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Preface

It is a pleasure to introduce this volume, a collection of several papers presented at the
International Symposium on Molecular Logic and Computational Synthetic Biology,
which took place in Santiago de Chile, during December 17–18, 2018. Molecular logic,
which focuses on computing logical operations on molecules, is a fruitful conceptual
crossover between chemistry and computation. One of the goals of the symposium was
to explore the potential of molecular logic frameworks to study the emerging
behavioral patterns in biological networks, combining discrete, continuous, and
stochastic features, and resorting both to specific or general-purpose analysis and
verification techniques.

As a motivation for this symposium, the remarkable and fascinating advances in
synthetic biology, which permit us to construct de novo circuits with biological
components to perform specific functions. To cite only a few among many interesting
examples, synthetic circuits have been constructed for autonomous oscillators in
bacterial or mammalian cells (see the work of Elowitz and Leibler in Nature 403, 2000,
or that of Tigges and co-authors in Nature 457, 2009), reproduce logical gates (see the
work of Gander and co-authors in Nature Communications 8, 2017), or yet
synthetically control an existent component, such as the growth switch for management
of resource allocation presented by one of the keynote speakers, H. de Jong (see PLoS
Comp. Biol. 12, 2016). Synthetic biology can also be viewed as a powerful tool for
“classic” biology, since the reconstruction of a “natural” system allows for a better
understanding of its mechanism and function. The engineering and implementation
of these synthetic systems poses very challenging problems from a biological point of
view: there are difficulties inherent to choosing suitable components and assembling
them in a cellular environment; this often introduces context-dependent technical
complications and raises the question of how to guarantee that each circuit part behaves
as predicted, once they are connected with each other in a given environment (see the
work of Del Vecchio in Trends in Biotechnology 33, 2015).

To overcome these challenges in the design of synthetic biology circuits, a first
fundamental step is the mathematical modeling of the synthetic system, to analyze the
interaction between its components and predict its dynamical behavior in different
situations and in response to a variety of signals and stimuli. In accordance with the
driving themes of the symposium, two common guidelines can be identified throughout
all contributions to this volume: first, the modeling, analysis and understanding of
interaction networks for biological systems; and, second, the methodology used to
represent and study these biological interaction networks, based on hybrid or logic
frameworks.

Here, a biological system is generally understood as a family of biological
components or species, which interact to influence, regulate, or control each other’s
behavior. The interaction network represents the laws that govern the behavior of the
biological system and permit us to study the time evolution of the system, its dynamics



as an emergent property of the structure of interactions among the system’s compo-
nents. Most of the papers presented at the symposium focused on gene regulatory
networks, which describe gene and protein expression in response to various forms of
stimuli; other examples include chemical reaction networks and a disease spreading
network.

At the methodological level there is a common search for frameworks that contain a
high level of abstraction but nevertheless retain a good capacity for quantitative
description and computation. This search leads to the development of methods that
bridge the gap between continuous and discrete models, such as hybrid or piecewise
affine models, temporal and linear logics, as well as different extensions of Boolean
networks. These logic-based frameworks offer multiple advantages: Because they
require a lower level of detail, such methods are suitable for representing large and
complex systems, which often include many non-measured variables and unknown
parameters. There is a large range of algorithms and computational tools (formal
verification tools such as model checking; dynamic logics; graph analysis tools) that
can be used to implement, interrogate, expand, and analyze the models.

This volume opens with two survey papers, for a welcome overview of the history
and state of the art on the main topics of the symposium. The remaining papers in this
collection are grouped into four sections, dedicated to hybrid and switching methods,
Boolean models, biochemical reaction networks, and ending with specific examples of
applications to gene regulatory networks.

Surveys: The first survey, by Fuentes et al., traces the history of molecular logic in
biology and chemistry. In their discussion, the authors examine the pertinence of a using
a molecular logic philosophy to model biological systems, based on the observation that
the intracellular processes in biological organisms often appear to satisfy some “logical
operations.” This survey also briefly reviews four logical modeling frameworks, with a
focus on Boolean models, whose dynamics are governed by a set of logical rules.

The second survey is authored by one of the symposium’s keynote speakers,
A. Madeira, who overviews formal verification methods based on dynamic logic. The
formalisms that form the basis of dynamic logic are briefly introduced, followed by a
discussion of several contributions to the systematic building of multi-valued dynamic
logics. This generic method opens the way to a tailored construction of dynamical
logics (targeted at synthetic biology, for instance), based on the definition of suitable
atomic programs.

Hybrid and switching continuous models: This section contains two papers
dealing with hybrid models that combine continuous dynamics with discrete jumps.

The work of Rocha characterizes the dynamics of a basic model for disease spread
consisting of three variables, the populations of susceptible, infected, and recovered
(SIR) individuals, together with a strategy for agent intervention. The rate of infection
is given by a piecewise linear function of time, where switching times are determined
by the agent strategy. This hybrid SIR model is more flexible and generates a larger set
of solution profiles then standard SIR models.

In the second paper of this section, Huttinga et al. introduce a class of switching
differential equations where the production or synthesis rates are piecewise constant
and the degradation rates may satisfy certain nonlinear properties. The authors show
that these new systems still admit a finite partition of the state space and the parameter
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space can also be decomposed into a finite number of regions. This combinatorial-
ization of state and parameter spaces allows for the calculation of discrete state tran-
sition graphs, which represent the global dynamics of the system across all parameters.

Extensions of Boolean networks and dynamic logic: Two papers compose this
section dedicated to extensions of Boolean models.

Figueiredo et al. propose to include reactive modeling into Boolean networks: this
means that the edges in the directed graph can be altered as the system evolves. The
authors then find a relationship between the attractors of standard Boolean networks
and those of reactive Boolean networks, and also between these and the steady states of
a corresponding piecewise linear model.

Goldfeder et al. develop software tools for abstract Boolean networks, a class of
models where the updating rules are only partially known. In this tool, experimental
observations can be encoded in linear temporal logic. Model checking tools can then be
used to verify the properties and dynamics of the network motifs.

Biochemical reaction networks: In this section, Veloz et al. analyze a special class
of biochemical reaction networks, called “closed reaction networks,” which satisfy a set
of well-defined formal properties and provides relationships between topological
properties of the networks and its dynamical stability. They introduce the notion of
separability to decompose a closed network into its parts and better characterize the
dynamics of each part.

Two application examples: Finally, two applications to specific biological systems
are presented.

A model for breast cancer progression is developed and studied by Despeyroux et al.
More precisely, the dynamics of circulating tumor cells are modeled as a set of rules in
linear logic, a framework which allows the authors to establish reachability properties
of the model, as well as the existence of oscillations, using the Coq proof assistant.

The second paper, by Berríos et al., analyzes imaging data originating from mouse
meiosis, which is a specific form of cell division. The goal is to determine the surface
taken by chromatin in each image. The tools used for image analysis are a clustering
process based on random chromatin neighborhoods and an association process called
“P-percolation.”

We would like to acknowledge two sources of support: The symposium was
promoted by the project Klee - Coalgebraic Modeling and Analysis for Computational
Synthetic Biology (POCI-01-0145-FEDER-030947), an R&D project supported by the
Portuguese Foundation for Science and Technology; our work was also supported in
part by a France–Portugal partnership PHC PESSOA 2018, Campus France #40823SD.

To conclude, we warmly thank all authors, invited speakers, members of the
Program Committee, members of the local Organizing Committee, and all the partic-
ipants for their work and contributions, which helped make this symposium such an
attractive and successful event.

March 2019 Madalena Chaves
Manuel A. Martins
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Molecular Logic: Brief Introduction
and Some Philosophical Considerations

Claudio Fuentes Bravo1(B) and Patricio Fuentes Bravo2

1 CEAR – Centre for the Study of Argumentation and Reasoning
of the Faculty of Psychology at Diego Portales University, Santiago, Chile

claudio.fuentes@udp.cl
2 Department of Experimental Oncology Laboratory of Stem Cell Epigenetics,

European Institute of Oncology, Milan, Italy

Abstract. In the present article a brief historical and systematic intro-
duction to the field of molecular logic are proposed. Some relevant philo-
sophical consequences derived from the technical treatment of this topic
are also exposed. These consequences are made explicit in three funda-
mental questions. Some of the proposed methods for the representation
of the intracellular molecular dynamics are also presented and the advan-
tages and limitations that the different methods exhibit when modeling
natural biological circuits are evaluated. The Boolean approach to molec-
ular logic is considered with special attention in this article, emphasizing
that “logic gates” have proven to be functionally appropriate for ana-
lyzing experimental information, however, they present limitations to
capture complex biological processes. In relation to this last point, the
problem presented by the modeling of continuous variables through dis-
crete systems is studied in depth. It is explained then the need to have
adequate logic to the phenomenon and its characteristics.

Keywords: Molecular logic · Boolean approach · Logic gates ·
Philosophy

1 Introduction

The experimental study of the digital features of a cellular organism like the
bacteria Eschericcia coli (E. coli) confirmed the existence of properties and
biochemical-molecular principles which are present in every diverse living forms
on Earth, granting the proper context to develop a logical and predictive com-
prehension for the strategies of Life [13].

More than 40 years ago, Lehninger called “The molecular logic of living state”
to these “biochemical-molecular generalizations” which are present in every liv-
ing organisms on Earth [30]. Indeed, the first general reference to an “intrinsic
molecular logic” is found by 1993 in the paper [40] from de Silva, et al. In this
paper, the work of the authors mainly consisted in the implementation of a sys-
tem with a luminescent signaler, called Photoinduced Electron Transfer (PET,
c© Springer Nature Switzerland AG 2019
M. Chaves and M. A. Martins (Eds.): MLCSB 2018, LNCS 11415, pp. 1–17, 2019.
https://doi.org/10.1007/978-3-030-19432-1_1
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2 C. F. Bravo and P. F. Bravo

for short). This technique has then allowed a posterior development in the exper-
imental approaches using logic gates.

In the same paper, de Silva et al. define the Molecular Logic-based Computa-
tion, as an approach that is applied to the molecules and chemical systems which
have an innate capacity to compute, even if in a rudimentar way, like machines
based in transistors, semiconductors or people. This conception of molecular
logic is certainly close to the functional ideas of the Natural Computing, which
we can relate to the famous quote of R. Feynman in 1960: “There’s Plenty of
Room at the Bottom”.

According to Jiménez and Caparrini (see [17]), the physical limitation in
the computational speed of a conventional sorter and the first resolution of a
computationally hard mathematical problem by manipulating DNA molecules in
the laboratory imply a fundamental scientifically advance in the field of molecular
computation: the definitive step from a theoretical perspective (in info) to an
experimental perspective (in vitro).

Thus, in the topic of molecular logic we can gather the interest of different
fields which can be summarized in two main classes of scientific groups: on one
hand, the biochemical and, on the other, mathematical and philosophic.

We can see the latest in the following way: the unveil/modeling of the logic
underlying to the processes concerning the intracellular dynamics is a prob-
lem associated to the interest of biologist and chemists. Moreover, from the
point of view of science philosophy, it can be evaluated as contributing to the
mechanistic-like paradigm of molecular logic, a problem within the philosophic
interest. Related to this, within science philosophy, a successful explanation in
molecular biology would require the identification and manipulation of variables
in a casual mechanism. In other words, this would require the understanding
about how the diverse variables interfering in certain mechanism act and interact
to produce the phenomenon. Indeed, the “natural genetic networks”, a relatively
recent scientific construction in Biology, can be useful to obtain a mechanistic
explanation to the biological processes taking the following three fundamental
properties as starting point: (1) the considered network is complex, (2) the com-
ponents of the network interact with each other and (3) we can attribute specific
functions to each component.

1.1 A Starting Point

Regarding the philosophy of Biology and starting from the decade of 1960, more
and more doubts arose about the existence of universal laws, i.e. rules that
could be considered as necessary universal generalizations. As example of this
conceptualization we can recall the relevance acquired by the concept of earth-
boundedness [42]. Nevertheless, there is a relative consensus regarding at least
two general facts for the understanding of life as a scientific phenomenon
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– The life on Earth is genetically connected by a evolutive past which has been
occurring for about four billion years.

– The organic compounds composed all organisms have been selected during
evolution through adaptive processes that occurred continuously while per-
forming specific biochemical or cellular functions.

Taking this into account, we can ask some questions related to the develop-
ment of a logic of intracellular dynamics with great philosophical repercussion:

– Do biological organisms on this planet exhibit a “common logic” at the level
of their intracellular processes?

– Can the “logical operations” we perceive in biological organisms become an
instrument for naturalizing our concept of logic?

2 Antecedents

2.1 The Concept of Molecular Logic in the Biological Sciences

As we know, the structure of organic compounds obeys the physical and chem-
ical laws that describe the behavior of inanimate matter. In an apparent para-
dox, we realize that it is the interaction of these inanimate organic compounds
itself that maintains and perpetuates animate life. This is an apparent para-
dox because from the past it was believed that to the inanimate matter could
not be by itself anything else than its own inanimate nature. This metaphysical
contradiction seems to fade after the verification of intracellular dynamics. The
structures, mechanisms, processes and biochemical adaptations within cells, the
basic functional unit of an organism, are shared by plants, animals and even
unicellular organisms in a fundamental chemical pattern: the DNA molecule.

The DNA, at its level of primary structural organization, is a linear sequence
of molecular elements called nucleotides (or bases) which constitute what is
known as the genome of living organisms. From another perspective, we can
consider a gene as the elementary structure of a genomic sequence since it occu-
pies a specific position in a chromosome and determines the expression of a
protein in an organism. With the development of molecular biology we have
learned that DNA can act as a digital storage device (this analogy is funda-
mental to the statements that follow) which, in its turn, can be read, copied
and replicated during events such as cell division or even experimentally, using
appropriate reagents and molecules [6,47].

We can note that more than four decades have passed since Lehninger’s work
and the advent of functional genomics has made possible the characterization
of the molecular constituents of life. On one other hand, at the technical level,
“conserved processes” allows us today to use models for organisms and to explore
and infer the function of human genes. On the other its helps us to situate the
same genes in the normal and pathological context. Thus, the field of study
that we know as genomic research, has drastically reduced the gap of ignorance
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about biological systems in few years, driven the vision that these systems are
composed basically of two types of information [21]:

– Genes, which encode the molecular tools which carry out the functions of life
– Genetic network, which specify how genes interact and are expressed.

From other point of view, the integration of different organizational levels
supports the idea that cellular functions are distributed among groups of het-
erogeneous components that interact with each other within larger networks.
Thence, the organization of the proteome [37] as a network composed of inter-
acting proteins and other secondary components which are inter-converted due
to an intricate metabolic network that has been called the metabolome in [31].
However, in the context of the referred paper, is suggested that the structure
of these networks is ruled by what we can call a “logic” and this logic itself is
present in the entire and more complex organism at a macroscopic level.

2.2 The Role of Systems Biology

Systems biology has been the disciplinary field that has tried to gather infor-
mation in a coherent way from each of these different levels of analysis, refer-
ring in turn to various individual biological processes. Within this field, many
researchers work to generate integrated (computational) models of systems in
which cellular components and networks interact within temporal, spatial, and
dynamic physiological contexts from the available data [8,15]. In this context,
we can affirm, in its turn, that the structural organization of a natural or biolog-
ical system refers fundamentally to the material configuration that relates the
components of the system.

For instance:

– The structure of the genomes plays a fundamental role concerning the way in
which the information contained in the genes is connected to the phenotypic
expression pattern. At the same time,

– the genotype is determined by the information contained in the DNA
sequence.

– the phenotype is determined by the context-dependent expression of the
genome, and

– the genetic networks which interpret the context and orchestrate patterns of
expression.

Genetic networks, exhibit a feature of great utility for a logical understanding
of gene expression, since they can be described as circuits of interconnected
functional modules (IFM). Each IFM is composed of specialized interactions
between proteins, DNA, RNA, and small molecules. In this context, a module
corresponds to the simplest element of a regulatory genetic network (RGN). This
RGN is composed of a promoter, the genes expressed from that promoter, and
the regulated proteins (as well as their binding locations in the DNA) that affect
the expression of that gene.
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The described IMF modules can be considered “logical devices” i.e., devices
that “behave similarly” or “can be represented as” electronic devices with a
Boolean function where the output (product) is the level of expression of a
gene. This level of expression is determined by the amount of mRNA or protein
produced, and the input (substrates) are the factors that affect the expression
of a particular gene (regulatory proteins, transcription factors, etc.).

This structure with functional independence between multiple subunits of
genomes, eases the modular nature at higher organizational levels [12]. This
plasticity (capacity of living organisms to adapt) can be considered as the result
of the action of complex systems composed of components that interact with
each other. However, this makes their behavior difficult to predict and prone to
unexpected results. That is, the plasticity exhibited by living organisms seems
to complicate the possibility of being captured by mechanical or algorithmic
procedures.

2.3 Lac. Operon

Within a cell occurs an extraordinary and incessant flow of information
(expressed by multiple and complex specific actions of interaction). The impor-
tance of cellular information exchange is particularly recognized when one studies
how it flows from genes to proteins.

An example of this is the regulatory mechanism present in prokaryotic (bac-
terial) cells, where multiple genes, involved in a process of metabolism of a
certain carbon source, are expressed in a coordinated manner with a single pro-
moter, in a natural genetic logic module called an operon. The lac operon of the
bacterium Escherichia coli (E. coli), is one of the best characterized prokary-
otic systems of gene regulation. It is composed of three genes – lacZ, lacY, and
lacA – involved in the metabolism and binding of the disaccharide lactose. This
mechanism can be described in terms of molecular interactions between DNA,
proteins and metabolites (intermediates and products of metabolism). Indeed,
these interactions make sense when they are modeled by negative feedback loops
that process information about the presence of lactose on the environment to
regulate the rate of transcription of the lac operon [16].

Then, the relevance of determining the components of natural genetic net-
works such as the lac operon is that they become ideal candidates for the con-
struction of artificial genetic networks [18]. In order to comprehend a natural
logic circuit that operate within a cells, such as the lac operon, it must be sepa-
rated into the individual processing elements or logical modules carrying specific
information (functions). This separation depends or is made possible through
chemical isolation, which can be obtained from spatial localization (compart-
mentalization) or/and chemical specificity. This means that different informa-
tion can be stored in different places and a wide variety of connections between
logical modules can be formed and reformed through the diffusion of chemical
agents (reagents).

An example of the above is a signaling system such as the one of chemotaxis
in bacteria which is an extended module that achieves its isolation due to the
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binding specificity of the initial chemical signal (chemoattractants) to a receptor
protein, and due to the interaction between signaling proteins within the cell.

Thus, at this point, it is necessary to try to characterize how a logical module
operates.

2.4 Natural Logic Modules

A good example of a natural logic module is the one that controls the precise
distribution of chromosomes in the resulting cells during mitosis. In its turn, it
contains modules that assemble the mitotic spindle:

– A module that controls the alignment of the chromosomes in the spindle;
– A cell cycle oscillator which regulates the transactions between interphase

and mitosis.

The way these modules act depends on how the various components are
connected to each other and is affected by the shapes of the response curves that
determine the kinds of those interactions. On the other hand, the identification
of the logical modules used in cellular systems must generate an inventory to
define the logical tools that are available within the cells [12].

This shows that the representation of a natural logic circuit is useful primarily
to establish and understand the following three features of the system:

– How do logical modules constitute a circuit which processes informations
within a cell;

– What are the logical relations between components;
– How do information flows inside the circuit.

3 Modeling Methodologies

During the last century, multiple modeling methodologies have been developed
for biological circuits. Among them it is possible to count mathematical mod-
els based on differential equations, Boolean probabilistic networks, Petri nets,
Bayesian networks and many others. During this section we recall some of them,
highlighting the advantages and the disadvantages.

3.1 Models with Differential Equations

Mathematical models are generally based on ODEs (ordinary differential equa-
tions) and PDEs (partial differential equations) that require the a priori knowl-
edge about the interaction pattern between the analyzed components. Moreover,
the result of the model strongly depends on the initial concentration and kinetic
constants of the same components (see Fig. 1).

A disadvantage presented by these models is that they become more and
more difficult to obtain and analyze whenever the number of interdependent
variables increase and the relations between them depend on qualitative events
(a concentration threshold, for example) [34].
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Fig. 1. Differential-equations models using mass-action kinetics depic regulatory mech-
anisms by defining rates of change in network species concentrations.

3.2 Probabilistic Boolean Networks

In the Boolean networks introduced by Kauffman [20], gene expression is con-
strained to only two levels: ON and OFF. The expression level (state) of each
gene is functionally related to the expression states of some other genes, using
logical rules. However, as a result of scarce experimental data or incomplete com-
prehension of a system, several candidate regulatory functions may be possible
for an entity. This entails the search to express uncertainty in the regulatory logic.
The Probabilistic Boolean networks (PBN) introduced by Shmulevich et al. [39]
extend the classical Boolean network. In such model, an entity can have several
regulatory functions, to each of which is given a probability based on its com-
patibility with previous data. At each time step, each variable is subjected to a
regulation function that is randomly selected according to the defined probabili-
ties (Fig. 2). The model is stochastic with an initial global state that can lead to
many pathways harboring distinct probabilities. Thus the new model, the PBN,
gives rise a sequence of global states that constitutes a Markov chain [14].

3.3 Petri Nets

Petri nets (PN) [32] are mathematical models which can be conceived as a gen-
eralization of automata and allows to express a system with concurrent events.
A PN is a graph with two kinds of nodes: places and transactions. The places
represent the resources of the system while the transitions correspond to events
that can change the state of the resources. The oriented edges (weighted arcs)
connect places to transitions andvice versa, representing the relations between
resources and events. The state of the system is represented using symbols called
tokens embedded on places; a place can contain multiple tokens (Fig. 3). On its
turn, distinct assignments of tokens over places induce different states in the
system. To each one of these assignments, we call a marking [7,43].
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Fig. 2. Basic building blocks of the PBN. The model consists of 3 nodes with one
activation edge and one partial inhibition edge. The weights of both edges are expressed
as selection probability next to the arrow (upper). Two representative Boolean rules
were assigned with the corresponding selection probabilities (Pj(i)) to represent the
example model in PBN format. The truth table of the model evidences the state values
according to different inputs. Once both inputs (A and B) are active, the output (C)
has a probability of being ON at 0.6 and of being OFF at 0.4 according to the selection
probability of Boolean rules (lower).

Fig. 3. The classical Petri net model is a network composed of places (circles) and
transitions (rectangles). The connectors, called arcs are oriented to, and between, the
places and transitions. The tokens (black circles) are the dynamic objects. Finally the
state of the petri net, the marking, is determined by the distribution of tokens over
places. Therefore, the initial marking is 1, 2, 0, 0.

A relevant technical advantage of these structures is that the most of prob-
lems are decidables in PNs. This decidability can be obtained via a Karp-Miller
tree [19]. Moreover, it is known that the reachability problem is decidable at most
in exponential time. Still, it is also known that a Petri net is able to model a
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system with parallel evolution or concurrent events composed of several processes
which cooperate to attain a common goal.

3.4 Bayesian Networks

With the advent of the next-generation sequencing (NGS) revolution [22,29] the
use of Bayesian networks has emerged as a very promising method. They are
becoming increasingly important in the biological sciences for inferring cellular
networks, modelling protein signalling pathways, systems biology, data integra-
tion, classification, and genetic data analysis.

Bayesian networks, or alternatively graphical models, are very useful tools
for dealing not only with uncertainty, but also with complexity and (even more
importantly) causality − − − − − − − − − − − − − − − − −−. These provide
an accurate and compact representation joint probability distributions (JPDs)
and for inferring from incomplete data and to adapt the number of parameters
to the size of the sample. Bayesian networks are particularly useful to describe
processes of components which interact locally, i.e., processes where the values
of each component variable directly depend on the values of a relatively small
set of component variables (Fig. 4).

These models are acyclic digraphs whose nodes represent random variables in
a Bayesian sense: they can be a observable concentration, unknown parameters,

Fig. 4. Gene regulatory networks provide a natural example for BN application. Genes
correspond to nodes in the network, and regulatory relationships between genes are
shown by directed edges. In the simple example above, A is conditionally independent
of D and E given B and C. p(A, B, C, D, E)= p(D)p(E)p(B—D)p(C—E)p(A—B,C).
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latent variables or hypothesis. It is relevant to mention that similar ideas the ones
mentioned in BN and which are currently being used, can be applied to simple
(non-directed) graphs and, possibly, even to cyclic graphs, like Markov networks
(MN). In Bayesian networks, the expression of each gene is represented by a JPD
variable, which describe how genes regulate each other. The graphic representa-
tion shows clearly the places where regulatory relationships exist between genes.
In a BR, the tips (ends) have to form a directed acyclic graph (DAG) which is a
graph without cyclic paths (including loops). In this way, JPDs are understood
in a compact manner, reducing the size of the model when exploring conditional
independence relations (two variables are independent given the state of a third
variable).

BR can also be interpreted as a casual model which generates data. Then, the
arrows (directed tips) in the DAG can describe relations or causal dependences
between variables [29,38]. However, it is known that Bayesian networks present
some limitations. The modeling of genetic networks require that these models
must be represented as acyclic graphs and, therefore, they are not able to to
represent feedback control mechanisms. To accomplish this, Dynamic Bayesian
Networks have been developed (DBN). These are networks which are able to
describe temporal processes like feedback loops [49].

4 Boolean Molecular Logic

In this section, we focus our attention in the application of boolean logic to
represent some specific biological networks. Boolean logics have been widely
applied in the field that is known itself as molecular logic.

A subject of growing interest in synthetic biology is digital gene circuits.
The main interest in these developments is technological, i.e., their potential
constitution as bioinformatics systems [4] and biosensors [27]. In this context, we
call boolean molecular logic to refer digital systems composed of Boolean gates
which have been designed in different structures according to diverse biochemical
mechanisms [26]. The relative success of this technology can be related to the
fact that transcriptional controls showed to be able to reproduce, in bacteria,
the majority of Boolean gates with two inputs using only one or two regulated
promoters [41]. Some of the recent developments in digital Boolean systems are:
(a) a first complex design that included both the activation of the promoter and
the regulation of the translation mediated by tRNA, applying a AND gate in E.
coli [2]; (b) the design of Boolean gates in yeast through mRNA structures like
ribozymes and riboswitches [23,46]; the organization of mammalian cell in digital
circuits based on RNA interference [36,48]; (d) the translation of regulation PBN
models, used in mammalian cells, for the construction of logic gates based on
a single cell [3]; and finally (e) the demonstration that cellular coupling can
be a solution for the modular design of the logic circuits in yeast [35] and the
construction of a NOR gate in E. coli by Tamsir, Tabor & Voigt [44].
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4.1 Constructing Molecular Boolean Gates

Let us analyze in more detail the application of Tamsir, Tabor & Voigt. They
developed a method which allows to compute Boolean logical operations within
cells in an analogous way to the artificial integrated circuits, where the logic
gate is coded in DNA and operates along with other biomolecules. Specifically,
the authors tried to show that biochemical processes such as transcription of a
repressor in a specific cell, can be seen as a Boolean logic gate from a functional
point of view. Bearing that goal in mind, Tamsir and his collaborators built
a collection of logic gates using a colony of E. coli bacteria by means of the
functional complete NOR gate.

A NOR gate is a negates the output of a OR gate, which is a disjunction
between both inputs. The input values of logic gates are binary and classically
represent truth values with 1 being “true” and 0 being “false”. In practice, the
0,1 inputs can also be conceived as absence and presence of a certain molec-
ular component or output. The first experiment performed by Tamsir and his
colleagues consists into obtaining four different responses of a E. coli bacteria.
These responses depend on the combination of presence (1) and absence (0) of
two inputs components – arabinose (Ara) and anhydrotetracycline (aTc) – which
are molecules that promote the genetic transcription within the cell. This compo-
nents activate distinct and independent promoters – Pbad and Ptet, respectively.
Once active, these promoters activate a gen repressor called CI which, in its turn,
suppress a gen called YPF that allows the production of a fluorescent protein,
when active. This fluorescence is considered the Boolean output variable of the
system. In this way, the presence of ArA or aTc activates CI, which inhibits the
production of YPF (therefore, the output is 0). However, when neither Ara nor
aTc is present, CI is not active and YPF is produced (therefore, the output is 1).

After obtaining a NOR gate, Tamsir and his collaborators built a XOR gate
from the combination of three NOR gates. Each NOR gate was programmed
within an independent E. coli bacteria. A XOR gate accepts two inputs and
consists of a gate whose output is 1 if exactly one inputs is present. In any other
case, its output is 0. Thus, if exactly one of the input molecules are present,
the result is that YPF is produced. Conversely, if this is not the case, there no
production of YPF.

In the Fig. 5 of the paper [44], we can analyze the behavior of one of the
cells that make up the XOR gate (cell 1, Fig. 5). In that cell we can see that
when there is no presence of any of the inducing molecules, the cell has high
fluorescence values (103 AU). Differently, when both substances are present, the
fluorescent substance only reaches a value close to 101. Also, in another cell (cell
4, Fig. 5) functioning as an output of the XOR gate, it can be seen that the
fluorescence reached is lower when both or none of the inductors is present with
respect to the case in which either of the two is independently present.

The problem which generally can be pointed to Boolean network and that
can be extended to the proposal of Tamsir and his colleagues is the inher-
ent determinism. It does not seem a good solution, in order to obtain a
greater formal robustness, to avoid the stochasticity of gene expression or the
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Fig. 5. Construction of an XOR gate by programming communication between colonies
on a plate. A, Four colonies each composed of a strain containing a single gate are
arranged such that the computation progresses from left to right, with the result of
each layer communicated by means of quorum signals. The inputs (Ara and aTc) are
added uniformly to the plate. B, Spatial arrangement of the colonies. C, Each colony
responds appropriately to the combinations of input signals. Fluorescence values and
their error bars are calculated as mean s.d. from three experiments. D, Cytometry
data for the XOR gate (cell 4). [Tamsir A, Tabor JJ, Voigt CA. Nature.
2010;469(7329):212-5].

uncertainty associated with the measurement of its processes, which can occur
due to experimental noise and the latency of interacting variables, in the mod-
eling. The inference of a single deterministic function will inevitably result in
a poor predictive accuracy and insufficient knowledge of the architecture of the
network. This occurs since it is a small sample relative to the number of genes.
That is, it must be taken into account that the stochastic effect will inevitably
spread from the micro level to the macro level [1].

4.2 An Alternative to [44]

In [35], circuits with better digital responses were implemented. In short, the
claim that the digital approach is not the best option to describe experimental
behavior can be reformulated to a new one suggesting that, probably, the colonies
used in [44]. They are not the best to implement a digital circuit.

Using computer simulations, Marchisio and Stelling, [50] showed that, in
order to improve the separation of gate signal, the multiple integration of the
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final gate (i.e., the transcription of unity of coding for the circuit output) could
be a valid alternative to the reengineering of the final gate promoter. With this
strategy they were able to construct the only two gates that did not work in
their original design. Lastly, the distributed output architecture was applied [35]
to genetic networks. This design strategy showed clear advantages with respect
to the final gate architecture: less wiring between the gates, fewer genes in the
network, and the output are levels easy to predict.

4.3 Biological Detail of the Essay

We argued that the kind of analysis in [44] is not the best since a Boolean gate
is not suitable to describe the behaviour of E. coli colonies which take part
into the creation of logical circuits. Regot et al. implement circuits with better
digital results, using other colonies. We note that E. coli colonies would be able
to apply the NOR gate and, actually, any other gate could be obtained via a
suitable spacial distribution of these colonies.

The results obtained by Tamsir and his colleagues had a low digital quality
when complex circuits where implemented. Whether in genetics or in electrical
circuits, in the real world they are analogical signals, and Boolean systems are
discrete. The main argument for considering that a system has a digital answer is
the possibility of establishing thresholds that allow to define the low level (logical
0) and the high level (logical 1), and there are no signals between both levels.
However, these thresholds must be fixed for every component in the circuit (or,
in this case, colonies). These restriction is not fully satisfied, at all, in the paper
of Tamsir.

Although the results in his paper are not a good example of digital behav-
ior, the goal of Tamsir and his colleagues was to create a general method to
implement digital circuits based on spatial distribution of colonies of E. coli.
Therefore, the description of the circuit, based on NOR logic gates, was not a
model that would be used to describe the dynamic of the biological system. Since
the goal was to create colonies behaving as similar to logic gates as possible, we
cannot infer about nothing about the a generic biological system in what relates
to its digital behavior. The simulation performed by Marchisio and Stelling [50]
seem to be promising to solve critical aspects of boolean systems like the cod-
ification of unity of transcription to the end of the circuit. In that sense, the
application of a distributed gate architecture system to genetic networks could
be a valid alternative to the reengineering of the final gate promoter, improving
the efficiency and predictability of circuit.

5 Conclusion and Further Work

The thesis we support in this brief essay is that the dynamics underlying the
intracellular molecular processes (molecular logic) is one and it is generalizable to
all living organisms and their biological processes at different levels of complexity.
This is corroborated by the fact that it is generally accepted as a scientific fact
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that all life on earth is genetically related by an evolutionary past and that
organic compounds forming every organisms also respond to adaptive processes,
which are the result, in their turn, of the performance of specific biochemical or
cellular functions.

Moreover, it is necessary to refer that we have laboratory techniques, such as
those described by de Silva [9], among others, that allow us to understand the
dynamics of intracellular molecular processes to described them in a logic con-
taining the essential chemical-molecular properties of organic life. The question
arising as consequence would be: “What logic would be the most appropriate to
represent the complexity of the processes described?”. Because of this, we have
reviewed several methodological approaches used to model systems describing
molecular dynamics and considered its advantages and disadvantages. Here we
must note that, although logic gates are functionally suitable to analyze experi-
mental information of cellular processes, the model based on Boolean logic have
both conceptual and predictive limitations when used to analyze more com-
plex processes. The usage of distinct organizational level promote the thesis
that cellular functions are distributed in groups of heterogeneous components
that interact with each other within wider networks. On the other hand, many
important biological variables (as concentration values and fluorescence levels)
can be presented with discrete values but, strictly speaking, still are continuous
variables.

At this point, we point out that we consider important to explore the techni-
cal capacity that we would eventually have to characterize this logic underlying
every organisms living on Earth. John Wood talks about “heavy machinery” to
refer formal theories and tools which are extremely expressive, such as dynamic
logic, and their application to describe cognitive processes in Humans. However,
two good paradigms to take part in the complex intrinsic molecular logic are:

– Reconfigurable systems [24] which would allow us to use, at different times,
distinct logic such as multivaluated and modal logics, as well as algebraic
approaches to reduce the resulting technical and conceptual gap, that must
be solved in order to use, often, natural modules to redesign synthetic, reliable
and robust organisms.

– Differential dynamic logic [10,33]. These systems include both continuous and
discrete dynamics and are known as hybrid. The differential dynamic logic is
a recently developed logic to work with such systems. In practice, it is a
dynamic logic (see [11]), that is itself inside the class of modal logics [28], but
embedding a first order structure.

The capacity that this recent and powerful mathematical developments pro-
vide to catch the underlying molecular logic is a challenge that certainly will
need further work. However, we can question the following: “The choice for a
logic strong enough to capture the an underlying molecular logic contributes to
the understanding of the term universal logic, as proposed in [5]?”.

The path to achieve the naturalization of logic assumes that the generaliza-
tion of a molecular logic is equivalent to assuming that human cognitive processes
must guide us in the achievement of a materially founded logic. This sense of
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naturalization of logic is broader than the one proposed in the works of Mag-
nani (see [25]), referring exclusively to specif processes of human reasoning. The
existence of a logic embedded in the processes of living organisms serves as evi-
dence to present a different path of naturalization. The logic would be no more
a mere formal construction, with no cognitive meaning, because cognitive pro-
cesses are not solely performed by humans. This assumption takes us away from
naturalization as conceived by Magnani. The coupling of each organism with the
environment is itself a result of natural selection [45]. Then, has referred, the life
on Earth seems to have an intrinsic logic.

This can lead us to think that it seems strange or, at least, a justification is
needed to argue that this natural logic would only result from human cognitive
mechanisms, because the same cognitive mechanisms that would realize certain
mathematical principles, are embedded in organic structures in which the same
mathematical principles seem to underlie. This is another challenge to study in
future researches.
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Abstract. This note, reporting the homonym keynote presented in the
International Symposium on Molecular Logic and Computational Syn-
thetic Biology 2018, traces an informal roadmap on Dynamic Logic (DL)
field, focusing on its versatility and resilience to be adjusted and adopted
in a wide class of application domains and computational paradigms.
The exposition argues the room for developments on tagging DL to the
analysis of synthetic biologic domain.

1 Introduction

Dynamic Logic [8] was introduced in the 70’s by Pratt in [27] as a suitable logic
to reason about, and verify, classic imperative programs. Since then, it evolved
to an entire family of logics, which became increasingly popular for assertional
reasoning about a wide range of systems and scenarios.

This talk guides an overview on this path prepared to the broad audience
of this symposium, with interests and backgrounds ranging from formal Logics,
control and systems theory to Synthetic Biology. Rather than to introduce tech-
nical aspects on the mentioned formalism, this presentation aims to raise the
attention of the reader to the ‘camaleonic’ nature of DL, on its adoption on the
verification of novel computational domains and paradigms, and in the way it
can be yet extended to fit on the new challenges of synthetic biology.

