CX with ψ(x) > Φ(ψ). Put u = Φ(ψ).
Then Φ(ψ 	 u) = 0 and (ψ 	 u)(x) > 0, hence x /∈ Z(Φ).

Therefore we obtain:

Proposition 3.2.22. Let X be a separated ordered compact space. The map

jX : V X −→ {Φ: CX → [0, 1] | Φ satisfies (Mon), (Act), (Sup), (Ten)lax and (Min)}

A 7−→ ΦA

is bijective. If the quantale [0, 1] does not have nilpotent elements, then jX is bijective even if
the condition (Ten)lax is dropped on the right hand side.

Accordingly, we introduce the categories

[0, 1]-GLat	 and [0, 1]-LaxGLat	

defined as [0, 1]-GLat and [0, 1]-LaxGLat respectively, but the objects have an additional action
	 : X × [0, 1]→ X and the morphisms preserve it.

With the action 	 : [0, 1] × [0, 1] → [0, 1], (u, v) 7→ u 	 v, the [0, 1]-category [0, 1] is an
object of both categories. As before (see Proposition 3.2.6 and Theorem 3.2.16), we obtain:
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Theorem 3.2.23. Under Assumption 3.2.1, the dualising object ([0, 1]op, [0, 1]) induces a
natural dual adjunction

SepOrdComp ⊥

C
((

G

hh ([0, 1]-LaxGLat	)op.

Here CX is given by SepOrdComp(X, [0, 1]op) with all operations defined pointwise, and GA
is the space [0, 1]-LaxGLat	(A, [0, 1]) equipped with the initial topology with respect to all eval-
uation maps

eva : [0, 1]-LaxGLat	(A, [0, 1]) −→ [0, 1]op, Φ 7−→ Φ(a).

Furthermore, the following diagram of functors

SepOrdCompV
C // ([0, 1]-LaxGLat	)op,

SepOrdComp

hh

C

55

commutes, and the induced monad morphism j between V and the monad induced by C a G
is an isomorphism. Therefore the functor

C : SepOrdCompV −→ ([0, 1]-LaxGLat	)op

is fully faithful, and so is the functor

C : SepOrdComp −→ ([0, 1]-GLat	)op.

Remark 3.2.24. Now that we know that C : SepOrdComp→ ([0, 1]-GLat	)op is fully faithful, we
can add further operations to the algebraic theory of [0, 1]-GLat	 if they can be transported
pointwise from [0, 1] to CX. More precisely, let ℵ be a cardinal and h : [0, 1]ℵ → [0, 1] a
monotone continuous map. If we add to the algebraic theory of [0, 1]-GLat	 an operation
symbol of arity ℵ, then C : SepOrdComp → ([0, 1]-GLat	)op lifts to a fully faithful functor
from SepOrdComp to the dual of the category of algebras for this theory by interpreting the
new operation symbol in CX by

(fi)i∈ℵ 7−→ (X
〈fi〉i∈ℵ−−−−−→ [0, 1]ℵ

h−→ [0, 1]).

Every [0, 1]-GLat	 morphism of type CY → CX preserves this new operation automatically.
For instance, if hom(u,−) : [0, 1] → [0, 1] is continuous, then CX has u-powers with (ψ t

u)(x) = hom(u, ψ(x)), for all x ∈ X. Furthermore, every morphism Φ: CX → CY in
[0, 1]-GLat	 preserves u-powers.
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In 1983, Banaschewski showed that CompHaus fully embeds into the category of distribu-
tive lattices equipped with constants from [0, 1] and constant preserving lattice homomor-
phisms. As we pointed out in Remark 2.2.8, instead of adding constants to the lattice CX of
continuous [0, 1]-valued functions, one could consider as well actions of type u ∧ ψ of [0, 1] on
the lattice CX. Therefore Banaschewski’s result should be a special case of Theorem 3.2.16 for
⊗ = ∧. Unfortunately, this is not immediately the case since we need the additional operation
	. Still, using some arguments of [Banaschewski, 1983], we finish this section showing that for
every compact Hausdorff space and every Φ: CX → [0, 1] in [0, 1]-GLat, we have ΦZ(Φ) = Φ.

The next proposition is analogous to Proposition 3.2.17.

Proposition 3.2.25. Let X be a separated ordered compact space and assume that Φ: CX →
[0, 1] satisfies (Mon), (Act), (Sup)and (Ten)lax.

1. If Φ satisfies also (Top), then Z(Φ) 6= ∅.

2. If Φ satisfies also (Ten), then Z(Φ) is a irreducible subset of the corresponding stably
compact space of X.

Proof. To see the first implication: 1 = Φ(1) ≤ supx∈Z(Φ) 1, hence Z(Φ) 6= ∅. The proof of
the second one is the same as the corresponding proof for Proposition 3.2.17.

Lemma 3.2.26. Let X be a compact Hausdorff space and Φ: CX → [0, 1] in [0, 1]-GLat.
We denote by x0 the unique element of X with Z(Φ) = {x0}. Then, for every ψ ∈ CX,
ψ(x0) = Φ(ψ).

Proof. By Proposition 3.2.14, Φ(ψ) ≤ ψ(x0). To see the reverse inequality, let u < ψ(x0).
Then x0 /∈ {x ∈ X | ψ(x) ≤ u}, therefore there is some ψ′ ∈ CX with ψ′(x0) = 0 and ψ′ is
constant 1 on {x ∈ X | ψ(x) ≤ u}. Hence, u ∨ ψ′ ≤ ψ ∨ ψ′. Since Φ(ψ′) ≤ ψ′(x0) = 0, we
conclude that u = Φ(u) ≤ Φ(ψ).

Theorem 3.2.27. Under Assumption 3.2.1, the functor

C : CompHaus −→ [0, 1]-GLatop

is fully faithful.

3.2.2 A Stone–Weierstraß theorem for [0, 1]-categories

For a compact spaceX, the classic Stone–Weierstraß theorem (see [Stone, 1948a,b]) tells us
that every subalgebra of the algebra C(X,R) of continuous functions fromX to R with enough
elements to separate points is dense in C(X,R). There are several possible formulations of
this theorem according to the different algebraic structures that one wishes to consider.
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In this section we present a version of the classical Stone–Weierstraß approximation the-
orem adapted to the context of [0, 1]-categories to identify the image of the fully faithful
functor

C : SepOrdCompV −→ ([0, 1]-LaxGLat	)op.

The idea is to characterise the [0, 1]-categories that are dense subcategories of the [0, 1]-
category CX. Then we can describe CX as a closed [0, 1]-category that satisfies such charac-
terisation.

Assumption. We continue working under Assumption 3.2.1.

We recall that for every separated ordered compact space X, the [0, 1]-category CX is
finitely cocomplete with [0, 1]-category structure

d(ψ1, ψ2) = inf
x∈X

hom(ψ1(x), ψ2(x)),

for all ψ1, ψ2 ∈ CX.
To define what it means for a [0, 1]-category to be dense or closed we will use the closure

operator for V-categories introduced in Hofmann and Tholen [2010] (see Theorem 2.2.13).
Applied in the [0, 1]-category CX, this means, by Theorem 2.2.13, that a ψ ∈ CX belongs to
the closure of a subset M ⊆ CX if and only if for every 0 ≤ u < 1, there is some ψ′ ∈M with
u ≤ d(ψ,ψ′) and u ≤ d(ψ′, ψ).

Similarly to the classical Stone–Weierstraß theorem, we also consider a separation condition
on a subset L of CX that dictates how L should “look like” with respect to some pairs of points
of X.

(Sep) for every (x, y) ∈ X ×X, with x � y, there is a ψ ∈ L and an open neighbourhood
Uy of y such that ψ(x) = 1 and, for all z ∈ Uy, ψ(z) = 0.