This exposition starts by revisiting the roots of the topic, namely by (i) the
generic ideas of the calculus of Floyd and Hoare on classic imperative programs
and, by (ii) introduce Modal Logic, with its Kripke semantics, as the natural
formalism to reason about state transition systems. Then, recalling the seminal
ideas of Pratt of using a modal logic to perform Floyd-Hoare reasoning, we
briefly introduce the propositional and first order versions of DL (see [28] for an
historical perspective on the development of the topic).

Then, we overview some of contributions on the topic developed by our group.
The dynamisation method [21,22] contributed on this direction with a system-
atic procedure to construct Multi-valued Dynamic Logics able to handle systems
where the uncertainty is a prime concern. The method is parametric, and follows
our own pragmatic approach to the application of logics to a wide range of com-
plex computational systems: on the place of defining a dedicated logic for each
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specific application, we develop parametric methods to derive logics tailored to
each situation or domain. The specificities involved in each situation should be
taken in account on the definition of the parameter adopted for each derivation.
The method reviewed in this talk, generates logics suitable to deal with systems
involving graded computations. The grading of these logics is reflected in the
costs, weight and certainty degrees of programs; but also in the assertions we
can do, due to their multi-valued semantics (rather than the standard bivalent
one). Beyond of standard Propositional Dynamic Logic [8], we can capture with
this method, for instance, the Fuzzy Dynamic Logics presented in [12,16]. But
other logics capable to reason with systems involving resource consuming com-
putations, or assertions graded in discrete truth spaces, can also be achieved as
well (cf. [21]).

This generic method have been also adjusted to build multi-valued variants
of other families of logics. We discuss in this talk two possible specialisations:
one to reason with systems involving knowledge - with its tuning to a method to
build Multi-valued Dynamic Epistemic Logics (developed in collaboration with
Martins and Benevides [2]; and, another one. to reason on weighted programs
on means of intervals of weight, rather than points (developed in collaboration
with Santiago, Martins and Bedregal [29,30]).

2 The Seminal Roots

Floyd-Hoare Calculus

As mentioned above, the works of Floyd and Hoare were determinant on the
adventure of the formal verification discipline in software engineering. The stan-
dard concept of software corrections emerged from the ideas of [7,11], by means
of the notion of Hoare triple:

{φ}π {ϕ}
Formally, a triple {φ}π {ϕ} is valid if any terminating execution of π from a
state satisfying φ, results in a state satisfying ϕ. Actually this notion of the
program correctness w.r.t. a specification underlies, not only the modern tech-
niques of software verification, but also the principles design-by-contract devel-
opment and specification methods based in the state transitions with pre and
post conditions. The Floyd-Hoare logic (Fig. 2) is a syntactic calculus to prove
the correctness of a complex program by decomposing it into simpler ones. The
intuitions for the set of axioms and inference rules is easy. For instance, the
axiom (assign) just states that a condition ϕ is satisfied after an assignment
x := e, whenever before of this assignment, the formula obtained by replacing in
ϕ all the occurrences of x by the expression e, was already true. Axiom (empty)
is also natural, since the program skip does not change states. As in the other
natural deduction systems, the idea of this calculus is to decompose the proof
of compound programs, into a set of simpler proof obligations, by creating a
proof tree which leafs are axioms. This is clearly reflected in the (comp) and
(if then else) inference rules. The rule (weak) allows to manipulate the triple
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conditions by strengthening preconditions and weakening postconditions. Using
this rules we are able to validate Hoare triples. For instance,

{x = 1}if x < 2 thenx := x + 1 elsex := x ∗ x{x = 2}
can be proved with the deduction:

{x=1}x:=x+1{x=2}
{x=1∧x<2}x:=x+1{x=2} {x=1∧x≥2}x:=x∗x{x=2}

{x = 1}if x < 2 thenx := x + 1 elsex := x ∗ x{x = 2}
The left leaf is closed by axiom (assign), since (x = 2)[x + 1/x] ⇔ x = 1. For
the right one, we just have to note that x = 1∧x < 2 ⇔ false, and therefore the
triple is vacuously satisfied, since there is no any state satisfying the precondition
false.

Fig. 1. Fragment of the Floyd-Hoare Calculus

Modal Logic

The long tradition in the study of logics to reasoning in scenarios involving
change, come since the age of Aristotle. This family of logics, known as Modal
logics represents a classic topic in Logic and Philosophy. The developments of
Kripke in the 60‘s in semantics for these logics, based in transition structures,
endow such formalisms with the suitable ingredients to reasoning about state-
based systems. This section briefly review the basic definition of propositional
multi-modal logic.

Signature for of this logic are pairs (Prop, A) where Prop, A are disjoint
sets of propositions, and modalities. The (Prop, A)-formulas are defined by the
grammar

ϕ ::= p | 〈a〉ϕ | [a]ϕ | ¬ϕ |ϕ ∨ ϕ |ϕ ∧ ϕ

where p ∈ Prop and a ∈ A.
Models of this logic are state transition structures, with propositions locally

assigned to states. Formally, a (Prop, A)-model is a tuple M =
(
W,V,R

)
where

– W is a set
– V : Prop → P(W ) is a function
– R = (Ra ⊆ W × W )a∈A is an A-family of binary relations
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Finally, we recall the notion of modal satisfaction. The satisfaction of a
(Prop, A)-formula ϕ in a state w of a (Prop, A)-model M is recursively defined
as follows:

– M,w |= p iff w ∈ V (p)
– M,w |= 〈a〉ϕ iff there is a w′ ∈ W such that (w,w′) ∈ Ra and M,w′ |= ϕ
– M,w |= [a]ϕ iff for any w′ ∈ W such that (w,w′) ∈ Ra we have M,w′ |= ϕ
– M,w |= ¬ϕ iff it is false that M,w |= ϕ
– M,w |= ϕ ∧ ϕ′ iff M,w |= ϕ and M,w |= ϕ′

– M,w |= ϕ ∨ ϕ′ iff M,w |= ϕ or M,w |= ϕ′

Propositional Dynamic Logic

Being programs a paradigmatic example of state-transition systems, modal logic
emerged as natural formalism to reason about it. Particularly, it provided solid
theoretic field, to support the verifications in Floyd-Hoare triples. Moreover,
as observed by V. Pratt in the seminal work [27] Floyd-Hoare logic is purely
syntactic, and Modal logic can be considered as an alternative to Floyd-Hoare
logic.

In a first view, the multi-modal logic presented above would be enough to
reason about programs, by considering the class of possible programs as the set
of modalities. Fortunately programs are structured terms. This allows us to deal
with these objects in a systematic way, a key factor on the definition of dynamic
logics. Assuming a set of atomic programs Π, the universe of the (composed)
programs can be defined with the following grammar:

π ::= π0 | π + π | π;π | π∗ | ?χ

for π0 ∈ Π and χ a formula in the logic. The connectives of the terms are
the usual Kleene operators, namely + represents the non-deterministic choice,
; the sequential composition and ∗ the reflexive iterative operator. Additionally
we have the operator ? for tests, that is necessary to represent conditionals.
Note that this grammar actually provides an abstract computational language,
able to represent the standard imperative language commands. For instance we
have that if χ then π fi ≡ (?χ;π) + (?¬χ), that if χ then π else π′ fi ≡
(?χ;π) + (?¬χ;π′) and that while χ do π od ≡ (?χ;π)∗; ?¬χ.

Fixing this abstract model of computation, we are in condition to adjust
multi-modal logic into a formalism to reasoning about programs. Firstly, signa-
tures are pairs (Prop,Π) where Prop is a set of propositions and Π is a set of
atomic programs names. Models are Kripke structures tuples

(
W,V,R

)
where:

– W is a set
– V : Prop → P(W ) is a function
– R = (Rπ ⊆ W × W ), π ∈ Π

Observe that these models only interprets atomic programs, since R can be
extended to the interpretation of composed programs, with the usual relational
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operators. Namely, we have R(π0) = Rπ0 , R(π + π′) = R(π) ∪ R(π′), R(π;π′) =
R(π) ·R(π′) and R(π∗) = R(π)� =

⋃
n∈N

R(πn), where πn+1 = π;πn. Finally we
have the interpretations of tests as the co-reflexive R(χ?) = {(w,w)|M,w |= χ}.
Now, we defined the satisfaction relation as above, just replacing the cases of
modal operators by

– M,w |= 〈π〉ϕ iff there is a w′ ∈ W such that (w,w′) ∈ Rπ and M,w′ |= ϕ;
– M,w |= [π]ϕ iff for any w′ ∈ W such that (w,w′) ∈ Rπ we have M,w′ |= ϕ.

Shifting to the First-Order Case

As suggested, propositional dynamic logic provides the essential machinery to
reason about abstract programs. The regular modalities reflect the abstract
structure of the programs control, where the standard imperative commands
can be easily accommodated. We observe here that above freedom on what an
atomic program is a key factor to the versatility of this logic, to be adapted
to new computational domains. Let us firstly focus in the verification of a clas-
sic imperative programs. For this case atomic programs are, naturally, variables
assignments. As usual, the states in our models should correspond to valuations
of program data variables. Hence, the atomic propositions used in the proposi-
tional case are here replaced by data predicates. For sake of simplicity, we assume
that all the programs variables are numerical R variables.

Formally, signatures are sets of data variables Var. The set of programs is
defined as in the propositional case, but considering assignments x := θ, with θ a
term defined with Var and the arithmetic operations {+,−,×, · · · }, on place of
atomic programs π ∈ Π. As mentioned, semantic states are variables assignments
w ∈ R

Var. The interpretation of programs is now given by an interpretation
ρ ⊆ R

Var × R
Var exactly defined as the propositional R̄, but considering the

interpretation of base programs ρx:=θ = {(u, v)|v(x) = θ and for anyy ∈ V \
{x}, u(y) = v(y)}.

Hence, we can use this modal logic to support the verification of Floyd-Hoare
triples. For instance the validity of formula

x = 1 → [(x < 2)?;x := x + 1 + (¬ (x < 2))?;x := x ∗ x]x = 2

or, equivalently

x = 1 → [if x < 2 thenx := x + 1 elsex := x ∗ x]x = 2

corresponds to the verification of the triple

{x = 1}if x < 2 thenx := x + 1 elsex := x ∗ x{x = 2}
done above. This is an useful fact that relates Floyd-Hoare logic and first-order
dynamic logic: for any Floyd Hoare triple {ψ}π{ϕ}, {ψ}π{ϕ} is verified iff the
formula ψ → [π]ϕ is valid.

Note that this principle can be extended to other variants of Hoare and
dynamic logics. Whenever a new dynamic logic is defined, a new Floyd-Hoare is
created for free.
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Less Conventional Variants

As stated in the introduction, the resilience of dynamic logic on being adjusted
to new computational paradigms and domains is a key factor for its adoption
in a wide multitude of contexts. Actually, the way we construct the first-order
dynamic logic from its propositional version, by preserving all of its structure,
with the exception of its atomic programs (and respective interpretation), not
only justify the big family of dynamic logics we have today, but opens the door for
further versions and variants. Actually, as it will be discussed, the DL adequacy
and resilience on being adapted to a wide range of computational systems, relies
on real understanding of what is the nature of the atomic programs involved in
each context. On place of considering programs as the standard variables assign-
ments, we can consider, for instance systems of differential equations flowing in
a given domain (e.g. a time constraint or a data predicate). This is the base idea
of differential dynamic logic of Platzer [26]. By considering as atomic programs
these evolutions, we are in the presence of a logic to reason and verify continuous
systems. But if we consider also discrete assignments we have a suitable logic to
reason in hybrid systems.

A logic to reason about quantum programs and quantum protocols can be
also achieved if we consider, as basic programs, quantum measurements and
unitary transformations. Such is the idea behind the works of Smets and Baltag
in Quantum Dynamic Logic [1]. The game logics of Parikh [25] and the Dynamic
Epistemic logics (revisited bellow) [6] are two well established logic fields, where
the same analogy can be done.

3 Parametric Generation of Dynamic Logics

This section overviews the dynamisation method, a systematic method to con-
struct Multi-valued Dynamic Logics that we introduced in [21,22]. This method
is parametrized by an action lattice [13]. Despite of its distinct original purposes,
this algebraic structure showed to be very useful in the context of our work, on
providing a generic support for the computational space (as a Kleene algebra)
and for the truth spaces (as residuated lattice) of the logics build trough our
constructions.

Definition 1 ([13]). An action lattice is a tuple

A = (A,+, ; , 0, 1, ∗,→, ·)
where A is a set, 0 and 1 are constants, * is an unary operation in A and
+, ; ,→ and · are binary operations in A satisfying the axioms enumerated in
Fig. 1, where the relation ≤ is induced by +: a ≤ b iff a + b = b.

As discussed bellow, the structure of an action lattice plays a double role in
our method: it will support the model for computations, and of truth space. The
operation +, plays a double role, the non-deterministic choice, in the interpreta-
tion of programs, and the logical disjunction, in the interpretation of sentences.
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Fig. 2. Axiomatisation of action lattices

Operations ∗ and ; are taken to interpret the iterative application and sequen-
tial composition of actions and, the operations → and · interpret the logical
implication and conjunction.

We explore [21] an extensive set of action lattice. Here we will just recall four
of them. Firstly, we consider the two elements boolean algebra

2 = ({�,⊥},∨,∧,⊥,�, ∗,→,∧)

with the standard boolean connectives and with �∗ = ⊥∗ = �. Moreover, by
explicitly introducting a denotation for a truth value unknown, we can consider
the three elements linear lattice

3 = ({�, u,⊥},∨,∧,⊥,�, ∗,→,∧)

where

∨ ⊥ u �
⊥ ⊥ u �
u u u �
� � � �

∧ ⊥ u �
⊥ ⊥ ⊥ ⊥
u ⊥ u u
� ⊥ u �

→ ⊥ u �
⊥ � � �
u ⊥ � �
� ⊥ u �

∗
⊥ �
u �
� �

In order to consider a linear discrete lattice with a finite number of points,
we can consider Wajsberg hoops [3] enriched with a suitable star operation.
For a fix natural k > 0 and a generator a, we define the structure Wk =
(Wk,+ , ; , 0, 1,∗ ,→, ·), where Wk = {a0, a1, · · · , ak}, 1 = a0 and 0 = ak, and
for any m,n ≤ k, am + an = amin{m,n}, am; an = amin{m+n,k}, (am)∗ = a0,
am → an = amax{n−m,0} and am · an = amax{m,n}. For instace, the underlying
order of the Wajsberg hoop W5 is W5 is a5 < a4 < a3 < a2 < a1 < a0.

Moreover, we can also consider continuous structures for the truth degrees
and weight for our logics. For instance, the �Lukasiewicz arithmetic lattice is the
structure

�L = ([0, 1],max,�, 0, 1, ∗, → , min)

where x → y = min(1, 1 − x + y), x � y = max(0, y + x − 1) and x∗ = 1.
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Now, fixing an action lattice A = (A,+, ; , 0, 1, ∗,→, ·) as parameter, we will
construct the multi-valued dynamic logic DL(A) (as proposed in [17]). Signa-
tures of DL(A) are pairs (Π,Prop) where Π denotes the set of atomic compu-
tations and Prop the set of propositions. Then, the set of Π-programs Prg(Π),
are defined by the grammar

π ::= π0 |π;π |π + π |π∗, where π0 ∈ Π

Given a signature (Π,Prop), the set of formulas FmDL(Π,Prop) is given by the
grammar

ρ ::= � |⊥ | p | ρ ∨ ρ | ρ ∧ ρ | ρ → ρ | ρ ↔ ρ | 〈π〉ρ | [π]ρ

with p ∈ Prop and π ∈ Prg(Π).
Now we have to introduce the models for DL(A). As expected, graded com-

putations will be interpreted in state transition systems with weights in the
transitions, usually represented by adjency matrices. On this view, our method
takes advantage of the Conway matricial constructions over Kleene algebras i.e.
in the structure

Mn(A) = (Mn(A),+, ;,0,1,*)

defined as in [4,14]. Namely with:

– Mn(A) is the space of (n × n)-matrices over A.
– for any A,B ∈ Mn(A), define M = A+B by Mi,j = Ai,j + Bi,j , i, j ≤ n.
– for any A,B ∈ Mn(A), define M = A ; B by Mi,j =

∑n
k=1(Ai,k;Bk,j) for

any i, j ≤ n.

– 1 and 0 are the (n×n)-matrices defined by 1i,j =

{
1 if i = j

0 otherwise
and 0i,j = 0,

for any i, j ≤ n.
– for any M = [a] ∈ M1(A), M* = [a∗];

for any M =
[

A B
C D

]
∈ Mn(A), n > 1, where A and D are square matrices,

define

M* =
[

F * F * ;B ;D*

D∗;C;F ∗ D*+(D* ;C ;F * ;B ;D*)

]

where F = A + B ;D* ;C. Note that this construction is recursively defined
from the base case (where n = 2) where the operations of the base action
lattice A are used.

As showed in [14], the structure Mn(A) is also a Kleene algebra, and therefore,
figures as a suitable space to represent, manipulate and interpret programs.
Enriching the interpretation of basic programs with graded interpretations for
the propositions, we get the models for a signature (Π,Prop). Formally, the
DL(A) models for (Π,Prop) are tuples

A = (W,V, (Aπ)π∈Π)
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where W is a finite set (of states), V : Prop × W → A is a function, and
Aπ ∈ Mn(A), with n standing for the cardinality of W .

As expected, the interpretation of a program π ∈ Prg(Π) in a model
A ∈ ModDL(Π,Prop) is recursively defined, from the set of atomic programs
(Aπ)π∈Π , with Aπ;π′ = Aπ ;Aπ′ ,Aπ+π′ = Aπ +Aπ′ and Aπ∗ = A*

π together
with the constants interpretations A1 = 1 and A0 = 0.

The reader can easily observe that the models of DL(2) corresponds exactly
to the standard PDL. More interesting instantiations can be found in [21].

In order to illustrate the running concepts, let us consider the consider the({p, q}, {π, π′})
-model A = ({s1, s2}, V, (Ap)p∈{π,π′}) of DL(�L) with V (p, s1) =

0.1, V (q, s1) = 0.5, V (p, s2) = π
4 and V (q, s2) = 0.75 and

Aπ : �������	s1

√
2

3
��
�������	s2

0.7

�� [
0

√
2

3
0 0.7

]
Aπ′ : �������	s1

√
2

2
��
�������	s2

0.5

��

√
3

2

��

[
0

√
2

2√
3

2 0.5

]

(21)

Then, for instance the program Aπ+π′ is interpreted by

Aπ+π′ = max(Aπ,Aπ′) = max

([
0

√
2

3
0 0.7

]
,

[
0

√
2

2√
3

2 0.5

])

=

[
0

√
2

2√
3

2 0.7

]

(22)

The last ingredient for the definition of DL(�L) is the graded satisfaction.
Here, on place of being a satisfaction relating each state with the formulas there
satisfied, we have a function that assigns the ‘satisfaction degree’ of a formula
in a given state. The operations of the action lattices have to play the truth
space role, on the interpretation of logic connectives. Formally, the graded sat-
isfaction relation for a model A ∈ ModDL(Π,Prop), with A complete, consists
of a function

|= : W × FmDL(Π,Prop) → A

recursively defined as follows:

– (w |= �) = �
– (w |= ⊥) = ⊥
– (w |= p) = V (p,w), for any p ∈ Prop
– (w |= ρ ∧ ρ′) = (w |= ρ) · (w |= ρ′)
– (w |= ρ ∨ ρ′) = (w |= ρ) + (w |= ρ′)
– (w |= ρ → ρ′) = (w |= ρ) → (w |= ρ′)
– (w |= ρ ↔ ρ′) = (w |= ρ → ρ′); (w |= ρ′ → ρ)
– (w |= 〈π〉ρ) =

∑
w′∈W

(Aπ(w,w′); (w′ |= ρ)
)

– (w |= [π]ρ) =
∏

w′∈W

(Aπ(w,w′) → (w′ |= ρ)
)

We say that ρ is valid when, for any model A, and for each state w ∈ W ,
(w |= ρ) = �.
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Returning to our running example, we can calculate the satisfaction degree
of the formula 〈π + π′〉(p → q)) in the state s1 as follows:

(s1 |= 〈π + π′〉(p → q)) = max(0 � (0.1 → 0.5),
√

2
2

� (0.75 → π

4
))

=
√

2
2

� (0.75 → π

4
)

=
√

2
2

� min(1, 1 − 0.75 +
π

4
)

=
√

2
2

Therefore, we conclude with a degree of certainty
√

2
2 that, after executing

π + π′ from the state s1, we have p → q.

Reasoning with Systems Involving Knowledge

The complexity of the current information systems, involving processes with
complex network of heterogeneous learning agents, raises for further generalisa-
tions of Multi-agent Epistemic Logics, including weighted versions. Hence, the
building logics on-demand principle, inherent to dynamisation, appear as an ade-
quate technique to be used is this domain. In this section, we review a variant
of dynamisation tailored to the generation of graded dynamic epistemic logics
introduced in [2].

Firstly let us recall the basis of Multi-agents Epistemic Logic (DEL). Sig-
nature of DEL are pairs (Prop,Ag) where Prop is a set of propositions and
Ag a finite set of agents. Note that this can be seen as propositional dynamic
logic signatures which atomic programs are the agent knowledge relations. The
(Prop,Ag) formulas of DEL are defined by the grammar

ϕ ::= p | � | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | Kaϕ | Baϕ | CGϕ

where p ∈ Prop, a ∈ Ag and G ⊆ Ag. The intuitive meaning of the epistemic
modalities is the following: Kaϕ means that agent a knows ϕ; Baϕ means that
agent a believes that ϕ; and the common knowledge operator CGϕ - means that
all the members of the group of agents G knows ϕ and each member of the group
knows that all the members of the groups know ϕ, etc.

The models are just special models of PDL. Formally, multi-agent epistemic
model is a tuple E = (W, (Ra)a∈Ag, V ) defined as in PDL but assuming that, for
any agent a ∈ Ag, Ra is an equivalence relation. The interpretation of knowledge
modalities is defined by

– M, s |= Kaφ iff for all s′ ∈ S : sRas′ ⇒ M, s′ |= φ
– M, s |= Baφ iff there is an s′ ∈ S such that sRas′ and M, s′ |= φ
– M, s |= CGφ iff for all s′ ∈ S, sR∗

Gs′ ⇒ M, s′ |= φ
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The similarities with PDL are straightforward. Modality Ka corresponds to
the modality [a] for an atomic program a. Its dual, the modality Ba, corresponds
to the modality 〈a〉 for an atomic program a. Modality CG is captured by the
modality [(

∑
a∈G a)∗].

In order to get some intuitions on this logic, let us recall the well know
example of the envelops used in [6]. Three envelopes containing 0, 1 and 2 euros
are given to the agents ana, bob and clara. Each agent just knowns the content of
her envelop. Using proposition Prop =

{
Ex|E ∈ {1, 2, 3}, x ∈ {a, b, c}} referring

that “agent x has envelop E”, and representing states by the order of envelops,
e.g. the state 012 represents the case that agent a has 0, agent b has 1 and c
has 2, we can represent epistemic state of each agent as follows1 (Fig. 3):

Fig. 3. anna’s, bob’s and clara’s epistemic model [6]

Hence, we have, for instance, that 012 |= Bb0a and 012 |= BaKc2c hold.
Redefining our dynamisation method for this specific seetings we obtain a
method to build graded dynamic epistemic logics. The satisfaction relation for
the epistemic modalities takes now the form:

– (w |= Ka ϕ) =
∧

w′∈W

(
Ra(w,w′) → (w′ |= ϕ)

)

– (w |= Ba ϕ) =
∨

w′∈W

(
Ra(w,w′); (w′ |= ϕ)

)

– (w |= CG ϕ) =
∧

w′∈W

(
R∗

G(w,w′) → (w′ |= ϕ)
)

These logics are prepared to deal with agents with graded beliefs (on place of
bivalent ones). Let us revisit the example above, by supposing that the agent ana
‘suspect’ that the envelop of bob has a higher amount than the one of herself. In
a scale from 0 to 5, her belief is 4; Conversely, her belief that the envelop received
by bob has a smaller value is 1. The epistemic perception of ana is depicted in
the following picture. Again, we omit the reflexive loops in the picture (with
value 5) (Fig. 4):2

Reasoning with Interval Approximations

There are some situations where only approximations for the transition weights
are possible (e.g. when dealing weights over irrational numbers, we have no
1 We omit the reflexive loops in the picture.
2 The complete treatment of this illustration is in [2];.
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Fig. 4. anna’s beliefs

machine representation of transition weights; or due impreciseness in some mea-
surements). On this purpose, for the specific case of Fuzzy Dynamic logic, we
adjusted the dynamisation constructions to deal with intervals, rather than
points. This results in a new family of dynamic logics whose assertions, and the
satisfaction outcomes, are also intervals. This section informally overviews our
work in Interval Dynamic Logic presented in [29,30]. The presentation is guided
to the case �L but the same principle can be extended to other continuous action
algebras.

In the sequel, for any closed interval X, we use X and Y to denote its left
and right bounds, i.e. for X = [a, b], X = a and Y = b.

Our first concern is about the structure to interpret such kind of programs.
The following result presented in [29] provides a Kleene algebra for that end:

Theorem 1 ([29]).

K( �̂L) =
(
U,Max,

⊙
, [0, 0], [1, 1], ∗̂)

where

– U = {[a, b] | 0 ≤ a ≤ b ≤ 1}
– Max(X,Y ) = [max(X,Y ),max(X,Y )]
– Min(X,Y ) = [min(X,Y ),min(X,Y )]
– X

⊙
Y = [(X � Y ), (X � Y )] = [max(0,X + Y − 1),max(0,X + Y − 1)]

– X ∗̂ = [X∗,X
∗
] = [1, 1].

is a Kleene algebra.

For instance, we can consider interval approximations of the weight transition
structure presented above as

Aπ : �������	s1

[0.4,0.5]
��
�������	s2

[0.7,0.7]

�� [

(0, 0) (0.4, 0.5)
(0, 0) (0.7, 0.7)

]

Aπ′ : �������	s1

[0.6,0.8]
��
�������	s2

[0.5,0.5]

��

[0.7,0.9]

��

[

(0, 0) (0.6, 0.8)
(0.7, 0.9) (0.5, 0.5)

]
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Using the K(�̂L) operations, we can also interpret (composed) programs. For
instance Aπ+π′ is

max
([

(0, 0) (0.4, 0.5)
(0, 0) (0.7, 0.7)

]
,

[
(0, 0) (0.6, 0.8)
(0.7, 0.9) (0.5, 0.7)

])
=

[
(0, 0) (0.6, 0.8)
(0.7, 0.9) (0.7, 0.7)

]

It is expected to extend the structure K(�̂L) with an interpretation of the
implication, in order to have an action lattice for intervals. The natural candidate
is X⇒>Y = [(X → Y ), (X → Y )] = [min(1, 1 − X + Y ),min(1, 1 − X + Y )].
However, the reader can easily observe that axioms (13) and (15) does not hold
in �̂L (c.f. [29] for a complete discussion). Hence, despite of its Kleene algebra
structure, �̂L it is not an action lattice. We studied in [29], an weakness of action
lattices, called quasi-action lattice, that capture �̂L. Fortunately, this structures
still have good properties to serve as parameter of dynamisation method. For
instance, by considering a valuation V : Prop → U with V (p, s1) = [0.1, 0.1],
V (q, s1) = [0.5, 0.5], V (p, s2) = [0.7, 0.8] and V (q, s2) = [0.75, 0.75], we can
calculate the degree of satisfaction of the sentence 〈π + π′〉(p → q) from the
state s1 as:
(s1 |=

̂�L 〈π + π′〉(p → q))
= max([0, 0] � ([0.1, 0.1] ⇒>[0.5, 0.5]), [0.6, 0.8] � ([0.5, 0.5]⇒>[0.7, 0.8]))
= max([0, 0], [0.6, 0.8] � [0.5 → 0.7, 0.5 → 0.8])
= [0.6, 0.8] � [1, 1]
= [0.6, 0.8].

4 Further Extensions and Applications?

As suggested along the paper, the pattern of changing the atomic programs to
adapt the computing paradigm is not only recognised in our methods to build
graded dynamic logics, but in most of variants of dynamic logics in the literature.
This motivates our position that the shape of dynamic logic provides the de
facto essence of what a logic for programs is. When invited to make a personal
overview in dynamic logic in the International Symposium on Molecular Logic
and Computational Synthetic Biology 2018, the authors main motivation was to
open the discussion of what should be the suitable atomic programs, for a further
dynamic logic tailored to synthetic biology. The same exercise have been done
by the group on finding new dynamic logics for other domains and applications,
including reactive processes [9,10,17], petri-nets with failures [15]. We have also
explored this ‘logic-on-demand’ strategy in other modal logics. Our long term
research in the parametric generation of hybrid logics [19,23,24] supports the
formal development of a wide range of reconfigurable systems from the design
to the verification stage [20]. Moreover, we extended the parametric generation
of Dynamic Epistemic Logics in [18] by considering structured representation of
states.

Exploiting the limits of our methods on building dynamic logics prepared
to deal with paraconsistencies in behaviours or in knowledge acquirement, is a
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research line that we intend to develop. This will certainly be useful for the appli-
cation domains of this symposium. The recent contributions within the group
in paraconsistent hybrid logic [5] provides an interesting starting point for this
agenda. Shifting the paraconsistency of atomic modalities to composed programs
is, however, challenging. Specific questions as ‘what is a paraconsistent program’
should be answered. More precisely, the understanding of what is a paraconsis-
tent execution of a program, if the paraconsistency is inherent to the atomic
programs, or if it results from a ‘paraconsistent control’, due non conventional
interpretation of the Kleene operators, are questions to be studied in this line.
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Abstract. We study the impact of some abstract agent intervention on
the disease spread modelled by a SIR-model with linear growth infec-
tivity. The intervention is meant to decrease the infectivity, which are
activated by a threshold on the number of infected individuals. The cou-
pled model is represented as a nonlinear non-autonomous hybrid sys-
tem. Stability and reduction results are obtained using the notions of
non-autonomous attractors, Bohl exponents, and dichotomy spectrum.
Numerical examples are given where the number of infected individuals
can oscillate around a equilibrium point or be a succession of bump func-
tions, which are validated with a tool based on the notion of δ-complete
decision procedures for solving satisfiability modulo theories problems
over the real numbers and bounded δ-reachability. These findings seem
to show that hybrid SIR-models are more flexible than standard models
and generate a vast set of solution profiles. It also raises questions regard-
ing the possibility of the agent intervention been somehow responsible
for the shape and intensity of future outbreaks.

Keywords: SIR-models · Hybrid systems · Stability

1 Introduction

Mathematically, the model of choice to represent the dynamics of the epidemic
is the SIR-model and its variants; introduced by Kermack and McKendrick [11].
Since then, the literature on the subject is quite vast. However, one of the key
issues in the subject is that the simplicity of (autonomous) SIR-models do not
produce solutions with complicate oscillatory behaviour.

Although less common, non-autonomous SIR-models have been introduced
and studied in the literature and may overcome partially such limitations, e.g.
see [2–4,16,18,21,23]. Usually these models introduce some type of seasonality
behaviour, for example, through a periodic infectivity function. Indeed, Bacaër
et al. [2] introduced a generalization of the basic reproduction number, and
Boatto et al. [4] considered a SIR-model with birth and death terms and time-
varying infectivity as a sinusoidal, showing that the (average) basic reproduction
number, the initial phase, the amplitude and the period are all relevant issues.
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Moreover, they show the existence of a periodic orbit. Bai et al. [3] studied a
model with a seasonal contact rate and a staged treatment strategy, showing
two different bistable behaviours under certain conditions: the stable disease-
free state coexists with a stable endemic periodic solution, and three endemic
periodic solutions coexist with two of them being stable. Kuniya [16] deals with
an age-structured SIR epidemic model with time periodic coefficients, obtain-
ing the basic reproduction number as the spectral radius of the next generation
operator and showing that it plays the role of a threshold value for the existence
of a nontrivial periodic solution; based on a Krasnoselskii fixed point theorem
argument. Another approach to produce non-autonomous systems is to couple
different SIR-models by a non-autonomous function, e.g. Rocha et al. [21] intro-
duced a tuberculosis (TB) mathematical model, with 25 state-space variables
where 15 are evolution disease states (EDSs), which takes into account the (sea-
sonal) flux of populations between a high incidence TB country (A) and a host
country (B) with low TB incidence, where (B) is divided into a community (G)
with high percentage of people from (A) plus the rest of the population (C).

In this work, we consider an infectivity function which grows linearly (i.e. the
most simple non-autonomous function), but we also study the effect of an agent
intervention on the model in the form of some action policies. The policies are
meant to reduce to decrease the infectivity, which are activated by a threshold
on the number of infected individuals. Such approach turns the full model into
a nonlinear non-autonomous hybrid system, see Sect. 2. Stability and reduction
results are obtained using the notions of non-autonomous attractors, Bohl expo-
nents, and dichotomy spectrum, which are presented in Sect. 3. In Sect. 4, we give
some numerical examples, where the number of infected individuals can oscil-
late around a equilibrium point or be a succession of bump functions. The last
example is quite interesting and raises questions regarding the possibility of the
agent intervention time been somehow responsible for the shape and intensity of
some future outbreaks. We end this work with some brief concluding remarks.

2 The Mathematical Model

2.1 The Class of Non-autonomous ODEs

Consider the basic SIR epidemic model together with a piecewise linear contin-
uous infection coefficient βξ, described by

(a)

⎧
⎨

⎩

S′ = αR + (ζ + α)I − βξIS,
I ′ = βξIS − (ζ + α + γ)I,
R′ = γI − αR,

and (b) β′
ξ = ξ, (1)

where γ > 0, α ≥ 0, ζ ≥ −α, and ξ ∈ R is a bifurcation parameter; e.g. for
ξ = 0 the model is autonomous. The values S(t), I(t), R(t) are, respectively, the
number of healthy individuals (susceptible), infected individuals and recovered
individuals; and α is a parameter of birth and death, γ is a recovery rate without
possibility of re-infection, and ζ accounts for the rate of individuals that become
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healthy but may be re-infected in the future. We assume a (normalized) constant
population S +I +R = 1, so the system (1)(a) evolves on the simplex defined by

Σ1 = {(S, I,R) ∈ R
3 : S, I,R ≥ 0, S + I + R = 1},

meaning that system (1) may be written as

(a)

⎧
⎨

⎩

S′ = α(1 − S) + ζI − βξIS,
I ′ = βξIS − (ζ + α + γ)I,
(S(t), I(t), R(t)) ∈ Σ1,

and (b) β′
ξ = ξ, (2)

For mathematical reasons, which will be clear in what follow, e.g. use of
pullback limits and Bohl exponents, we work with an unbounded from below
time interval T = (−∞, T ], for T > 0, with an initial time t0 ∈ (0, T ). For
convenience, from now on, we use the notations T t0 = [t0, T ], SIR(ξ) to describe
the set of Eq. (2) for a given parameter ξ ∈ R, which account for the (linear)
increase/decrease ratio of the disease.

Clearly, Eq. (2)(b) may be extended by using other growth functions, e.g.
accounting for saturation phenomena, instead of the simple linear change in the
infection coefficient. However, for the purpose of this work, such is enough in
order to discover the main differences from the standard (autonomous) SIR-
model, vastly used in the literature.

2.2 Non-autonomous Hybrid SIR-Models Generated by Simple
Action Policies

In the model under study, we have two main entities, i.e. the natural evolution
of the disease (nature) versus the evolution of the disease together with some
abstract agent action with the purpose of reducing the transmission rate. Each
will have a on/off-state, but makes sense to suppose nature is always in the
on-state when the agent action is in the off-state, and vice-versa. Since they are
complementary, we consider states in the viewpoint of the agent action. Further,
to model the action from the agent, we assume that it depends on the current
number of infected individuals I(t) and has a maximum fixed time of intervention
T ∗ > 0. For that, we establish two threshold values as triggers to the on/off-
states, namely, Ib ∈ (0, 1] and Is ∈ [0, 1). Then, the agent strategies considered
are:

(S0) the action starts at time t̃ ∈ T t0 , if it was in the off-state and I(t̃) = Ib,
then stops at time t = t̃ + T ∗ (i.e. Ib = 1);

(S1) the action starts at time t̃ ∈ T t0 , if it was in the off-state and I(t̃) = Ib,
then stops at the first time t > t̃ with I(t) = Is (i.e. T ∗ = +∞);

(S2) the action starts at time t̃ ∈ T t0 , if it was in the off-state and I(t̃) = Ib,
then stops when (S0) or (S1) are satisfied.