Lemma 3.2.28. Let L ⊆ CX be closed in CX under finite suprema, the monoid structure
and the action of [0, 1]; that is, for all ψ1, ψ2 ∈ L and u ∈ [0, 1], ψ1 ∨ ψ2 ∈ L, ψ1 ⊗ ψ2 ∈ L,
1 ∈ L and u ⊗ ψ1 ∈ L. Let ψ ∈ CX. If the map hom: im(ψ) × [0, 1] → [0, 1] is continuous
and L satisfies (Sep), then ψ ∈ L.

Proof. Fix x ∈ X. Let (ψy)y∈X be the family of functions defined in the following way:

• if y � x, let ψy be a function guaranteed by (Sep) and Uy the corresponding neighbour-
hood;

• if y ≤ x, then ψy is the constant function ψ(x).

By hypothesis, the functions hom(ψ(x),−) : [0, 1] → [0, 1] and ψ are continuous. Thus,
the set

Ux = {z ∈ X | u < hom(ψ(x), ψ(z))}
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is an open neighbourhood of every y ≤ x, and for such y ∈ X we put Uy = Ux. Consequently,
the collection of sets Uy (y ∈ X) is an open cover of X. By compactness of X, there exists a fi-
nite subcover Uy1 , . . . , Uyn , Ux of X. Considering the corresponding functions ψy1 , . . . , ψyn , ψx,
we define φx = ψy1 ⊗ · · · ⊗ ψyn ⊗ ψx.

By construction, φx has the following properties:

• φx(x) = ψ(x), since ψyi(x) = 1 for 1 ≤ i ≤ n and ψx(x) = ψ(x);

• for every z ∈ X, u⊗ φx(z) ≤ ψ(z), since z ∈ Ux or z ∈ Uyi , for some i.

Now, for every x ∈ X the set

Vx = {z ∈ X | u < hom(ψ(z), φx(z))}

is open because the functions hom: im(ψ)× [0, 1]→ [0, 1], φx and ψ are continuous. Therefore
the collection of the sets Vx is an open cover of X. Again, by compactness of X, there exists
a finite subcover Vx1 , . . . , Vxm of X. By defining φ = φx1 ∨ · · · ∨ φxm we obtain a function in
L such that for every z ∈ X:

• u⊗ φ(z) =
m∨
j=1

u⊗ φxj (z) ≤ ψ(z);

• u⊗ ψ(z) ≤ φ(z).

Remark 3.2.29. For the Łukasiewicz tensor, the lemma above affirms that L is dense in CX
in the usual sense since, in this case,

hom(u, v) ≥ 1− ε ⇐⇒ max(v − u, 0) ≤ ε,

for all u, v ∈ [0, 1]. However, if the tensor product is multiplication, the function hom: [0, 1]×
[0, 1] → [0, 1] is not continuous in (0, 0); as we will see in Lemma 3.2.31, to obtain a use-
ful Stone-Weierstraß theorem this fact will require us to add a further condition involving
truncated minus. Finally, if the tensor is the infimum, we cannot expect to obtain a useful
approximation theorem using this closure. For example, for the separated ordered compact
space 1 = {∗} the topology in CX ' [0, 1] is generated by the sets {u} and ]u, 1] with u 6= 1.
For x 6= 1 and M ⊆ [0, 1], this means that the seemingly weaker condition x ∈ M actually
implies that x ∈M .

In light of Remark 3.2.29 above, in the remainder of the section we discuss the cases of
the Łukasiewicz tensor and multiplication.

Lemma 3.2.30. Let ⊗ = � be the Łukasiewicz tensor and L ⊆ CX. Assume that L is
closed in CX under the monoid structure and u-powers, for all u ∈ [0, 1], and that the cone
(f : X → [0, 1]op)f∈L is initial; that is, for all x, y ∈ X, x ≥ y if and only if, for all ψ ∈ L,
ψ(x) ≤ ψ(y). Then L satisfies (Sep).
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Proof. Let (x, y) ∈ X ×X with x � y. By hyphotesis, there exists ψ ∈ L and c ∈ [0, 1] such
that ψ(x) > c > ψ(y). Let u = ψ(x). Since L is closed for u-powers then ψ′ = hom(u, ψ) ∈ L.
By Corollary 2.2.21 there exists n ∈ N such that cn = 0. Therefore ψ′n(x) = 1 and for all
z ∈ Uy = ψ−1[0, c[, ψ′n(z) = 0.

Lemma 3.2.31. Let ⊗ = ∗ be the multiplication and L ⊆ CX. Assume that L is closed in
CX under u-powers and − 	 u, for all u ∈ [0, 1], and that the cone (f : X → [0, 1]op)f∈L is
initial. Then L satisfies (Sep).

Proof. Let (x, y) ∈ X × X with x � y. By hyphotesis, there exists ψ ∈ L and c ∈ [0, 1]

such that ψ(x) > c > ψ(y). Let ψ′ = ψ 	 c and u = ψ′(x). Let ψ′′ = hom(u, ψ′) ∈ L and
Uy = ψ′−1[0, c[. Clearly, ψ′′(x) = 1 and, since u > 0, for all z ∈ Uy we obtain ψ′′(z) = 0.

The results above tell us that certain [0, 1]-subcategories of CX are actually equal to CX if
they are closed in CX. To ensure this property, we will work now with Cauchy-complete [0, 1]-
categories. But first we need to make sure that the [0, 1]-category CX is Cauchy-complete.

Lemma 3.2.32. The subset

{(u, v) | u ≤ v} ⊆ [0, 1]× [0, 1]

of the [0, 1]-category [0, 1]× [0, 1] is closed.

Proof. Just observe that {(u, v) | u ≤ v} can be presented as the equaliser of the [0, 1]-functors
∧ : [0, 1]× [0, 1]→ [0, 1] and π1 : [0, 1]× [0, 1]→ [0, 1].

Corollary 3.2.33. For every separated ordered compact space X, the subset

SepOrdComp(X, [0, 1]op) ⊆ [0, 1]|X|

of the [0, 1]-category [0, 1]|X| is closed.

With U : Set→ Set denoting the ultrafilter functor, we write

ξ : U [0, 1] −→ [0, 1], ξ(x) = sup
A∈x

inf
u∈A

u = inf
A∈x

sup
u∈A

u.

for the convergence of the Euclidean topology of [0, 1].

Lemma 3.2.34. For every set X and every ultrafilter x on X, the map

Φx : [0, 1]X −→ [0, 1], ψ 7−→ ξ · Uψ(x)

is a [0, 1]-functor.
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Proof. Since domain and codomain of Φx are both V-copowered, the assertion follows from

ξ · Uψ ≤ ξ · Uψ′ and ξ · U(ψ ⊗ u) = (ξ · Uψ)⊗ u,

for all u ∈ [0, 1] and ψ,ψ′ ∈ [0, 1]X with ψ ≤ ψ′.

Corollary 3.2.35. For every compact Hausdorff space X, the subset

CompHaus(X, [0, 1]) ⊆ [0, 1]|X|

of the [0, 1]-category [0, 1]|X| is closed.

Proof. For an ultrafilter x ∈ UX with convergence point x ∈ X, a map ψ : X → [0, 1] preserves
this convergence if and only if ψ belongs to the equaliser of Φx and πx.

Proposition 3.2.36. For every separated ordered compact space X, the [0, 1]-category CX is
Cauchy-complete.

We will now introduce a category A of [0, 1]-categories which depends on the chosen tensor
⊗ on [0, 1].