Although in general, in each on/off-state, we may have different behaviours, e.g.
applying different techniques to reduce the (time dependent) transmission rate,
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for this work we assume that there is only one behaviour in the on-state. Such
corresponds to restrict the values of the parameter ξ to the set {β−, β+}, for
given constants β− < 0 < β+. The value β+ accounts for the natural increasing
effect of the disease (i.e. no agent intervention) and β− accounts for the result
of an agent action for controlling/reducing the transmission rate. Thus, in this
model, ξ ≡ ξ(t) turns now to be a piecewise function defined on T t0 with values
on {β−, β+}, where the discontinuity instances are precisely the switching times
generated by the application of one of the agent strategies (S0)−(S2). Moreover,
ξ(t0) = β+, I(t0) < Ib, and the system may alternate (none or some bounded
number of times) between the values β− and β+. Hence, it makes sense to define
ξ− ⊆ T t0 as the support where ξ(t) = β−, ξ+ ⊆ T t0 as the support where
ξ(t) = β+, Nξ ∈ N0 the number of switchings, and t0, t1, . . . , tNξ

, with t0 < t1 <
· · · < tNξ

< T , the corresponding times of switchings.
Realistic constraints impose further that, in Eq. (2)(b), we assume βξ(t) > 0

on T t0 ≡ [0, T ] and I(t) > 0 on T t0 (i.e. in the time window there are always
infected individuals), otherwise the problem is not interesting or meaningful.
Additionally, for mathematical reasons, we require that, besides βξ being a con-
tinuous integrable bounded function on T t0 , to be defined also on R\T t0 . In
particular, we will have the following structure

βξ(t) = βξ(t0) + ξ

Nξ∑

i=1

[
ξ(ti−1) (min{ti, t} − ti−1)χ(ti−1,+∞)(t)

]
, (3)

where χS(t) is the characteristic function of the set S. Therefore, there are
positive constants β∗ and β∗, such that βξ(t) ∈ [β∗, β

∗] for t ∈ R.
Regarding the triggers values there are two situations: Ib > Is and Ib < Is.

The most natural situations is Ib > Is, but Ib < Is makes sense in specific and
limit situations. In either cases, because of the agent action, βξ(t) ≡ βξ(t, I(t))
and there is a memory effect, not present in Eq. (2), which controls in which state
the system is running. In general, the model under study is neither an ordinary
differential equation or a differential inclusion, but can be treated in the setting
of (generic) hybrid systems, e.g. see [10,20] for definitions and properties.

[off]
SIR(β+)

[on]
SIR(β−)

I(t) = Ib

I(t) = Is ∨ t = T ∗

start

Fig. 1. Hybrid system associated to (2) describing the agent police.

The hybrid model is generally described in Fig. 1 and in more detail in Fig. 2,
when expanding the invariant sets and dealing with the situations Ib > Is and
Ib < Is.
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[off−]
SIR(β+)

I(t) ≤ Ib

[on−]
SIR(β−)

I(t) ≤ Is
t ≤ T ∗

[on+]
SIR(β−)

I(t) ≥ Is
t ≤ T ∗

[off+]
SIR(β+)

I(t) ≥ Ib

βξS > β0 − ξ0
I(t) = Ib > Is

Ib > Is

(βξS < β0 − ξ0 ∧ I(t) = Is)
∨ t = T ∗

βξS > β0 − ξ0
I(t) = Ib < Is

Ib > Is

(βξS > β0 − ξ0 ∧ I = Is)
∨ t = T ∗

Ib < Is

(βξS > β0 − ξ0 ∧ I(t) = Is)
∨ t = T ∗

βξS < β0 − ξ0
I(t) = Ib < Is

Ib < Is

(βξS < β0 − ξ0 ∧ I(t) = Is)
∨ t = T ∗

βξS < β0 − ξ0
I(t) = Ib > Is

start

Fig. 2. Hybrid system associated to (2) with invariant sets; dashed edges mean the
jumps are never used, since Ib, Is are fixed parameters.

2.3 Existence and Uniqueness of Solutions

Let x(t) = (S(t), I(t), R(t)) ∈ Σ1. The standard way to look to the system (2),
as a dynamic process, is to consider it as the non-autonomous ODE Cauchy
problem
⎧
⎨

⎩

S′(t) = α(1 − S(t)) + ζI(t) − βξ(t)I(t)S(t),
I ′(t) = βξ(t)I(t)S(t) − (ζ + α + γ)I(t),
R(t) = 1 − S(t) − I(t),

⇔
{

d x(t)
dt = F (t, x(t)),

x(0) = x0 ∈ Σ1,

where all parameters α, ζ, γ, , ξ are fixed and, as described above, the initial
conditions are values verifying βξ(t0) = β0, 0 ≤ S(t0), I(t0), R(t0) ≤ 1, S(t0)+
I(t0) + R(t0) = 1.

Lemma 1. For any admissible parameters α, ζ, γ, β0, β−, β+, ξ ∈ {β−, β+},
initial conditions above, and a strategy Si, i ∈ {0, 1, 2}, the hybrid system has a
unique solution.

3 Stability and Bifurcation in Each Node

Restricting to a hybrid system node and for mathematical reasons, we may
assume that the infectivity function βξ, satisfying (2)(b) on [t0, T ], is defined in
all R with the structure

βξ(t) = β0χ(−∞,t0](t)+(β0+ξ(t−t0))χ(t0,T ](t)+(β0+ξ(T −t0))χ(T ,+∞)(t), (4)
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where β0 = βλ(t0) > max{0,−ξT } and χS(t) is the characteristic function of
the set S. Therefore, there are positive constants β∗ and β∗, such that βλ(t) ∈
[β∗, β

∗] for t ∈ R. In fact, β∗ = min{β0, β0 + ξT } and β∗ = max{β0, β0 + ξT }.
Further, each node is a nonlinear non-autonomous ordinary differential equation,
so standard results of (autonomous) SIR-models do not apply. Such happen
even for non-autonomous linear system as x′ = A(t)x. For instance, the well-
known fact that the origin is globally asymptotically stable if the real part of all
eigenvalues of the matrix A are negative turn out to be wrong, as the following
Nemytskii-Vinograd counterexample shows

ẋ = A(t)x, with A(t) =
[

1 − 4 cos(2t)2 2 + 2 sin(4t)
−2 + 2 sin(4t) 1 − 2 sin(2t)2

]

,

which has the constant eigenvalues λ1 = −1 and λ2 = −1, but have the fun-

damental matrix X(t) ≡ X(t, 0) =
[

et sin(2t)
et cos(2t)

]

, so solutions are unstable. To

overcome these difficulties, we will use tools as the Chueshov’s notion of non-
autonomous equilibrium solution in a random dynamical system through a pull-
back limit, and the notions of Bohl exponents and exponential dichotomy. We
start by briefly collecting stability results for the autonomous SIR-model in the
next section.

3.1 Stability of the Autonomous SIR-Model

The corresponding autonomous SIR-model of Eq. (2)(a), i.e. when ξ = 0, may
be written as

⎧
⎨

⎩

S′(t) = α(1 − S(t)) + ζI(t) − β0I(t)S(t),
I ′(t) = β0I(t)S(t) − β0R−1

0 I(t),
R(t) + S(t) + I(t) = 1,

with R0 =
β0

ζ + α + γ
> 0, (5)

where R0 is the so-called basic reproduction number. When R0 ≤ 1, the
disease-free equilibrium (S∗, I∗) = (1, 0) is a globally asymptotic equilibrium
point, proved by using Lyapunov-LaSalle function V (S, I) = I and the LaSalle’s
Invariance Principle in the compact positively invariant set Σ1. The endemic
equilibrium

(S̄, Ī) =
(

R−1
0 ,

α

α + γ
(1 − R−1

0 )
)

(6)

only belongs to the simplex Σ1 if R0 > 1. In fact, for R0 > 1, the disease-free
equilibrium is unstable and the endemic equilibrium is asymptotically stable
on Σ1\M0, where M0 = [0, 1] × {0} is the stable manifold of the disease-free
equilibrium, see [1]. The stability is obtained by using the Lyapunov function

V (S, I) = (S − S̄) − α + γ

β0
log

β0S − ζ

β0S̄ − ζ
+ (I − Ī) − Ī log

I

Ī
.

For the linear growth infectivity setting, i.e. ξ 	= 0, the disease-free equi-
librium (S∗(t), I∗(t)) = (1, 0) is still valid (in some regimes) but the endemic
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equilibrium (S̄, Ī) do not make sense a priori as an equilibrium point, since
the ODE is non-autonomous. Hence, we introduce the notion of nontrivial non-
autonomous attractor, obtained by a pullback limit mechanism when using the
skew product flow formalism, in the next two sections.

3.2 The Skew Product Flow Formalism

From Lemma 1, for each initial condition x0 ∈ Σ1, there exists a unique solu-
tion x(t; t0, x0), so we may define the flow φt,t0(x0) = x(t), which satisfies the
following set of conditions:

(P0) (a) φt0,t0(t0) = x0; (b) φt2,t0 = φt2,t1◦φt1,t0 for all t0 ≤ t1 ≤ t2; (c) t �→ φt,t0

is differentiable and (t, t0, x0) �→ φt,t0(x0) is continuous.

Let (X, dX) and (P, dP ) be metric spaces. A skew product flow (, ϕ) is defined
in terms of a cocycle mapping ϕ : R

+
0 × P × X → X which is driven by an

autonomous dynamical system ψ : R × P → P acting on a base or parameter
space P and the time set R. For convenience, we write ϕp

t (x) to denote ϕ(t, p, x).
The driving system ψ on P is a group of homeomorphisms (ψ)t∈R under the
composition on P with the properties that

(P1) (a) ψ0(p) = p for all p ∈ P ; (b) ψs+t = ψs ◦ ψt for all s, t ∈ R; (c) the
mapping p �→ ψt(p) is continuous;

(P2) (a) ϕp
0(x) = x for all (p, x) ∈ P × X; (b) ϕp

t+s = ϕq
t ◦ ϕp

s with q = ψs(p) for
all s, t ∈ R

+
0 , and p ∈ P ; (c) the mapping (t, p, x) �→ ϕ(t, p, x) is continuous.

In particular, system (2) can be seen as

(a)

⎧
⎨

⎩

S′ = α(1 − S) + ζI − βξIS,
I ′ = βξIS − (ζ + α + γ)I,
R′ = (γI − αR),

and (b)

⎧
⎨

⎩

β′
ξ = ξ,

ξ′ =′= ξ′ = α′ = ζ′ = γ′ = 0,
τ ′ = 1.

(7)

So, we have X = Σ1, P = [β∗, β
∗]×{β−, β+}×{0, 1}×{0, 1}× [0, α∗]× [0, ζ∗]×

[0, γ∗]×{0} for some α∗, ζ∗, γ∗ ∈ R
+, ψt(p) = (p0+ξt, p1, p2, p3, p4, p5, p6, p7, p8+

t) and Eq. (2)(a) are written as

d x(t)
dt

= f(ψt(p), x(t)), x(0) = x0 ∈ X, p ∈ P. (8)

One of the advantages of this formalism is that, in our case, X and P are both
compact metric spaces. Natural extensions to random dynamical systems are
obtained when replacing P by a probability space and the continuity property
in (P1)(c) by measurability. The solutions are then generated by solutions of the
corresponding Itô stochastic differential equation, see [8] as an introduction to
the subject.
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3.3 Non-autonomous Attractors

An entire solution is a continuous function u : R → Σ1 such that u(t + s) =
ϕp

t (u(s)) for all s ∈ R and t ∈ R
+
0 . We say that A is a non-autonomous attractor

p-family if it is a set of nonempty compact subsets Ap ⊆ Σ1 such that ϕp
t (Ap) =

Aψt(p) for all t ∈ R
+
0 and p ∈ P . Such sets are made up of entire solutions. Let

dimS(A,B) denote the Hausdorff semidistance between the nonempty compact
subsets A and B of S. We call a non-autonomous attractor p-family A a pullback
attractor p-family if it holds the pullback convergence

lim
t→+∞

distΣ1

(
ϕ

q−
t (D), Ap

)
= 0 with q− = ψ−t(p), ∀p ∈ P,D ⊆ Σ1,D 	= ∅,

and a forward attractor p-family if it holds the forward convergence

lim
t→+∞

distΣ1

(
ϕp

t (D), Aq+

)
= 0 with q+ = ψt(p), ∀p ∈ P,D ⊆ Σ1,D 	= ∅.

If the convergence is uniform in p, the pullback and forward convergences coin-
cide. A pullback absorbing set B is a nonempty subset of Σ1 such that, for all
p ∈ P and (bounded) D ⊆ Σ1, there exists a time T ≡ T (p,D) > 0, and

ϕq
t (D) ⊂ B with q = ψ−t(p), ∀t ≥ T,

If there exists a pullback absorbing set B then A is a pullback attractor p-family
if we define

Ap =
⋂

s>0

⋃

t>s

ϕ
q−
t (B).

There is a corresponding formulation for t-families. Recall the system rep-
resentation (2.3) with flow φt,t0 . We say that A is a non-autonomous attrac-
tor t-family if it is a set of nonempty compact subsets At ⊆ Σ1 such that
φt,t0(At0) = At for all t ≥ t0. Then it is a pullback attractor t-family if

lim
t0→−∞

distΣ1 (φt,t0(D), At) = 0, ∀D ⊆ Σ1,D 	= ∅. (9)

This notion will play an important role in finding (nontrivial) non-autonomous
equilibrium points.

3.4 SI(ξ) with ξ ∈ {β−, β+}
Considering the complexity of the model (2), in a first step, we study a sub-case
proposed in [13], where the equation for R(t) will not appear and the system
evolves on the simplex

Σ0 = {(S, I) ∈ R
2 : S, I ≥ 0, S + I = 1}.

Thus, it have the form

(a)

⎧
⎨

⎩

S′ = α(1 − S) + ζI − βξIS,
I ′ = βξIS − (α + ζ)I,
(S(t), I(t)) ∈ Σ0,

(b) β′
ξ = ξ. (10)
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and will be denoted by SI(ξ)-model, although other variations exist on the liter-
ature with similar notation. For studying the stability properties of (10), it will
be relevant the following results which may be checked computationally.

Lemma 2. Assume A > 0 and B ∈ R. If

H±[A,B](t, t0) =
∫ t

t0

e±(Ar+ 1
2Br2)dr,

then

H±[A,B](t, t0) =

{
±A−1

(
e−At − e−At0

)
if B = 0,

∓
√

∓ π
2B e∓ A2

2B (EA,B(t) − EA,B(t0)) if B 	= 0,
,

where erf is the error function and EA,B(t) = erf
(

(A + Bt)
√

∓ 1
2B

)
.

Lemma 3. The general Bernoulli differential equation

x′ = a(t)x − b(t)x2, x(t0) = x0,

for some arbitrary functions a and b, has the unique solution

x(t; t0) =
x0ϕ(t, t0)

1 + x0

∫ t

t0
b(s)ϕ(s, t0) ds

with ϕ(s, s0) = e
∫ s

s0
a(r) dr

.

System (10)(a) can be reduced to the Bernoulli differential equation

I ′ = (βξ − α − ζ)I − βξI
2, I(t0) = I0 ∈ (0, 1), (11)

with explicit solution (see Lemma 3)

I(t; t0) =
I0ϕ(t, t0)

1 + I0
∫ t

t0
βξ(s)ϕ(s, t0) ds

and ϕ(s, s0) = e
∫ s

s0
βξ(r)−α−ζ dr

.

Let ξ0 = β0 − α − ζ. For the t �→ βξ(t) function, ξ0 ∈ R is the so-called shovel
bifurcation parameter, due to a change in the range, and ξ is a transcritical
bifurcation parameter, due to a change in the amplitude (see [12]).

Denoting by χC the characteristic function of the condition C, i.e. it is equal
to one if C is true and zero otherwise, we have

ϕ(s, s0) = ϕ̂(s)ϕ̂(s0)−1 with ϕ̂(r) = eξ0r+ 1
2 ξr2 χ{r≥0} , (12)

so ln(ϕ(s, s0)) = ξ0(s − s0), when s0 ≤ s < 0, and ln(ϕ(s, s0)) = ξ0(s − s0) +
1
2ξ
(
s2 − s20

)
, when s0 ≥ s ≥ 0. Then, the solution of the non-autonomous SI(ξ)-

model has the explicit solution

I(t; t0) =
(
1 + (I−1

0 − 1)e−ξ0(t−t0)− 1
2 ξ(t2−t20) + (α + ζ)e−ξ0t− 1

2 ξt2H+[ξ0, ξ](t, t0)
)−1

(13)
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with t0 ≥ 0, t ∈ T t0 . In fact, from Lemma 3, we have

I(t; t0) =
I0e

ξ0(t−t0)+
1
2 ξ(t2−t20)

1 + I0
∫ t

t0
(α + ζ + ξ0 + ξs)eξ0(s−t0)+

1
2 ξ(s2−t20) ds

with t0 ≥ 0, t ∈ T t0 . Further,

W =
∫ t

t0

(α + ζ + ξ0 + ξs)eξ0(s−t0)+
1
2 ξ(s2−t20) ds

= (α + ζ)e−ξ0t0− 1
2 ξt20

∫ t

t0

eξ0s+ 1
2 ξs2

ds + e−ξ0t0− 1
2 ξt20

∫ t

t0

(ξ0 + ξs)eξ0s+ 1
2 ξs2

ds

= (α + ζ)e−ξ0t0− 1
2 ξt20H+[ξ0, ξ](t, t0) + eξ0(t−t0)+

1
2 ξ(t2−t20) − 1,

replacing on I(t; t0), we obtain closed form solution expression (13).

The Non-autonomous Equilibrium Solution. For simplicity of presentation
and without loss of generality, let us assume that t0 = 0. Following Chueshov
[6], we consider the so-called non-autonomous equilibrium solution in a random
dynamical systems set-up (Et), found by taking the pullback limit t0 → −∞ of
(13) (see (9)), thus arriving to

I∗(t) =
(∫ t

−∞
βξ(r)ϕ(t, r)−1 dr

)−1

, S∗(t) = 1 − I∗(t).

Lemma 4. Let t ∈ [0, T ]. Define the complex value function

G(t) ≡ H+[ξ0, ξ](t, 0) =
√

− π

2ξ
e− ξ20

2ξ

[

erf
(

(ξ0 + ξt)
√

− 1
2ξ

)

− erf
(

ξ0

√

− 1
2ξ

)]

where erf is the error function. We have the following equilibrium Et for SI(ξ):

(i) When ξ0 ≤ 0, then (S∗(t), I∗(t)) = (1, 0);
(ii) When ξ0 > 0 and ξ = 0, then

S∗(t) = (α + ζ)β−1
0 and I∗(t) = (β0 − α − ζ)β−1

0 ;

(iii) When ξ0 > 0, ξ 	= 0 and G(t) ∈ R, then

S∗(t) =
ξ20G(t) − (1 + β0G(t))ξ0 + β0

ξ20G(t) − (1 + β0G(t))ξ0 + β0 + ξ0eξ0t+ 1
2 ξt2

and

I∗(t) =
ξ0e

ξ0t+ 1
2 ξt2

ξ0eξ0t+ 1
2 ξt2 + β0 − ξ0[1 + (β − ξ0)G(t)]

.

Moreover, the equilibrium Et is globally asymptotically stable when ξ0 >
max{0,−ξT }.
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The Disease-Free Equilibrium. The disease-free steady state equilibrium
(E0) is (S∗(t), I∗(t)) = (1, 0) on T . From above, Et coincides with E0 when
ξ ≤ 0. Kloeden-Kozyakin [13] (in Lemmas 4.1 and 3.1) proved a similar stability
result, which we add for completeness and further reference.

Lemma 5. E0 is globally asymptotically stable w.r.t. Σ0, when β∗ ≤ α+ ζ, and
unstable when β∗ > α + ζ.

Note that no information is given in the case β∗ ≤ α + ζ < β∗. A direct use
of the above Lemma gives the following result.

Lemma 6. The globally asymptotically stability of E0 w.r.t. Σ0, satisfies:

(i) If ξ = β−, it is stable when ξ0 ≤ 0 and unstable when ξ0 > T |β−|;
(ii) If ξ = β+, it is stable when ξ0 ≤ −T β+ and unstable when ξ0 > 0.

We now define the so-called Bohl exponents, introduced by Bohl [5], which
give information on the uniform exponential growth, whereas Lyapunov expo-
nents, introduced by Lyapunov [17], only measure the exponential growth. It is
well-known from ODEs that the Bohl exponent compared with the Lyapunov
exponent is the appropriate concept in the setting of non-autonomous systems.
For a summary of the history of Lyapunov and Bohl exponents see [7]. In detail,
the upper Bohl exponent of a locally integrable function f : T → R is defined
by

βJ(f) = inf

{

w ∈ R : sup
s≤t,(s,t)∈J×J

1
t − s

∫ t

s

f(r) − w dr < ∞
}

,

and the lower Bohl exponent by

β
J
(f) = sup

{

w ∈ R : sup
t≤s,(s,t)∈J×J

1
t − s

∫ t

s

f(r) − w dr < ∞
}

.

The exponents are finite when f is integrally bounded, besides other properties
(e.g. see [7]). From now on, we use the convection a + [b, c] = [b + a, c + a] for
any a, b, c ∈ R.

We say that a linear system x′ = A(t)x has an exponential dichotomy (for
short, E.D.) on R, if there exists a projection P : Rn → R

n and positive constants
C,α, β such that

‖Φ(t)PΦ−1(s)‖ ≤ Ce−α(t−s), t ≥ s,

‖Φ(t)(Id − P )Φ−1(s)‖ ≤ Ce−β(t−s), s ≥ t.

The dichotomy spectrum [22] is the set

ΣA = {c ∈ R : x′ = (A(t) − c Id)x admits no E.D.} ,

which is considered in the literature as the appropriate counterpart to eigenvalues
in the non-autonomous setting. Then dichotomy spectrum is related with the
Bohl exponents in the following way.
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Lemma 7 (see [12]). If f : R → R is a continuous bounded function and
limt→±∞ f(t) = f± ∈ R then βR(f) = max{f−, f+}, β

R
(f) = min{f−, f+}, and

βR±(f) = β
R±(f) = f±. Moreover, if f : J ⊆ R → R is a continuous bounded

function, then the dichotomy spectrum of ẋ = f(t)x is given by [β
J
(f), βJ(f)].

We have the following stability result.

Lemma 8. The uniformly asymptotically stability of E0 w.r.t. Σ0 on R,
satisfies:

(i) If ξ = β−, it is stable when ξ0 ≤ 0 and unstable when ξ0 > T |β−|;
(ii) If ξ = β+, it is stable when ξ0 ≤ −T β+ and unstable when ξ0 > 0.

E0 is uniformly asymptotically stable w.r.t. Σ0 on T 0, when ξ0 ≤ − 1
2ξT , and

unstable when ξ0 > − 1
2ξT .

3.5 SIR(ξ) with ξ ∈ {β−, β+}
For simplicity, assume t0 = 0. A basic observation regarding SIR(ξ) is that
the sign of I ′ is, almost everywhere, given by ν(t) := sign(I ′) = sign((β0 + ξt)
S − q) ∈ {−1,+1}, so, ν(t)S(t) > ν(t) q

β0+ξt implies ν(t)I increases, where q =
α + ζ + γ. Hence, defining the auxiliary functions

ψI(t) = βξ(t)S(t) − (α + ζ + γ) and ψR(t) = (γ − αR(t)I(t)−1),

and, since I(t) > 0 and (ψI +ψR)I = βξSI−ζI−α(I+R) = βξSI−ζI−α(1−S),
we have that SIR(ξ) can be written as

(a)

⎧
⎨

⎩

S′ = −(ψI + ψR)I,
I ′ = ψII,
R′ = ψRI,

and (b) β′
ξ = ξ, (14)

so the monotony of (S, I,R) are determined by the signs of (−ψI − ψR, ψI , ψR).

Lemma 9. For any α, γ and βξ(0), there exist S(0), I(0), R(0) ∈ Σ1 and (a
small enough) T > 0 such that we may prescribe an arbitrary combination of
monotonicity for S(t), I(t), R(t) in t ∈ [0, T ], as solutions of SIR(ξ).

Lemma 9 is false for SI(ξ), because sign(S′) = −sign(I ′), and also shows that
the flow, associated with the hybrid system of Fig. 2, can be quite complex since
each node can (generally) initiate in any monotonicity situation.

Poincaré, in 1892, started the theory of normal forms as a technique to simpli-
fying a nonlinear system in the neighborhood of a reference solution by a smooth
change of coordinates. Let us summarize the ideas. Consider the autonomous
system x′ = Ax + f(x), where A is a constant matrix and f(x) = O(‖x‖2) as
‖x‖ → 0. Then by a formal coordinate transformation x = y +

∑+∞
i=2 hiy

i the
above system can be changed into the system y′ = By +

∑+∞
i=1 giy

i where B us
the complex Jordan form of A, gi = (g1i , . . . , gn

i ) and gj
i = 0 if

∑n
i=1 piξi −ξj 	= 0
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for ξi eigenvalues of A, p ∈ Z
n
+ and

∑n
i=1 pi ≥ 2. In addition, if f is analytic in the

origin, we have the so-called Poincaré-Dulac’s analytic normal forms. Consider
the systems

(a) x′ = A(t)x + f(t, x), (b) x′ = A(t)x. (15)

A change of variables x = P (t)y is said to be a Lyapunov-Perron transformation
(for short, L.P.) if P (t) is nonsingular for all t ∈ R and P, P−1, P ′ are uniform
bounded in t ∈ R. The system (15)(a) is locally analytically equivalent to the
system y′ = G(t, y) if there exists a coordinate substitution x = P (t)y + h(t, y)
which transforms one to the other, where f,G, P, h are analytic in B̄ρ(0) × R,
for some ρ > 0, f(t, 0) = G(t, 0) = h(t, 0) = 0, P is a LP transformation and
h(t, y) = O(‖y‖2) as ‖y‖ → 0. Assume the dichotomy spectrum of (15)(b) to
be ΣA = [a1, b1] ∪ · · · ∪ [ap, bp] where a1 ≤ b1 < · · · < ap ≤ bp. We say that
system (15)(b) is of type: (type-I) when a1bp > 0 (i.e. it is in the Poincaré
domain); (type-II) when a1bp > 0 and it is non-resonant, i.e.

0 	∈
[

p∑

i=1

aimi − aj ,

p∑

i=1

bimi − bj

]

with m ∈ N
p;

(type-III) when a1bp > 0 and A(t) is block diagonal w.r.t. the spectral interval
[ai, bi] (i.e. of Poincaré-Dulac type).

Lemma 10. (see [24]) We have for type-II, system (15)(a) is locally analytically
equivalent to its linear part (15)(b).

In this section, we always assume x = (S, I,R), and γ > 0. Under the linear
transformation

x =

⎛

⎝
1 − γ

ζ+γ
ζ

ζ+γ

0 0 1
0 γ

ζ+γ − γ
ζ+γ

⎞

⎠ z with Det = − γ

ζ + γ
	= 0,

the system (2)(a) is transformed into (the Jordan canonical linear form)

z′ =

⎛

⎝
0 0 0
0 −α 0
0 0 −α − ζ − γ

⎞

⎠ z + (γ + ζ)−1z3(z1(γ + ζ) − z2γ − z3ζ)βξ(t)

⎛

⎝
0
1
1

⎞

⎠ .

This means that z1(t) = S(0)+I(0)+R(0) = 1 is constant. Hence, for (y1, y2) =
(z2, z3), we have

y′ =
(

−α βξ(t)
0 βξ(t) − α − ζ − γ

)

y − (γ + ζ)−1βξ

(
y1y2γ + y2

2ζ
y1y2γ + y2

2ζ

)

.

For SIR(ξ), recall that the equilibrium E0 is (S∗(t), I∗(t), R∗(t)) = (1, 0, 0).
Hence, the equilibrium point (y∗

1 , y
∗
2) = (0, 0) corresponds to E0. Now, consider

the linear transformation

y =

(
− βξ(t)

βξ(t)−ζ−γ
βξ(t)

βξ(t)−ζ−γ

0 1

)

w with Det = − βξ(t)
βξ(t) − ζ − γ

	= 0,
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so

w1(t) = −βξ − ζ − γ

βξ

(

I(t) +
ζ + γ

γ
R(t)

)

and w2(t) = I(t), (16)

then we have the new system

w′ =
(

−α 0
0 ξ0 + ξt

)

w + (γ + ζ)−1(βξ(t) − ζ − γ)−1h[w1, w2]
(

γ + ζ
βξ(t)

)

. (17)

where ξ0 = β0 − α − ζ − γ and h[w1, w2](t) = γβξ(t)w1w2 + (ζγ − (γ + ζ)βξ(t) +
ζ2)w2w2.

Lemma 11. When ξ0 < − 1
2ξT and γ 	= −ζ, SIR(ξ) is locally analytically equiv-

alent to the linear system

v′ =

⎛

⎝
0 0 0
0 −α 0
0 0 ξ0 + ξt

⎞

⎠ v.

4 Three Illustrative Examples

We present numerical examples that illustrate occurrences that may not appear
in SIR-models without agent actions: (E1) the agent action is not able to decrease
the number of infected individuals and they tend to a non-autonomous attrac-
tor (see Sect. 3.3 for a precise definition); (E2) the agent action introduces an
oscillatory behaviour in the number of infected individuals around some non-
autonomous attractor; and (E3) the agent action are able, in each period, to
significantly decrease the number of infected individuals but such mechanism
introduces a succession of bumps along time.

Since hybrid systems return solutions selected by discrete jump events its vali-
dation and error control is a key issue, requiring tailored tools based on first order
logics. The numerical calculations of the given examples below were produced
using two packages dReal and dReach [9,14,15]. dReal is an automated reason-
ing tool focused on solving problems that can be encoded as first-order logic
formulas over the real numbers by implementing the framework of δ-complete
decision procedures. dReach deals with the bounded δ-reachability problem. For
a hybrid system H =< X,Q, flow, jump, inv, init >, where flow, jump, inv,
init are SMT formulas that dReal can handle and specifying a numerical error
bound δ, any formula φ can have its δ-perturbation counterpart φδ. Then, a
δ-perturbation of H is defined as Hδ =< X,Q, flowδ, jumpδ, invδ, initδ >, by
relaxing the logic formulas in H. Now, choosing n ∈ N to be a bound on the
number of discrete mode changes, T ∈ R

+ an upper bound on the time duration,
and unsafe to encode a subset of X × Q, the bounded δ-reachability problem
asks for one of the following answers: (a) “safe” if H cannot reach unsafe in n
steps within time T ; (b) “δ-unsafe” if Hδ can reach unsafeδ in n steps within
time T . In this way, we ensure that our examples are numerically correct, since
the SMT tool produce a logical proof of reachability.
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4.1 Example (E1) – Nontrivial Asymptotically Stable Attractor

Figure 3 shows a numerical example where a nontrivial asymptotically stable
attractor on I(t) appears; the parameters are Ib = 0.600, Is = 0.500, T ∗ = +∞,
β+ = 0.200, β− = −1.300, α = ζ = γ = 0.100, and the initial conditions
S(0) = 0.550, I(0) = 0.300, R(0) = 0.150, β(0) = 1.400.

Although, there is no standard basic reproduction number in the non-
autonomous setting (but there exist generalizations as the notion [2]), we
would still look to the value of R0(t) = βξ(t)

ζ+α+γ . Further, when ξ = β+,
limt→+∞ R−1

0 (t) = 0. Since R0(t) ≤ 1 means βξ(t) ≤ 0.3, it is expected that,
for 4.5165 ≤ t ≤ 5.2294, the solution is attracted by the disease-free equilib-
rium (S∗, I∗), and, for 0 ≤ t < 4.5165 and t > 5.2294, the solution is attracted
by some (non-autonomous) endemic equilibrium which in the limit tends to
(S̄, Ī) =

(
0, α

α+γ

)
= (0, 0.5). In the figures, the change of color means transition

between hybrid nodes/modes.

Fig. 3. A nontrivial asymptotically stable attractor for I(t)

4.2 Example (E2) – Oscillatory Behaviour

Figure 4 shows a set of parameters for which the infected individuals variable
I(t) oscillates around some (non-autonomous) endemic equilibrium which in the
limit tends to (S̄, Ī) =

(
0, α

α+γ

)
= (0, 0.3); the parameters are Ib = 0.300,

Is = 0.285, T ∗ = +∞, β+ = 0.200, β− = −0.200, α = γ = 0.100, ζ = 0.200, and
the initial conditions S(0) = 0.910, I(0) = 0.060, R(0) = 0.030, β(0) = 0.400.
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Fig. 4. Oscillatory behaviour of I(t)

4.3 Example (E3) – Bump Behaviour

Figure 5 shows the most interesting profile for our model since a succession of
bump behaviours appear along time, although in the intervals between bumps
I(t) is coming near to zero; the parameters are Ib = 0.100, Is = 0.050, T ∗ = +∞,
β+ = 0.200, β− = −1.300, α = ζ = γ = 0.100, and the initial conditions
S(0) = 0.925, I(0) = 0.050, R(0) = 0.025, β(0) = 1.400.

Fig. 5. Bump behaviour of I(t)
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5 Conclusions

A non-autonomous hybrid SIR-model was introduced as the result of agent action
policies on diseases modelled by a SIR-model with linear infectivity growth. The
coupled system shows a great variety of profile solutions and extends the stan-
dard SIR-model (i.e. when max I(t) < Ib). Two ingredients make the problem
difficult: (a) its non-autonomous nature; and (b) the jumps between ODEs (i.e.
the hybrid system nodes) are controlled by the values of the state variable I(t).
This work is a first step to study the properties of such hybrid SIR-models,
since several issues are still to be clear, e.g. complete scheme of stability of the
hybrid system, existence of nontrivial periodic solutions crossing several nodes,
behaviour of the system under the assumption Is > Ib, etc. Nevertheless, the
stability results obtained and examples provided already show the richness and
potential application of the model to better fit oscillatory real data. Considering
that the number of infected individuals is the most observable variable in reality,
Fig. 5 turns out to be quite interesting, since the choices of Ib, Is are critical to
determine the solution profile. Hence, it raises several questions: (a) Are human
disease control strategies somehow responsible for the oscillatory behaviour of
some diseases? (b) For each choice of parameters and agent action, are there
optimal values for Ib, Is such the maximum of I(t) is reduced? (c) How different
is the solution if the agent action activates by a stochastic process?
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Appendix

Proof. (Lemma 1) Let h = y − x for x, y ∈ Σ1. Recall that the mean value
inequality, for a vector value function F : R × Σ1 → R

3, says that when the
Jacobian matrix of F at w = x + τh, i.e. JF (w), is uniformly bounded by some
constant L > 0 for any τ ∈ [0,1] and t ∈ R, then

|F (t, x + h) − F (t, x)| ≤ L |h|.

Hence, the function F in Eq. (2.3) is locally Lipschitz continuous in the second
variable since

JF (w(t)) =

⎛

⎝
−α − βξ(t)w2(t) ζ − βξ(t)w1(t) 0

βξ(t)w2(t) βξ(t)w1(t) − (ζ + α + γ) 0
0 γ −α

⎞

⎠

is uniformly bounded, because βξ(t) ∈ [β∗, β
∗] and w(t) is bounded for any τ ∈

[0,1], by definition. So, the Picard-Lindelöf theorem ensures the existence and
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uniqueness of solution in each node of the hybrid system. Its not difficult to
see that the solution is globally defined. Further, the hybrid system Fig. 2 is
deterministic and has only one jump condition in each node, so we conclude the
proof.

Proof. (Lemma 4) First note that

I∗(t)−1 =
∫ t

−∞
βξ(r)ϕ(t, r)−1 dr = ϕ̂(t)−1 lim

a→+∞

∫ t

−a

βξ(r)ϕ̂(r)dr

= ϕ̂(t)−1

∫ t

0

βξ(r)ϕ̂(r)dr + ϕ̂(t)−1 lim
a→+∞

∫ 0

−a

βξ(r)ϕ̂(r)dr

with t ∈ [0, T ]. We consider two cases: (a) ξ = 0; and (b) ξ ≥ 0.
(a) For ξ = 0, i.e. when βξ(t) ≡ β0 is constant and ϕ̂(r) = eξ0r, we have

I∗(t)−1 = β0e
−ξ0t

∫ t

0

eξ0rdr + β0e
−ξ0t lim

a→+∞

∫ 0

−a

eξ0rdr

=
β0

ξ0

(

1 − lim
a→+∞

e−ξ0a

)

.

From which, we obtain: (i) for ξ0 ≤ 0, then (S∗(t), I∗(t)) = (1, 0); and (b) for
ξ0 > 0, we recover the expected values

I∗(t) = (β0 − α − ζ)β−1
0 and S∗(t) = (α + ζ)β−1

0 . (18)

(b) In general, for ξ 	= 0 and t ∈ T t0 , using (12) and integration by parts, we
have

I∗(t)−1ϕ̂(t) =
∫ t

0

(β0 + ξr)eξ0r+ 1
2 ξr2

dr + β0 lim
a→+∞

∫ 0

−a

eξ0rdr

=
∫ t

0

(β0 + ξr)eξ0r+ 1
2 ξr2

dr + lim
a→+∞

β0

ξ0

(
1 − e−ξ0a

)

= ϕ̂(t) − 1 − (α + ζ)G(t) + lim
a→+∞

β0

ξ0

(
1 − e−ξ0a

)
.