For the Łukasiewicz tensor ⊗ = � A is the category with objects all [0, 1]-powered objects
in the category [0, 1]-GLat, and morphisms all those arrows in [0, 1]-GLat that preserve
powers by elements of [0, 1].

For the multiplication ⊗ = ∗ A is the category with objects all [0, 1]-powered objects in
the category [0, 1]-GLat	, and morphisms all those arrows in [0, 1]-GLat	 that preserve
powers by elements of [0, 1].

Remark 3.2.37. The category A over Set is a ℵ1-ary quasivariety and, moreover, a full sub-
category of a finitary variety. Therefore the isomorphisms in A are precisely the bijective
morphisms.

Proposition 3.2.38. Assume that ⊗ = ∗ is the multiplication or ⊗ = � is the Łukasiewicz
tensor. Let m : A → CX be an injective morphism in A so that the cone (m(a) : X →
[0, 1]op)a∈A is point-separating and initial with respect to the forgetful functor into Set. Then
m is an isomorphism in A if and only if A is Cauchy-complete.

Proof. Clearly, if m is an isomorphism, then A is Cauchy-complete since CX is so. The
reverse implication is clear for ⊗ = � by Lemmas 3.2.28 and 3.2.30. Consider now ⊗ = ∗
multiplication. Let ψ ∈ CX. Put ψ′ = 1

2 ∗ ψ + 1
2 , then ψ

′ is monotone and continuous. By
Lemmas 3.2.28 and 3.2.31, ψ′ ∈ im(m) and therefore also ψ = hom(1

2 , ψ
′ 	 1

2) belongs to
im(m).
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Unfortunately we do not know if the [0, 1]-category [0, 1], as an object of A, is a cogenerator.
Therefore, we need to restrict the category A to the largest full subcategory of A where [0, 1]

has this property. We say that an object A of A has enough characters whenever the cone
(ϕ : A→ [0, 1])ϕ of all morphisms into [0, 1] separates the points of A.

Theorem 3.2.39. Let A be an object in A. Then A ' CX in A for some separated ordered
compact space X if and only if A is Cauchy-complete and has enough characters.

Proof. If A ' CX in A, then clearly A is Cauchy-complete and has enough characters. Assume
now that A has these properties. Then, by [Lambek and Rattray, 1979, Proposition 2.4],
X = hom(A, [0, 1]) is a separated ordered compact space with the initial structure relative to
all evaluation maps eva : X → [0, 1]op (a ∈ A). The map m : A → CX, a 7→ eva is injective
since A has enough characters and satisfies the hypothesis of Proposition 3.2.38, hence m is
an isomorphism.

Finally, Theorem 3.2.39 allows us to describe the image of the fully faithful functors of
Theorem 3.2.16 and Corollary 3.2.19. We end this section presenting duality results for the
categories SepOrdCompV and SepOrdComp where the objects on the dual side should be
thought of as “metric distributive lattices”. To do so, we consider now the following categories.

• A[0,1],cc denotes the full subcategory of A defined by the Cauchy-complete objects having
enough characters.

• B[0,1],cc denotes the category with the same objects as A[0,1],cc, and the morphisms of
B[0,1],cc are the finitely cocontinuous [0, 1]-functors which laxly preserve the multiplica-
tion.

Theorem 3.2.40. For ⊗ = ∗ the multiplication or ⊗ = � the Łukasiewicz tensor,

SepOrdCompV ' Bop
[0,1],cc and SepOrdComp ' Aop

[0,1],cc.

Proof. Follows from Theorem 3.2.39 and Remark 3.2.24.
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Chapter 4

Vietoris coalgebras

In this chapter we study properties of categories of coalgebras whose underlying functor
is Vietoris polynomial, intuitively, a topological analogue of a Kripke polynomial functor; we
call such coalgebras Vietoris coalgebras. Part of this work has been published in [Hofmann
et al., 2018a] [Hofmann et al., 2018b]. For an application in computer science, in the context
of hybrid programs, see [Neves, 2018].

In Section 4.1 we prove that the category CoAlg(V )op of coalgebras for the Vietoris functor
on SepOrdComp and certain full subcategories are ℵ1-ary quasivarieties. Actually, the crucial
step is to give a concrete presentation of the algebra structure of SepOrdCompop as an ℵ1-
ary quasivariety, and this is already partly proven in Section 3.2.2. The reader can find the
pertinent definitions and results about quasivarieties in [Adámek and Rosický, 1994].

The results of Section 4.1 imply in particular that the category CoAlg(V ) is complete. In
Section 4.2.2, we deepen our understanding about limits in categories of Vietoris coalgebras
by studying the whole class of Vietoris polynomial functors defined on Top. To prove the
existence of limits, we essentially resort to Theorems 2.5.11 and 2.5.26. It turns out that
a great deal of this section is devoted to the study of preservation of codirected limits by
the compact and the lower Vietoris functors. In particular, we show that the categories
of (suitably defined) Vietoris coalgebras over BooSp, CompHaus, Priest, SepOrdComp and
Haus are complete. Finally, we conclude this thesis by observing that categories of Vietoris
coalgebras over Top have equalisers, (certain) codirected limits and, under some conditions, a
terminal object.

4.1 The quasivariety CoAlg(V )op

In Section 3.2.2 we saw that the category SepOrdCompop is embedded into an ℵ1-ary
quasivariety A of [0, 1]-enriched categories that depend on the choice of the tensor. In this
section we will only consider categories enriched in the quantale determined by the Łukasiewicz
tensor in [0, 1].

67
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We recall that the objects of A are the separated finitely cocomplete [0, 1]-categories with a
monoid structure that admit [0, 1]-powers; the morphisms are the finitely cocontinuous [0, 1]-
functors preserving the monoid structure and the [0, 1]-powers.

Theorem 4.1.1. The functor

C : SepOrdCompop −→ A

sending f : X → Y to Cf : CY → CX, ψ 7→ ψ · f is fully faithful, here the algebraic structure
on

CX = {f : X → [0, 1]op | f is monotone and continuous}

is defined pointwise.

In Theorem 3.2.40 we identified the image of the functor C, however, in way that does
not allow us to immediately conclude that SepOrdCompop is an ℵ1-ary quasivariety because
we resorted to the notion of Cauchy completeness. Nevertheless, the following proposition is
one important consequence of Theorem 3.2.38.

Proposition 4.1.2. The unit interval [0, 1] is ℵ1-copresentable in SepOrdComp.

Proof. This can be shown with the same argument as in [Gabriel and Ulmer, 1971, 6.5.(c)].
Firstly, by Theorem 3.2.39, hom(−, [0, 1]) sends every ℵ1-codirected limit to a jointly surjective
cocone. Secondly, using Theorem 2.5.3, this cocone is a colimit since [0, 1] is ℵ1-copresentable
in CompHaus.

Now, instead of working with Cauchy completeness we wish to add an operation to the
algebraic theory of A such that, if M is closed under this operation in CX, then M is closed
with respect to the topology of the [0, 1]-category CX. As we observed in Remark 3.2.29, this
topology coincides with the usual topology induced by the “sup-metric” on CX.

For compact Hausdorff spaces, the same problem is solved in Isbell [1982] using the oper-
ation

[0, 1]N −→ [0, 1], (un)n∈N 7−→
∞∑
n=0

1

2n+1
un

on [0, 1]. Given a compact Hausdorff space X, Isbell considers the set CX of all continuous
functions X → [−1, 1]. He observes that every subset M ⊆ CX closed under the operation
above (defined now in [−1, 1]), truncated addition and subtraction, is topologically closed. To
see why, let (ϕn)n∈N be a sequence in M with limit ϕ = limn→∞ ϕn, we may assume that
‖ϕn+1 − ϕn‖ ≤ 1

2n+1 , for all n ∈ N. Then

ϕ = ϕ0 +
1

2
(2(ϕ1 − ϕ0)) + · · · ∈M.
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However, this argument cannot be transported directly into the ordered setting since the
difference ϕ1 − ϕ0 of two monotone maps ϕ0, ϕ1 : X → [0, 1] is not necessarily monotone.
To circumvent this problem, in the sequel we look for a monotone and continuous function
[0, 1]N → [0, 1] that calculates the limit of “sufficiently many” sequences.