Therefore, we obtain: (i) for ξ0 ≤ 0, then (S∗(t), I∗(t)) = (1, 0); and (ii) for
ξ0 > 0, we get

I∗(t) =
β0 − α − ζ

ξ0 + β0ϕ̂(t)−1 − ξ0[1 + (α + ζ)G(t)]ϕ̂(t)−1
and S∗(t) = 1 − I∗(t).

(19)
In particular, when ξ → 0, G(t) → (1 − ϕ̂(t))ξ−1

0 so we recover the values (18).
To prove the stability result, assume ξ0 > max{0,−ξT }. This means that

β∗ > α + ζ. For any solution I(t), D = I(t) − I∗(t) satisfy

D′(t) = (βξ(t)−α−ζ)D(t) ≥ (β∗−α−ζ)D(t) ⇒ D′(t)2 ≤ D(0)2 e−2|β∗−α−ζ|t,

so D(t) → 0 and I(t) − I∗(t) → 0 as t → +∞. Because |S(t) − S∗(t)| =
|1 − I(t) − (1 − I∗(t))| = |I∗(t) − I(t)|, we have the desired conclusion.
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Proof. (Lemma 5) Recall βξ(t) ∈ [β∗, β
∗] for t ∈ R. We consider three cases:

(A) β∗ < α + ζ, (B) β∗ = α + ζ, and (C) β∗ > α + ζ. (A) Using the second
equation of (10) and 0 ≤ S ≤ 1, we obtain (I2)′ = 2I I ′ = 2 (βξS − α − ζ) I2 ≤
2 (β∗ − α − ζ) I2 which implies that I(t)2 ≤ I(0)2e−2|β∗−α−ζ|t as t → +∞,
meaning that E0 is (asymptotically) stable. (B) Consider Eq. (11), so for all
I > 0, we have I ′ = (βξ − α − ζ)I − βξI

2 = −βξI
2 < −βξ

β∗
I2 < 0 and 0 ≤

I(t) ≤ limt→+∞
β∗I(0)

β∗+βξI(0)t . Thus, S(t) − S∗(t) = S(t) − 1 = −I(t) → 0 as
t → +∞. Hence, E0 is (asymptotically) stable. (C) Suppose I(t) ≤ ε ∈ [0,1], so
S(t) ≥ 1 − ε. Then

S′ ≤ [α + ζ − βξ(1 − ε)] I and I ′ ≥ [β∗(1 − ε) − α − ζ] I,

so I is strictly increasing if 0 < I(t) ≤ ε and ε < 1−(α+ζ)β−1
∗ . In particular, for

any solution if (S(t), I(t)) → (1, 0) then we have that I(t) is strictly increasing
(i.e. a contradiction), so E0 is unstable.

Proof. (Lemma 6) Recall that β0 > max{0,−ξT }, β∗ = min{β0, β0 + ξT } and
β∗ = max{β0, β0 + ξT }. So, by direct computation, we get

max{β0, β0 + ξT } ≤ α + ζ ⇔ max{0, ξT } ≤ −ξ0 ⇔ ξ0 ≤ min{0,−ξT },

min {β0, β0 + ξT } > α + ζ ⇔ min {0, ξT } > −ξ0 ⇔ ξ0 > max {0,−ξT } ,

for which Lemma 5 implies that E0 is globally asymptotically stable w.r.t. Σ0,
when ξ0 ≤ min{0,−ξT }, and unstable when ξ0 > max {0,−ξT }. The statements
in this lemma are then a direct consequence of T ≥ 0 and β− < 0 < β+.

Proof. (Lemma 8) First, suppose the system (10) is defined on t ∈ J ⊆ R. By
applying Lemma 7, we conclude that the linear part of (10) has the dichotomy
spectrum −(α+ζ)+[β

J
(βξ), βJ(βξ)]. Hence, by propositions 4.9 and 4.10 in [19],

Lemma 5 is still valid when we replace globally asymptotically stable by uniformly
asymptotically stable and β∗, β

∗ by β
J
(βξ), βJ (βξ), respectively. This tell us that

it is expect to occur a bifurcation of (10) when β
J
(βξ) = βJ(βξ) = α + ζ.

We have βT 0
(βξ) = βT 0

(βξ) = β0 + 1
2ξT . In fact, note that βξ is a integrable

bounded function in T 0. For s, t ∈ T 0 and w ∈ R, let

F (s, t, w) =
1

t − s

∫ t

s

βξ(r) − w dr = β0 +
1
2
ξ(t + s) − w,

sup
s≤t,(s,t)∈[0,T ]2

F (s, t, w) = sup
t≤s,(s,t)∈[0,T ]2

F (s, t, w) = β0 +
1
2
ξT − w.

Hence, βT 0
(βξ) = βT 0

(βξ) = β0 + 1
2ξT . So, replacing the obtained values in

βT 0
(βξ) ≤ α+ζ, βT 0

(βξ) > α+ζ and recalling that ξ0 = β0 −α−ζ, we simplify
to

β0 +
1
2
ξT ≤ α + ζ ⇔ ξ0 ≤ −1

2
ξT and β0 +

1
2
ξT > α + ζ ⇔ ξ0 > −1

2
ξT ,

which confirms the above bifurcation point of (10).
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By Lemma 7, we have that β
R
(βξ) = min{β0, β0 + ξT } and βR(βξ) =

max{β0, β0 + ξT }. In the same way, for t ∈ R, we have

max{β0, β0 + ξT } ≤ α + ζ ⇔ ξ0 ≤ min{0,−ξT },

min{β0, β0 + ξT } > α + ζ ⇔ ξ0 > max{0,−ξT },
The statement in the lemma is a consequence of T ≥ 0 and β− < 0 < β+.

Proof. (Lemma 9) Let v1 = ψI(0) and v2 = ψR(0). The functions ψI , ψR are
continuous so there exist T > 0 such that their signs are preserved in [0, T ], so
from (14) they prescribe the monotonicity of S(t), I(t), R(t) in t ∈ [0, T ]. Now,
it is enough to explicitly construct the map (v1, v2) �→ (S(0), I(0), R(0)) as

S(0) =
v1 + q

β0
, I(0) = −α(−β0 + v1 + q)

β0(α + γ − v2)
,

R(0) = −γ2 + (v1 − β0 − v2 + α + ζ)γ + v2(β0 − v1 − α − ζ)
β0(α + γ − v2)

,

where q = α + ζ + γ, β0 = βξ(0) and v1 ∈ (−q,−q + β0), v2 ∈ (γ, γ + α) (which
ensure 0 < S(0), I(0), R(0) < 1).

Proof. (Lemma 11) Consider the (reduced) system (17). The dichotomy spec-
trum (of the linear part) is

ΣA = [−α,−α] ∪ [βT (βξ) − α − ζ − γ, βT (βξ) − α − ζ − γ].

Recall βT 0
(βξ) = βT 0

(βξ) = β0 + 1
2ξT , First, suppose ξ0 > −α − 1

2ξT so we
have the (ordered) dichotomy spectrum

ΣA = [−α,−α] ∪
[

ξ0 +
1
2
ξT , ξ0 +

1
2
ξT
]

and a1b2 = −α
(
ξ0 + 1

2ξT
)

> 0, meaning it is a system of type-I. Since ai = bi,
we also have that, for m ∈ N

2, to be of type-II is the same as

0 	∈
{

−αm1 +
(

ξ0 +
1
2
ξT
)

m2 + α,−αm1 +
(

ξ0 +
1
2
ξT
)

m2 − ξ0 − 1
2
ξT
}

,

Which is true, since the inclusion am1+bm2 ∈ {a, b} with a = α, b =
∣
∣ξ0 + 1

2ξT
∣
∣,

do not have integer solutions. Hence, it is of type-II. If we suppose ξ0 < −α− 1
2ξT

so we have the (ordered) dichotomy spectrum

ΣA =
[

ξ0 +
1
2
ξT , ξ0 +

1
2
ξT
]

∪ [−α,−α],

the conclusions are the same.
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Then system (17) is locally analytically equivalent to its linear part w′ =
A(t)w, by applying Lemma 10. From (16), there exists a matrix Q(t), with deter-
minant γ−1β−1

ξ (βξ−ζ−γ)(ζ+γ), such that w = Q(t)x, so x′ = Q−1(t)A(t)Q(t)x
and then applying the Jordan canonical form transformation x = Bv, i.e.

x′ =

⎛

⎝
0 0 0
0 ξ0 + ξt 0
0 −γ(ζ + γ)−1(α + ξ0 + ξt) −α

⎞

⎠x and B =

⎛

⎝
1 0 0
0 0 1
0 γ

ζ+γ − γ
ζ+γ

⎞

⎠ ,

gives the expected result.
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2. Bacaër, N., Guernaoui, S.: The epidemic threshold of vector-borne diseases with
seasonality. J. Math. Biol. 53, 421–436 (2006)

3. Bai, Z., Zhou, Y., Zhang, T.: Existence of multiple periodic solutions for an SIR
model with seasonality. Nonlinear Anal. 74, 3548–3555 (2011)

4. Boatto, S., Bonnet, C., Cazelles, B., Mazenc, F.: SIR model with time dependent
infectivity parameter: approximating the epidemic attractor and the importance
of the initial phase. HAL preprint, pp. 1–30 (2018)
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Abstract. Modeling dynamics of cellular networks presents significant
challenges due to ill-defined nonlinearities, poorly characterized param-
eters, and noisy experimental data. Switching ODE systems are a mod-
eling platform based on Boolean networks that allow the combinato-
rialization of phase space and parameter space, which in turn allows
the computation of summaries of global dynamics across all parameters.
In this contribution, we expand the class of cellular processes to those
with regulated degradation (RD systems). We show that RD systems
also admit a finite combinatorialization of phase space. We then show
that a special RD system, called a mixed PTM-switching system, admits
the combinatorialization of the parameter space that is represented as
a parameter graph. This graph is directly comparable to the parameter
graph of the switching system model of the same regulatory network. By
comparing dynamics that correspond to the same parameter graph node,
we show that the mixed system admits only a subset of the dynamics of
the switching system. Finally, we address the relationship between com-
binatorial representatives of dynamics and trajectories of the underlying
ODE systems. We provide necessary and sufficient conditions that guar-
antee that representatives of equilibria correspond to true equilibria of
the dynamics.

1 Introduction

Over the last 20 years the ability to sequence genomes has raised the question
of how these genes orchestrate highly efficient cellular responses to external sig-
nals. The cellular actors like genes, proteins, and signaling molecules can be
organized into networks by recording their directed interactions. While the type
of interaction between two such actors (positive or negative interaction) can be
experimentally established relatively easily, it is difficult to measure the rates of
these interactions. This presents significant challenges for modeling the dynam-
ics of gene regulatory networks, since the choice of type of nonlinear model is
not governed by any first principle physical law. Nonlinearities are chosen either
assuming mass action kinetics, or assuming enzymatic reactions that lead to Hill
functions. Since initial conditions are usually not known precisely and parame-
ters are only known to some loose bound, the interrogation of the model often
c© Springer Nature Switzerland AG 2019
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consists of sampling as many parameters and initial conditions as feasible, run-
ning the model for a finite time, and comparing the results to the data. The
comparison between uncertain, imprecise data and a sparsely-sampled, precise
model presents significant challenges.

To address these difficulties, several more qualitative approaches have been
proposed. Boolean networks [1,2,16,18,20,21] represent the state of each gene
as either on or off. The update rule in these models could be either synchronous,
where all genes update their state at the same time based on their current inputs,
or asynchronous [3,22]. These models have a reduced number of parameters and
are conceptually simple, but it is challenging to falsify them by data. A related
concept of switching ODE systems [4,9–12,14,15] were introduced in the 1970s
as a way to insert continuous time dynamics into Boolean networks by setting
the right hand side of the ODE to a Boolean function, with the addition of a
decay term. The advantage of this approach is the combinatorialization of the
phase space: the behavior of the solutions only depends on where the solution is
with respect to all thresholds of all nonlinearities. The number of states is finite,
so the enumeration of allowable sequences of states is computable. The extent to
which such a sequence of states corresponds to a solution of a system of ODEs
has been resolved in some cases, but is, in our mind, secondary. We view a set of
potential sequences of states as a valid description of a system trajectory. This is
summarized by a state transition graph that records all possible nearest-neighbor
transitions and encapsulates a description of global dynamics.

This view naturally leads to a characterization of dynamics in terms of the
strongly connected components of the state transition graph, as well as reach-
ability between them. These are encoded as the Morse nodes and edges of a
Morse graph, respectively. Furthermore, the parameter space of a switching sys-
tem decomposes into a finite number of parameter regions, where the Morse
graph is identical for all parameters within that region. These regions can be
computed analytically a priori, without any simulation of the system, and they
are encoded as nodes of a parameter graph. The edges of the parameter graph
represent the geometrical proximity of the corresponding pair of regions sepa-
rated by a codimension-1 hyperplane [6–8,13].

Given the success of the combinatorial approach, it is natural to ask to what
extend it is dependent on the particular form of a switching system, and if
it is possible to extend it to other types of models. In our previous work we
have shown that models that contain chains of linear equations [17] are also
amenable to this approach. This is particularly important for applications where
both mRNA and protein are modeled, because protein growth rate depends
linearly on mRNA concentration. We have also considered the extension of the
methodology to nonlinearities that are ramp-like and, unlike switching functions,
have a continuous function connecting two constant values [5]. In both cases it
is possible to define state transition graphs, Morse graphs and finite parameter
graphs.

In this work we consider another important extension that admits a state
transition graph and a parameter graph. Here we add equations that describe a
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modification of one protein by another. This encompasses both the case when
the decay rate is regulated by another protein, such as ubiquitination, and other
post-transcriptional modifications like phosphorylation.

Our first and most important result is that these systems, which we call
switching systems with regulated degradation, or RD systems, admit the com-
binatorialization of both phase space and the parameter space. While combi-
natorialization of the phase space has been recognized previously [19], this is
the first time where the state transition graph is explicitly constructed and it is
shown that parameter space can be decomposed to a finite number of parameter
regions, each of which has the same state transition graph.

We then proceed to analyze differences in dynamics that regulated degra-
dation may bring. In particular, we consider the extreme case of the RD sys-
tem that arises from modeling some types of post-transcriptional modification
(PTM). This leads to a Lotka-Volterra type equation, where the growth term
is switch-like. We first compare the dynamics of a switching system and a sys-
tem where some switching equations are replaced by PTM equations. We show
on an example that the PTM system has a restricted set of potential dynam-
ics in comparison to the switching system. In switching systems, a particular
type of Morse node, which will be denoted by FP, implies the existence of a
stable equilibrium in the corresponding domain of the phase space. Since the
PTM equations, unlike switching systems, may lead to unbounded dynamics, we
prove necessary and sufficient conditions for FP Morse nodes in PTM system to
contain stable equilibria.

2 Regulatory Networks and RD Switching Systems

Definition 2.1. A regulatory network is a finite, directed, annotated graph
(V,E) with vertex set V = {1, . . . , N} and edge set E ⊂ V × V × {→,�}.
An edge (i, j,→) ∈ E indicates that i positively regulates (activates) j, while
(i, j,�) ∈ E indicates that i negatively regulates (represses) j. We assume that
for each i, j ∈ V , there is at most one edge from i to j in E and we will use a
shorthand i → j or i � j to denote positive (negative) regulation, respectively.
We will assume that a regulatory network does not include any negative self-
regulation, so for each i ∈ V , (i, i,�) /∈ E. We allow positive self-regulation,
i → i. For each i ∈ V , we define the sources and targets of i to be the sets
S(i) := {s ∈ V | (s, i) ∈ E} and T (i) := {j ∈ V | (i, j) ∈ E}, respectively.

Definition 2.2. An RD switching system on a regulatory network (V,E) is a
system of ordinary differential equations

ẋj = Λj(x) − xjΓj(x), j = 1, . . . , N (1)

where x = (x1, . . . , xN ) and for each j ∈ V , the functions Γj and Λj are defined
in the following way. For j ∈ V and each i ∈ S(j), define a map σj,i : R →
{lj,i, uj,i} as
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If i → j, σ+
j,i(x) =

⎧
⎪⎨

⎪⎩

lj,i if xi < θj,i

uj,i if xi > θj,i

undefined otherwise

, and if i � j, σ−
j,i(x) =

⎧
⎪⎨

⎪⎩

uj,i if xi < θj,i

lj,i if xi > θj,i

undefined otherwise

,

where 0 < lj,i < uj,i are constants and θj,i is a threshold value associated to the
edge (i, j). We will use notation σ when denoting either of the functions σ±.

Consider a decomposition of the set of sources of a vertex j S(j; Γ)∪S(j; Λ) =
S(j). Define σΓ

j : R|V | → R
|S(j;Γ)| and σΛ

j : R|V | → R
|S(j;Λ)| component-wise by

σΓ
j (x) = (σj,i(x))i∈S(j;Γ) and σΛ

j (x) = (σj,i(x))i∈S(j;Λ) .

At each node j we specify the interaction of the input variables in S(j; Γ)
that form the value of the function Γ, at the same time we specify the inter-
action of the input variables in S(j; Λ) that form the value of the function Λ.
These interactions are specified by logic functions MΓ

j : R
|S(j;Γ)| → R and

MΛ
j : R|S(j;Λ)| → R. We assume that these functions are multilinear and thus

take the form

Mj(ξ1, . . . , ξt) =
s∏

k=1

∑

i∈P j
k

ξi where P j
k ⊂ S(j) and P j

a ∩ P j
b = ∅ for a 	= b.

For the function Γ, we set

Δj := MΓ
j ◦ σΓ

j and Γj := ±Δj + γj , (2)

where γj is a constant decay rate associated to the node j. For the function Λ
we set

Λj := MΛ
j ◦ σΛ

j . (3)

There are several biological situations that fit within our framework.

1. First, when Γj := Δj + γj , the differential equation is

ẋj = Λ(x) − Δj(x)xj − γjxj

and the term −Δj(x)xj represents a targeted degradation term.
2. Second, consider a molecular species x with total abundance xtot and active

(xact) and inactive (xinac) forms, with xact+xinac = xtot. Assume that xinac is
activated by a PTM mechanism (say phosphorylation) by another molecule
y and that this process is modeled by a switching function Υ(y). We also
assume non-specific decay rate γ. Then

ẋact = Υ(y)xinac − γxact = Υ(y)(xtot − xact) − γxact

= Υ(y)xtot − (Υ(y) + γ)xact

=: Λ(y) − Γ(y)xact,

where Γ(y) := Υ(y) + γ and Λ(y) := Υ(y)xtot.
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3. Now consider PTM modification process close to a chemical equilibrium where
the total of active and inactive forms are conserved xact + xinac = xtot, and
there is no non-specific decay rate γ. The basic equation for abundance of
xact reads ẋact = Υ(y)xinac − kxact and the equilibrium is given by kx∗

act =
Υ(y)x∗

inac. Introducing new variables a := xact − x∗
act, b := xinac − x∗

inac the
conservation equation reads

xtot = xinac + xact = x∗
inac + b + x∗

act + a

which implies b = −a. The differential equation then reads

ȧ = Υ(y)(x∗
inac+b)−k(x∗

act+a) = Υ(y)b−ka = −Υ(y)a−ka =: −a(−Δ(y)+k) =: −Γ(y)a.

4. Finally, consider a particular limiting case of the PTM process, where the
y-mediated activation is dominated by de-activation with rate k, Υ(y) <<
k with non-specific decay rate γ > 0 Then, close to chemical equilibrium
kxact ≈ Υ(y)xinac. It follows that

xtot = xinac + xact ≈ xinac and xtot = xinac + xact = (
Υ(y) + k

Υ(y)
)xact,

and thus

ẋact = Υ(y)xinac − γxact ≈ Υ(y)xtot − γxact ≈ Υ(y)(
Υ(y) + k

Υ(y)
xact) − γxact

= (Υ(y) + k)xact − γxact =: −xact(−Δ(y) + γ) =: −Γ(y)xact

We allow the sets S(j; Γ) or S(j; Λ) to be empty. This gives rise to two special
cases of (1).

1. If for some j ∈ V , S(j,Γ) = ∅, then we call j a switching node and xj a
switching variable. In this case, MΓ

j : {0} ↪→ R, so that Δj(x) = 0 and (1)
becomes

ẋj = Λj(x) − γjxj .

If every variable is a switching variable, then we have the well-known switching
system.

2. If for some j ∈ V S(j; Λ) = ∅ and Γj = −Δj + γj , then the (1) becomes

ẋj = −xj (−Δj(x) + γj) .

This type of equation models post-transcriptional modification of xj under
assumption (3) or (4) above. We will call j a PTM node and xj a PTM
variable. A system in which every variable is a PTM variable is called a PTM
system. One in which each variable is either switching or PTM is called a
PTM-switching system.

For any regulatory network (V,E) Definition 2.2 assigns to each node j ∈ V
a parameter γj > 0, the decay rate, and to each edge (i, j) ∈ E three positive
parameters: the threshold θj,i and the two constants lj,i and uj,i, where lj,i < uj,i

denote lower and upper values, respectively.
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Definition 2.3. Consider a regulatory network (V,E) and its associated system
(1). A parameter for the system is a tuple z := (l, u, θ, γ) of length |V | + 3|E|,
where

• l := {lj,i | (i, j) ∈ E}, u := {uj,i | (i, j) ∈ E}, θ := {θj,i | (i, j) ∈ E}, and
γ := {γj | j ∈ V };

• γi > 0 for each node i ∈ V , and 0 < lj,i < uj,i and 0 < θj,i for every edge
(i, j) ∈ E; and

• for each i ∈ V , the thresholds θj,i, j ∈ T (i) are distinct.

With the last assumption, which is generic, we avoid unnecessary degeneracies
in both the construction of the state transition graph and the parameter graph.
Since our description of dynamics is based on relative inequalities between values
uj,i, lj,i and thresholds θk,j and not the absolute value of their differences, any
difference between the thresholds is sufficient. Note that this assumption allows
both Λ(x) and Γ(x) to change at the same threshold, if for an edge (i, j) ∈ E,
we have i ∈ S(j; Γ) ∩ S(j; Λ).

The thresholds {θj,i} for a node i ∈ V form a total order θj1,i < · · · < θjT (i),i,
and we define the order Oi(z) := j1 < j2 < · · · < jT (i). The collection of all orders
is denoted O(z) := {Oi(z) | i ∈ V }.

A collection of all thresholds at a parameter z decomposes the phase space
of (1) into a finite set of non-empty domains.

Definition 2.4. Consider regulatory network (V,E) and its associated system
(1). Fix a parameter z := (l, u, θ, γ) ∈ Z. We will adopt the notational convention
that for each i ∈ V , θ−∞,i := 0 and θ∞,i := ∞. We say two thresholds θj,i and θk,i

are consecutive if θj,i < θk,i and there is no l ∈ T (i) such that θj,i < θl,i < θk,i.
For each i, assume θvi,i < θwi,i are consecutive thresholds. Then a domain is

a subset of the phase space (0,∞)N ,

κ :=
N∏

i=1

(θvi,i, θwi,i).

We denote the set of all domains in phase space at the parameter z by K(z). A
face of κ ∈ K(z) is a set

τ :=
j−1∏

i=1

(θvi,i, θwi,i) × {θk,j} ×
N∏

i=j+1

(θvi,i, θwi,i).

where k ∈ T (j) and so the threshold θk,j is nonzero and finite. We say τ is a left
face of κ if k = vj and a right face if k = wj .

Because each domain is bounded by two consecutive thresholds in each direc-
tion, for each i ∈ V , Λi and Γi are constant on κ. We denote these constants
Λj(κ) and Γj(κ), respectively. The ODE system reduces to a set of decoupled
affine equations

ẋj = Λj(κ) − xjΓj(κ).
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When Γj(κ) > 0, the analytic solution to the affine equation shows
limt→∞ xj(t) = Λj(κ)/Γj(κ), as long as xj(t) ∈ κ for all t ≥ 0. When Γj(κ) < 0,
then xj(t) → ∞ as t → ∞.

Definition 2.5. We say that

Λ(κ)/Γ(κ) := (λ1, . . . , λN )

is the focal point of κ, where λi = Λi(κ)/Γi(κ) when Γi(κ) > 0, and λi = ∞
otherwise. If Λ(κ)/Γ(κ) ∈ κ, then we say that κ is an attracting domain. Clearly,
any solution trajectory beginning in κ must remain in κ for all time.

Definition 2.6. Let (V,E) be a regulatory network with an associated system
(1). We say a parameter z is regular if for each i ∈ V , for each j ∈ T (i),
Λi(κ) − θj,iΓi(κ) 	= 0. We denote the set of all regular parameters by Z.

Definition 2.7. Let (V,E) be a regulatory network and fix a regular parameter
z ∈ Z. A wall is a pair (τ, κ) where κ ∈ K(z) is a domain and τ is a face of κ.
The set of all walls at the parameter z is denoted W(z).

For each wall (τ, κ) ∈ W(z), we define the sign of the wall to be

sgn (τ, κ) =

{
−1 if τ is a right face ofκ
1 if τ is a left face of κ

.

We define the wall-labeling function 
 : W(z) → {−1, 1} where for each (τ, κ) ∈
W(z), if τ ⊂ {xi = θj,i}, then


(τ, κ) = sgn (τ, κ) · sgn (Λi(κ) − θj,iΓi(κ)) . (4)

We say (τ, κ) is an incoming wall if 
(τ, κ) = 1 and an outgoing wall if

(τ, κ) = −1.

We illustrate the wall labeling function on an example that we will use
throughout the paper. We initially endow the network in Fig. 1 a with a switching
system, and will later endow it with a PTM-switching system.

Example 2.8. Consider the regulatory network (V,E) with V = {1, 2} and
edges 1 → 1, 1 � 2, and 2 → 1 (Fig. 1a). We endow the network with with a
switching system ẋi = −γixi + Λi(x), i = 1, 2, where M1(a, b) = a + b:

Λ1(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

l1,1 + l1,2 if x1 < θ1,1 and x2 < θ1,2

l1,1 + u1,2 if x1 < θ1,1 and x2 > θ1,2

u1,1 + l1,2 if x1 > θ1,1 and x2 < θ1,2

u1,1 + u1,2 if x1 > θ1,1 and x2 > θ1,2

Λ2(x) =

{
u2,1 if x1 < θ2,1

l2,1 if x1 > θ2,1

and γ1 = γ2 = 1. In order to specify wall labeling in all domains κ, we need
to specify inequalities between the values of the function Λ1, evaluated on the
inputs to node 1, and the products γ1θ1,1, γ1θ2,1 that correspond to the output
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edges of node 1. At the same time, we need to specify inequalities between the
values of the function Λ2, evaluated on the input to node 2, and the product
γ2θ1,2 that corresponds to the output edge of node 2. We select the following
inequalities which define a parameter region in the parameter space.

l1,1 + l1,2 < l1,1 + u1,2 < γ1θ1,1 < u1,1 + l1,2 < γ1θ2,1 < u1,1 + u1,2 (5)
l2,1 < γ2θ1,2 < u2,1, θ1,1 < θ2,1

For all parameters z in this region the wall labeling is the same and depicted in
Fig. 1b. Since a wall consists of a pair (domain, face), the single-tipped arrows
in Fig. 1b indicate that a face is an incoming wall with respect to the domain
containing the tip and an outgoing wall with respect to the domain containing
the tail. The double-tipped arrows indicate that the face is an incoming wall
with respect to both neighboring domains.

1 2

(a) Regulatory network. x1

x2

θ1,1 θ2,1

θ1,2

κ1 κ2 κ3

κ4 κ5 κ6

(b) Phase space with wall labeling.

Fig. 1. Regulatory network and wall labeling for the parameter values (5) in
Example 2.8.

3 State Transition Graph and Its Morse Graph

We will now obtain a finite description of the coarse dynamics of (1). We begin
by constructing a state transition graph. By extracting the strongly connected
components of this state transition graph we build a condensed representation
of the dynamics in the form of a Morse graph. We begin with two equivalent
characterizations of the state transition graph, as a directed graph and as a
multivalued map. For this section, we will fix a regulatory network (V,E) and
an associated RD system.

Definition 3.1. Let z ∈ Z be a regular parameter. Define the vertex set V of
the state transition graph (V, E) as the image of the set of domains K(z) via a
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bijection f : K(z) → V. We define a multivalued map F : V ⇒ V that captures
the dynamics of (1) as follows:

1. if u = v, then v ∈ F(u) if and only if f−1(u) is an attracting domain;
2. if u 	= v, then v ∈ F(u) if and only if there exists a face τ such that (τ, f−1(u))

is an outgoing wall and (τ, f−1(v)) is an incoming wall.

Given F , for any pair of vertices u, v ∈ V there is a directed edge (u, v) ∈ E , if
and only if v ∈ F(u).

We now define a Morse graph that captures the essential parts of the dynam-
ics of the state transition graph.

Definition 3.2. A strongly connected path component of a directed graph G is
a maximal subgraph C of G such that for any vertices u, v ∈ C, there exists a
nonempty path in C from u to v. We will also refer to a strongly connected path
component as a recurrent component. Let {Cs}s∈P be a collection of recurrent
components, indexed by a set P. Define a partial order P on the set of Morse
nodes {Cs} via the reachability relation on (V, E). In P, we set q ≤P p if and
only if there exists a path in (V, E) from an element of Cp to an element of Cq.
The Morse graph of (V, E), denoted MG(V, E), is the Hasse diagram of the vertex
set {Cs}s∈P partially ordered by P.

Remark 3.3. Note that if κ is an attracting domain, then f(κ) ∈ V has a self-
edge by Definition 3.1. By Definitions 2.7 and 3.1, there can be no other out-going
edges from κ, and so f(κ) is a minimal Morse node of the Morse graph in the
sense that it has no outgoing paths to any other Morse nodes.

As remarked earlier, all solutions of the ODE system remain in an attracting
domain κ for all t ≥ 0. In a switching system components of the target point are
finite f(κ)i < ∞ for all i = 1, . . . , N and thus the focal point of κ represents a
unique equilibrium of (1). We will discuss the correspondence between attracting
domains and equilibria in PTM-switching systems in Sect. 5.

We adopt a labeling system for the Morse nodes of the Morse graph MG(V, E)
that distinguishes Morse nodes that are composed of a single vertex in the state
transition graph from those that have multiple vertices.

Definition 3.4. Let C be a node in MG(V, E), that is, C is a recurrent component
of the domain graph (V, E). Then if C consists of a single node of the state
transition graph, we give C the label FP, for “fixed point vertex”. We will call such
Morse nodes FP-nodes. If C is not an FP, then we will label it C for “cycle”, since
recurrent paths through multiple nodes indicate potential recurrent trajectories.

Example 2.8 Continued. The state transition graph for the switching system
is depicted in Fig. 2a. This gives rise to the Morse graph in Fig. 2b. There are
two Morse nodes, one consisting of node ξ4 denoted by FP and one cycle node,
corresponding to nodes ξ3, ξ2, ξ5, ξ6 denoted by C (see Definition 3.4).
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ξ1 ξ2 ξ3

ξ4 ξ5 ξ6

(a) State transition graph.

FP C

(b) Morse graph

Fig. 2. (a) state transition graph and (b) Morse graph for the switching system in
Example 2.8 at the parameter node of the parameter graph given by (5).

4 Combinatorial Parameters and Parameter Graph

While the definitions of the state transition graph and Morse graph in the pre-
vious sections are valid for arbitrary RD systems, in this section we concentrate
on the special case of PTM-switching systems. We consider a regulatory network
(V,E) together with vertex sets V s∪V p = V , V s∩V p = ∅, that denote switching
and PTM nodes, respectively.

We show how to assign to each parameter z ∈ Z a combinatorial descrip-
tion φ := ω(z) which is sufficient to construct the wall-labeling (and hence state
transition diagram and Morse graph) induced by z. We call this combinatorial
description a combinatorial parameter and we denote the collection of combina-
torial parameters by Φ. The collection Φ induces a decomposition of parameter
space into a finite number of regions, where every parameter within one of these
regions has the same Morse graph, and hence the same dynamical description.
We represent Φ as a parameter graph where combinatorial parameters φ and φ′

are joined by an edge, if the corresponding regions in the parameter space share
a co-dimension 1 boundary.

Definition 4.1. Define the input combinations of the node xi to be the
Cartesian product

Inj :=
∏

i∈S(j)

{0, 1}.

Define the indicator function χj : (0,∞)N → Inj such that

χj,i(x) =

⎧
⎪⎨

⎪⎩

0 if i → j and xi < θj,i or if i � j andxi > θj,i

1 if i → j and xi > θj,i or if i � j andxi < θj,i

undefined otherwise.

Define the valuation function vj : Inj → R
Sj via

vj,i(A) =

⎧
⎪⎨

⎪⎩

lj,i whenever Ai = 0
uj,i whenever Ai = 1
undefined otherwise.

Note that σj = vj ◦ χj , where σj is defined in (2.2).
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Definition 4.2. A logic parameter at a vertex i ∈ V s is a function

gi : (Ini × T (i)) → {−1, 1}.

A logic parameter at a node i ∈ V p is a function

hi : Ini → {−1, 1}.

The collection L = (L1, . . . , LN ) with Li := gi for i ∈ V s and Li := hi for i ∈ V p

is the logic parameter. An order parameter O is a collection of total orderings
Oi of T (i) for each i ∈ X, see Definition 2.3. A combinatorial parameter is a
pair φ = (L,O) where L is a logic parameter and O is an order parameter.
We denote the collection of combinatorial parameters as Φ. The combinatorial
assignment function ω : Z → Φ is given by ω(z) := (L,O) where O = O(z) from
Definition 2.3, and

Li(A,B) = sgn
((

MΛ
i ◦ vi(A) − γiθB,i

))
for all i ∈ V s; (6)

Li(A) = sgn
((

MΓ
i ◦ vi(A) − γi

))
for all i ∈ V p .

For all z ∈ Z, we say that ω(z) is the combinatorial parameter associated to
the parameter z. The parameter region associated with the combinatorial param-
eter φ is given by ω−1(φ) ⊂ Z. A combinatorial parameter φ ∈ Φ is realizable if
there exists z ∈ Z such that φ = ω(z).

Note that a parameter region ω−1(φ) ⊂ Z consists of all parameters that
satisfy a set of inequalities relating the inputs to node k to the weighted thresh-
olds corresponding to the outputs of node k, for every node k ∈ V . An example
of such a region is (5).

Definition 4.3. Let φ = (L,O) ∈ Φ be a realizable combinatorial parameter,
and let z ∈ ω−1(φ) ⊂ Z. We induce a wall-labeling on W(z) as follows. Let
(τ, κ) be a wall with projection index i and switching index j. We say (τ, κ) is an
outgoing wall with respect to φ if Li(χi(κ), j) = −sgn ((τ, κ)) and an incoming
wall if Li(χi(κ), j) = sgn ((τ, κ)).

We show that the wall-labeling given in Definition 4.3 coincides with one
given in Definition 2.7.

Theorem 4.4. A realizable combinatorial parameter φ ∈ Φ determines the wall
labeling function 
. That is, for every domain κ =

∏N
i=1(θvi,i, θwi,i) and its face

τ :=
∏j−1

i=1 (θvi,i, θwi,i)×{θk,j}×∏N
i=j+1(θvi,i, θwi,i), the value 
(κ, τ) is constant

over ω−1(φ).

Proof. Let z, z′ ∈ Z and suppose ω(z) = ω(z′) = φ. We will show 
(τ, κ) has the
same value at both z and z′.

First note that because ω(z) = ω(z′), by definition of ω, O(z) = O(z′)
there is an order preserving bijection α between thresholds at z to thresholds
at z′. This induces a bijection α : K(z) → K(z′) such that if τ ⊂ θk,j implies
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α(τ) ⊂ α(θk,j). This implies that if κ′ = α(κ), a particular threshold θk,j is
either the upper bound of the jth component

(
θvj ,j , θwj ,j

)
or the lower bound

for both κ and κ′. This means that a given face is either a left face or a right
face for both κ and κ′. Therefore sgn(κ, τ) has the same value at both κ and κ′.

Now note that whether j is a switching node or a PTM node does not depend
on a choice of parameters; nor does the logic function, MΛ

j or MΓ
j . Suppose j is

a switching node. Then it remains to show that

sgn

(
Λj

(
N∏

i=1

(θvi,i, θwi,i)

)
− γjθk,j

)

has the same value at z and z′. Because ω(z) = ω(z′), for every (A,B) ∈ Inj ×
T (j),

sgn
(
MΛ

j ◦ vj(A) − γjθB,j

)

is equal at z and z′. Hence the result follows because k ∈ T (j) and Λj =
MΛ

j ◦ vj ◦ χj,i by (3). If j is a PTM node, then we find that

sgn

(
Δj

(
N∏

i=1

(θvi,i, θwi,i)

)
− γj

)

has the same value at z and z′ because Δj = MΓ
j ◦ vj by (2), and for every

A ∈ Inj , sgn
(
MΓ

j ◦ vj(A) − γj

)
has the same value at z and z′. ��

Given φ ∈ Φ, Theorem 4.4 tells us that the state transition and Morse graphs
are identical for all z such that ω(z) = φ, and so the study of a finite number
of combinatorial parameters characterizes all possible dynamical behaviors of a
switching or PTM-switching system over all parameter space.