Lemma 4.1.3. Let M ⊆ CX be a subalgebra in A and ψ ∈ CX with ψ ∈ M . Then there
exists a sequence (ψn)n∈N in M converging to ψ so that

1. (ψn)n∈N is increasing, and

2. for all n ∈ N and all x ∈ X: ψn+1(x)− ψn(x) ≤ 1
2n .

Proof. We can find (ψn)n∈N so that, for all n ∈ N, |ψn(x)− ψ(x)| ≤ 1
n+1 . Then the sequence

(ψn	 1
n+1)n∈N converges to ψ too; moreover, since M ⊆ CX is a subalgebra, also ψn	 1

n+1 ∈
M , for all n ∈ N. Therefore we can assume that we have a sequence (ψn)n∈N in M with
(ψn)n∈N → ψ and ψn ≤ ψ, for all n ∈ N. Then the sequence (ψ0 ∨ · · · ∨ ψn)n∈N has all
its members in M , is increasing and converges to ψ. Finally, there is a subsequence of this
sequence which satisfies the second condition above.

Lemma 4.1.4. Let

C = {(un)n∈N ∈ [0, 1]N | (un)n∈N is increasing and un+1 − un ≤
1

2n
, for all n ∈ N}.

Then every sequence in C is Cauchy and lim: C → [0, 1] is monotone and continuous.

Proof. Clearly, every element of C is a Cauchy sequence and the function lim: C → [0, 1]

is monotone. To see that lim is also continuous, let (un)n∈N ∈ C with and ε > 0. Put
u = limn→∞ un. Choose N ∈ N so that

∑∞
n=N

1
2n <

ε
2 and u− uN < ε

2 . Then

U = {(vn)n∈N ∈ C | |u− vN | <
ε

2
}

is an open neighbourhood of (un)n∈N. For every (vn)n∈N ∈ U with v = limn→∞ vn,

|v − u| ≤ |v − vN |+ |vN − u| <
ε

2
+
ε

2
= ε;

which proves that lim: C → [0, 1] is continuous.

Motivated by the two lemmas above, we are looking for a monotone continuous map
[0, 1]N → [0, 1] which sends every sequence in C to its limit. Such a map can be obtained
by combining lim: C → [0, 1] with a monotone continuous retraction of the inclusion map
C ↪→ [0, 1]N. The following result is straightforward to prove.

Lemma 4.1.5. The map µ : [0, 1]N → [0, 1]N, (un)n∈N 7→ (u0 ∨ · · · ∨un)n∈N is monotone and
continuous.
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Clearly, the map µ sends a sequence to an increasing sequence, and µ((un)n∈N) = (un)n∈N

for every increasing sequence (un)n∈N.

Lemma 4.1.6. The map γ : [0, 1]N → [0, 1]N sending a sequence (un)n∈N to the sequence
(vn)n∈N defined recursively by

v0 = u0 and vn+1 = min

(
un+1, vn +

1

2n

)
is monotone and continuous. Furthermore, γ sends an increasing sequence to an increasing
sequence.

Proof. It is easy to see that γ is monotone. To verify continuity, we consider N as a discrete
topological space, this way [0, 1]N is an exponential in Top. We show that γ corresponds via
the exponential law to a (necessarily continuous) map f : N → [0, 1]([0,1]N). The recursion
data above translate to the conditions

f(0) = π0 and f(n+ 1)((um)m∈N) = min

(
un+1, f(n)((um)m∈N) +

1

2n

)
,

that is, f is defined by the recursion data π0 ∈ [0, 1]([0,1]N) and

[0, 1]([0,1]N) −→ [0, 1]([0,1]N), ϕ 7−→ min

(
πn+1, ϕ+

1

2n

)
.

Note that with ϕ : [0, 1]N → [0, 1] also min
(
πn+1, ϕ+ 1

2n

)
: [0, 1]N → [0, 1] is continuous.

Finally, if (un)n∈N is increasing, then so is (vn)n∈N.

Therefore, the map γ · µ : [0, 1]N → C is a retraction for the inclusion map C → [0, 1]N in
SepOrdComp. Now we can add a new operation to algebraic theory of A.

Definition 4.1.7. Let A be the ℵ1-ary quasivariety obtained by adding one ℵ1-ary opera-
tion symbol to the theory of A (see Remark 2.2.15). Then [0, 1] becomes an object of A by
interpreting this operation symbol by

δ = lim ·γ · µ : [0, 1]N → [0, 1].

The (accordingly modified) functor C : SepOrdComp → A is fully faithful (see Remark
3.2.24); moreover, by Proposition 4.1.2, C sends ℵ1-codirected limits to ℵ1-directed colimits
in A.

Definition 4.1.8. Let A0 be the subcategory of A defined by those objects A that have enough
characters; that is, where the cone of all morphisms from A to [0, 1] is point-separating.

The category A0 is a regular epireflective full subcategory of A and consequently also a
quasivariety. Moreover:
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Theorem 4.1.9. The embedding C : SepOrdCompop → A corestricts to an equivalence functor
C : SepOrdCompop → A0. Thus, A0 is closed in A under ℵ1-directed colimits and therefore
also an ℵ1-ary quasivariety.

From [Adámek and Rosický, 1994, Remark 3.32] it follows immediately.

Corollary 4.1.10. The category A0 is closed in A under ℵ1-directed colimits and therefore is
also an ℵ1-ary quasivariety.

With the present discussion in mind, it is straightforward to verify that the category
CoAlg(V )op of coalgebras for the Vietoris functor on SepOrdComp is an ℵ1-ary quasivariety.

Let B denote the category with the same objects as A and morphisms those maps ϕ : A→
A′ that preserve finite suprema and the action −� u, for all u ∈ [0, 1], and satisfy

ϕ(x} y) ≤ ϕ(x)} ϕ(y),

for all x, y ∈ A.

Theorem 4.1.11. The functor C : SepOrdCompop → A extends to a fully faithful functor
C : SepOrdCompV → B making the diagram

SepOrdCompop
V

C // B

SepOrdCompop

C
//

OO

A0

OO

commutative, where the vertical arrows denote the canonical inclusion functors.

Proof. Follows from Theorem 3.2.23 and Remark 3.2.24.

Clearly, a coalgebra structure X → V X for V can be also interpreted as an endomorphism
X −→◦ X in the Kleisli category SepOrdCompV. Therefore the category CoAlg(V ) is dually
equivalent to the category with objects all pairs (A, a) consisting of an A0 object A and a
B-morphism a : A → A, and a morphism between such pairs (A, a) and (A′, a′) is an A0-
morphism A→ A′ commuting in the obvious sense with a and a′.

Theorem 4.1.12. The category CoAlg(V ) of coalgebras and homomorphisms for the Vietoris
functor V : SepOrdComp→ SepOrdComp is dually equivalent to an ℵ1-ary quasivariety.

Proof. Just consider the algebraic theory of A0 augmented by one unary operation symbol
and by those equations which express that the corresponding operation is a B-morphism.

In particular, CoAlg(V ) is complete and the forgetful functor CoAlg(V ) → SepOrdComp

preserves ℵ1-codirected limits. In fact, in the next sections we will see that slightly more is
true.
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We finish this section by exploring some further consequences of our approach for certain
full subcategories of CoAlg(V ). We are guided by familiar concepts, namely reflexive and
transitive relations; but our arguments apply to other concepts as well, such as idempotent
relations, for example.