5 Comparison of Fixed Point Dynamics

Given a regulatory network (V,E) we discuss the similarities and differences
between the dynamics of a switching system and a PTM-switching system. More
specifically, if we replace some switching nodes by PTM nodes, how does this
affect the Morse graph? We start by formalizing the idea of this comparison.

Suppose two systems have the same regulatory network (V,E), but different
decompositions of switching and PTM variables. In particular, assume that one
system admits a decomposition of network nodes V = V s ∪ V p and the other
system admits V = W s ∪ W p, such that W s := V s \ Q, and W p := V p ∪ Q for
some Q ⊂ V s.

The regular parameter space is the same set Z in both systems. However the
logic function LW will be different from the original logic function LV , because
different components of L will be determined by the PTM versus switching
equations. As a consequence, the set of combinatorial parameters ΦW is different
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than the set of of combinatorial parameters ΦV . However, there is an injective
map Ω : ΦW → ΦV given by

Ω(L,O) = (Ω(L), O), Ω(L) = (Ω(L1), . . . ,Ω(LN )).

Consider a combinatorial parameter φ = (L,O) ∈ ΦW . For all i ∈ V \ Q we
set Ω(Li) = Li. For i ∈ Q, we have Li := hi(α), α ∈ Ini, and we need to define
Ω(Li). We set

Ω(Li) = gi(α, j) := hi(α) for allj ∈ Outi. (7)

Lemma 5.1. The map Ω is not surjective, unless for all i ∈ Q, i has a single
outgoing edge.

Proof. It follows from formula (7) that Ω is onto if, and only if, j = 1 for all
i ∈ Q. The result follows. ��
Theorem 5.2. If φ = (L,O) ∈ ΦW is realizable, then φ′ = (L′, O′) := Ω(φ) is
realizable and the wall-labeling 
φ = 
φ′ is the same at both φ and φ′. Conse-
quently, the state transition graphs and Morse graphs are isomorphic at φ and φ′.

Proof. To prove the realizability of φ′, select z ∈ ω−1(φ), with z = (l, u, θ, γ).
We define z′ ∈ Z, z′ = (l′, u′, θ′, γ′), as follows. Let γ′

i := γi for all i ∈ V , let
l′i,j := li,j and u′

i,j := ui,j for all (i, j) ∈ E and for i ∈ V \ Q, and each j ∈ T (i),
let θ′

j,i := θj,i.
Now we consider i ∈ Q. Because z is a regular parameter, Δi(κ) 	= γi for

all domains κ ∈ K(z). Moreover, because the range of Δi is a finite set, there is
an interval (γi − ε, γi + ε) that does not intersect the range of Δi. Let {θ′

j,i} be
any set with the same cardinality as the set {θj,i}, that satisfies the following:
(a) {θ′

j,i | j ∈ T (i)} ⊂ (γi − ε, γi + ε), (b) each threshold is distinct, and (c) the
ordering of {θ′

j,i} is the same as that of {θj,i}.
This last choice implies that the collection of orders of all thresholds O(z) =

O(z′) and by (a) and (b) z′ is a regular parameter. Furthermore, for each
i ∈ V \ Q, the logic of ω(z′) at i is equal to Li. Then, for i ∈ Q, we have
that for each (A,B) ∈ Ini × Outi, by construction sgn

(
MΛ

i ◦ vi(A) − γiθB,i

)
=

sgn
(
MΓ

i ◦ vi(A) − γi

)
, when the left and right hand sides are evaluated at z′ and

z, respectively. Hence z′ belongs to parameter region φ′ = ω(z′) that satisfies
φ′ = Ω(φ).

By Theorem 4.4, φ and φ′ both determine the wall-labeling function 
,
which in turn determines the state transition and Morse graphs. Let (κ, τ)
be a wall at parameter node φ, where κ =

∏N
i=1(θvi,i, θwi,i) is a domain and

τ :=
∏j−1

i=1 (θvi,i, θwi,i) × {θk,j} × ∏N
i=j+1(θvi,i, θwi,i) is a face of κ. Since O = O′

and the intervals (θvi,i, θwi,i) are all well-defined for parameters in parameter
node φ for all i ∈ V , they are also well-defined at φ′. Similarly, if j = vk, (j = wk)
at φ, then the same is true at φ′ as well. Therefore, if τ is a left (right) face of
κ at φ, then it is a left (right) at φ′. Hence sgn (τ, κ) is the same at φ and φ′.

Recall that if i ∈ V \ Q, then L′
i = Li by definition of Ω. Further, for each

i ∈ Q, for each (A,B) ∈ Ini × Outi, L′
i(A,B) = gi(A,B) = hi(A) = Li(A). It

follows that
sgn (Λj(κ) − γjθk,j) = sgn

(
M

Λ
j ◦ vj(A) − γjθk,j

)
= sgn

(
M

Γ
j ◦ vj(A) − γj

)
= sgn (Δj(κ) − γj) ,
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for an appropriate A = χk,j(κ). This together with the fact that sgn (τ, κ) is the
same at φ and φ′ proves that the labeling function is the same at φ and φ′. ��

The map Ω : ΦW → ΦV is an injective, but not necessarily surjective, map of
combinatorial parameters by Lemma 5.1. This implies that the collection of com-
binatorial parameters of a switching system is richer than that of a PTM system.
There is a natural question whether also the collection of types of Morse graphs
MGV (V, E) exhibited in the parameter graph ΦV , is richer than a collection of
the Morse graphs MGW (V, E) of the parameter graph ΦW

MGW (V, E) ⊂ MGV (V, E).

We now continue with Example (2.8) to show that the switching systems, indeed,
have richer dynamics.

Example 2.8 Continued: In Fig. 2b we listed a Morse graph for a parameter
node (5) in ΦV . Consider the PTM-switching system obtained by making node
1 of the network in Fig. 1a into a PTM node:

ẋ1 = x1(Δ1(x) − γ1)
ẋ2 = −γ2x2 + Λ2(x).

We set Δ1 := Λ1 from the original switching system of Example 2.8, and keep Λ2

the same. By examining the set of all combinatorial parameters ΦW , we observe
that there exist only four Morse graphs that we show in Fig. 3(a)–(d). None of
them are isomorphic to the switching system’s Morse graph in Fig. 2b.

FP

(a)

C

FP

(b)

FP FP

(c)

C

(d)
x1

x2

κ1 κ2 κ3

κ4 κ5 κ6

(e)

Fig. 3. (a)–(d): All Morse graphs for the PTM-switching system in Example 2.8. (e)
Wall labeling for parameter (8).

As we have seen in Remark 3.3 each Morse node labeled FP corresponds to a
unique stable equilibrium of a switching system. One of the principal differences
between the equation describing the dynamics of a switching node and a PTM
node is that the dynamics of the switching node are always bounded. This follows
from the boundedness of Λ and the presence of the decay constant γ > 0.
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As a consequence, a switching system always has a compact global attractor.
On the other hand, PTM equations are not necessarily bounded when

Δ(x) − γ > 0.

This presents challenges when one wants to deduce the existence of a recurrent
set of the PTM-switching system from existence of a Morse node.

We illustrate this on our continuing example. Consider the PTM-switching
system in Example 2.8 at parameter

l1,1 + l1,2 < l1,1 + u1,2 <γ1 < u1,1 + l1,2 < u1,1 + u1,2 (8)
l2,1 < γ2θ1,2 < u2,1, θ1,1 < θ2,1

with two Morse nodes FP that correspond to domains κ3 and κ4 (see Fig. 3(e)
for wall labeling and Fig. 3(c) for Morse graph). We will show next that there is
no equilibrium in κ3; in fact the trajectories in κ3 all diverge to infinity.

To see this, note that on κ3 = (θ2,1,∞) × (0, θ1,2), the system reduces to

ẋ1 = x1(u1,1 + l1,2 − γ1), ẋ2 = −γ2x2 + l2,1,

and when x(0) = (x1(0), x2(0)) ∈ κ3, this yields the following solution.

x1(t) = x1(0)e(u1,1+l1,2−γ1)t, x2(t) =
(

x2(0) − l2,1

γ2

)
e−γ2t +

l2,1

γ2
.

Since in the combinatorial parameter (8) we have u1,1 + l1,2 > γ1,

lim
t→∞ x1(t) = ∞, lim

t→∞ x2(t) =
l2,1

γ2
∈ (0, θ1,2).

Since both components are strictly monotonic, x(t) ∈ κ3 for all t, which is
consistent with the wall labeling, but κ3 does not contain an equilibrium. We
now present a necessary and sufficient condition for when an FP node in a PTM-
switching system does represent an equilibrium of the underlying ODE system.

Definition 5.3. Let (V,E) be a regulatory network with associated system (1)
where each variable is either switching or PTM. Fix a regular parameter z ∈ Z
and let (V, E) be the domain graph at this parameter. We say a vertex ξ ∈ V is
a degenerate FP node if it is an FP Morse node and at least one component λi

of the focal point of κ := f−1(ξ) is infinite, λi = ∞.

We now characterize degenerate nodes FP using only their location in phase
space relative to the threshold hyperplanes {xi = θj,i}, i ∈ V , j ∈ T (i).

Theorem 5.4. An FP node ξ is degenerate if and only if there exists a PTM
node i ∈ V such that on κ := f−1(ξ), for each j ∈ T (i) we have θj,i < xi.
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Proof. For the forward implication, assume a node ξ is degenerate. Then there
is i ∈ V such that i-th component of the target point λi = ∞ and therefore
limt→∞ xi(t) = ∞ whenever x(0) ∈ κ = f−1(ξ). Now suppose by contradiction
that there is some j ∈ T (i) such that on κ, xi < θj,i. Without loss of generality,
assume that j is the target of i where θj,i is the smallest threshold for which this
inequality holds. Let τ be the face of κ on which xi = θj,i. Then because κ is
an attracting domain, (τ, κ) is an incoming wall with 
(τ, κ) = 1. Because τ is a
right face of κ, sgn (τ, κ) = −1. Hence sgn (θj,i (Δi(κ) − γi)) = −1; in particular,
sgn (Δi(κ) − γi) = −1.

Recall that when x(0) ∈ κ, the solution starting at x(0) has the form

xi(t) = xi(0)e(Δi(κ)−γi)t.

Because we have shown that Δi(κ)−γi < 0, the trajectory xi(t) approaches 0 as
t approaches infinity. This contradicts our assumption that limt→∞ xi(t) = ∞.

For the backward implication, let i be a PTM node such that for each
j ∈ T (i), xi > θj,i on κ. Let k ∈ T (i) satisfy θj,i ≤ θk,i for each j ∈ T (i).
Then if τ ⊂ {xi = θk,i}, then τ is a left face of κ, meaning sgn (τ, κ) = 1.
Because κ is attracting, (τ, κ) is an incoming wall: 
(τ, κ) = 1. Therefore,
sgn (θk,i (Δi(κ) − γi)) = sgn ((Δi(κ) − γi)) = 1. Therefore, using the above for-
mula for xi(t), we have limt→∞ xi(t) = ∞ when x(0) ∈ κ. Therefore ξ = f(κ) is
a degenerate vertex FP. ��

6 Discussion

While Boolean networks simplify the vast complexity of cellular networks by the
discretization of the phase space, switching networks admit, in addition, a finite,
computable combinatorialization of the parameter space. This combinatorializa-
tion is represented as a parameter graph, where for each node in the parameter
graph the dynamics in phase space are represented by a Morse graph summa-
rizing the decomposition of the recurrent dynamics. This information is summa-
rized as a queryable database of Dynamic Signatures Generated by Regulatory
Networks (DSGRN) [5–8,13,17] that enables us to ask questions of biological
relevance, such as the maximum number of fixed points a network can support.

The DSGRN database permits a search over dynamics (i.e equilibria, bista-
bility, hysteresis) compatible with experimentally observed qualitative dynamics,
and can assess the prevalence of a dynamical behavior in the parameter space.
A natural question is how one compares the coarse combinatorial description of
the dynamics in terms of Morse graphs with experimental data. Importantly,
the focus shifts from matching the experimental data by trajectories generated
by the model to rejecting models that are incompatible with the data. If the
proposed network does not admit any parameters where the observed dynamics
are present, we reject that network as a plausible model. Additionally, as we have
shown recently [8] by comparing orders in sequences of maxima and minima of
the experimental time series with switching systems predictions, we can reject
more potential models that do not produce the observed sequences.
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In this paper we have extended this combinatorial approach to a broader
class of models, switching systems with regulated degradation (RD systems).
This class contains, as border cases, the traditional switching systems, as well as
the linearization of systems that model post-transcriptional modification of pro-
teins (PTM systems). We show that RD systems admit state transition graphs
and Morse graphs, thus allowing discretization of the phase space. We then
show how to construct parameter graph for systems that mix PTM equations
and switching equations. Lastly, we compare the dynamics between a switching
system and a mixed PTM-switching system. We observe that the mixed systems
admit only a subset of the dynamics exhibited by the corresponding switch-
ing system. Moreover, some of these dynamics are not physically meaningful,
since PTM equations are not dissipative and so trajectories can tend to infinity.
Therefore, some single element recurrent sets in the state transition graphs of a
mixed PTM-switching system do not correspond to fixed points of the underlying
differential equation.

We leave the general RD case, where individual equations contain both types
of finite-valued nonlinearities for future work. The difficulty in constructing the
parameter graph for the general RD system is purely technical, and not con-
ceptual; one has to enumerate all possible relationships between values of these
nonlinearities and output thresholds of the corresponding regulatory network
node. This is beyond the scope of the present paper.
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Abstract. A reactive model, as studied by D. Gabbay and his collab-
orators, can be regarded as a graph whose set of edges may be altered
whenever one of them is crossed. In this paper we show how reactive
models can describe biological regulatory networks and compare them
to Boolean networks and piecewise-linear models, which are some of the
most common kinds of models used nowadays. In particular, we show
that, with respect to the identification of steady states, reactive Boolean
networks lie between piecewise linear models and the usual, plain Boolean
networks. We also show this ability is preserved by a suitable notion of
bisimulation, and, therefore, by network minimisation.

Keywords: Biological regulatory networks · Switch graphs ·
Reactivity

1 Introduction

Biochemical processes occurring within cells are abstracted into the concept
of biological regulatory networks. In general, such networks capture the cell
dynamics, expressed as the concentration of each component (typically proteins,
and other nucleotides), which are directed by the biochemical reactions occurring
between them. This process is generally regulated by the DNA through the
transcription of mRNA.

Example 1. An example of a “cascade” [6] is depicted in Fig. 1. This illustrates
a simple and partial biological regulatory network organised as a sequence where
each node induces the production of the following one.

One of the main goals of studying biological regulatory networks is the iden-
tification of steady states which somehow represent the “way of working” of a
cell. Different steady states can be associated, for example, to the differentiated
cells of a living organism sharing the same DNA.

Models for biological regulatory networks fall in one of two major classes [7]:
quantitative – where the exact concentration of each component in a cell is given;
or qualitative – focussed on the overall dynamics of a system, and classifying the
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Fig. 1. A example of a “cascade”.

concentration of a component in qualitative terms, such as “high” or “low”.
Quantitative models are, of course, more precise, but also harder to manipulate.
A “hybrid” approach to this problem, in which a qualitative model is used to
explain the “big picture” and quantitative models are applied in a second stage to
study the detailed dynamics of a behavioural region [5] is a typical compromise.

This paper introduces a new qualitative model into the picture—reactive
Boolean networks which seems particularly interesting to help in the quest for
steady states, a major issue in the area. The model builds on the notion of
reactivity [11] which proved successful in both fundamental research in modal
logic [10,12,14] and software engineering applications [1,3,9].

Outline. Section 2 provides the background for this piece of research by briefly
revisiting the most common models for biological regulatory networks. The
notion of reactivity and the associated formal structures, namely, switch graphs
and reactive frames are discussed in Sect. 3. Section 4 contains the paper main
contribution, introducing reactive Boolean networks and stating some of the
relevant properties. Finally, Sect. 5 concludes and identifies some directions for
future work.

2 Biological Regulatory Networks

Several modelling approaches have been proposed to formally characterise bio-
logical regulatory networks [7]. This background section revisits some of them
to set the scene for our own proposal discussed in Sect. 4. In general, models
for biological regulatory networks consider components i = 1, . . . , n, represent-
ing e.g. protein, genes, mRNA, and variables x1, . . . , xn corresponding to the
concentration or level of expression of the respective component.

Ordinary Differential Equations and Piecewise Linear Models. The
classical quantitative models resort to ordinary differential equations. The inter-
action between components is captured by sigmoid expressions embedded in
differential equations. Either positive or negative regulations of a component
i over a component j (meaning that component i respectively induces or
inhibits the production/activation of component j) may be considered. This
is achieved through a quantitative representation of the system. One can con-
sider variables xi which are related to each component i. A variable xi rep-
resent the concentration of the component i in the system and we can use
them to represent the (either positive or negative) regulations occurring between
these components. This is accomplished via the introduction of a sigmoid
function depending on each xj in function f , in the context of the differen-
tial equation xi = f(x1, . . . , xn) describing the concentration of component i.
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Several classes of sigmoid functions can be chosen. A common alternative

takes the form of a fraction s+(x; θ, n) =
xn

θn + xn
for positive regulations and

s−(x; θ, n) = 1 − s+(x; θ, n) =
θn

θn + xn
for negative ones.

In this context, a model is obtained by considering a system with ODEs
with the form xi = Fi(x1, . . . , xn) − γixi, where each Fi(x1, . . . , xn) is obtained
as sums and products of the referred sigmoid functions and reflects how the
interaction between components affect the production/expression of i. Above θ
is a threshold determining the concentration of x needed to effectively regulate
the target component and n determines how abrupt this regulation changes from
almost inexistent to effective. Also, γi is a constant representing the degradation
rate of the component i. All thresholds θ, n in the sigmoid functions and γ are
usually estimated using suitable methods.

As one would expect, this sort of models containing non linear differential
equations are hard to study analytically, but used in a number of contexts to
simulate and predict the answer of a biological system. To overcome the challenge
of solving a system of non linear ODEs, a more manageable alternative divides
the entire state space into a finite number of domains and studies each one
in its own. On a second stage the different domains are integrated and the
general dynamics of the system recovered. Such models are called piecewise linear
(PWL).

In practice, to obtain a piecewise linear model from a system of differential
equations specifying a biological regulatory network, one ignores the estimated
value for n and assumes that n → +∞, i.e.

xn

θn + xn

n→+∞−−−−−→

⎧
⎪⎨

⎪⎩

1, if x > θ
1
2 , if x = θ

0, if x < θ

Thus, the state space is divided into two different domains (x < θ and x > θ) and
a boundary x = θ. Given a specific model, this technique is applied to each one
of these sigmoid functions in order to split the state space into several regions
with a linear differential equation expressing the state trajectory within each
one.

Example 2. Consider the following system of differential equations:
⎧
⎪⎨

⎪⎩

x′ = 5
x2

x2 + 22
.

22

y2 + 22
− x

y′ = 3
x2

x2 + 42
− y
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Making n → +∞ leads to
{

x′ = −x

y′ = −y

{
x′ = −x

y′ = −y

{
x′ = −x

y′ = 3 − y

x < 2 2 < x < 4 4 < x
2 < y 2 < y 2 < y{

x′ = −x

y′ = −y

{
x′ = 5 − x

y′ = −y

{
x′ = 5 − x

y′ = 3 − y

x < 2 2 < x < 4 4 < x
y < 2 y < 2 y < 2

Analytically, a steady state can be identified at point (0, 0), and an orbit which
asymptotically converges to (4, 2).

Fig. 2. Steady states identified in Example 2.

Formally, it is important to mention that, in general, a more careful study
at the domains should be performed. However, we do not focus much on this
issue for now because we will only consider PWL models where no such care is
required.

In the context of a differential equation, we say that a flow is a trajectory
obtained from a initial state which is ruled by the differential equations. In the
context of a PWL model, we give a similar meaning to this term but we admit
a flow to be the concatenation of several usual flows, obtained within different
domains, regarding that this concatenated flow still is continuous. For instance,
in Fig. 2, a flow in a PWL model is illustrated by a solid line. The orientation
represented by the arrows describes the evolution of the flow along time.

Boolean Networks. A Boolean network (BN) is another kind of model to
describe the dynamics of biological regulatory networks. This kind of model
considers the concentrations xi as Boolean variables assuming, in practice, xi = 0
if the concentration of i is “low” (bellow some threshold) and xi = 1 if the
concentration of i is “high” (above some threshold).

In a BN model, each variable xi is regulated by a Boolean function
fi(x1, . . . , xn) built from Boolean operators, combined in a general function
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f = (f1, . . . , fn). From this function, a graph (Boolean network) (V,E) can
be obtained. At this point, two paradigms can be considered: synchronous and
asynchronous. For the synchronous approach, the BN is obtained as follows:
given the set of components A with |A| = n, V = {0, 1}n and a directed edge
(a, b) ∈ E if b = f(a). In this way, each vertex in V admits exactly one out-
put. For the asynchronous approach V is obtained as before but a directed edge
(a, b) ∈ E if there is some index i such that bi = f(a)i �= ai and bj = aj for
every other indexes j �= i. In this way, only the value of a single variable is
updated at each step. Thus, we admit networks where several edges can have
the same vertex as tail and where vertices with no outgoing edges are allowed.
The asynchronous approach was proposed and is often used since it reflects the
dynamics of the system in a more realistic way.

For our approach we do not need to consider these theoretical concepts
regarding BNs in detail, since our network will be built using a different pro-
cedure. Thus, it is enough to consider the underlying graphs as BN models,
although a wider connection with the remaining theory of BNs could be estab-
lished. For more information about this, we recommend the reader to consult
[13] for more details.

A qualitative perspective, as captured by a Boolean network, can be obtained
from a piecewise linear model. For this, a graph (V,E) is built taking the domains
of the piecewise linear model as the states V , and identifying the edges with the
flows, i.e. an edge from i to j is added to E if there is a flow from the domain i
to the domain j in the piecewise model. In this paper we consider asynchronous
dynamics, meaning, in practice, that we only admit “adjacent” domains to be
connected.

As referred, in BNs, variables can take values 1 or 0 depending on the concen-
tration/level of expression of the corresponding protein/gene being, respectively,
high or low (above or bellow a threshold θ). Since in PWL models we consider
thresholds to split the state space, these Boolean variables are then used to
identify each domain. However, in order to be able to fully accomplish this,
sometimes more than two values must be considered. For instance, a third value
may be added to cater for intermediate states. This will be the case in the next
example which illustrate how we need to consider three possible values for x—0,
1 and 2—for low, medium and high concentration, respectively.

Example 3. Figure 3 shows a BN corresponding to the biological regulatory net-
work described in Example 2. We can think of it as a graph where the vertices
have the form ab where a and b represent the level of the corresponding com-
ponent. We note that we must consider three values for the variable related to
a since in the PWL model two thresholds are considered for the variable x. For
instance state 00 represents the state where both components have low concen-
tration and 10 is the one whose first component has a medium concentration
and the second component has a low concentration. Recalling its piecewise lin-
ear model, we note that each vertex corresponds to a domain and the edges are
introduced according to the flows within each domain. For instance, there is an
edge from 11 to 01 because, in the corresponding PWL model it is possible to
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attain the boundary between the domain represented by 01 and 11 with a flow
whose initial state is (x, y) = (52 , 7

2 ), which is within the domain denoted by 11.

Fig. 3. Example of a Boolean network.

Steady states in a BN are identified by strongly connected components with
no outgoing edges [7], which is called an attractor in the literature. Given a
graph (V,E), a strongly connected component is a set of vertices X such that,
for every x, y ∈ X, there exists a directed path between x and y which only
contains vertices in X.

The BN depicted in Example 3 admits two strongly connected components
– {00} and {11, 21, 20, 10} – but only one of them is an attractor and, thus,
represents a steady state, since {11, 21, 20, 10} admits an outgoing edge from 11
to 01. Actually, it is usual to lose information when going from a piecewise linear
model to a Boolean network. In general, it is well known that, for a system S,

SteadySt([[S]]BN ) ⊆ SteadySt([[S]]PWL) ⊆ SteadySt([[S]]ODE)

where [[S]]M refers to the representation of system S in model M and SteadySt
retrieves the set of steady states in a model.

As expected, simpler models tend to lose information about the steady states
of the system. Our proposal, discussed in the sequel tries to partially correct this
problem.

3 Switch Graphs and Reactive Frames

As mentioned in Sect. 1, the model proposed in this paper borrows from modal
logic research the notion of reactive frame. Modal logics [4] are logics in which for-
mulæ are interpreted over a graph of semantic universes interconnected through
an accessibility relation. The former may represent e.g. temporal instants, deon-
tic contexts or epistemic states. In all cases truth is relative rather than univer-
sal as in classical logics which assume just one universe of interpretation. Modal
operators—� and ♦—provide a universal, respectively, existential, quantification
over the accessible universes from the current point of evaluation.

Typically this accessibility relation (i.e. the underlying graph) is fixed. A
reactive frame, however, is a graph whose structure can vary over time. Such
graphs have been used as semantic models for some classes of modal logics in
which the way semantic universes are interconnected can be modified on the fly.
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The idea can be traced back to Johan van Benthem seminal paper on the so-
called sabotage logic [3] in which an edge is deleted after being taken (therefore
preventing its subsequent use). In another variant described by Areces et al. [1],
edges are not deleted but their direction swapped. This sort of logics [2] and the
underlying dynamic graphs are called reactive as they capture structural changes
under reaction to previous behaviour.

Reactive behaviour is often found in games. For instance, castling, a chess
special move involving the King and a Rook, can only be performed if none
of the pieces which take part has been moved before. Therefore, in identical
configurations of the table, different moves can be possible. A similar situation
involves another chess move called en passant, which allows a player to capture a
pawn from the opponent with one of his pawns whenever the opponent moves his
pawn two squares in front and it becomes laterally adjacent to an enemy pawn.
However, if the opponent only moves his pawn a square in front, en passant
becomes illegal.

3.1 Switch Graphs

Syntactically, such moving structures are represented by switch graphs [10,12],
which add higher-level edges to the usual graph structure. These higher-level
edges connect basic edges, also called “0-level” edges, which are the ones which
are eventually crossed, to other higher-level edges according to the following
definition.

Definition 1. Given a set of nodes W , a switch graph is a pair (W,S) where
S =

⋃

n≥0

Sn such that:

– S0 ⊆ W × W , i.e. the usual relation between nodes,
– and, for n ≥ 1, Sn ⊆ S0 × Sn−1 × {◦, •}.
A higher-level edge (d, e, ∗) will either inhibit or activate its target edge e when-
ever the source edge d is crossed, depending on the value of annotation ∗. Target
edge e will be inhibited if ∗ = ◦ or activated if ∗ = •. In the graphical repre-
sentation of a switch graph, as shown in Fig. 4, inhibitor edges are depicted as
white headed arrows, while black headed arrows represent activator edges.

A switch graph is configured through an instantiation function I : S →
{0, 1} which marks each edge as inhibited or active depending on I(s) = 0 or
I(s) = 1, respectively. The former (respectively, latter) edges are depicted as
dashed (respectively, full) arrows. Note that inhibited edges cannot be crossed,
and they can neither activate nor inhibit other edges. Moreover, only 0-level
edges can be crossed: if one such edge x is crossed, all active higher-level edges
with source in x, i.e. (x, e, ∗) will fire and activate/inhibit the respective target
edge e.

Example 4. Figure 4 depicts a switch graph (W,S) with W = {w} and

S = {(w,w),
(
(w,w), (w,w), ◦), ((w,w),

(
(w,w), (w,w), ◦)), •)}
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For simplicity, we define e1 =
(
(w,w),

(
(w,w), ◦)), •)

and e2 =
(
(w,w),

(w,w), ◦). The initial instantiation I0 is such that I0(w,w) = 1 (the edge (w,w)
can be crossed), I0(e2) = 0 (meaning that it is inhibited) and I0(e1) = 1 (there-
fore, activated and ready to activate e2, the pointed edge whenever (w,w) is
crossed).

Therefore, starting from w, the edge (w,w) can be crossed (since it is active)
and this causes the higher-level edge e1 to fire and activate e2. e2 has no effect
since it was initially inhibited when (w,w) was crossed. One can then cross (w,w)
again. Now, e1 acts but has no effect, since e2 is already active, while e2 acts
and inhibits (w,w). Hence, (w,w) can no longer be crossed. This switch graph
shows an example of counter which can “count” only twice.

Fig. 4. Example of a switch graph.

3.2 From Switch Graphs to Reactive Frames

A switch graph can be encoded by the set of paths it generates, as shown in the
following example.

Example 5. The set of paths Δ corresponding to the switch graph shown in Fig. 5
is generated as follows. Starting at w1 we can move to w3 but not from there
since the edge (w3, w4) was deleted on crossing (w1, w3). Thus, (w1), (w1, w3) ∈
Δ. Starting at w2 we can move to w3 and afterwards to w4 (since the edge
(w3, w4) was preserved). Thus, (w2), (w2, w3), (w2, w3, w4) ∈ Δ. Starting at w3

there is a move to w4, from where no other move is possible. Therefore, Δ =
{(w1), (w1, w3), (w2), (w2, w3), (w2, w3, w4), (w3), (w3, w4), (w4)}.

Paths are used to define reactive frames—a semantic model for switch graphs
upon which suitable (reactive) modal logics are defined. We will not develop such
logics in this paper, the interested reader is referred to [10,12] for an extensive
account.

Definition 2. Consider W �= ∅ and let Δ ⊆ W ∗ be a nonempty set of finite
paths. (W,Δ) is a reactive frame if:

– (w) ∈ Δ for any w ∈ W
– ∀n ≥ 1, (w1, . . . , wn, wn+1) ∈ Δ implies (w1, . . . , wn) ∈ Δ.
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Fig. 5. Another switch graph.

Let us end this section, fixing some notation. As usual, we denote by W ∗

the set of all non-empty finite sequences (paths) over set W , and define function
t : W ∗ → W by t(λ) = t(w1, . . . , wn) = wn. Let λ = (w1, . . . , wn) be a path.
Notation λw abbreviates the path (w1, . . . , wn, w). Similarly, if no ambiguity
arises, w1 stands for the path (w1). Finally, a path γ extends or is an extension
of a path λ is there exist w0, . . . , wn ∈ W such that γ = λw0 . . . wn. Of course,
every path is an extension of itself.

4 Reactive Boolean Networks

Switch graphs provide an interesting alternative to represent biological regu-
latory networks, building on the corresponding Boolean networks. As discussed
below, this new model which we propose to call reactive Boolean networks (RBN)
has a number of interesting properties namely in what concerns the identification
of steady states and their preservation under model minimisation.

In the next definition, we consider a PWL model and the corresponding
Boolean network obtained from it. There, when we mention a vertex x of the
Boolean network we also mention the corresponding domain of the PWL model
and vice-versa.

Definition 3. Given a PWL model M whose corresponding Boolean network is
N , a reactive boolean network is a two-level switch graph (W,S) where (W,S0) =
N and S1 is obtained according to the following rules:

1. For any domain k of M such that u = (j, k) ∈ S0, we have (v, u, ◦) ∈ S1 with
v = (i, j) if a flow which enters in region j via the boundary between regions
i and j never leaves it via the boundary between regions j and k.

2. For each (v, u, ◦) ∈ S1 with u = (j, k) and v = (i, j), then (w, u, •) ∈ S1 if
there exists w = (l, j) ∈ S0 for some region l of M such that there is a flow
entering in region j via the boundary between regions l and j and leaving it
via the boundary between j and k.

Moreover, since (W,S) is a two-level switch graph, then Sn = ∅, for n > 1.

We only define Reactive Boolean networks for two-level switch graphs. In
fact, this definitions could be generalized to embed higher-level edges but we
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believe that the benefits would not be worth the additional computational cost.
Then, we leave the this generalization for future work.

In practice, this new kind of models can temporarily deleted from the state
transition graph edges that would represent non-realistic behaviours. In practice,
and since we can compute the flow given by a linear differential equation and
an initial state, the inclusion of an edge of the type ((i, j), (j, k), ◦) ∈ S1 means
that is not possible to obtain, in the PWL model, a flow with initial state in the
region i that enters in the region j and leads us to region k.

4.1 Recovering Attractors

As mentioned before, it is well known that, in general:

SteadySt([[S]]BN ) ⊆ SteadySt([[S]]PWL)

with equality failing for multiple examples. Reactive Boolean networks, on the
other hand, in general can increase the number of steady states that can be
identified when comparing to Boolean networks, introducing a further level in
this inequality:

SteadySt([[S]]BN ) ⊆ SteadySt([[S]]RBN ) ⊆ SteadySt([[S]]PWL)

In the context of reactive Boolean networks, steady states are also identified
by atractors, whose definition is revised as follows.

Definition 4. Given a reactive Boolean network (W,S) whose set of paths is Δ,
a set V ⊆ W forms a strongly connected component relatively to a path λ ∈ Δ
(SCCλ) if for any v ∈ V and any path ρ ∈ Δ which extends λ, there exists γ ∈ Δ
such that t(γ) = v and γ extends ρ.

Proposition 1. If V is a SCCλ, it is always possible to find a path between two
states u, v ∈ V after a reconfiguration on the edges, induced by the path λ.

Proof. From the definition, for all extensions ρ of λ, one can find λ an extension
of ρ such that t(γu) = u. Again, by definition, and since γu is itself extends λ, it
is possible to find γv which extends γu and such that t(γv) = v. �

Definition 5. Given a reactive Boolean network (W,S) whose set of paths is
Δ, a set V ⊆ W is an attractor if it is a SCCλ, for some path λ, and every path
γ extending λ verifies t(γ) ∈ V .

This definition extends the notions of SCC and attractor, which are defined
for regular graphs (and BNs) to switch graphs (and RBNs). Informally, this
means that a set V is an attractor if there is a path γ such that, after walking
along it, we can always find a path between any two states of V and there is not
any path guiding us to a final state outside the set V (i.e., the usual definition
for attractor in a usual graph).
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Fig. 6. A reactive Boolean network.

Example 6. Recall Examples 2 and 3, and take the Boolean network introduced
then as the first stage (W,S0) of a reactive Boolean network. The piecewise linear
model in Example 2 generates S1 which turns out to be a singleton relation
{(

(21, 11), (11, 01), ◦)}. The whole net is depicted in Fig. 6.
For this reactive network, given 21 as the initial state, we obtain the following

set of paths: {(21), (21, 11), (21, 11, 10), (21, 11, 10, 20), (21, 11, 10, 20, 21), . . .}.
Therefore, according to Definition 5, {11, 10, 20, 21} is an attractor for this reac-
tive Boolean network. Similarly, taking 00 as the initial state, {00} emerges as
an attractor as well.

Definition 6. Consider a BN or RBN model (V,E) and a RBN model (V ′, E′).
Given an attractor A ⊆ V of the model (V,E), we say that it is signaled by the
model (V ′, E′) if there is an algorithm that allows us to obtain a set B ⊆ V ′

from A in an unambiguous way and such that B is an attractor of (V ′, E′).

Using other words, if a model “A” signals the attractors of another model
“B”, we can recover all attractors of the model “B” from the attractors of the
model “A”.

Proposition 2. Given a piecewise linear model, the corresponding reactive
Boolean network identifies, in general, a larger set of attractors than the simpler
Boolean network. Moreover, all attractors of a BN are signalled in the corre-
sponding RBN.

Proof. The fact that, in general, a RBN a larger set of attractors from than a
BN was already shown in Example 6. Note that we were able to recover the
attractor 00 as well as the converging cyclic behaviour of the piecewise linear
model that the BN was not able to signal.

Now, consider a BN with an attractor V . If |V | = 1, then V is also attractor
of the corresponding RBN . Otherwise, let λ = (v) be a path with v ∈ V . Since V
is an attractor in a BN, all extensions of λ terminate at elements of V . Consider
the following algorithmic procedure: Choose v ∈ V for which it is possible to
consider an extension γ of λ such that it is no more possible to extend it to
path ρ where t(ρ) = v. If such a path exists, update λ to γ and V to V \{v}.
Repeat this process while it is possible to choose such a v. Note that, since V
and S are finite (i.e. there is a finite number of configurations for the S0 edges),
this algorithm terminates. Note that, after this process, for any v ∈ V such that
there is an extension γv of λ such that t(γv) = v, and for every w ∈ V , there
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is an extension ρw of γv such that t(ρw) = w. This proves that V is a SCCλ

and, since each extension γ of λ is such that t(γ) ∈ V , the RBN signals an
attractor. �

Proposition 3. All attractors in a RBN are steady states of the corresponding
piecewise linear model.

Proof. A steady state of a PWL can be found as either an invariant region or
cyclic behaviour which assymptoticaly converges to a point or orbit. Let V be
an attractor in a RBN, and consider a region T resulting from the union of every
domain represented by i ∈ V . Since V is a SCCλ for some path λ, this means
that there is a flow in the piecewise linear model which makes impossible to
leave region T . This means that there exists an invariant subregion T ′ of T and,
therefore, it contains a steady state. �

4.2 Bisimulation and Minimisation

In a previous publication [9], the authors defined a notion of bisimulation for
reactive frames and proved a Hennessy-Milner like theorem stating the equiv-
alence between bisimilarity (i.e. the existence of a bisimulation relating two
nodes in a frame), and logical validity (i.e. the fact that both nodes satisfy
exactly the same set of formulæ expressed in a suitable modal logic). From the
modelling point of view adopted in this paper, bisimulation is a crucial tool to
reduce the size of a reactive frame while keeping the behaviour it may induce,
thus increasing the performance of any automatic analysis tool operating over
reactive frames. Some examples of application of bisimulation to non reactive
models can be found in [8,15]. Bisimulations can be also used for other purposes
in a biological context: for example, in [8], attractors of a Boolean models are
highlighted using bisimulations.