Still thinking of a coalgebra structure α : X → V X as an endomorphism α : X −→◦ X in
SepOrdCompV, we say that α is reflexive whenever 1X ≤ α in SepOrdCompV, and α is called
transitive whenever α◦α ≤ α in SepOrdCompV; with the local order in SepOrdCompV being
inclusion.

Proposition 4.1.13. The full subcategory of CoAlg(V ) defined by all reflexive (or transitive
or reflexive and transitive) coalgebras is dually equivalent to an ℵ1-ary quasivariety. Moreover,
this subcategory is coreflective in CoAlg(V ) and closed under ℵ1-directed limits.

Proof. Clearly, the functor C : SepOrdCompV → B preserves the local order of morphisms
defined pointwise; by Proposition 2.3.9 it also reflects it. Therefore, considering the corre-
sponding B-morphism a : A → A, the inequalities expressing reflexivity and transitivity can
be formulated as equations in A. Then the assertion follows from [Adámek and Rosický, 1994,
Theorem 1.66].

For a classM of monomorphisms in CoAlg(V ), a coalgebra X for V is called coorthog-
onal whenever, for all m : A → B in M and all homomorphisms f : X → B there exists a
(necessarily unique) homomorphism g : X → A with m · g = f (see [Adámek and Rosický,
1994, Definition 1.32] for the dual notion). We writeM> for the full subcategory of CoAlg(V )

defined by those coalgebras which are coorthogonal to M. From the dual of [Adámek and
Rosický, 1994, Theorem 1.39] we obtain:

Proposition 4.1.14. For every setM of monomorphisms in CoAlg(V ), the inclusion functor
M> ↪→ CoAlg(V ) has a right adjoint. Moreover, if λ denotes a regular cardinal larger or equal
to ℵ1 so that, for every arrow m ∈ M, the domain and codomain of m is λ-copresentable,
thenM> ↪→ CoAlg(V ) is closed under λ-codirected limits.

Another way of specifying full subcategories of CoAlg(V ) uses coequations (see [Adámek,
2005, Definition 4.18]). For the Vietoris functor, the latter is a particular case of coorthogo-
nality, and therefore we obtain the following result.

Corollary 4.1.15. For every set of coequations in CoAlg(V ), the full subcategory of CoAlg(V )

defined by these coequations is coreflective.

4.2 Limits in coalgebras

We start by introducing the notion of polynomial functor at a generic level; the set-based
formulation and some applications can be found in Bonsangue et al. [2009]; Jacobs [2012].
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Definition 4.2.1. Let C be distributive category. A polynomial functor on C is an element
of the smallest class of endofunctors on C that contains the identity functor, all constant
functors, and is closed under products and sums of functors. Here, for functors F,G : C→ C,
the product of F and G, and the sum of F and G are, respectively, the composites

C
〈F,G〉−−−−→ C× C

×−→ C, and C
〈F,G〉−−−−→ C× C

+−→ C.

Remark 4.2.2. Note that limits of a certain type that are preserved by the functors F,G : C→
C, are also preserved by the functor F ×G : C→ C.

Remark 4.2.3. A reader from computer science will quickly realise that a polynomial functor
is recursively defined from the grammar below

F ::= F + F | F × F | A | Id

where A corresponds to an object of C.

In the next section we abstract slightly that polynomial functors in Top are liftings of
polynomial functors in Set and show that categories of coalgebras of polynomial functors
defined in similar categories admit the same type of limits. Then, in Section 4.2.2, we study
limits in categories of coalgebras whose underlying functor is a topological analogue of the set
theoretical notion of Kripke polynomial functor.

Definition 4.2.4. Let C be a distributive subcategory of Top such that the lower Vietoris
functor (see Section 2.4) restricts to C. We call a functor lower Vietoris polynomial on
Cif it belongs to the smallest class of endofunctors on C that contains the identity functor,
all constant functors, the lower Vietoris functor and is closed under products and sums of
functors.

Similarly, if we consider the compact Vietoris functor (see Section 2.4) instead of the lower
one, then we speak of a compact Vietoris polynomial functor.

AVietoris coalgebra is a coalgebra whose underlying functor is lower or compact Vietoris
polynomial.

Our study of limits in categories of Vietoris coalgebras will consist essentially in determin-
ing conditions that guarantee completeness or, at least, that a terminal coalgebra exists. The
following theorems summarise our basic strategic in each case; for more details see Section 2.5.

It is well-known that the category Top is regularly wellpowered, (co)complete and has an
(Epi, RegMono)-factorisation structure (for example, see Adámek et al. [1990]). Therefore,

Corollary 4.2.5. If a functor F : Top→ Top preserves regular monomorphisms and codirected
limits then the category of coalgebras of F is complete.
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In the sequel we will see that, in our case of study, the preservation of regular monomor-
phisms is not a hard problem. In fact, the theme of this section is to study the preservation
of codirected limits by Vietoris functors in suitable subcategories of Top.

4.2.1 Polynomial functors

The case of polynomial functors in Top is straightforward. To apply Corollary 4.2.5 first
we need to show that polynomial functors preserve regular monomorphisms and codirected
limits. We can do it at once by proving that polynomial functors in Top preserve connected
limits.

Proposition 4.2.6. The functor (+): Top× Top→ Top preserves connected limits.

Proof. It is well-known that the functor (+): Set×Set→ Set preserves connected limits , and
it is simple to see that (+): Top × Top → Top preserves initial cones. Therefore, the claim
follows from Theorem 2.3.18.

Corollary 4.2.7. If functors F,G : Top → Top preserve connected limits, then the functor
F +G : Top→ Top preserves connected limits as well.

Theorem 4.2.8. Every polynomial functor F : Top→ Top preserves connected limits.

Proof. Clearly the identity functor Id : Top → Top preserves all limits, and the constant
functor A : Top → Top trivially preserves connected limits. The claim now follows from
Remark 4.2.2 and Corollary 4.2.7.

Proposition 4.2.9. Every polynomial functor F : Top → Top preserves regular monomor-
phisms.

Proof. A regular monomorphism is a limit of a connected diagram: a pair of parallel mor-
phisms.

Therefore,

Theorem 4.2.10. If F : Top → Top is a polynomial functor, the category CoAlg(F ) is com-
plete.

Motivated by the proximity between the cases of polynomial functors in Top and Set, we
will be looking now for an indirect way of reasoning about limits in categories of coalgebras.
The general idea is that starting with categories A and B linked by a functor that lifts “suffi-
ciently many” cones in B, then for a functor F : A→ A for which there is a functor F : B→ B

that makes the diagram

A
F //

U
��

A

U
��

B
F
// B
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commute, we should be able to reason about limits in CoAlg(F ) using our knowledge of limits
in CoAlg(F ). We begin by introducing the functor U : CoAlg(F )→ CoAlg(F ).

Proposition 4.2.11. Let U : A → B, F : A → A and F : B → B be functors such that
UF = FU . The assignments

U(X, c) = (UX,Uc), Uf = Uf

define a functor U : CoAlg(F )→ CoAlg(F ) that makes the diagram below commute.

CoAlg(F ) //

U
��

A

U

��
CoAlg(F ) // B

Conceptually, we want to start with a diagram in CoAlg(F ), take its image under U , cal-
culate the corresponding limit in CoAlg(F ) and then lift it to a limit in CoAlg(F ). Technically,
this creates two problems: we need to guarantee that the functor U : A→ B lifts U -structured
cones coming from limits in CoAlg(F ) and that we can equip these lifts with an appropriate
coalgebra structure. Of course, we can solve the first problem by forcing U to lift every U -
structured cone, however, this disregards any useful information that we might know about
limits in CoAlg(F ). For example, we might be interested in limits that F preserves, or in
limits that happen to be monocones in B. Therefore, we consider the next definition.