Definition 7. Let (W,Δ) and (W ′,Δ′) be two reactive frames. A relation S ⊆
Δ × Δ′ is a bisimulation if and only if ∀λ ∈ Δ,∀λ′ ∈ Δ′ such that (λ, λ′) ∈ S:

R-zig: ∀w ∈ W (λw ∈ Δ ⇒ ∃w′ ∈ W ′, λ′w′ ∈ Δ′ such that (λw, λ′w′) ∈ S)
R-zag: ∀w′ ∈ W ′(λ′w′ ∈ Δ′ ⇒ ∃w ∈ W,λw ∈ Δ such that (λw, λ′w′) ∈ S)
P -zig: ∀γ ∈ Δ(t(λ) = t(γ) ⇒ ∃γ′ ∈ Δ′(t(λ′) = t(γ′) and (γ, γ′) ∈ S)

)

P -zag: ∀γ′ ∈ Δ′(t(λ′) = t(γ′) ⇒ ∃γ ∈ Δ
(
t(λ) = t(γ) and (γ, γ′) ∈ S)

)

Example 7. Figure 7 depicts two switch graphs which induce bisimilar reactive
models. In fact, we can verify that the following relation is a bisimulation:

{(
(w1), (v1)

)
,
(
(w1, w2), (v1, v2)

)
,
(
(w2), (v2)

)
,
(
(w2, w3), (v2, v2)

)
,
(
(w4), (v1)

)
,

(
(w4, w3), (v1, v2)

)
,
(
(w3), (v2)

)
,
(
(w3, w2), (v2, v2)

)}

Bisimulation can also easily be formulated for switch graphs, and therefore
for reactive Boolean networks, as follows.
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Fig. 7. Two switch graphs whose corresponding reactive frames are bisimilar.

Definition 8. Given two switch graphs (W,S), (W ′, S′) whose reactive frames
are (W,Δ) and (W ′,Δ′), and an equivalence relation R ⊆ W × W ′, we say that
a relation B ⊆ Δ × Δ′ is induced by R when B is such that:

– (w,w′) ∈ R ⇔ ((w), (w′)) ∈ B for every w ∈ W , w′ ∈ W ′.
– Let λ ∈ Δ and λ′ ∈ Δ′ be such that (λ, λ′) ∈ B. For every w ∈ W and

w′ ∈ W ′ such that λw ∈ Δ and λ′w′ ∈ Δ′, we have λwBλ′w′ iff (w,w′) ∈ R.

Moreover, we say that R is a bisimulation iff the induced relation B is a bisim-
ulation for reactive models.

From a model (W,S), we can soundly obtain a reduced model (W ′, S′) if
there exists a bisimulation R verifying ∀w ∈ W∃w′, wRw′. In this case, we say
R is total. Our final result states that bisimulation preserve attractors.

Lemma 1. Let (W,S) and (W ′, S′) be two switch graphs, (W,Δ) and (W ′,Δ′)
be corresponding reactive frames. Let R be a total bisimulation between (W,S)
and (W ′, S′) and B be the induced relation from R. Then B is total whenever R
is total.

Proof. We prove this lemma by induction over paths.
Let λ ∈ Δ be a path. If λ = (w), for some w ∈ W , then, since R is total,

there is w′ ∈ W ′ such that (w,w′) ∈ R and, therefore (w)B(w′).
Let us now consider a path γ = λw for some w ∈ W and λ ∈ Δ. Then,

by induction hypothesis, there are λ′ ∈ Δ′ such that λBλ′. Then, since B is a
bisimulation and by definition, ∃w′ ∈ W ′ such that λwBλ′w′. �

Proposition 4. Let (W,S) and (W ′, S′) be two bisimilar switch graphs. Each
attractor of (W,S) is signaled by some attractor of (W ′, S′).

Proof. Let (W,S) and (W ′, S′) be two switch graphs whose corresponding reac-
tive frames are (W,Δ) and (W ′,Δ′), respectively. Let also R ⊆ W × W ′ be a
total bisimulation and T the corresponding bisimulation for reactive frames.

Consider A, an attractor of (W,S). Thus, there is some path λ ∈ Δ such
that A is a SCCλ. According to the previous lemma and since R is total, then
B is also total. Then, by definition, there is λ′ ∈ Δ such that (λ, λ′) ∈ T .
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Let B̄ = {t(γ′) : γ′ ∈ Δ′ be an extension of λ′}. By the definition of B̄, and
using a process analogous to the one presented in the proof of Proposition 2, we
obtain an attractor B ⊆ B̄. We will show that the states of B are related with
the states of A.

If b ∈ B, then it means that there is an extension γ′ of λ′ such that (γ′) =
b, i.e. ∃w′

0, . . . , w
′
n such that γ′ = λ′w0 . . . wn. Since R is a bisimulation, we

know that t(λ)Rt(λ′), t(λw0)Rt(λ′w′
0), . . . , t(λw0 . . . wn)Rt(λ′w0 . . . w′

n), where
w0, . . . , wn ∈ W are such that w0Rw′

0, . . . , wnRw′
n. Since A is an attractor w0,

. . . , wn ∈ A. �

We end this paper with some considerations about the expressibility of switch
graphs when compared with regular graphs. In fact, they present similar express-
ibility as when can think, in some sense, in a translation of switch graphs to usual
graphs: a switch graph can be seen as a regular graph where each state is a pair
(x, I) where x is a state of the switch graph and I is an admissible instantiation.
The accessibility relation is defined such that there is an edge between two states
(x, I) and (y, J) if I(x, y) is defined and it is equal to I, and I is updated to
J when the edge (x, y) is crossed. Although this “translated” model is not so
intuitive as the switch graph itself, it allows us to obtain a finite and usual graph
from a switch graph (W,S) whenever S is finite. Therefore, it allows us to apply
the already existing tools in Computer Science to study switch graphs.

5 Conclusions and Future Work

This paper proposed a new model for biological regulatory networks based on the
notion of reactivity as introduced by Gabbay and his collaborators in the con-
text of transition systems and their modal logics. The proposed model—reactive
Boolean networks—is discrete and finite (therefore amenable to transformation
to a plain graph representation). Similarly to the usual Boolean networks, the
reactive ones provide a straightforward way to simplify piecewise linear mod-
els. However, as shown here, its ability to identify steady states overcomes usual
Boolean networks. We also show that such an ability is preserved under a suitable
notion of bisimulation and, therefore, under network minimisation.

There are several avenues for future work we are currently exploring. The
first one consists of introducing weighted edges in the reactive network to capture
either some form of uncertainty in the cell evolution or describe the consumption
of contextual resources. We also intend to resort to the reactive modal logic [10]
interpreted over reactive frames to formulate and verify properties of biological
regulatory networks.
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Abstract. Synthesis methods based on formal reasoning are a power-
ful way to automate the process of constructing computational mod-
els of gene regulatory networks (GRNs) and increase predictive power
by considering a set of consistent models that are guaranteed to sat-
isfy known experimental data. Previously, a formal reasoning based app-
roach enabling the synthesis and analysis of biological networks formal-
ized using Abstract Boolean Networks (ABNs) was developed, where
the precise interactions and update rules are only partially known. Sys-
tem dynamics can be constrained with specifications of some required
behaviors, thereby providing a characterization of the set of all networks
capable of reproducing given experimental observations. The synthesis
method is supported by a tool, the Reasoning Engine for Interaction
Networks (RE:IN). Starting with the synthesis framework supported by
RE:IN, we provide translations of experimental observations to tempo-
ral logic and semantics of Abstract Boolean Networks, enabling us to use
off-the-shelf model checking tools and algorithms. An initial prototype
implementation we have developed demonstrates this is a gainful app-
roach, providing speed-up gains for some benchmarks, while also opening
the way to study extensions of the experimental observations specifica-
tion language currently supported in RE:IN by using the rich expressive
power of temporal logic.

Keywords: Gene regulatory networks · Formal verification ·
Boolean networks · Synthesis · Temporal logic

1 Introduction

Building computational models of gene regulatory networks can be an effective
way to improve our understanding of a biological system, identify gaps in our
knowledge, and make new predictions that can be tested experimentally. A major
challenge while constructing such computational models is ensuring that a model
indeed explains the known experimental data, and avoiding the implicit bias
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that may be introduced by the modeler while choosing between many consistent
possible models.

Synthesis methods based on formal reasoning can help in tackling these chal-
lenges by automating the process of constructing consistent models, and by
enabling to make predictions using the set of all consistent models of a spec-
ified form instead of one model that may contain some implicit assumptions.
The Reasoning Engine for Interaction Networks (RE:IN) [12,35] supports such
a synthesis approach by allowing for the specification of an Abstract Boolean
Network (ABN), which leaves open the option to include or to omit some of
the network interactions. This also gives freedom in selecting the regulation
conditions, which determine the combined dynamical effect of a component’s
activators and repressors.

RE:IN also allows to constrain the ABN by specifying experimental con-
straints on system dynamics based on known experimental measurements of the
biological system. The RE:IN synthesis procedure can then combine the ABN
with the experimental constraints and synthesize consistent models, or prove that
no consistent model exist, which is a key ability of formal verification methods,
in contrast to most machine learning based inference methods (e.g. [16,26,27])
that do not prove the absence of solutions but can be very effective in identifying
approximate solutions. If RE:IN proves that no consistent model exist, the user
should double check the encoding of the model and also evaluate the assumptions
made, refining the ABN and experimental constraints as necessary. RE:IN has
been used successfully to study the pluripotency program of mouse embryonic
stem cells [12] and investigate stem cell reprogramming [11]. The RE:IN tool can
support a range of synthesis and analysis queries and provides a user-friendly
interface for visualizing the networks, experiments and analysis results. Addi-
tional information on the tool and methods appear in [35], including application
to the cell cycle in budding yeast, myeloid progenitor differentiation, and the
murine cardiac gene regulatory network controlling First Heart Field and Sec-
ond Heart Field differentiation. An extension to networks that can dynamically
reconfigure their interactions, termed switching networks is presented in [28,32].

To synthesize consistent models, RE:IN encodes the synthesis problem using
the Z3 Satisfiability Modulo Theories (SMT) solver [8] and utilizes a bounded
model checking strategy to search for a consistent model or prove that no such
model exists. The efficiency of SMT solvers and experience gained in studying
alternative strategies for problem encoding has enabled RE:IN to tackle realis-
tic problems of biological interest [12,35,36]. However for some of the models
performance is becoming a challenge, especially as the number of experimental
observations grows [11]. In this work we investigate ways to improve the running
time of the synthesis methods and to eventually enable tackling larger networks
with more experimental constraints than currently feasible. Towards achieving
this goal we show how experimental observations in RE:IN can be encoded using
temporal logic, and how ABNs can be encoded as a transition system in standard
model checking tools, focusing on the NuSMV model checker [6]. This encoding
allows us to use the model checking algorithms of NuSMV to tackle the synthe-
sis problem. An additional benefit of this approach is that the expressive power
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of temporal logic can be utilized to extend the specification language currently
supported by RE:IN, allowing to encode other interesting biological properties
that can be expressed in temporal logic [14].

The remainder of the paper is structured as follows: We define how the
RE:IN synthesis problem can be encoded in NuSMV and solved by standard
model checking procedures. The problem consists of two parts: specification of
the Abstract Boolean Network (Sect. 2), and specification of experimental con-
straints on this network in the form of observations from experiments (Sect. 3).

In Sect. 2 we encode the ABN using NuSMV modules to specify a transition
system, with each module corresponding to a node, and the main module cor-
responding to the entire network. Each module specifies the connecting nodes
as inputs into the module. For optional connections, the state of connectivity is
modeled as state variables. Possible activation functions (patterns that define the
overall effect of activators and repressors) are represented as possible transitions
to the next state.

In Sect. 3 we show how the experimental constraints on the network dynamics
are encoded into temporal logic. Two variants are discussed, with the trade-
offs between the two explored. The first method uses Linear Temporal Logic
(LTL) to constrain the network to synthesize results consistent with the observed
experiments, while the second method uses Computational Tree Logic (CTL) to
do the same. Once the problem is properly encoded, we run NuSMV model
checking. If there are any concrete networks consistent with the experimental
observations, NuSMV will provide a counter-example telling us what one such
concrete network is. If no such network exists, NuSMV will prove that and report
that no solution for the specification exists. Finally, related work is presented in
Sect. 4.

2 Abstract Boolean Network Semantics

We now describe how Abstract Boolean Networks are encoded as a transition
system, using the SMV language supported by NuSMV [6]. In RE:IN an ABN is
specified in a separate model file (with a .net extension) in the form of two lists.
First is a node list, containing the name of every node in the network (nodes
typically correspond to genes, transcription factors or signals), every possible
activation function associated with each node, and whether each node is able
to be over-expressed (FE) or knocked-out (KO). An activation function (termed
regulation condition in RE:IN) for a particular node is the function that deter-
mines, given the current state of activation of all nodes that interact with it,
whether this node will be activated or not in the next time-step. Second is a
connection list, including all connections between nodes as well as whether each
connection is optional or mandatory (definite in RE:IN terminology), activating
or repressing.

In our proposed translation we represent each node as a NuSMV module.
In the module, we declare an enumerated variable, named transition, whose
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possible values are the list of possible activation functions. Thus, if a node’s
possible activation functions were f0 · · · fi, we would declare:

transition : f0, f1, ..., fi;

Every node has other nodes it interacts with, and nodes that interact with it.
In other words, each node can take the values of some other nodes as inputs
into its activation function, and some nodes take its value as an input into their
activation functions. From the perspective of the module for the node itself,
we only care about the former, the nodes which it must take as inputs into its
activation function. For every one of these nodes, whether that interaction be
positive or negative, mandatory or optional, a corresponding formal parameter
in the module declaration is given. For the special case that a node’s value is
potentially taken as both an activating and repressing input into the function,
that node is only declared once in the formal parameters. For relevant nodes
n0 · · ·ni of node X, we declare:

nodeX(n0, n1, · · · , ni)

For every optional connection that is associated with the node we declare a
Boolean variable. For an optional connection with node n, the following variable
is declared

n isConnected : boolean;

For the special case that a node’s value is both activating and repressing and
both connections are optional, we will need to define two Boolean variables,
n isConnectedA and n isConnectedR. The encoding of the overall effect for
activating and repressing connections, unlike the encoding of which connections
are optional, is not done explicitly, but rather implicitly in the way in which the
connections are factored into the activation functions.

To represent the node’s state of activation (active or inactive) at the current
time step, we declare:

value : boolean;

Next we specify how the node’s value changes from one time step to the next,
which will vary based on which of its possible activation functions was chosen
to be used. To reflect this, the transition of the value variable is defined using
a case statement, with a case defined for each possible value of the transition
variable. For possible activation functions f0 · · · fi, the transition function for
the value variable would be defined as:

next(value) := case
transition = f0 : ...;
transition = f1 : ...;
...
transition = fi : ...;
esac;
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There are eighteen possible activation functions, as defined in the RE:IN tool
(see Materials and methods of [35]). They can be defined as Boolean expressions
composed of the values of the various connecting nodes. The activation functions
view separately activators and repressors, but they do not look at the activators
and repressors individually. Rather, they consider if all activators are active,
some are active, or none are active. Similarly, the functions look to see if all
repressors are active, some are, or none are. Additionally, we must deal with
what happens when there are no activators that exist at all, or no repressors
that exist at all, as non-existence of inputs is dealt with differently than existence
with no active inputs. Thus, with four possible states of the activator inputs and
four of the repressor inputs, we have sixteen different possible inputs conditions
for which the eighteen activation functions must be defined, as reflected in the
RE:IN definitions [35].

Since activators and repressors are never viewed individually but rather as an
aggregate, that is how they are represented in the Boolean logical expression as
well. Accordingly, the activation functions can be expressed purely as combina-
tions of four expressions: the disjunction of all activators, the conjunction of all
activators, the disjunction of all repressors, and the conjunction of all repressors.
These conditions can give us all the information we need to know while defining
the activation functions. To test if all activators are on, we check if their conjunc-
tion holds, to test if some are on, we check if their disjunction holds, and to test if
all are inactive, we check if the negation of the disjunction holds. Similar consid-
erations are applied to repressors. Using this methodology, we have constructed
Boolean expressions that meet each of the eighteen functions’ specifications for
all the sixteen cases.

The definitions are complicated, however, by the existence of optional con-
nections. The issue this introduces is that if the optional connection is turned
off (not selected), it should be removed from the function. A naive work-around
is to simply use branching and define a different function when the connection
is on versus when it is off, but this can become impractical as the number of
optional connections grows. Thus, we use an alternative solution by observing
that activators and repressors, as explained above, are only found in lists of con-
junctions or disjunctions. Using this observation, we can define logical expres-
sions to accomplish our goal. Let us consider the following example. Assume we
have three connecting nodes which serve as activators, named n0, n1, and n2.
Further, assume n0 is optional and n1 and n2 are mandatory. Thus, as described
above, there exists in the module a Boolean variable n0 isConnected. The n0,
n1, and n2 variables will never appear in isolation, but only as sets in conjunc-
tion and disjunction with each other. We will deal with cases of conjunction and
disjunction separately. The conjunction expression looks as follows:

n0 ∧ n1 ∧ n2

We desire the following property: that the value of n0 only be considered when
n0 isConnected is true, and that otherwise the value of n0 is ignored. It can
be observed that for any Boolean variable X, X ∧ true = X, therefore if we could



94 J. Goldfeder and H. Kugler

have a variable N0, such that when n0 isConnected = true, N0 = n0, and when
n0 isConnected = false, N0 = true, we could write:

N0 ∧ n1 ∧ n2

This statement would solve our issue. When n0 isConnected = true, N0 can be
replaced with n0 and we yield n0 ∧n1 ∧n2, and when n0 isConnected = false,
N0 can be replaced by true, and we get: true ∧ n1 ∧ n2 = n1 ∧ n2. This variable
N0 can be represented as:

n0 ∨ ¬n0 isConnected

This can be understood by the following property of disjunction: given a variable
X, (X ∨ true = true), (X ∨ false = X). Thus, when n0 isConnected is true, we
obtain n0 ∨ false = n0, and when n0 isConnected is false, we obtain n0 ∨
true = true, exactly the property we wanted for N0. We can now write our
conjunction as:

(n0 ∨ ¬n0 isConnected) ∧ n1 ∧ n2

As can be readily seen, this expression would require no branching, and would
grow linearly as more optional connections are incorporated. We can deal with
the case of disjunction in a similar fashion. Consider the expression:

n0 ∨ n1 ∨ n2

Based on the observation that X ∨ false = X, we desire a variable N0, such that
when n0 isConnected is true, N0 = n0, and when n0 isConnected is false,
N0 = false. This is satisfied by the expression:

n0 ∧ n0 isConnected

This is based on the observation that for any Boolean variable X, (X ∧ true = X),
(X ∧ false = false). The expression in its entirety would be written as:

(n0 ∧ n0 isConnected) ∨ n1 ∨ n2

Thus, to generalize this, for a set of Boolean variables of which m0 · · ·mi are
mandatory, and o0 · · · oj are optional based on the values of corresponding vari-
ables o0 isConnected · · · oj isConnected, we can express their conjunction as:

m0 ∧ ... ∧ mi ∧ (o0 ∨ ¬o0 isConnected) ∧ ... ∧ (oj ∨ ¬oj isConnected)

And their disjunction as:

m0 ∨ ... ∨ mi ∨ (o0 ∧ o0 isConnected) ∨ ... ∨ (oj ∧ oj isConnected)

This approach still contains one additional problem: it fails to capture the
required semantics when all activators are optional or when all repressors are
optional. In both cases of conjunction and disjunction, we are relying on the
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optional connections being subsumed into the larger equation. But when all
connections are optional, in the case where all of them are turned off there is no
larger equation to subsume them. Take the example above, but assume n0, n1

and n2, are all optional. We would then write their disjunction as:

(n0 ∧ n0 isConnected) ∨ (n1 ∧ n1 isConnected) ∨ (n2 ∧ n2 isConnected)

When all three connections are turned off, this reduces to false. As noted above,
nodes with no activators and/or no repressors have different meanings based on
which activation functions they are using, and it is incorrect for this expression
to evaluate always to false. This issue is also relevant in the conjunction:

(n0 ∨ ¬n0 isConnected) ∧ (n1 ∨ ¬n1 isConnected) ∧ (n2 ∨ ¬n2 isConnected)

The expression would evaluate to true when all connections are turned off, posing
the same issue. This problem can be solved by using a combination of both meth-
ods, branching and Boolean logic encoding. We can divide all nodes into three
classes. There are those that have some mandatory activators (or no activators
at all) and some mandatory repressors (or no repressors at all). Their functions
can be implemented exactly as described above without any branching.

Then there are functions which have some mandatory repressors (or no
repressors at all) but only optional activators, or vice versa. Without loss of
generality, let us deal with the case where there are only optional activators and
some mandatory repressors. Two functions are given, one the version described
above where Boolean logic is used to encode the possible activator connections,
one where it is presumed that no activators exist (however that may be defined
for that particular function). The branching condition is the disjunction of all
connection variables. Continuing the above example, it would be:

(n0 isConnected ∨ n1 isConnected ∨ n2 isConnected)

When this condition is true, we use the version where we use Boolean logic to
ignore connections, as since, based on the condition, at least one connection
is true, it will subsume the other connections that aren’t. If the condition is
false, that means all connections are turned off, and we can use the version that
assumes there are no activators.

The third class contains only optional activators and only optional repressors.
We can deal with this by branching twice, for a total of four functions.

Using this technique, with a maximum of two branches, we can encode a
function that calculates the node’s value based on the values of the connection
variables in an efficient manner.

Thus, in general: for a node whose activation function contains only optional
activators and not only optional repressors (whether that be some mandatory
repressors or no repressors at all), or only optional repressors and not only
optional activators, if C is the disjunction of all the oi isConnected variables
(corresponding to optional interactions), and f0 is the activation function as
described above using Boolean logic to remove optional connections that are
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inactive, and f1 is the activation function written as if assuming all optional
connections are turned off, we can write the complete activation function as:

C ? f0 : f1;

For a node containing only optional activators and only optional repressors, if A
is the disjunction of all activators and R the disjunction of all repressors, and f0 is
the activation function with Boolean algebra to remove non-active connections as
specified above, and f1 uses Boolean algebra for the activators but assumes there
are no repressors, and f2 uses Boolean algebra for the repressors but assumes
there are no activators, and f3 assumes there are no activators or repressors, we
can write the complete function as:

A ? (R ? f0 : f1) : (R ? f2 : f3)

Other factors that the node module must consider is whether the node it rep-
resents is knocked out (KO) or overexpressed (FE) in a particular experiment.
Currently in RE:IN overexpression and knockout properties hold for the dura-
tion of the experiment, although in the future this could be extended to model
e.g. temperature sensitive knock outs. For every node capable of being overex-
pressed (as defined in the network file), we define a Boolean variable FE. Then,
in the case statement in the value transition, we append this to the top:

FE : TRUE;

Similarly, for nodes capable of being knocked out, we define a Boolean variable
KO. Then, in the case statement in the value transition, we append this to
the top:

KO : FALSE;

The KO and FE variables transition relation is specified to maintain the
current state, thus if KO is true at the beginning of the experiment it will
remain true throughout the experiment, while if it is false at the beginning of
the experiment it will always remain false, and the same holds for FE.

After creating modules that define all the nodes, we must actually instantiate
them. This is done in the main module. When each node is instantiated, the
proper values for its formal parameters (which represent the nodes connecting
to it) are passed in. The complete structure of a node module is as follows
(assuming that the model specification allowed for this node to be knocked out
(KO) or over-expressed (FE)):

MODULE < name > (< list of node inputs >)
VARS

value : boolean;
transition : < list of possible activation functions >;
KO : boolean;
FE : boolean;
< List of boolean variables corresponding to optional connections >
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ASSIGN

next(value) := case

KO : FALSE;
FE : TRUE;
< All possible values of transition >

In NuSMV modules can be composed in a synchronous or asynchronous com-
position, which allows us to directly support synchronous semantics of Boolean
networks, in which all nodes values are updated at each step, or asynchronous
semantics for Boolean networks, in which only a single node updates its value
at each step, and other nodes values remain unchanged. RE:IN supports both
modes and the user needs to specify for each system whether to use synchronous
or asynchronous semantics. Research on the pluripotency network and stem cell
reprogramming has used synchronous semantics [10,12], while for other systems
it has been shown how asynchronous semantics can be gainfully modeled in
RE:IN [35].

3 Experiment Encoding in Temporal Logic and Synthesis

We next define how the experimental observations constraints in the RE:IN
observations language are translated into temporal logic. In RE:IN the observa-
tions are specified in a separate model file (with a .obs extension). The observa-
tions consist of experiments, which in turn are divided into time-steps. At each
time-step within each experiment, a constraint upon the values of the model at
that time (including knocked out or over-expressed nodes) may be specified. A
solution for the specification is a concrete network (with set activation functions
and connections) that can satisfy all experiments. An experiment is satisfied
if there exists a specific initial set of values for the nodes in the network that
can lead to the satisfaction of all constraints at all time points. A given con-
crete network need not have the same initial values satisfy all experiments. Each
experiment can be satisfied by a different set of initial values, as long as all
experiments are satisfied.

NuSMV allows for specification in both Linear Temporal Logic (LTL) [31]
as well as Computational Tree Logic (CTL) [7,13]. Both logics have advantages
and disadvantages in terms of expressiveness and algorithmic performance of the
corresponding model checking algorithms. LTL only allows specifications over
linear paths, whereas CTL allows for specifications over branching behavior, with
existential and universal quantification over paths. Intuitively, this makes CTL
a natural choice for the synthesis problem we consider here. Since experiments
need not have the same initial values, we want to consider all possible sets of
initial values, and check if for each experiment, a set exists that satisfies the
experiment. This involves quantifying over different possible initial values each
node can take on (i.e. different branches of execution). CTL can handle branches
in the system dynamics, making it well suited to express solutions to different
experiments as different possible branches of initial values.
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Unlike the initial values, the activation function and optional connection
variables must stay the same for all experiments, so as to have a single concrete
model satisfying all experiments. We declare these variables in the model as
FROZENVARs, not allowing them to change after the initial state. However, we
add a new condition to the transition of the value variables in each node. If
the current state is the initial state, we allow the value variable to take on an
arbitrary value in the next time state. This is done by creating a variable in
the main module named initial that is only true in the initial state, and then
appending to the beginning of the case statement in the value transition of each
node module:

initial : {TRUE, FALSE};

3.1 CTL Encoding

The CTL expression then asserts that from the initial state of connections and
transition functions, there cannot be found for each experiment a branch of initial
node values that satisfies the given experiment. If the property does not hold,
the counter example given, is a solution to our synthesis problem. In RE:IN it is
possible to ask the tool to enumerate all solutions up to a specified limit on the
number of solutions. We also support this in NuSMV by disallowing the solution
and running NuSMV again. This is repeated until all solutions are found, or the
solution limit is reached.

An individual experiment can be encoded as follows: Assuming c0 · · · cn are
the constraints placed on the network at time-steps 0 · · ·n, we can use the CTL
EX (exists next) operator and write:

EX(c0 ∧ (EXc1(... ∧ (EXcn))))

A CTL property that specifies that there is a solution for all experiments e0 · · · ei,
assuming each experiment is encoded as above, can be formulated as follows:

(e0 ∧ e1 ∧ ... ∧ ei)

We can then assert in NuSMV the negation of the formula and use the CTL
model checking algorithms to check it:

CTLSPEC¬(e0 ∧ e1 ∧ ... ∧ ei)

If the property does not hold, the CTL model checking algorithm finds a counter
example which corresponds to a concrete Boolean network satisfying all exper-
imental observations. Otherwise if the property holds, the CTL model checker
proves this property and the conclusion is that no consistent Boolean networks
exist.

We have successfully implemented this translation in our prototype tool, and
identified that the CTL approach had two initial drawbacks we encountered dur-
ing evaluation. First, since NuSMV only supports verifying CTL specifications
with Binary Decision Diagrams (BDDs), and BDDs are very sensitive to variable
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order and can grow anywhere from linearly to exponentially in size depending
upon it, additional work will be needed to identify optimal variable ordering and
reordering heuristics that may work well for our network synthesis problem. For
a toy model available with RE:IN and for the myeloid progenitor differentiation
[35], our prototype implementation can solve the synthesis problem in a few sec-
onds on a standard laptop. However it should be noted that the performance
is still slower than the current RE:IN solvers based on the Z3 SMT solver. For
very large problems the BDD often got too large to be feasible, specifically for
the pluripotency models studied in [12]. It still remains open whether improved
variable orderings and use of heuristics and alternative CTL model checking
algorithms can enable to scale this approach to handle more complex problems.

The second drawback is that NuSMV counter examples currently only pro-
vide partial information, i.e. they only provide a single path of execution. Thus,
although the counter example gives us the most crucial details of the solution,
such as which nodes were connected, and which transition functions were used
(to form a concrete network), we cannot reconstruct from the counter example
what initial values were found to be satisfactory for each experiment, as these
exist in different possible branches the model could have taken. We have not
yet addressed this issue in our current implementation, it could be either tack-
led by trying to obtain more information in the counter example, or by setting
the inferred activation functions and optional interactions that give a consistent
solution and invoking additional model checking queries.

3.2 LTL Encoding

This leads us to Linear Temporal Logic (LTL). At first glance, LTL does not seem
to be a natural way to specify the required behavioral properties. LTL can only
quantify over a linear path, whereas we need to quantify over different branches,
as a linear path would not allow different experiments to have differing initial
values. We suggest to solve this problem by viewing the experiments happening
not in parallel as different executions, but sequentially. For example, let’s say we
have two experiments, both lasting 20 time steps. Instead of assuming that time-
steps 1–20 (0 is reserved for setting connection and function values) are when
both experiments occur and exploring different branches with different initial
node values as we did above, we assume that the first experiment takes place in
time-steps 1–20, and the second one in time-steps 21–40. To allow this, we must
let our value variables take on an arbitrary value at time-step 21. To accomplish
this we replace our Boolean variable initial with an integer named counter
that counts what number time-step we are at. Then, in the value transition case
statement, we append to the top the following:

(counter = 0) ∨ (counter = 20) : {TRUE, FALSE};

Since this is defining what value will be in the next state, at time-steps 1 and
21 value can now be set nondeterministically to true or false.

In general, for a set of experiments e0 · · · ei, when for any experiment ex, tx
is the duration of ex, we define a set of time-steps, s0 · · · si, where s0 = 0, and
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sn = sn−1 + tn−1. Then we append the following to the beginning of the value
transition case statement:

(counter = s0) ∨ (counter = s1) ∨ ... ∨ (counter = si) : {TRUE, FALSE};

Now that the experiments are not in parallel, but rather take place in a single
run, LTL properties can be used to specify the desired requirement that for
the initial transitions and connections chosen, there are initial node values for
each experiment that satisfy the observations. An individual experiment can be
encoded as follows: Assuming c0 · · · cn are the constraints placed on the network
at time-steps 0 · · · i, we can use the LTL X (next operator) and write (note the
parenthesis are left open and should be closed by composing the formula with
the formula of the next experiment):

X(c0 ∧ (Xc1(... ∧ (Xcn

To find a solution for all experiments e0 · · · ei, assuming each experiment is
encoded as above, we assert:

LTLSPEC¬(e0 ∧ e1 ∧ ... ∧ ei

Followed by the appropriate amount of closing parenthesis to balance the open-
ing ones. This mode of running our prototype implementation was called LTL
Run, or LTLR. For LTL model checking NuSMV supports both a method using
BDDs and a bounded model checking approach based on SAT solving. The two
challenges with CTL discussed earlier are strong points here. Bounded model
checking of LTL specifications based on SAT does not need to deal with sensi-
tivity to variable ordering of BDDs, and on larger problems this approach seemed
to yield a significant speedup when compared to BDDs. It should be noted that a
more careful comparison should be done after evaluating the performance gained
by automatic optimizations to variable ordering and reordering. Additionally,
since there is no branching, the counterexample trace gives us full information,
including the different initial node values that satisfied each experiment and the
full trajectory.

In our evaluation, the LTLR method of specification gives optimal perfor-
mance when the Abstract Boolean Network was relatively large, but the experi-
ment specifications total length was not too long. However, when there are many
experiments being tested, the bounds on the bounded model checking rises lin-
early. For example, if there are 20 experiments whose duration is 20 timesteps,
the bounds will be 400. Large values for the bound in the bounded model check-
ing significantly effected the performance and make synthesis challenging for
systems with larger number of experiments.

This led to a new idea, termed LTL parallel, or LTLP. Instead of stacking
the experiments into a linear trajectory, we have them run in parallel. Unlike
in CTL where the model conceptually only evaluates one experiment at a time,
but we can check them all in parallel using branching, here we check them all
in parallel without branching to different possible initial values by introducing
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redundant value variables in each node, one per experiment. Each experiment is
verified using its own corresponding value variables, according to the transition
function and connection values chosen in the initial state. Thus, assuming we
have experiments 0 · · · i, we declare for each node a set of value variables v0 · · · vi,
and define for each one the same transition relation, as described above. Now
each experiment can be evaluated with different initial values and different tra-
jectories.

An individual experiment can be encoded as follows: For experiment ei, let
c0 · · · cn be the constraints placed on the values of the vi variables of the network
at time-steps 0 · · ·n. We can use the LTL X (next operator) and write:

X(c0 ∧ (Xc1(... ∧ (X ∧ cn))))

The entire specification would then be, for experiments e0 · · · ei:

LTLSPEC¬(e0 ∧ e1 ∧ ... ∧ ei)

While this reduces the bounds on bounded model checking to the size of
the largest experiment duration, it increases the complexity of the model. This
approach performed more favorably than the LTLR mode on models with many
experiments. In particular, for some of the challenging synthesis problems involv-
ing the embryonic stem cell gene network [10,12] we obtained solutions in only a
few minutes, is some cases outperforming the reference Z3 based synthesis imple-
mentation of RE:IN. While these are only preliminary results and our algorithm’s
performance need to be evaluated systematically and rigorously on a wide range
of benchmarks, these initial results are encouraging and can in the long term
yield complementary algorithms and approaches to tackle the inherent complex-
ity involved in synthesizing experimentally constrained gene regulatory networks.

4 Related Work

Formal reasoning methods enable to mathematically prove the correctness of a
model with respect to a specification. In the biological context, formal reasoning
is complementary to Bayesian inference and machine learning approaches [16,
26,27]. Compared to testing, which is mainly based on simulation, verification
enables to obtain a proof, while simulation can only increase our confidence in
the correctness of an implementation. As a result, and due to the significant
research breakthroughs in scalability of algorithmic methods, formal verification
is used strategically for important systems in industry [1,15,21]. Temporal logic
[7,13,31] has been shown to be especially suitable for specifying and reasoning
about reactive software and hardware. There are different variants of temporal
logic, including linear temporal logic (LTL) [31] and computational temporal
logic (CTL) [7], while CTL* [13] is a temporal logic that is a superset of LTL
and CTL.

While temporal logic is now being actively used also in the biological context
[3–5,9,14,33], important open questions remain regarding the appropriate type
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of temporal logic needed, and the complexity of key verification and synthesis
[25] algorithms. Developing synthesis methods for biological systems is an active
area of research [17,19,20,22,23,29,30,34], synthesis methods can automate the
process of model development constrained by experimental data and enable rapid
construction of predictive models. The inherent complexity of synthesis methods
is a major challenge that needs to be addressed to make synthesis algorithms
more broadly applicable in biology.

In recent work the RE:IN tool has been extended to analyze network motifs
[24]. In the context of network motifs, in [2] certain motifs and their dynamic
properties are characterized using temporal logic and parallel model checking
is used to verify properties of networks with around ten components. In [18]
approximate methods for analyzing gene regulatory networks are developed uti-
lizing network motifs.
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M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012.
LNCS, vol. 7147, pp. 88–98. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-27660-6 8

26. Liang, S., Fuhrman, S., Somogyi, R.: Reveal, a general reverse engineering algo-
rithm for inference of genetic network architectures. In: Pacific Symposium on
Biocomputing, vol. 3, pp. 18–29. Springer (1998)

https://doi.org/10.1007/978-3-030-03421-4_3
https://doi.org/10.1007/978-3-540-69850-0_8
https://doi.org/10.1007/978-3-662-44485-6_10
https://doi.org/10.1007/978-3-642-22110-1_46
https://doi.org/10.1007/978-3-540-71209-1_27
https://doi.org/10.1007/978-3-319-99429-1_7
https://doi.org/10.1007/978-3-642-27660-6_8
https://doi.org/10.1007/978-3-642-27660-6_8


104 J. Goldfeder and H. Kugler

27. Marbach, D., Prill, R.J., Schaffter, T., Mattiussi, C., Floreano, D., Stolovitzky, D.:
Revealing strengths and weaknesses of methods for gene network inference. Proc.
Nat. Acad. Sci. 107(14), 6286–6291 (2010)

28. Mishra, A., et al.: A protein phosphatase network controls the temporal and spa-
tial dynamics of differentiation commitment in human epidermis. Elife 6, e27356
(2017)

29. Moignard, V., et al.: Decoding the regulatory network of early blood development
from single-cell gene expression measurements. Nat. Biotechnol. 33(3), 269 (2015)

30. Paoletti, N., Yordanov, B., Hamadi, Y., Wintersteiger, C.M., Kugler, H.: Analyzing
and synthesizing genomic logic functions. In: Biere, A., Bloem, R. (eds.) CAV 2014.
LNCS, vol. 8559, pp. 343–357. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-08867-9 23

31. Pnueli, A.: The temporal logic of programs. In: Proceedings of 18th IEEE Sympo-
sium on Foundations of Computer Science, pp. 46–57 (1977)

32. Shavit, Y., et al.: Automated synthesis and analysis of switching gene regulatory
networks. Biosystems 146, 26–34 (2016)

33. Tiwari, A., Talcott, C., Knapp, M., Lincoln, P., Laderoute, K.: Analyzing pathways
using SAT-based approaches. In: Anai, H., Horimoto, K., Kutsia, T. (eds.) AB
2007. LNCS, vol. 4545, pp. 155–169. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-73433-8 12

34. Woodhouse, S., Piterman, N., Wintersteiger, C.M., Göttgens, B., Fisher, J.: SCNS:
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Abstract. It is well known that closure is a necessary topological prop-
erty for a reaction network to be dynamically stable. In this work we
combine notions of chemical organization theory with structural prop-
erties of reaction networks to distill a minimal set of closed reaction
networks that encodes the non-trivial stable dynamical regimes of the
network. In particular, these non-trivial closed sets are synergetic, in the
sense that their dynamics cannot always be computed from the dynam-
ics of its closed constituents. We introduce a notion of separability for
reaction networks and prove that it is strictly related to the notion of syn-
ergy. In particular, we provide a characterization of the non-trivial closed
reaction networks by means of their degree of internal synergy. The less
trivial the dynamics of the reaction network, the less can be separated
into constituents, and equivalently the more synergies the reaction net-
work has. We also discuss the computational and analytical benefits of
this new representation of the dynamical structure of a reaction network.

Keywords: Reaction networks · Chemical organization theory ·
Self-organization · Closure · Synergy · Separability

1 Introduction

Reaction networks is one of the most important representational languages in sys-
tems biology, and depending on the way in which the dynamics is defined (e.g.
discrete, stochastic, continuous), it has been proven to be equivalent to other for-
mal languages that have been developed in the context of concurrent informa-
tion processing such as Vector Addition Systems, Commutative Grammars [20],
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Petri Nets [15], and others. A particular perspective that focuses in the relation
between the structure, i.e. topological and stoichiometric properties, of the reac-
tion network and its dynamical stability, i.e. the existence of attractors and sta-
ble manifolds in the phase space (either for discrete, stochastic, or continuous
dynamics), known as Chemical Organization Theory (COT) [5], has been shown
to be applied to model a wide range of biochemical systems [1,2,9,10], to clar-
ify the relation between the reaction network’s structure and its dynamical evo-
lution [8,13,14,23], to provide novel algorithms for the study of reaction net-
works [2,3,18], and it has also been proposed as a basis for chemical comput-
ing [11,12]. Moreover, the scope of COT does not restrict to biochemical systems.
COT has also been applied to model non-biochemical systems such as ecologi-
cal [24], decision [21] and political systems [4]. The latter has motivated proposing
reaction networks as a candidate language to express systems in the general sense
of systems theory [22,23].

In COT, chemical organizations are collections of species forming sub-
networks that are both closed and self-maintaining. The closure property can
be verified in a computationally much more easy manner than self-maintenance.
For this reason, algorithms that calculate chemical organizations of a reaction
network prefer to verify first closure and then self-maintainance [2]. However, the
closure property has been poorly studied despite some basic promising results
that show that the set of closed sets forms a lattice with respect to some suit-
able join and meet operators [5,18]. In this work we will retake the mathematical
study of closed sets and will show that there is a minimal set of closed sets that
encodes all the non-trivial aspects of the dynamics of the reaction network. Such
non-triviality corresponds from a structural point of view to synergies within
the reaction network. A synergy occurs when the combination of two reaction
networks is able to trigger novel reactions, that is reactions that cannot be trig-
gered by any of the reaction networks being combined. Note that the aim of this
article is not in the development of new algorithms, but in the preparation of
a theoretical ground for understanding what structural properties can be of use
for novel and more efficient algorithms.

The paper is organized as follows: In Sect. 2 we introduce the basic elements
of COT with a focus on the closure property. In Sect. 3 we show different ways
in which a closed set is not relevant from a dynamical point of view (and thus
should not be computed by an algorithm that aims at understanding the dynam-
ical structure of a reaction network). In Sect. 4 we focus on the structure of the
relevant (synergetic) reaction networks and study the relation between synergy
and a novel notion of non-separability, which represents the extreme case of com-
plete synergy within the reaction network. In Sect. 5 we summarize and discuss
our results and propose further lines of research as well as possible applications.

2 Closed Reaction Networks

2.1 Reaction Networks: Static Concepts

Let (M,R) be a reaction network with M a set of species and R a set of
reactions.
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For each r ∈ R, let supp(r) to be the set of reactants of r, and let prod(r)
the set of products of r.

Definition 1. Let X ⊆ M. We define RX ⊆ R as the set of reactions r ∈ R
such that supp(r) ⊆ X. RX is named the set of reactions associated to X,
(X,RX) is a sub-network of (M,R).

In an aggregated manner we define supp(RX) = ∪r∈RX
supp(r), prod(RX) =

∪r∈RX
prod(r).

Similarly, consider a collection of sets X = {X1, ...,Xk}. We define RX ⊆ R
as the set of reactions r ∈ R such that supp(r) ⊆ ⋃

X∈X

X, and supp(RX) =

∪r∈RX
supp(r), prod(RX) = ∪r∈RX

prod(r).

The previous definition allows to consider a reaction network either from a
set of species or from a collection of sets of species.

Definition 2. Let X ⊆ M. A species s ∈ M is reactive with respect to X if
and only if there exists r ∈ RX∪{s} such that s ∈ supp(r)∪prod(r). X is reactive
if and only if every species s ∈ X is reactive with respect to X.

Reactive reaction networks are those where every species participate either
as reactant or as product in at least one reaction.

Definition 3. X is closed if and only if prod(RX) ⊆ X.

The defining feature of closed sets is that there is no qualitative novelty in
their dynamics. Indeed if X is not closed, the dynamical operation of X is going
to add species that are in prod(RX) but not in X. This in turn will activate new
reactions in the system1, whose products might successively add new species
until a closed set is reached. Because we are dealing with a finite M this is
always the case. In realistic dynamics it is possible that some species disappear
over time. However, in any case we can ensure that in the long run the set of
reactive species will form either a closed set that contains X or a closed set that
is contained by X [5]. Therefore, closure is a necessary condition for a set of
species to have a stable dynamics such as fixed point, periodic orbit or limit
cycle [14].

Definition 4. The set of closed sets C of a reaction network (M,R) is called
the closure structure of (M,R).

2.2 Reaction Networks: Operational Considerations

Definition 5. Let GCL(X) be the closed set of smallest cardinality containing
X. We call GCL(X) the generated closure of X.

1 Those in RX∪prod(RX ).
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Lemma 1. GCL(X) is unique.

Proof. Since M is finite, we have that GCL(X) can be trivially obtained by
successively adding the products of the reactions that are novel. Indeed, let
prod∗(X) = X ∪prod(X). Since M is finite, we have that GCL(X) ⊆ M. Hence
GCL(X) = X ∪prod(X)∪prod(X ∪prod(X))∪ · · · = prodl

∗(X), for some l ∈ N.
��

The generated closure allows to identify, from any set X, the minimal closed
set that contains X. In addition, closed sets can be combined to form new closed
sets. In particular, for the union and intersection of any two closed sets a new
closed set can be generated using GCL.

Definition 6. Let X∨CLY = GCL(X ∪ Y ) and X∧CLY = GCL(X ∩ Y ).

Note that in general X∨CLY 
= X ∪ Y (and X∧CLY 
= X ∩ Y ). These
operators exhibit an interesting feature. Namely, the closure structure C is in
direct correspondence with an order theoretical structure known as lattice [6].

Lemma 2. (C,∨CL,∧CL) is a bounded lattice.

Proof. See [5], p. 1204. ��
Lemma 2 shows that the closure structure can be equipped with a mathematical
structure that allows to safely combine closed sets (using the proper join and
meet operations) to build other closed sets. In particular, this fact has been used
in [18] to develop an algorithm that can be employed to compute the closure
structure2.

2.3 Reaction Networks: Dynamical Concepts

With the concepts introduced at this point, we are able to identify the closed sets
of a reaction network, but we cannot establish a connection between closed sets
and the dynamics of the reaction network. In order to model the dynamics of a
reaction network, we must equip the reaction network with a way to calculate
the occurrence of the reactions within the reaction network. For this reason we
introduce the abstract notion of process [22]. A process specifies which reactions
(and how many or at which rate if needed) occur within a certain time interval,
and thus a set of possible processes characterizes what are the collective trans-
formation of species that can possibly happen in the reaction network. Hence, a
process is an abstraction of a particular dynamics, and the set of possible pro-
cesses is an abstraction of a kynetic law. The representation of a process varies
depending of the focus on the study of the reaction network. If our focus is at
a purely structural (topological) level, for example if we are interested in prop-
erties such as connectivity or centrality of the species, a process is sufficiently
2 The algorithm presented in [18] is employed to build a restricted form of closed sets,

called organizations, for specific class of reaction networks, known as flow systems,
in which organizations have a lattice structure.
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well-specified by a set of reactions, whereas if our focus is on understanding
a one-step discrete dynamics or the stoichiometric aspects of the reaction net-
work, a process is sufficiently specified by a vector of (positive) real coefficients.
In addition, if our focus is on the time evolution of a reaction network, a pro-
cess needs to be specified by a vector of functions determined by a particular
kynetic law.

The fact that we have different ways to specify a process is crucial from
an algorithmic point of view, because, on the one hand, the structural, stoi-
chiometric, and dynamical levels comprise increasingly complex computational
problems, and on the other hand, one can make use of the information gathered
at a less complex algorithmic level (e.g. topological level) to facilitate the analy-
sis at a more complex algorithmic level (e.g. dynamical level). The aim of COT
is to exploit the relations between the less complex and more complex levels to
obtain a computationally feasible way to study the dynamical properties of large
reaction networks where not only analytic results but also computational simu-
lation are hard to perform. For a detailed explanation of the relations between
topological, stiochiometric and dynamical levels, as well as for an introduction
to COT see [5,22].

Most of COT advances have exploited the relation between the stoichiometric
and dynamical levels. A fundamental concept to understand such relation is the
stoichiometric matrix. The stoichiometric matrix S encodes the way in which
species are consumed and produced by the reactions in the of a reaction network
(M,R). Given a set X ⊆ M we denote the reduced stoichiometric matrix of the
subnetwork (X,RX), which only considers the reactions in RX by SX .

Since the stoichiometric matrix encodes the total amount of produced and
consumed species involved by the reactions, we will represent a process v by a
non-negative valued real vector in which its i-th coordinate v[i] specifies either
the number of times, or the probability, or the rate at which ri ∈ R occurs,
depending if we consider discrete, stochastic or continuous dynamics.

For example in discrete dynamics, let the state of a reaction network by a
vector x of non-negative coordinates where xt[j] corresponds to the number of
species of type sj in the reaction network, j = 1, ...,m, at some time-step τ . We
have that the state xτ+1(v) of the reaction network associated to a state x and
a process v occurring between the time-step τ and τ +1 is given by the following
equation:

xτ+1(v) = xτ + Sv. (1)

Equation (1) provides a formal description for the change of the number of
species driven by a process v [7].

Definition 7. Let v be a non-null process. X is weak-self-maintaining with
respect to v if and only if xv[j] ≥ x[j], j = 1, ...,m. If, additionally, such process
satisfies v[i] > 0 if and only if ri ∈ RX , we say X self-maintaining.

For a weak-self-maintaining set X, there are processes that lead to a non-
negative production of all the species involved in the process. These processes,
however, might not execute all the reactions in RX . A well known type of weak-
self-maintaining processes are known as elementary modes [16]. Indeed, there
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is a whole area of study of weak-self-maintaining and other types of processes
known as metabolic pathway analysis [17]. Without digging much in the study
of metabolic pathways, we would like to notice a very important fact: For self-
maintaining sets we are able to find processes such that every reaction in RX

occurs, and the result of the process does not lead to the consumption of any
species. Therefore, self-maintaining sets entail the parts of the reaction network
where realistic3 self-sustainable processes, at a quantitative level of description,
can occur.

For continuous dynamics, the state vector is a function of time x(t) =
(x1(t), ..., xm(t)), where xj(t) encodes the number of species sj at time t. By
setting the difference between τ and τ +1 infinitely small, and making v ≡ v(x)
dependent on the species concentration, Eq. (1) becomes the differential equation

ẋ = Sv(x), (2)

with initial conditions specified by x(t0), and it is called a reaction system.
Chemical Organization Theory [5] introduced the crucial notion of organi-

zation which connects the stoichiometric analysis with the properties of the
reaction system.

Definition 8. X is an organization if and only if X is closed and self-
maintaining.

An organization satisfies simultaneously the structural property of closure and
the stoichiometric-level property of self-maintaining. These two requirements
provide a necessary condition for stable dynamics.

Definition 9. Let P (M) be the power set of M and

φ(t) : Rm
≥0 → P (M) , x(t) �→ φ (x(t)) ≡ {si ∈ M : xi(t) > 0} . (3)

For a state x(t) ∈ R
m
≥0, the set φ (x(t)) is the abstraction of x(t). For a

given set of species X ⊆ M, a state x(t) ∈ R
m
≥0 is an instance of X if and only

if its abstraction equals X.

The notions of abstraction and instance connect the representations of the
reaction network with the reaction system, and organizations represent the
abstractions of all the possible stable instances:

Theorem 1. If x is a fixed-point of the ODE (2), i.e., Sv(x) = 0, then the
abstraction φ(x) is an organization [5].

Fixed points are the simplest stable behavior of a dynamical system. Iden-
tifying fixed points is a fundamental task to understand the dynamics of a sys-
tem [19]. Thus, Theorem 1 provides a necessary condition for a set of species
to form a sub-network with a stable behavior. Indeed, in [14], Theorem 1 is

3 In the sense that none of the reactions in the network is assigned with a zero value
in the process.
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extended to most stable behaviors, including periodic orbits and limit cycles. In
addition, the feasibility of self-maintaining flux vectors is explored in [13], the
dynamics of a system with a small number of particles is studied in [9], and
the analysis of several metabolic and other biochemical systems can be found
in [1,8,10].

2.4 Reaction Networks and Organizations: The Algorithmic
Problem

Theorem 1 implies that the identification of organizations of a reaction network is
a powerful task to understand its stable dynamics. Moreover, Lemma 2 identifies
an elegant way to represent the closure structure. Although this representation
has been the basis for the algorithmic developments to compute the closure and
the set of organizations [2,18], from an algorithmic point of view computing orga-
nizations is not considered to be solved because the potential candidates to be a
closed set (and thus a organization) for a reaction network with n species is 2n.
However, when reaction networks in nature have been tested, it has been found
that the number of organizations is very small compared to 2n [2,5]. Therefore,
understanding the inner structure of the closed reaction networks is an impor-
tant task to develop efficient algorithms to compute the set of organizations.
While few structural analysis for organizations exist in the literature [23], no
article up to date has analyzed the inner structure of closed sets and its relation
with the computation of organizations. In this article we will focus on the rather
‘simpler’ problem of identifying closed sets instead of organizations, and will
elucidate that most of the combinatorial problems that seem to be inherent to
the computation of organizations can be avoided by taking a closer look to the
inner structure of closed sets. In particular, we will note that there are various
ways in which a closed set is dynamically irrelevant, and thus we can a priori
discard those sets as candidates to be organizations. By a closed set X being
dynamically irrelevant we mean that the set can be represented by either one or
many closed sets that are contained in X such that the dynamics of X can be
directly computed from the dynamics of those sets contained in X. Remarkably,
the founders of COT were aware of and made explicit that structural analysis
of COT fundamental properties would lead to the development of efficient algo-
rithms in their seminal paper [5], but no analysis of the structure of closed sets
has been done up to now. We would like to clarify that in this work we will not
focus on the development of algorithms, but on identifying relevant structural
results that can be later applied to develop efficient algorithms.

3 When a Closed Set Is Dynamically Relevant?

In this section we will show that the notion of closure is too broad to be a
topological criteria for the stability of a reaction network, and thus captures
types of sets whose reaction networks are not relevant from a dynamical point of
view. For simplicity, we will introduce three types of closed sets whose dynamic
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irrelevance can be made clear by increasingly less trivial reasons, and thus we
will be able to formally introduce the notion of dynamic irrelevance for a closed
set. Identifying the dynamically relevant closed sets on the one hand allows to
clarify the inner structure of closed sets and its relation with the dynamics of
the reaction network, and on the other hand can be applied to develop more
efficient algorithms to compute the closure structure.

3.1 Non-reactive Closed Sets Are Irrelevant

Let X be closed and s not reactive with respect to X, then Xs = X ∪ {s}
is trivially closed. Indeed, in such case s will not participate in the dynamical
operation of the reaction network (Xs,RXs

). Therefore, the dynamical analysis
of a reaction network should always be reduced to the study of its reactive
part [2].

Definition 10. Let C↑ the set of reactive closed sets. We call C↑ the reactive
closure structure.

From now on we will refer to reactive closed sets simply as closed sets. Note
that Lemma 2 does not apply to C↑.

Example 1. Consider the reaction network ({a, b, c}, {a → b, a + c → b +
c}). For this reaction network we have that C↑ = {{a, b}, {a, b, c}}, but
{a, b}∧CL{a, b, c} = {b} /∈ C↑.
Algorithmic Remark 1. The algorithm developed in [18] to compute a lattice
structure of closed sets can turn extremely inefficient due to the addition of closed
sets with non-reactive species. In particular, suppose |M| = n and X ∈ C↑ such
that |X| = m, and suppose that the n−m species not in X are not reactive with
respect to X. In this case, the algorithm that computes the lattice structure of C
will compute at least 2n−m closed sets having non-reactive species.

We now note some useful statements about the combination of reactive closed
sets using ∨CL and ∧CL.

Lemma 3. Let X,Y ∈ C↑, we have that

1. X∨CLY ∈ C↑
2. X∧CLY ∈ C↑ if and only if X ∩ Y is reactive.

Proof. Both assertions can be deduced directly from the fact that the generated
closure of a reactive set is reactive. ��
Corollary 1. (C↑,∨CL) is a join-semilattice.

Corollary 1 illustrates that a constructive approach to compute C↑ can be safely
done using ∨CL. However, we will show that within C↑ there are also irrelevant
closed sets.
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3.2 Some Separable Closed Sets (such as the Incoherent and
Separable) Are Irrelevant

The notion of separable closed set captures that a closed set can be decomposed
into smaller closed sets in such a way that the dynamics of the set can be safely
encoded by the dynamics of the parts.

Definition 11. A closed set X is separable if and only if there exist X1 
= X2

and X1,X2 ⊂ X in C↑ such that

• X1 ∪ X2 = X, and
• RX1∪X2 = RX1 ∪ RX2 .

If, additionally, we have that

• RX1 ∩ RX2 = ∅ we say X is incoherent.
• X1 ∩ X2 = ∅ we say X is disconnected.

For a separable set X = X1∪X2, its dynamical operation can be partitioned into
the dynamical operation of X1 and X2. Thus, we can consider the combination
X1∨CLX2 = X1 ∪ X2 = X a trivial closet set. The notion of incoherent and
disconnected reflect two stronger forms of separability because the decomposition
of X into X1 and X2 is disjoint w.r.t the set of reactions and species respectively.
However, these two possibilities do not cover all the ways in which a set is
separable. Indeed, not all the separable sets are incoherent or disconnected.

Example 2. Let M = {s1, s2, s3, s4, s5, s6} and

R = {r1 = s1 → 2s1, r2 = s1 + s2 → s3, r3 = s4 + s5 → s3, r4 = s1 + s6 → 2s6},

and the following closed sets

X1 = {s1},X2 = {s1, s2, s3},X3 = {s3, s4, s5},X4 = {s1, s6}.

Note that

• X1 ∪ X3 is disconnected and thus incoherent and separable.
• X2 ∪X3 is separable and incoherent, but not disconnected because X2 ∩X3 =

{s3},
• X1 ∪ X4 is separable but neither incoherent or disconnected because RX1 ∩

RX4 = {r1}, and hence X1 ∩ X4 = {s1}.
Definition 12. Let C↑sep, C↑inc, and C↑dis, be the set of separable, incoherent
and disconnected closed sets respectively.

Lemma 4.
C↑dis ⊆ C↑inc ⊆ C↑sep ⊆ C↑ ⊆ C. (4)

Definition 13. Let C↓
↑ = C↑ − C↑sep the non-separable closure structure. We

call a set X ∈ C↓
↑ non-separable.
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Non-separable reaction networks are the least trivial networks from a dynamical
point of view. Indeed, their dynamics cannot be decomposed into the dynamics
of any combination of its constituent parts. However, we will see that some
separable reaction networks (that are necessarily not incoherent) are also non-
trivial from a dynamical point of view. Indeed, the fact that X is separable into
X1 and X2 (which implies that its dynamics can be explained in terms of the
dynamics of X1 and X2) does not necessarily imply that, for other two sets X ′

1

and X ′
2 that also decompose X, we can decomposed the dynamics of X into the

dynamics of X ′
1 and X ′

2. So, we have that some decompositions of X do exhibit
separability while other decompositions do not. Since the decomposition of X is
done considering closed sets only, the number of decompositions which exhibit
separability of X versus the total number of decompositions of X footprints its
structural separability. In particular, we will show that there are different degrees
of separability, ranging from non-separability to full separability, and that such
degree can be characterized by a suitable notion of synergy for reaction networks.

4 On Separability and Synergy

4.1 The Notion of Synergy

A synergy in our setting corresponds to the appearance of novel reactions when
closed sets are combined.

Definition 14. Let X = {X1, ...,Xk} be a collection of closed sets. X is a
synergy if and only if

1. RX ⊃ ⋃

X∈X

RX , and

2. for any sub-collection X′ of X we have that RX′ =
⋃

X∈X′
RX .

Given a set X, the existence of a collection X of subsets of X that is a
synergy represents a necessary condition for the non-separability of X. Note that
condition (i) indicates that the combination of sets in the collection triggers a
’novel’ reaction, i.e. that cannot be triggered by any of the former sets in the
collection, and (ii) indicates that such novel reaction is generated in a minimal
way, i.e. no sub-collection of sets is able to trigger the novel reaction. The notion
of separability is intimately related to the notion of synergy in a reaction network.
The following lemma, although trivial, will be helpful to prove some important
statements about collections of sets that have a synergy.

Lemma 5. Let X = {X1, ...,Xk} be a collection of sets that is synergy. Then,
there exist a reaction r ∈ RX such that

• r /∈ RX′ for every sub-collection X′ of X.
• supp(r) ∩ Xi 
= ∅, for i = 1, ..., k.
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Proof. To prove the first statement: By condition 1 of Definition 14 we have
that RX ⊃ ⋃

X∈X

RX . This means that there is a reaction r ∈ RX which is not

in
⋃

X∈X

RX .

To prove the second statement (by contradiction), suppose that there exist
i = j such that supp(r) ∩ Xj = ∅, and let X′ = X − {Xj}. Then, we have that
r ∈ RX′ , and this implies that RX′ ⊃ ⋃

X∈X′
RX , which contradicts condition 2

of Definition 14. ��
Corollary 2. Let X = {X1, ...,Xk} be a collection of sets that is a synergy.
Then, there exists a closed set Z ⊆ GCL(X) such that for i = 1, ..., k

• Z ∩ Xi 
= ∅, and
• Z 
⊆ Xi.

Proof. By Lemma 5 we have that there is r ∈ RX such that r
⋃

X∈X

RX . Then,

both statements trivially follow by defining Z = GCL(supp(r)). ��
Lemma 5 and Corollary 2 show that given a collection X that is a synergy,

their closure triggers a new reaction r which in turn produces a new closed set
that is not contained in any of the former sets in X.

Corollary 3. Let X be a closed set. If the number of closed sets that are con-
tained in X is less than three, then there is no collection of subsets of X that is
a synergy.

Proof. We will show that if X has one or two closed sets contained in it, then it
is not possible to construct a collection of subsets of X that is a synergy. First,
suppose that there is only one closed set X1 ⊂ X. Then, X = {X1} clearly
is not a synergy. Now, suppose that there are two sets X1,X2 ⊂ X and no
other subset of X is closed. Then, clearly neither X = {X1} nor X = {X2} is
a synergy. Finally, if X = {X1,X2} is a synergy, then by Lemma 2 there is a
closed set Z ⊂ X such that Z 
= X1 and Z 
= X2 which entails a contradiction
to the fact that X contains only two closed sets. ��
The following definition characterizes the reactions that reflect synergies within
a reaction network.

Definition 15. Let X = {X1, ...,Xk} be a collection of sets that is a synergy.
Then, we define Rsyn

X the set of reactions r ∈ RX such that r /∈ ⋃

X∈X

RX . We

call Rsyn
X the set of synergetic reactions of X, and for each r ∈ Rsyn

X we call
GCL(supp(r)) a synergetic closure of X.
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4.2 Computational Tractability of Synergies - an Interlude

Although the results about synergetic reactions and synergetic closures
(Lemma 5 and Corollary 2) are easy to prove, identifying that a collection of
sets X is a synergy is not trivial. In particular, the verification of condition 2.
of Definition 14 requires to check that every novel reaction r ∈ RX cannot be
triggered by any sub-collection X′ of X. This implies that, in principle, one must
check that r cannot be triggered by any of the 2|X|−1 sub-collections that can be
generated from X. The latter suggests that identifying synergies could lead to a
combinatorial explosion. However, the following lemma shows that the problem
is tractable.

Lemma 6. Let ρ = max{|supp(r)|, r ∈ R}. Then, a collection of sets X that is
a synergy implies |X| ≤ ρ.

Proof. A simple sketch of the proof is as follows: If X is a synergy then each
set Xi ∈ X must contribute with at least one species to trigger the synergetic
reaction r. Then, it is evident that the collection X cannot have more elements
than the maximum of the number of reactants of the reactions in R, which is
bounded by ρ.

Formal proof: Assume there is a collection of sets X that is a synergy and
|X| > ρ. Without loss of generality let |X| = ρ+1. Let X = {X1, ...,Xρ+1}, and
let r ∈ Rsyn

X . Since |supp(r)| ≤ ρ, we can denote supp(r) = {sr1 , ...srk
} with

k ≤ ρ. Now let Xri
= {Xi ∈ X/sri

∈ Xi} for i = 1, ..., k. Xri
denotes all the

sets in X that contain sri
. Now, let X ′

i be the first set of the collection Xri
, for

i = 1, ..., k, and X′ = {X ′
1, ...,X

′
k}. By construction we have that RX′ ⊃

k⋃

i=1

RXi
,

which contradicts condition 2 of Definition 14. ��
Lemma 6 is an important result to understand the inner structure of closed

reaction networks. On the one hand, it shows that the number of closed sets in
a collection required to be a synergy is bounded by ρ, which provides a simple
necessity criteria for a synergy and shows that the verification of synergies is
tractable. On the other hand, it suggests that if one is able to identify a collection
of sets B from which all synergies are obtained from sub-collections of B, then
the number of collections of sets that is a synergy, and hence the number of
synergetic closures, is bounded by

ρ∑

i=2

|B|i =
|B|ρ+1 − |B|2

|B| − 1
. (5)

We will elucidate which closed sets can be used to build B. To do so, we need
to clarify the formal relation between synergies and non-separable sets.

4.3 Non-separability Means Full Synergy

Lemma 7. Let X be a closed set such that for every X1 
= X2 closed sets in
X either X1 ⊂ X2 or X2 ⊂ X1. Then, there exist r in RX such that X =
GCL(supp(r)).
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Proof. Since all pairs of closed sets in X are related by inclusion, let X =
{X1, ...,Xk = X} be the set of all closed sets contained in X with Xi ⊂ Xi+1,
i = 1, ..., k − 1. Now, suppose there is no r such that GCL(supp(r)) = X.
Then, there are two reactions r′, r′′ ∈ RX such that GCL(supp(r′)) = X ′ 
⊂
GCL(supp(r2)) = X ′′ and GCL(supp(r′′)) = X ′′ 
⊂ GCL(supp(r1)) = X ′. Since
X ′ and X ′′ are closed sets, the latter entails a contradiction. ��
Lemma 8. Let X be a non-separable closed set. Let r ∈ RX , and GCL(supp(r))
= Z. Then,

1. Z = X, or
2. GCL(X − Z) = X.

Proof. If Z = X then condition 1 . holds. If Z 
= X, then we will prove that
Y = GCL(X − Z) is equal to X and thus condition 2 . holds. First note that
Y ⊃ X −Z, and thus Y ∪Z = X. Now, suppose that Y 
= X. The latter implies
that r /∈ RY because otherwise Y would be able to trigger r and as consequence
Z ⊆ Y which would imply Y = X. Hence, let Ȳ = X − supp(r). Clearly r /∈ RȲ .
Moreover, note that Ȳ is closed because otherwise it will have to trigger one new
reaction but the only reactions in X and not in Ȳ are those that can be triggered
with supp(r) which is not in Ȳ . As a consequence we have that RȲ ∪RZ = RX .

Therefore, we have that Ȳ 
= Z, Ȳ ∪ Z = X and RȲ ∪ RZ = RX , which
implies X is separable (and this entails a contradiction to the fact that Y 
= X).

��
Theorem 2. Ley X be a non-separable set, then one of two alternatives hold:

1. There exist r ∈ RX such that GCL(supp(r)) = X,
2. There does not exist r ∈ RX such that GCL(supp(r)) = X, and for every

X = {X1,X2} such that X1,X2 ⊂ X and X1∨CLX2 = X, X is a synergy.

Proof. Since X is non-separable, condition 1 follows from condition 1 of
Lemma 8. We now prove that condition 2 of Lemma 8 implies condition 2
of our theorem:
Since X1,X2 ⊂ X and X1∨CLX2 = X, we have by Lemma 8 that GCL(X −
X1) = GCL(X − X2) = X because otherwise X would be separable. Hence we
have that

RX2 ⊂ RGCL(X−X2) = RX , and RX1 ⊂ RGCL(X−X1) = RX .

Now, let R1 = RX − RX1 and R2 = RX − RX2 . Note that R1 ∩ R2 cannot
be the empty set because that would imply that every reaction in R1 ∩R2 must
be either in X1 or X2, which would imply X is separable. Therefore, there is a
reaction r ∈ RX in that is not in RX1 ∪RX2 . Hence, X = {X1,X2} is a synergy.

��
In Fig. 1 we show an example of a non-separable set, and a separable set that

has a synergy.
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Fig. 1. Left: example of a non-separable network. Right: example of separable network
with synergy

Theorem 2 establishes the formal relation between non-separable sets and
collections of sets that have a synergy. In particular, it shows that there are two
basic types of non-separable sets. The first type, which we will call basic sets are
the closure of a single reaction. We know that a reaction network (M,R) has
at most |R| basic sets. The second type, are sets X such that any pair of sets
X = {X1,X2} whose union generates X via closure, necessarily is a synergy.

Definition 16. Let X ∈ C↑, and let D(X) = {X1 = {X1
1 ,X1

2 , }...,Xk =
{Xk

1 ,Xk
2 }} be the collection of pairs of closed subsets of X such that Xi

1∨CLXi
2 =

X, for i = 1, ..., k. We call D(X) the separability decomposition of X. In addi-
tion, let j be the number of elements in D(X) that are a synergy. We say X is
ρ-separable, with ρ = 1 − j

k .

Lemma 9. X is non-separable if and only if X is 0−separable

5 Discussion and Conclusion

We have introduced the notions of separability and synergy for reaction networks
and how they are related. In particular, the dynamics of a reaction network
with no synergies, i.e. 1−separable, can be safely studied from the dynamics
of its parts, while for the opposite case, the so-called non-separable reaction
networks (0−separable), there is no decomposition that can be used to study its
dynamics. The intermediate case, i.e. sets that are ρ−separable with 0 < ρ < 1
can be decomposed only in certain ways that ensure the possibility to study their
dynamical operation. It is remarkable that the so-called non-separable closed
sets entail structurally ‘entangled’ entities in the reaction network. Indeed, if
one removes any part of it, the closure of the remaining part will become either
the non-separable set again, or the empty set.

Although we have not provided a specific algorithm to compute closed sets,
the results of this article provide a theoretical ground to develop an algorithm
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which (i) is able to efficiently build from bottom-up the set of closed sets, (ii)
is able to retrieve decompositions of closed sets of the upper levels that can be
applied to simplify dynamical analysis, and (iii) is able to identify non-separable
sets. Indeed, from Theorem 2 it is derived that basic sets (the first type of sets
in Theorem 2) entail a sufficient collection of minimal closed sets such that their
combinations can be used to compute all dynamically relevant closed sets. Hence,
such bottom-up algorithm must first compute the basic sets and then combine
them appropriately. Fortunately though, Lemma 6 helps us to bound the number
of operations needed to compute all the closed sets that have synergetic closures.
Indeed, considering B to be the set of basic sets, we have a bound for number of
synergetic closures in Eq. 5.

Another important aspect of our approach becomes clear when one reverts
the question we have been asking. So, instead of thinking how do we decompose
a non-trivial reaction network (which is what we did in this article), we could ask
what are the combinations of reaction networks that lead to non-trivial reaction
networks? The answer to this question is the key for the development of an effi-
cient algorithm to compute the relevant closed sets, and it is currently a matter of
investigation. An element that might be of help is to observe how such combina-
tions appear in real reaction networks. Namely, there might be some regularities
in the way that large dynamically relevant networks are formed from synergies of
smaller parts. We believe that this exploration could give some important clues
to understand the structure of (dynamically relevant) large reaction networks.

In addition, we plan to extend our results combining Theorem 2 with the
decomposition theorem for organizations [20,23] so an efficient algorithm that
computes the set of organizations of a reaction network, i.e. avoiding all com-
binatorial problems identified in previous algorithms [2,18], can be developed.
It is the opinion of the authors that the structural study of reaction networks
will provide important breakthroughs from an algorithmic and applied point of
view. Specially considering that reaction networks have the capacity to model
not only biochemical but also systems of a wide range of types [22].
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1 INRIA and CNRS, I3S Laboratory, Sophia-Antipolis, France
2 School of Electrical Engineering and Computer Science, University of Ottawa,

Ottawa, Canada
3 Department of Computer Science and Technology, University of Cambridge,

Cambridge, UK
4 ECT, Universidade Federal do Rio Grande do Norte, Natal, Brazil

carlos.olarte@gmail.com

Abstract. Data streams for a personalised breast cancer programme
could include collections of image data, tumour genome sequencing, likely
at the single cell level, and liquid biopsies (DNA and Circulating Tumour
Cells (CTCs)). Although they are rich in information, the full power of
these datasets will not be realised until we develop methods to model the
cancer systems and conduct analyses that transect these streams. In addi-
tion to machine learning approaches, we believe that logical reasoning
has the potential to provide help in clinical decision support systems for
doctors. We develop a logical approach to modelling cancer progression,
focusing on mutation analysis and CTCs, which include the appearance
of driver mutations, the transformation of normal cells to cancer cells in
the breast, their circulation in the blood, and their path to the bone.
Our long term goal is to improve the prediction of survival of metastatic
breast cancer patients. We model the behaviour of the CTCs as a tran-
sition system, and we use Linear Logic (LL) to reason about our model.
We consider several important properties about CTCs and prove them
in LL. In addition, we formalise our results in the Coq Proof Assistant,
thus providing formal proofs of our model. We believe that our results
provide a promising proof-of-principle and can be generalised to other
cancer types and groups of driver mutations.

1 Introduction

Cancer is a complex evolutionary phenomenon, characterised by multiple lev-
els of heterogeneity (inter-patient, intra-patient and intra-tumour), multiscale
events (i.e. changes at intracellular, intercellular, tissue levels), multiomics vari-
ability (i.e. changes to chromatine, epigenetic and transcriptomic levels) that
affect all aspects of clinical decisions and practice. The most remarkable phe-
nomenon is the occurrence of numerous somatic mutations, of which only a
subset contributes to cancer progression. The dynamic genetic diversity, coupled
with epigenetic plasticity, within each individual cancer induces new genetic
architectures and clonal evolutionary trajectories.
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A striking feature of cancer is the subclonal genetic diversity, i.e., the pres-
ence of clonal succession and spatial segregation of subclones in primary sites
and metastases. At the root of the subclonal expansion there are developmen-
tally regulated potentially self-renewing cells. After initiation, multiple subclones
often coexist, signalling parallel evolution with no selective sweep or clear fitness
advantage that becomes evident with therapies. Fitness calculation for each sub-
clonal is difficult as subclones can form ecosystems and can cooperate through
paracrine loops or interact through stromal, endothelial and inflammatory cells.