Definition 4.2.12. Let U : A → B be a functor and M a class of cones in B. The functor
U is said to be M-topological if every U -structured cone in M admits a U-initial lift. We
denote by U−1M the class of cones in A that are U -initial lifts of U -structured cones inM.

The next theorem affirms that we can solve our second problem if F sends certain U -initial
cones to U -initial cones.

Theorem 4.2.13. Let M be a class of cones in B and MB the class of cones in CoAlg(F )

whose underlying cone in B belongs toM. If U isM-topological and F sends U -initial cones
in U−1M to U -initial cones, then U isMB-topological.

Proof. Let (fi : (B, b)→ U(Ai, ai))i∈I be a cone in CoAlg(F ) whose underlying cone is inM.
Then, by assumption, the cone (fi : B → UAi))i∈I admits a U -initial lift

(f i : A→ Ai)i∈I

to a cone in A. Thus, the cone (F f i : FA→ FAi)i∈I is also U -initial, as F : A→ A preserves
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U -initial cones in U−1M. Moreover, note that for every i ∈ I the following equations hold

U

(
A

f i→ Ai
ai→ FAi

)
= B

fi→ UAi
Uai→ FUAi

U

(
FA

F f i→ FAi

)
= FB

Ffi→ FUAi,

and that we have the factorisation

B
fi //

b
��

UAi

Uai
��

FB
Ffi
// FUAi.

Since (F f i : FA→ FAi)i∈I is U -initial, there is a coalgebra structure a : A→ FA such that
Ua = b and that the diagram below commutes.

A
f i //

a
��

Ai

ai
��

FA
F f i

// FAi

Therefore, we obtain a cone (f i : (A, a) → (Ai, ai))i∈I in CoAlg(F ) whose image under U is
(fi : (B, b)→ U(Ai, ai))i∈I. To show that this cone is U -initial, let (gi : (Z, z)→ (A, ai))i∈I be
a cone in CoAlg(F ) such that its image under U factorises in CoAlg(F ) as depicted below.

U(Z, z)

h
��

Ugi

%%
U(A, a)

U f i

// U(Ai, ai)

Then, because (f i : A→ Ai)i∈I is U -initial, there is a unique morphism h : Z → A in A such
that Uh = h and gi = f i · h, for every i ∈ I. This morphism is actually a morphism of type
(Z, z)→ (A, a) in CoAlg(F ). To see why, observe that the follow diagram commutes

UZ
h //

Uz
��

B
fi //

b
��

UAi

Uai
��

FUZ
Fh
// FB

Ffi
// FUAi

,
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and corresponds to the image under U of the diagram

Z
h //

z
��

A
f i //

a
��

Ai

ai
��

FZ
F h

// FA
F f i

// FAi

.

Since (F f i : FA→ FAi)i∈I is U -initial, we conclude that the square on the left in the diagram
above commutes, which means that h : (Z, z)→ (A, a) is a morphism in CoAlg(F ).

Under the conditions of the result above, we obtain

Corollary 4.2.14. If the functor U : A → B is topological, then the functor U : CoAlg(F ) →
CoAlg(F ) is topological as well.

But even if functor U : A → B is not topological, we can show that some limits exist,
assuming that U lifts “sufficiently many” cones. For example:

Corollary 4.2.15. Take M as the class of limits in B of shape I. If F preserves limits of
shape I, then CoAlg(F ) has limits of shape I.

The forgetful functor Top→ Set is topological (see Adámek [2005]) and it is straightforward
to show that every polynomial functor over Top preserves initial cones. This way, we obtain
another proof for the fact that every category of coalgebras of a polynomial functor over Top
is complete.

4.2.2 Vietoris polynomial functors

In Section 4.2.1 we studied limits in categories of polynomial coalgebras in Top, essentially
by analysing the preservation of connected limits. The next examples reveal that the same
strategy does not work for Vietoris polynomial functors.

Examples 4.2.16. 1. Consider I = N with the natural order, and the functor D : N→ Set

that sends n ≤ m to the inclusion map {0, . . . n} ↪→ {0, . . . ,m}. Clearly, the set of
natural numbers N is a colimit of this directed diagram. Then, the composite Set(−,N) ·
Dop : Nop → Set yields a codirected diagram with limit Set(N,N), the limit projections
pn : Set(N,N)→ Set(D(n),N) being given by restriction. We obtain a codirected limit
in Top by equipping all sets with the indiscrete topology. The compact Vietoris functor
does not send this limit to a monocone since (V pn)n∈N cannot distinguish between the
sets Set(N,N) and

{f : N→ N | {n ∈ N | f(n) 6= 0} is finite}.
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2. This example is based on the “empty inverse limit” of Waterhouse [1972]. Take I as the
set of all finite subsets of R, with order being containment ⊇. Consider the codirected
diagram D : I→ Top that sends every F ∈ I to the discrete space of all injective functions
D(F ), and every map G ⊇ F to the function D(G ⊇ F ) given by restriction. Note that
each connecting map D(G ⊇ F ) is surjective. The limit of this diagram is necessarily
empty otherwise its elements would define injective functions R→ N. The lower Vietoris
functor sends the limit cone for D to a monocone but not to a limit cone since the limit
of VD has at least two elements: (∅)F∈I and (D(F ))F∈I. Using the indiscrete topology
instead of the discrete, we can show that the lower Vietoris functor does not preserve
codirected limits of diagrams of compact spaces and closed maps.

3. In the example above its is possible to use other topologies to show that the lower and
the compact Vietoris functor do not preserve certain codirected limits. For example,
consider N equipped with the topology

{↑n | n ∈ N} ∪ {∅};

Note that N is T0 and every non-empty collection of open subsets of N has a largest
element with respect to inclusion ⊆. The latter implies that, for every finite set F , every
subset of NF is compact. To see why, let C ⊆ NF and assume that C is covered by
subbasic open subsets of NF :

C ⊆
⋃
λ∈Λ

π−1
iλ

[↑nλ].

Observe that the set K = {iλ | λ ∈ Λ} ⊆ F is finite. For every i ∈ K, let ki = min{nλ |
λ ∈ Λ, iλ = i}. Then

C ⊆
⋃
i∈K

π−1
i [↑ki].

Therefore, by Alexander’s Subbase Theorem (see [Kelley, 1975]), we conclude that C is
compact.

With I defined as in the previous example, we consider now D(F ) as a subspace of NF .
Then, for every G ⊇ F , the map D(G ⊇ F ) : D(G) → D(F ) is continuous. Thus, this
construction defines a codirected diagramD : I→ Top with empty limit where eachD(F )

is T0, compact, and locally compact; neither the lower nor the compact Vietoris functor
preserve it, as we can see by following the same argument of the previous example.

Despite the examples above, in the sequel we will see that the Vietoris functors are well-
behaved with respect to initial codirected monocones and regular monomorphisms.

Lemma 4.2.17. Let X be a topological space and B a base for the topology of X.

1. The set {B3 | B ∈ B} is a subbase for the lower Vietoris space VX (see Section 2.4).
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2. If B is closed under finite unions, then the set {B3 | B ∈ B}∪{B2 | B ∈ B} is a subbase
for the compact Vietoris space VX (se Section 2.4).

Proof. Let S be a set of open subsets of X. First note that, for both the lower and the compact
Vietoris space, (⋃

S
)3

=
⋃
{S3 | S ∈ S} .

This proves the first statement. To see that the second one is also true, observe that(⋃
S
)2

=
⋃{(⋃

F
)2
| F ⊆ S finite

}
since we only consider compact subsets of X.

Lemma 4.2.18. Both the compact and the lower Vietoris functor V : Top → Top preserve
initial codirected cones.

Proof. Let (fi : X → Xi)i∈I be an initial codirected cone in Top. Then the set

{
f−1
i (U) | i ∈ I, U ⊆ Xi open

}
is a base for the topology of X (Remark 2.3.17). Moreover, the base is closed under finite
unions. Therefore, by the lemma above, the proof follows from the equations

((fi)
−1(U))2 = (Vfi)

−1(U2) ((fi)
−1(U))3 = (Vfi)

−1 (U3) ,

for all i ∈ I and U ⊆ Xi open, which are straightforward to show.

Theorem 4.2.19. The lower Vietoris functor preserves initial codirected monocones. The
compact Vietoris functor preserves initial codirected monocones of Hausdorff spaces.

Proof. First note that for a topological space X the lower Vietoris space VX is T0, and if X
is Hausdorff the compact Vietoris space VX is Hausdorff as well (see Michael [1951]) . Then
recall that a initial cone in Top whose domain is T0 (or T2) is necessarily mono and apply
Lemma 4.2.18.

Remark 4.2.20. The assumption about codirectedness is essential: in general, neither the
compact nor the lower Vietoris functor V : Top→ Top preserve monocones. Take, for instance,
a compact Hausdorff space X with at least two elements. Then ∆ = {(x, x) | x ∈ X} is a
closed subset of X ×X, and ∆ is different from X ×X. Therefore, with π1 : X ×X → X and
π2 : X ×X → X denoting the projection maps,

Vπ1(∆) = Vπ1(X ×X) = X = Vπ2(∆) = Vπ2(X ×X);

which shows that the cone (Vπ1 : V(X ×X)→ VX,Vπ2 : V(X ×X)→ VX) is not mono.
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Together with Proposition 4.2.9 it follows:

Corollary 4.2.21. Every compact Vietoris polynomial functor and every lower Vietoris poly-
nomial functor defined on Top preserves regular monomorphisms.

Proof. We already saw that all polynomial functors preserve regular monomorphisms in Propo-
sition 4.2.9, and that the lower Vietoris functor preserves them as well in Theorem 4.2.19.
Moreover, we saw that the compact Vietoris functor preserves initial codirected cones in
Lemma 4.2.18, and it is straightforward to show that it preserves monomorphisms.

From Theorem 4.2.19 and Corollary 2.5.22 we obtain the following results.

Corollary 4.2.22. For every lower Vietoris polynomial functor F : Top → Top the category
CoAlg(F ) has codirected limits. For every compact Vietoris polynomial functor F : Top→ Top

the category CoAlg(F ) has codirected limits of Hausdorff spaces.

Proof. Let I be a codirected set and M the class of all initial monocones of shape I in Top.
It is easy to see that polynomial functors preserve initial cones, and, by Theorem 4.2.19, the
lower Vietoris functor preserves initial codirected monocones. Moreover, the category Top

is (Epi, InitialMono)-structured for cones (for instance, see [Adámek et al., 1990, Exam-
ples 10.2(4) and 15.3(6)]) and it is clearly M-wellpowered. Thus, the assertion follows from
Theorem 2.5.22. The case of the compact Vietoris functor is analogous.

Corollary 4.2.23. For every Vietoris polynomial functor F : Top → Top, the category of
coalgebras CoAlg(F ) has equalisers.

Proof. Direct consequence of Theorem 2.5.25 and Corollary 4.2.21.

The previous discussion highlights that we cannot apply Theorem 2.5.26 to every Vietoris
polynomial functor on Top because, in general, Vietoris functors do not preserve codirected
limits. We can fix this by focusing on a suitable subcategory of topological spaces. Since
we still want to reason about terminal coalgebras over Top, it is natural to require that the
diagram

1←− F1←− FF1←− . . .

in Top can be formed in such subcategory, and that the corresponding inclusion functor into
Top behaves in a way that allows us to “import or export” properties about limits from or to
Top. The next elementary propositions describe two useful situations.

Proposition 4.2.24. Let F : A → A, F : B → B and U : A → B be functors such that
UF = FU . If F preserves a limit L and U preserves the limit F (L), then F preserves the
limit U(L).
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Proposition 4.2.25. Let F : A → A, F : B → B and U : A → B be functors such that
UF = FU and U preserves and reflects limits of shape I. If F preserves limits of shape I then
F preserves limits of shape I.

Proof. Consider a limit L of shape I. Since F and U preserve limits, FU(L) = UF (L) is a
limit. Therefore, F (L) is a limit because U reflects limits of shape I.

In the sequel we will see that the category StablyComp of stably compact spaces and spec-
tral maps serves our intents. As mentioned in Section 2.3 the inclusion functor StablyComp→
Top is monadic (see Simmons [1982]), which in particular implies that it creates limits and
reflects isomorphisms. Additionally, stably compact spaces can be described in terms of or-
dered topological structures. In fact, the category StablyComp is isomorphic to the category
SepOrdComp of separated ordered compact spaces as described in Section 2.3. We recall from
Proposition 2.4.3 that the counterpart of the lower Vietoris functor on SepOrdComp, that
we also denote by V , sends a separated ordered compact space X to the space VX of all
upper-closed subsets of X, with order containment ⊇, and compact topology generated by the
sets

{A ∈ V X | A ∩ U 6= ∅} (U ⊆ X lower-open),(4.2.i)

{A ∈ V X | A ∩K = ∅} (K ⊆ X lower-closed).

Given a map f : X → Y in SepOrdComp, the functor V returns the map V f that sends a
upper-closed subset A ⊆ X to the up-closure ↑f [A] of f [A]. Thus, as a side effect, we can study
preservation of limits by the compact Vietoris functor on CompHaus by studying preservation
of limits by the lower Vietoris functor on StablyComp. The reason is that the compact Vietoris
functor on CompHaus is the composite

CompHaus
discrete−−−−→ SepOrdComp

V−→ SepOrdComp
forgetful−−−−−→ CompHaus;

where, being right adjoints, the “discrete” and “forgetful” functors preserve limits
Therefore, we turn now to the specific problem of showing that the lower Vietoris functor

V : StablyComp→ StablyComp preserves codirected limits.
A codirected limit of a diagram D : I→ StablyComp is given by the subspace

(4.2.ii)

{
(xi)i∈I ∈

∏
i∈I

D(i) | ∀j → i ∈ I, D(j → i)(xj) = xi

}

of the product space
∏
i∈ID(i) together with the restrictions of the projection maps. And, for

every limit cone (pi : LD → D(i))i∈I, the canonical comparison map from h : VLD → LVD is
defined by

K 7→ (pi[K])i∈I.
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In Theorem 4.2.19 we saw that the lower Vietoris functor preserves codirected initial mono-
cones. This implies immediately that the comparison map h : VLD → LVD is an embedding.
Then, to show that V : StablyComp → StablyComp preserves codirected limits, we are left
with the task of proving that h is also surjective. To do so, it seems easier to consider stably
compact spaces as separated ordered compact spaces.

For compact Hausdorff spaces, we could invert h by observing that an element of LVD

defines a codirected diagram of surjective maps in CompHaus, and that by taking its limit we
get an element of VLD. We can use the same idea for arbitrary separated ordered compact
spaces, but then an element of LVD defines a codirect diagram of “order dense” maps. This
procedure still works because, as we will see next, the category SepOrdComp inherits the nice
characterisation of codirected limits described in Theorem 2.5.3.

Proposition 4.2.26. Let A be a codirected set of closed subsets of a separated ordered compact
space X. Then, ↑

⋂
A∈AA =

⋂
A∈A ↑A.

Proof. Clearly, ↑
⋂
A∈AA ⊆

⋂
A∈A ↑A. To show that the reverse inequality holds, consider

z ∈
⋂
A∈A ↑A. Then, for every A ∈ A, the set ↓z ∩A is non-empty, and closed because {z} is

compact (see Proposition 2.3.7). Moreover, since A is codirected, the set {↑z∩A | A ∈ A} has
the finite intersection property. Therefore, by compactness, it follows that ↓z ∩

⋂
A∈AA 6= ∅,

which implies that z ∈ ↑
⋂
A∈AA.

Proposition 4.2.27. Let D : I → SepOrdComp be a codirected diagram, (pi : LD → D(i))i∈I

a limit for D and (LVD → VD(i))i∈I a limit for VD : I → SepOrdComp. Then the function
h : VLD → LVD defined by K 7→ (↑pi[K])i∈I is surjective.

Proof. Let (Ki)i∈I ∈ LVD. For every i ∈ I, Ki ⊆ D(i) is closed, hence, Ki ∈ SepOrdComp. For
every i ∈ I and j → i ∈ I, take K(i) as Ki and K(j → i) as the continuous and monotone map
of type Kj → Ki given by the restriction of D(j → i) to Kj . This way, by the description
4.2.ii , we obtain a codirected diagram K : I → SepOrdComp such that for every j → i ∈ I,
↑K(j → i)[K(j)] = [K(i)].

Let (pi : LK → K(i))i∈I be a limit for K. By construction, LK ⊆ LD is upper-closed.
Thus, LK ∈ VLD. We claim that h(Lk) = (Ki)i∈I. Let i0 ∈ I. Since the following diagram of
forgetful functors

SepOrdComp

$$

// CompHaus

{{
Set

commutes and the functor SepOrdComp → CompHaus preserves limits, from Theorem 2.5.3
we obtain

pi0 [LK ] =
⋂
j→i0

K(j → i0)[Kj ].
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Therefore, by Proposition 4.2.26,

↑pi0 [LK ] = ↑
⋂
j→i0

K(j → i0)[K(j)] =
⋂
j→i0

↑K(j → i0)[K(j)] = Ki0 .

As expected, we obtain

Theorem 4.2.28. The lower Vietoris functor V : StablyComp → StablyComp preserves codi-
rected limits.

Accordingly, for the category of compact Hausdorff spaces it follows

Corollary 4.2.29. The compact Vietoris V : CompHaus → CompHaus preserves codirected
limits.

The starting point of the idea behind the proof of Proposition 4.2.27 is that an element of
LVD defines a codirected diagram of compact Hausdorff spaces. Of course, we do not need our
space to be compact to end up in such a situation, we just need it to be Hausdorff. Therefore,
with the same idea, we have

Theorem 4.2.30 (Zenor [1970]). The compact Vietoris functor V : Haus → Haus preserves
codirected limits.

An extensive study of Vietoris coalgebras can be also found in Kupke et al. [2004] and
[Bonsangue et al., 2007]. The former considers compact Vietoris polynomial functors on the
category BooSp, and the latter coalgebras for the lower Vietoris functor on the category Spec.
To relate the results of this section with Kupke et al. [2004] and [Bonsangue et al., 2007],
in the sequel we will see that the lower Vietoris functor on Spec and the compact Vietoris
functor on BooSp preserve codirected limits. In particular, this will allow us to show that
the category of coalgebras of a compact Vietoris polynomial functor on the category BooSp

is complete, which expands a result of Kupke et al. [2004] that guarantees the existence of a
terminal coagebra. Again, we can study both cases simultaneously: as described at the end
of Section 2.4, the compact Vietoris on BooSp is the composite of the functors

BooSp
discrete−−−−→ Priest ' Spec

V−→ Spec ' Priest
forgetful−−−−−→ BooSp;

where being right adjoints, the “discrete” and “forgetful” functors preserve limits.

Theorem 4.2.31. The lower Vietoris functor V : Spec→ Spec preserves codirected limits.

Proof. The lower Vietoris polynomial functor on Spec is the restriction of the lower Vi-
etoris functor on StablyComp (see Proposition 2.4.2). By Proposition 2.3.23, the functor
Spec→ StablyComp preserves and reflects limits, therefore, the assertion follows from Propo-
sition 4.2.25.
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Accordingly, for the category BooSp we obtain

Corollary 4.2.32. The compact Vietoris functor V : BooSp → BooSp preserves codirected
limits.

Getting back to limits in categories of Vietoris coalgebras, to apply Theorem 2.5.26 first
we need to show that Vietoris polynomial functors preserve codirected limits.

Proposition 4.2.33. Every lower Vietoris polynomial functor on StablyComp or Spec pre-
serves codirected limits. Similarly, every compact Vietoris polynomial functor on the categories
Haus, CompHaus or BooSp preserves codirected limits.

Proof. We have already seen in Corollaries 4.2.29, 4.2.32, and Theorems 4.2.28 4.2.31 4.2.30
that the lower and the compact Vietoris functors on the appropriate categories preserve codi-
rected limits. Regarding polynomial functors, we can proceed as described in Theorem 4.2.8
for the category Top, since the inclusion functors into Top preserve finite coproducts (see
Theorem 2.3.4 and Proposition 2.3.25).

Therefore,

Theorem 4.2.34. The category of coalgebras of a lower Vietoris polynomial functor on
StablyComp or Spec is complete. Similarly, the category of coalgebras of a compact Vietoris
polynomial functor on Haus, CompHaus or BooSp is complete.

Proof. Being an epireflective subcategory of Top (for example, see [Adámek et al., 1990]),
the category Haus is complete, cocomplete, and wellpowered. Moreover, it has a (Surjection,
Embedding)-structure because it is a full subcategory of Top closed under subspace embed-
dings in Top. Thus, from Proposition 2.3.25 and Theorems 2.3.4, 2.3.14, we conclude that
each category of the theorem satisfies the assumptions of Theorem 2.5.26. We have already
seen that compact and lower Vietoris polynomial functors preserve subspace embeddings in
Corollary 4.2.21 and that they preserve codirected limits in the corresponding categories in
Proposition 4.2.33. Therefore, the assertion follows from Theorem 2.5.26.

Regarding Vietoris polynomial functors on Top, we can improve slightly our results.

Proposition 4.2.35. Every lower Vietoris polynomial functor on Top that restricts to the cat-
egory StablyComp admits a terminal coalgebra. Similarly, every compact Vietoris polynomial
functor on Top that restricts to Haus admits a terminal coalgebra.

Proof. For a lower Vietoris polynomial functor F : Top→ Top satisfying the condition of the
proposition, the diagram

1←− F1←− FF1←− . . .

in Top can be formed in the category StablyComp. Therefore, the assertion follows from
Proposition 4.2.24 and Theorem 2.5.11 because the inclusion functor StablyComp → Top
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preserves limits. The claim for compact Vietoris polynomial functors follows in a similar way
since the inclusion functor Haus→ Top also preserves limits (see [Makkai and Paré, 1990]).

Finally, recalling Corollaries 4.2.22 and 4.2.23 we conclude:

Theorem 4.2.36. The category of coalgebras of a lower Vietoris polynomial on Top has
equalisers and codirect limits; moreover, if the functor restricts to StablyComp, it has a terminal
object.

Theorem 4.2.37. The category of coalgebras of a compact Vietoris polynomial on Top has
equalisers and codirect limits of Hausdorff spaces; moreover, if the functor restricts to Haus,
it has a terminal object.
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