Tumour stages describe the progress of the tumour cells. One widely adopted
approach is the American Joint Committee on Cancer (AJCC) tumour node
metastasis (TNM) staging system. It classifies tumours with a combined stage
between I-IV using three values: T gives the size of the primary tumour and
extent of invasion, N describes if the tumour has spread to regional lymph
nodes and M is indicative of distant metastasis. In terms of prognosis, Stage
I patients have the best prognosis with 5 year survival rates (80–95%). The
survival rates progressively worsen with each stage. Even with advances in tar-
geted therapies, Stage IV patients have survival rates of just over two years. The
integration of blood tests, biopsies, medical imaging, with genomic data have
allowed the classification of many subtypes of cancers with striking differences
of driver mutations and survival patterns. Therefore, the current data stream
goals for a personalised breast cancer program should include the generation of
tumour whole genome sequencing (DNA and RNA) for patients with breast can-
cer. Another data stream goal could focus on liquid biopsies. This will consist of
data obtained from circulating tumour DNA (ctDNA) and single cell analysis.
However, the full power of these datasets will not be realised until we leverage
advanced statistical, mathematical and computational approaches to devise the
needed procedures to conduct analyses that transect these streams.

There is a very rich body of biomedical statistics, machine learning and epi-
demiological literature for cancer data analysis which includes methods ranging
from survival analysis, i.e., the effect of a risk factor or treatment with respect
to cancer progression, analyses of co-alteration and mutual exclusivity patterns
for genetic alterations, gene expression analyses, to network science algorithms
(see e.g., [4,5,8,17,19,26,33]). For example, in survival modelling, the data is
referred to as the time to event date and the objective is to analyse the time
that passes before an event occurs due to one or more covariates [22,23]. We
believe that together with machine learning and biostatistics, there is a role for
a logical approach in guiding optimal treatment decisions and in developing a
risk stratification and monitoring tool to manage cancer. In this work, we focus
on the use of a formal logical framework (as described below) to provide a reliable
hypothesis-driven decision making system based on molecular data.

1.1 Formal Methods for Systems Biology

Computational systems biology provides a variety of methods for understanding
the structure of biological systems and for studying their dynamics. In order to
capture the qualitative nature of dynamics, approaches include Petri nets [9],
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π-calculus [31], bio-ambients [30], and rule-based modelling languages such as
Biocham [18] and Kappa [11]. Molecular Logic [37] uses boolean logic gates to
define regulations in networks. One of the most successful approaches to model
and analyse signal transduction networks, inside the cells, is Pathway Logic [35]
(a system based on rewriting rules). Our approach, based on logical frameworks,
can be used to model biological networks both inside and outside the cell.

The dynamics from a quantitative point of view can be captured by means
of ordinary or stochastic differential equations. More recent approaches include
hybrid Petri nets [21] and hybrid automata [1], piecewise linear equations [24],
stochastic π-calculus [29], and rule-based languages with continuous/stochastic
dynamics such as Kappa [11], Biocham [18], or BioNetGen [7].

One of the most common approaches to the formal verification of biological
systems is model checking [10] that exhaustively enumerates all the states reach-
able by the system. In order to apply such a technique, the biological system
should be encoded as a finite transition system and relevant system properties
should be specified using temporal logic.

1.2 Logical Frameworks

In contrast to the aforementioned approaches, we encode both biological sys-
tems and temporal properties in logic, and prove that the properties can be
derived from the system. This approach is new, only proposed in two previous
works up to now [12,28]. In the present work, we choose discrete modelling, with
temporal transition constraints. We believe that discrete modelling is crucial in
systems biology since it allows taking into account some phenomena that have
a very low chance of happening (and could thus be neglected by differential
approaches), but which may have a strong impact on system behaviour.

We advocate the use of logical frameworks as an unified and safe approach
to both specifying and analysing biological systems. Logical Frameworks are
logics designed to formally study a variety of systems. The formal study of
such systems means providing both formal models and proofs of properties of
the systems. In the case where the logical systems are themselves logics, the
logical framework enables the proofs of both meta-theoretical theorems (about
the logic being formalised) and object level theorems (about the systems being
encoded in the formalised logic). We shall use Linear Logic (LL) [20] as the
intermediate logic, formalised in the Calculus of Constructions, which is a type
theory implemented in the Coq Proof Assistant [6]. We note that the Coq system
has been (partially) proven correct in itself, extensive meta-theoretical studies of
LL are available in the Coq system (see e.g., [38]), and our encoding of biological
systems is adequate (Sect. 3.1). This means that we prove that the formal model
of the system correctly encodes the intended biological system. The approach is
thus an unified approach, fully based on logic, and a safe approach, as each step
is proved correct, as far as it can be.

We leverage our formalisation of LL in Coq to give a natural and direct char-
acterisation of the state transformations of Circulating Tumour Cells (CTCs).
For instance, a rule describing the evolution of a cell n, in a region r, from a
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healthy cell (with no mutations) to a cell that has acquired a mutation TGFβ can
be modelled by the linear implication C(n, r, []) −◦ C(n, r, [TGFβ]). This formula
describes the fact that a state where a cell C(n, r, []) is present can evolve into a
state where C(n, r, [TGFβ]) holds. More interestingly, the LL specification can be
used to prove some desired properties of the system. For instance, it is possible
to prove reachability properties, i.e., whether the system can reach a given state
(Sect. 4.1) or even more abstract (meta-level) properties such as checking all the
possible evolution paths the system can take under certain conditions (Sect. 4.2).
Finally, we attain a certain degree of automatisation in our proofs which opens
the possibility of testing recent proposed hypotheses in the literature.

Organisation. The rest of the paper is organised as follows. Section 2 describes
the most relevant properties related to cancer mutations and CTCs which we
believe are key factors driving the model dynamics. In Sect. 3 we recall the
theory of LL and we specify in it the dynamics of CTCs. We prove correct our
model in Theorem 1 by showing that transitions in the system are in one-to-one
correspondence with logical steps. Reachability and meta-level properties of the
system are proved in Sect. 4. Finally we conclude with a discussion on challenges
and opportunities of logical frameworks in cancer studies. There is a companion
appendix with the proofs of the results presented here. Moreover, all the proofs
of the properties of our model were certified in Coq and are available at http://
subsell.logic.at/bio-CTC/.

2 Tumour Cells in Metastatic Breast Cancer

In this section we first describe the mutations involved in cancer in general and
then, we focus on the evolution of circulating tumour cells described in this work.

Cancer Mutations. Cancer mutations can be divided into drivers and non-
drivers (or passengers). The accumulation of evidence of clonal heterogeneity
and the observation of the arrival of drug resistance in clonal sub-populations
suggest that mutations usually classified as non-drivers may have an important
role in the fitness of the cancer cell and in the evolution and physiopathology of
cancer. Similarly, mutations that alter the metabolism and the epigenetics may
modify the fitness of the cancer cells. A meaningful way to identify drivers and
passenger mutations is to use a statistical estimator of the impact of mutations
such as FATHMM-MKL and a very large mutation database such as Cosmic
(http://cancer.sanger.ac.uk/) [34].

The mutation process (causing tumour evolution) generates intra-tumour
heterogeneity. The subsequent selection and Darwinian evolution (including
immune escape) on intra-tumour heterogeneity is the key challenge in cancer
medicine. Those clones that have progressed more than the others will have larger
influence on patient survival. The amount of heterogeneity can vary between zero
and up to over several thousand mutations, found to be heterogeneous within
primary tumours or between primary and metastatic. The heterogeneity could be
investigated through molecular biology techniques such as single cell sequencing,

http://subsell.logic.at/bio-CTC/
http://subsell.logic.at/bio-CTC/
http://cancer.sanger.ac.uk/
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in situ PCR and could also be phenotypically classified using microscope image
analysis. In case of large heterogeneity we could assume that the survival of the
patient strongly depends on the mutations of the most aggressive clones/cells.

Circulating Tumour Cells. We follow the study of the evolution of Circulating
Tumour Cells in metastatic breast cancer in [4], where the authors use differential
equations. This reference has an extensive discussion on the modelling choices,
in particular concerning the driver mutations.

In [4] the probability for a cell in a duct in the breast to metastasise in the
bone depends on the following mutational events:

1. A mutation in the TGFβ pathways frees the cell from the surrounding cells.
2. A mutation in the EPCAM gene makes the cell rounded and free to divide. Then

the cell enters the blood stream and becomes a circulating cancer cell.
3. In order to survive, this cell needs to over express the gene CD47 that prevents

attacks from the immune system.
4. Finally, there are two mutations that allow the circulating cancer cell to attach

to the bone tissue and start the deadly cancer there: CD44 and MET.

Hence, a cancer cell has four possible futures: (a) acquiring a driver muta-
tion; (b) acquiring a passenger mutation which does not cause too much of a
viability problem: it simply increases a sort of “counter to apoptosis”; (c), the
new (i.e., last) mutation brings the cell to apoptosis; and (d), moving to the next
compartement, or seeding in the bone.

The behaviour of the cells depends on the compartments the cells live in (here
the breast, the blood and the bone), the other cells (i.e., the environment : the
availability of food/oxygen or the pressure by the other cells), and the behaviour
of the surface proteins (the mutations). In this work, we shall formalise the
compartments and the mutations, and leave the formalisation of the environment
to future work. Note that this environment plays a role only in the breast.

The phenotype of a cell is characterised by both the number of its muta-
tions and its fitness. In biology the fitness is the capability of the cell to sur-
vive and produce offsprings. The cell’s viability is particularly dependent on
metabolic health and energy level. Most of the cell metabolic health depends on
the accumulation of mutations that affect the production of enzymes involved
in catalysing energetic expensive reactions and cell homeostasis. The fitness is
particularly altered by the occurrence of driver mutations: each driver muta-
tion provides the cell with additional fitness. Non-driver mutations, on the other
hand, may accumulate in large numbers, and may affect cell stress response
due to the altered metabolism and the competition with other neighboring cells
[15]. Wet-lab tests for cell fitness and stress responsiveness have been recently
developed, see for instance [3,32,36]. In our formalisation, the fitness will be a
parameter of the cells. Physicians see the appearance of the cell (round, free,
etc.), while biologists see the mutations. Our model can take both into account.

We extend the model in [4] with a few rules modelling DNA repair - of
passenger mutations. These rules, only available for cells with TGFβ or EPCAM

mutations, (i.e. before CD47 mutation), represent DNA repair by increasing the
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fitness by one. Note that this addition introduces cycles in our model. (i.e., it is
possible for a cell to go back to a previous state).

3 Specification in Linear Logic

Linear Logic (LL) [20] is a resource conscious logic particularly well suited for
describing state transition systems. LL has been successfully used to model such
diverse systems as planning, Petri nets, process calculi, security protocols, mul-
tiset rewriting, graph traversal algorithms, and games. In this section we for-
malise in LL the behaviours of the Circulating Tumour Cells and we prove this
formalisation correct. In each step of the formalisation, we shall give an intu-
itive description of the LL connectives and their proof rules that should suffice
to understand our developments. The reader may find in [20] a more detailed
account on the proof theory of LL.

LL is a substructural logic where there is an explicit control over the number
of times a formula can be used in a proof. Formulas can be split into two sets:
classical (those that can be used as many times as needed) or linear (those that
are consumed after being used). Using a dyadic system for LL [2], sequents take
the form Γ ; Δ � G where G is the formula (goal) to be proved (examples in
Sect. 4), Γ is the set of classical formulas and Δ is the multiset of linear formulas.
We store in Γ the formulas representing the rules of the system and in Δ the
atomic predicates representing the state of the system, namely:

– C(n, c, f , lm), denoting a cell n (a natural number used as an id), in a compart-
ment c (breast, blood, or bone), with a phenotype given by a fitness degree
f ∈ 0 .. 12 and a list of driver mutations lm. The list of driver mutations
lm is built up from mutations TGFβ, EPCAM, CD47, CD44, and/or MET, to which
we add seeded, for the cells seeded in the bone. As TGFβ is required before
any further mutations, a list of mutations [EPCAM, . . .] will by convention mean
[TGFβ, EPCAM, . . .];

– A(n), representing the fact that the cell n has gone to apoptosis;
– and T(t), stating that the current time-unit is t.

The linear implication F1 −◦ F2 models a state transformation where F1 is
consumed to later produce F2. The proof rules are:

Γ ;Δ, F1 � F2

Γ ;Δ � F1 −◦ F2
−◦R

Γ ;Δ1 �⇓ F1 Γ ;Δ2, ⇓ F2 � G

Γ ;Δ1, Δ2, ⇓ F1 −◦ F2 � G
−◦L

In −◦R, the proof of F1−◦F2 requires the use of the resource F1 to conclude F2.
This rule is invertible (i.e., the premise is provable if and only if the conclusion
is provable). Hence, this rule belongs to the negative phase of the construction
of a proof, where, without losing provability, we can apply all the invertible rules
in any order. The rule −◦L shows the resource awareness of the logic: part of the
context (Δ1) is used to prove F1 and the remaining resources (Δ2) must be used
to prove G. The classical context Γ is not divided but copied in the premises.
The rule −◦L is non-invertible and then, it belongs to the positive phase.
The notation ⇓ F1 −◦ F2 means that we decide to focus on that formula and
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then, we have to keep working on the subformulas F1 and F2 (notation ⇓ F1

and ⇓ F2).
Each rule of the biological system is associated with a delay (see the terms

of the form di in Fig. 1), which depends on the fitness parameter. Such parame-
ters decrease marginally with passenger mutations and increase drastically with
driver mutations. A typical rule in our model is then as follows:

rl(bre0.1)
def= ∀t, n.T(t) ⊗ C(n, breast, 1, [EPCAM]) −◦ T(t + d20(1)) ⊗ C(n, breast, 0, [EPCAM])

This rule describes a cell acquiring passenger mutations. Its fitness is
decreased by one in a time-delay d20(1) and its driver mutations remain
unchanged. In this formula, we have introduced two new connectives: the uni-
versal quantifier allowing us to instantiate the same rule for any cell n and any
time-unit t and the multiplicative conjunction ⊗ whose rules are:

Γ ;Δ1 �⇓ F1 Γ ;Δ2 �⇓ F2

Γ ;Δ1, Δ2 �⇓ F1 ⊗ F2
⊗R

Γ ;Δ, F1, F2 � G

Γ ;Δ, F1 ⊗ F2 � G
⊗L

The rule ⊗R belongs to the positive phase and it says that the proof of
F1 ⊗ F2 requires to split the linear context in order to prove both F1 and F2.
The left rule belongs to the negative phase and the resource F1 ⊗ F2 is simply
transformed into two resources (F1 and F2).

Most of the rules in our model are parametric on the fitness degree. Hence,
a rule of the form:

rl(brt1)
def= ∀t, n. T(t) ⊗ C(n, breast, f, [TGFβ]) −◦ T(t + d11(f)) ⊗ A(n), f ∈ 0..2

represents, in fact, three rules (one for each value of f ∈ 0..2). This family of rules
describes three cases of apoptosis. In this particular example, any cell located in
the breast, with fitness degree 0, 1, or 2 and list of mutations [TGFβ] may go to
apoptosis and the time needed for such a transition is d11(f). Note that d(·) is a
function that depends on f . If such d(·) does not depend on f , we shall simply
write d instead of d().

A typical rule describing a cell acquiring a driver mutation is:

rl(brt2.1)
def= ∀t, n. T(t) ⊗ C(n, breast, 1, [TGFβ]) −◦ T(t + d12) ⊗ C(n, breast, 2, [EPCAM])

This rule says that a cell in the breast with a fitness degree f = 1 may acquire
a new mutation (EPCAM), which increases its fitness by 1.

Another kind of rule describes a cell moving from one compartment to the
next. The following rule describes an intravasating CTC:

rl(bre2)
def= ∀t, n. T(t) ⊗ C(n, breast, f, [EPCAM]) −◦ T(t + d22(f)) ⊗ C(n, blood, 2, [EPCAM]), f ∈ 1..3

Finally, a last kind of rule describes a DNA repair of passenger mutations:

rl(bre0r)
def= ∀t, n.T(t) ⊗ C(n, breast, f, [EPCAM]) −◦ T(t + d20r(f)) ⊗ C(n, breast, f + 1, [EPCAM]), f ∈ 1..2
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The complete set of rules is in Fig. 1. For the sake of readability, we omit
the universal quantification on t and n in the formulas. We shall use system to
denote the set of rules and then, sequents take the form:

system ; T(t), C(·), · · · , C(·) � G

where G is a property to be proved (Sect. 4). Let s be a multiset of
the form {C1(n1, c1, f1, lm1), ..., Cn(nn, cn, fn, lmn), A(n′

1), ..., A(n
′
k)} represent-

ing the state of different cells. The multiset {T(t), C1(n1, c1, f1, lm1), ...,
Cn(nn, cn, fn, lmn), A(n′

1), ..., A(n
′
k)} of atomic formulas, formalising the state of

the system at time-unit t, is denoted as [[s]]t. Observe that a cell that has gone
to apoptosis cannot evolve any further (as no rule has a A(n) on the left hand
side).

In the breast

rl(br0)
def= T(t) ⊗ C(n, breast, 1, []) −◦ T(t + d00) ⊗ C(n, breast, 0, [])

rl(br1)
def= T(t) ⊗ C(n, breast, f, []) −◦ T(t + d01(f)) ⊗ A(n) f ∈ 0 .. 1

rl(br2)
def= T(t) ⊗ C(n, breast, 1, []) −◦ T(t + d02) ⊗ C(n, breast, 1, [TGFβ])

rl(brt0)
def= T(t) ⊗ C(n, breast, 1, [TGFβ]) −◦ T(t + d10) ⊗ C(n, breast, 0, [TGFβ])

rl(brt0r)
def= T(t) ⊗ C(n, breast, 1, [TGFβ]) −◦ T(t + d10r) ⊗ C(n, breast, 2, [TGFβ])

rl(brt1)
def= T(t) ⊗ C(n, breast, f, [TGFβ]) −◦ T(t + d11(f)) ⊗ A(n), f ∈ 0 .. 2

rl(brt2)
def= T(t) ⊗ C(n, breast, f, [TGFβ]) −◦ T(t + d12) ⊗ C(n, breast, f + 1, [EPCAM]) f ∈ 1 .. 2

rl(bre0)
def= T(t) ⊗ C(n, breast, f, [EPCAM]) −◦ T(t + d20(f)) ⊗ C(n, breast, f − 1, [EPCAM]), f ∈ 1 .. 3

rl(bre0r)
def= T(t) ⊗ C(n, breast, f, [EPCAM]) −◦ T(t + d20r(f)) ⊗ C(n, breast, f + 1, [EPCAM]), f ∈ 1 .. 2

rl(bre1)
def= T(t) ⊗ C(n, breast, f, [EPCAM]) −◦ T(t + d21(f)) ⊗ A(n), f ∈ 0 .. 3

rl(bre2)
def= T(t) ⊗ C(n, breast, f, [EPCAM]) −◦ T(t + d22(f)) ⊗ C(n, blood, f + 1, [EPCAM]), f ∈ 1 .. 3

In the blood

rl(ble0)
def= T(t) ⊗ C(n, blood, f, [EPCAM]) −◦ T(t + d30(f)) ⊗ C(n, blood, f − 1, [EPCAM]), f ∈ 1 .. 4

rl(ble0r)
def= T(t) ⊗ C(n, blood, f, [EPCAM]) −◦ T(t + d30r(f)) ⊗ C(n, blood, f + 1, [EPCAM]), f ∈ 1 .. 3

rl(ble1)
def= T(t) ⊗ C(n, blood, f, [EPCAM]) −◦ T(t + d31(f)) ⊗ A(n), f ∈ 0 .. 4

rl(ble2)
def= T(t) ⊗ C(n, blood, f, [EPCAM]) −◦ T(t + d32(f)) ⊗ C(n, blood, f + 2, [EPCAM, CD47]), f ∈ 1 .. 4

rl(blec0)
def= T(t) ⊗ C(n, blood, f, [EPCAM, CD47]) −◦ T(t + d40(f)) ⊗ C(n, blood, f − 1, [EPCAM, CD47]), f ∈ 1 .. 6

rl(blec1)
def= T(t) ⊗ C(n, blood, f, [EPCAM, CD47]) −◦ T(t + d41(f)) ⊗ A(n), f ∈ 0 .. 6

rl(blec2)
def= T(t) ⊗ C(n, blood, f, [EPCAM, CD47]) −◦ T(t + d42(f)) ⊗ C(n, blood, f + 2, [EPCDCD]), f ∈ 1 .. 6

rl(blec3)
def= T(t) ⊗ C(n, blood, f, [EPCAM, CD47]) −◦ T(t + d43(f)) ⊗ C(n, blood, f + 2, [EPCDME]), f ∈ 1 .. 6

rl(blecc0)
def= T(t) ⊗ C(n, blood, f, [EPCDCD]) −◦ T(t + d50(f)) ⊗ C(n, blood, f − 1, [EPCDCD]), f ∈ 1 .. 6

rl(blecc1)
def= T(t) ⊗ C(n, blood, f, [EPCDCD]) −◦ T(t + d51(f)) ⊗ A(n), f ∈ 0 .. 8

rl(blecc2)
def= T(t) ⊗ C(n, blood, f, [EPCDCD]) −◦ T(t + d52(f)) ⊗ C(n, blood, f + 2, [EPCDCDME]), f ∈ 1 .. 8

rl(blecm0)
def= T(t) ⊗ C(n, blood, f, [EPCDME]) −◦ T(t + d60(f)) ⊗ C(n, blood, f − 1, [EPCDME]), f ∈ 1 .. 8

rl(blecm1)
def= T(t) ⊗ C(n, blood, f, [EPCDME]) −◦ T(t + d61(f)) ⊗ A(n), f ∈ 0 .. 8

rl(blecm2)
def= T(t) ⊗ C(n, blood, f, [EPCDME]) −◦ T(t + d62(f)) ⊗ C(n, blood, f + 2, [EPCDCDME]), f ∈ 1 .. 8

rl(bleccm0)
def= T(t) ⊗ C(n, blood, f, [EPCDCDME]) −◦ T(t + d70(f)) ⊗ C(n, blood, f − 1, [EPCDCDME]), f ∈ 1 .. 10

rl(bleccm1)
def= T(t) ⊗ C(n, blood, f, [EPCDCDME]) −◦ T(t + d71(f)) ⊗ A(n), f ∈ 0 .. 10

rl(bleccm2)
def= T(t) ⊗ C(n, blood, f, [EPCDCDME]) −◦ T(t + d72) ⊗ C(n, bone, f + 1, [EPCDCDME]), f ∈ 1 .. 10

In the bone

rl(bo0)
def= T(t) ⊗ C(n, bone, f, [EPCDCDME]) −◦ T(t + d80(f)) ⊗ C(n, bone, f − 1, [EPCDCDME]), f ∈ 1 .. 11

rl(bo1)
def= T(t) ⊗ C(n, bone, f, [EPCDCDME]) −◦ T(t + d81(f)) ⊗ A(n), f ∈ 0 .. 11

rl(bo2)
def= T(t) ⊗ C(n, bone, f, [EPCDCDME]) −◦ T(t + d82(f)) ⊗ C(n, bone, f + 1, [EPCDCDME, seeded]), f ∈ 1 .. 11

Fig. 1. Complete set of rules. Variables t and n are universally quantified.
EPCDCDME, EPCDCD and EPCDME are shorthand, respectively, for the list of mutations
[EPCAM, CD47, CD44, MET], [EPCAM, CD47, CD44] and [EPCAM, CD47, MET].
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We note that our rules are asynchronous: only one rule can be fired at a
time. As in Biocham, we choose an asynchronous semantics in order to elimi-
nate the risk of affecting fundamental biological phenomena such as the masking
of a relation by another one and the consequent inhibition/activation of biolog-
ical processes. Finally, we note that the delays depend on the fitness and more
accurate values can be found using data. DNA mutational processes have been
succesfully modeled as compound poisson processes (see for instance [16]). Delays
could be seen as events waiting times which are well-known measures for Poisson
processes (see for instance [25]). In our model, delays are (uninterpreted) logical
constants that can be later tuned when experimental results are available. The
proofs presented here remain the same regardless such values.

3.1 Adequacy

In this section, we prove the adequacy of our encoding: a single transition in the
state of the system corresponds, exactly, to a complete focused phase (a positive
phase followed by a negative phase) in focused LL [2]. Focusing organises proofs
in phases where a negative phase introduces all the invertible rules. In a positive
phase, we choose one of the formulas (notation ⇓ F ) whose principal connective
has a non-invertible rule. Introducing such a connective is a decision in the proof
search procedure and then, the order in which we apply them may lead to a proof
or not. Proofs must finish in the positive phase with an initial rule:

Γ ; p �⇓ p
I

Γ, p; · �⇓ p
I

where p is an atomic formula (e.g, C1(n, c, f, lm)). Note that the proof ends when
p is the only atom in the linear context or when the linear context is empty and
p is in the classical context. Our results are based on the following observations:

1. It is not possible to focus on the formulas resulting from [[s]]t since those are
atoms. Hence, no focus step can start by focusing on those formulas.

2. Once we focus on one of the formulas in the classical context system (mod-
elling the rules of the system), what we observe is that one of the C(n, c, f, lm)
formulas is consumed as well as the predicate T(t). The focus phase ends by
producing the needed C(n, c′, f ′, lm′) and T(t′) atoms (or A(n) in the case
of apoptosis rules). This means that focused derivations are in one-to-one
correspondence with steps in the system.

In the following theorem, we shall use the notation s
(r,d)−→ s′ to denote that

the system may evolve from state s to state s′ by applying the rule r that

takes d time-units. Hence, Ss = {(s′, r, d) | s
(r,d)−→ s′} represents the set of

possible transitions starting from s. We shall show that all transitions in Ss

match exactly one focused derivation of the encoded system. More precisely
(proof in Appendix)
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Theorem 1 (Adequacy). Let s be a state and Ss = {(s′, r, d) | s
(r,d)−→ s′}.

Then, (s′, r, d) ∈ Ss iff focusing on the encoding of r leads to the following
derivation.

system ; [[s′]]t+d � G

system ; [[s]]t � G

The following corollaries are immediate consequences of Theorem 1.

Corollary 1 (Adequacy). Let s and s′ be two states. Then s
(r,d)−→ s′ iff the

sequent system; · � [[s]]t −◦ [[s]]t+d is provable.

The above results allow us to use the whole positive-negative phase as macro
rules in the logical system. Hence, during proofs, we shall abuse notation and
we shall use, e.g., rl(bo2) as a logical inference rule. Formally, we can show that
the corresponding logical rule is admissible in the system, i.e., if the premise is
provable then the conclusion is also provable.

Corollary 2 (Macro rules). Assume that s
(r,d)−→ s′. Then, the following macro

rule is admissible:

system ;Δ, [[s′]]t+d � G

system ;Δ, [[s]]t � G
r

4 Verifying Properties of the Model

The goal of this section is twofold: testing our rules, but also testing some hypoth-
esis of our model—as these are recent proposals in the literature. We shall detail
some of the proofs here. The others can be found in the proof scripts and the
documentation of our Coq formalisation (http://subsell.logic.at/bio-CTC/).

4.1 Reachability and Existence of Cycle Properties

Recall that a Circulating Tumour Cell (CTC) is a cancer cell in the blood, i.e., a
cell C(n, blood, f,m). An extravasating CTC is a CTC that has reached the bone,
i.e., a cell of the shape C(n, bone, f, [EPCAM, CD47, CD44, MET]). A first property of
interest might be the following one: “is it possible for a CTC, with mutations
[EPCAM, CD47] and fitness 3, to become an extravasating CTC with fitness 8? What
is the time delay for such a transition?” This is formalised as follows:

Property 1. The following sequent is provable:

system ; . � ∀n, t. T(t) ⊗ C(n, blood, 3, [EPCAM, CD47])
−◦∃d. T(t + d) ⊗ C(n, bone, 8, [EPCAM, CD47, CD44, MET])

In our Coq formalisation, we have implemented several tactics (e.g., solveF
and applyRule used below) to automate the process of proving properties and

http://subsell.logic.at/bio-CTC/


A Logical Framework for Modelling Breast Cancer Progression 131

make the resulting scripts compact and clear. This should ease the testing/prov-
ing of new hypotheses in our model. For instance, the proof of the previous
property is as follows (F below is the formula in Property 1):
Lemma Property1: forall n t, |− System ; F
Proof with solveF . (* solves the "trivial" goals in a focused proof *)

intros. (* introducing the quantified variables n and t *)
applyRule (blec2 3). (* application of macro rules -- corollary 2-- *)
applyRule (blecc2 5).
applyRule (bleccm2 7).
eapply tri_dec1 ... (* decision rule, focusing on the goal *)
eapply tri_tensor ... (* tensor *)
eapply tri_ex with (t:= (d72 7) s+ (d52 5) s+ (d42 3) s+ (Cte t)) ... (* existential quantif. *)
eapply Init1... (* initial rule *)
eapply Init1... (* initial rule *)

Qed.

The reader may compare the steps in the script above with the proof (by
hand) of Property 1 in Appendix B.

Our next property is the following: “what is the time delay for a CTC with
mutations [EPCAM, CD47] and fitness 3 or 4 to become an extravasating CTC with
fitness between 6 and 9?”

Property 2. The following sequent is provable:

system ; � ∀n, t. T(t) ⊗ (C(n, blood, 3, [EPCAM, CD47]) ⊕ C(n, blood, 4, [EPCAM, CD47]))−◦
∃td. T(t + td)⊗

(C(n, bone, 6, [EPCAM, CD47, CD44, MET]) ⊕ C(n, bone, 7, [EPCAM, CD47, CD44, MET])⊕
C(n, bone, 8, [EPCAM, CD47, CD44, MET]) ⊕ C(n, bone, 9, [EPCAM, CD47, CD44, MET]))

Due to the ⊕ connective (additive conjunction), the proof of this prop-
erty entails two proof obligations (see the details in Appendix B): the case
when the fitness is 3 and the case when the fitness is 4. The proof of the
first case reveals that the rules rl(blec0) and rl(blecc0) could be used zero or
more times—as long as the fitness remains positive. In the end, when the state
C(n, bone, 6, [EPCAM, CD47, CD44, MET]) is reached, we also obtain in our proof the
delay needed (td = d40(3)+d42(2)+d50(4)+d52(3)+d72(5)) to reach that state.
The second proof obligation can be discharged by considering several paths,
depending on the order of mutations CD44 and MET and the eventually many
passenger mutations (rules blec0, blecc0, blecc0, and blecm0). We illustrate some of
those paths in Appendix B. Finally, we note that along with the time delay td
we are looking for, the proof provides also the fitness of the extravasating CTC.

Existence of Cycle. Rules for passenger mutations decrease the fitness of the
cell by one, while rules for DNA repair increase the fitness. Hence, we may
observe loops and oscillations in our model. This can be exemplified in the fol-
lowing property: “a cell in the breast, with mutation [EPCAM], might have its
fitness oscillating from 1 to 2 and back.”

Property 3. The following sequents are provable:

system ; . � ∀n, t. T(t) ⊗ C(n, breast, 1, [EPCAM]) −◦ ∃d. T(t + d) ⊗ C(n, breast, 2, [EPCAM]) and
system ; . � ∀n, t. T(t) ⊗ C(n, breast, 2, [EPCAM]) −◦ ∃d. T(t + d) ⊗ C(n, breast, 1, [EPCAM])
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4.2 Meta-Level Properties

In a first experiment on using LL for biology on the computer [12], we defined
the set of biological rules as an inductive type in Coq, and proved some of their
properties by induction on the set of fireable rules. Here, we choose a different
approach. We have defined the biological rules by formulas in LL, and we use
focusing, along with adequacy, to look for the fireable rules at a given state.
Properties whose proofs need meta-reasoning will be formalised at the level of
derivations. In this section, we give two examples of these.

Let us first give a simple property concerning apoptosis, namely: “any cell
having a null fitness must go to apoptosis”.

Property 4. Let Δ be a multiset of atoms of the form C(·). Then, in any derivation
of the form

system;Δ, T(t + d), St � G

system;Δ, T(t), C(n, c, 0,m) � G
rl(·)

we have St = A(n).

In our Coq formalisation, the above property can be discharged with few
lines of code:
Lemma Property4: forall n t c lm , F.
Proof by solveF .
intros H. (* the first sequent is assumed to be provable *)
apply FocusOnlyTheory in H;auto. (* The proof H must start by focusing on one of the rules *)
destruct H as [R] ;destruct H.
repeat first [ CaseRule | DecomposeRule; FindUnification | eauto ].

Qed.

The FocusOnlyTheory lemma says that the proof of the sequent must start by
focusing on one of the formulas in System. The destruct tactic simplifies the
hypotheses after the use of lemma FocusOnlyTheory. The interesting part is the
last line of the script. The CaseRule tactic tests each of the rules of the sys-
tem. Then, DecomposeRule; FindUnification decomposes (positive-negative
phase) the application of the rule. Finally, eauto proves the desired goal after
the application of the rule. This is a very general scheme, where we do case
analysis on all possible rules. Some of them cannot be fired in the current state
and then, the proof follows by contradiction. In the rest of the cases, the eauto
tactic is able to conclude the goal.

The following property states one of the key properties of our model: “any
cell in the blood, with mutations including CD47, has four possible evolutions:

1. acquiring passenger mutations: its fitness decreases by one and the driver
mutations remain unchanged;

2. going to apoptosis;
3. acquiring a driver mutation: its fitness increases by two;
4. moving to the bone: its fitness increases by one and the driver mutations

([EPCAM, CD47, CD44, MET]) remain unchanged.”
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Property 5. Let Δ be a multiset of atoms of the form C(·). Then, in any derivation
of the form

system;Δ, T(t + td), St � G

system;Δ, T(t), C(n, blood, f,m) � G
rl(·)

with m containing CD47, it must be the case that

1. either St = C(n, blood, f − 1,m),
2. or St = A(n),
3. or St = C(n, blood, f +2,m′) with m′ being as m plus an additional mutation,
4. or St = C(n, bone, f + 1,m) with m = [EPCAM, CD47, CD44, MET].

The proof follows the same rationale as in Property 4. In fact, the proof in
Coq is exactly the same but, in the last line, we have
repeat (first [ CaseRule | DecomposeRule; FindUnification | SolveGoal]).

where SolveGoal (instead of eauto) is able to finish the resulting cases.

5 Concluding Remarks

Our goal is to study cancer progression, aiming at a better understanding of it,
and, in the long term, help in finding, and testing, new targeted drugs, a priori
much more efficient than most of the drugs used so far. This paper describes
the use of linear logic in modelling the multi compartment role of driver muta-
tions in breast cancer. This work is innovative but also proof-of-principle. It can
clearly be generalised to other cancer types where driver mutations are known.
It also makes evident the capability of this logical approach to integrate dif-
ferent types of data and output a diagnosis with higher interpretability than
many currently fashionable machine learning methods such as deep learning.
Note however that building a system for cancer/disease diagnosis and therapy
prognosis would require both automatic proof search and taking the size of the
tumour into account. Also note that, although all the properties considered so
far only deal with the evolution of one single cell, our approach allows us to
consider a state with many cells. We believe that the paper and the rich sections
in the online supplementary material would become an important resource for
other similar studies.

For example we can believe there is a complementary of our work with respect
to mathematical models such as [4] that include survival data and quantitative
results. Logic allows to model the evolution of cells across scales and compart-
ments, while ODEs require parameter estimation (qualitative vs quantitative).

While temporal logics have been very successful in practice with efficient
model checking tools, these logics do not enjoy standard proof theory. In contrast,
LL has a very traditional proof theoretic pedigree: it is naturally presented as a
sequent calculus that enjoys cut-elimination and focusing. A further advantage
of our approach wrt model checking is that it provides a unified framework
to encode both transition rules and (both statements and proofs of) temporal
properties. Observe also that we do not need to build the set of states of the
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transition system. We view model checking as a useful first step before proofs:
testing the model before trying to prove properties of it. The interested reader
can find a detailed comparison of the approaches in [12]. See also [14] for an
adequate encoding of Temporal Logic in LL.

In order to describe constrained transitions systems (by timed or spatial
restrictions for example), previous work have proposed different extensions of
Linear Logic, e.g., HyLL (a modal extension of ILL) [13] and SELL� (LL with
with quantifiers on subexponentials). See [14] for a formal comparison of the
two logics, and an adequate encoding of Temporal Logic in LL extended with
fixpoints. These Logical Frameworks were then used to specify and analyse small
biology systems in two initial experiments: [12] in HyLL and [28] in SELL�. In
the present work, we chose to use pure LL, and define a predicate to encode time.
This approach avoids the extra complication of copying the “unused” information
to the next time-unit (HyLL world or SELL subexponential), thus benefiting
from the usual compositional nature of the logic.

Future Perspectives. The ongoing revolution in AI is accelerating the devel-
opment of software that enables computers to perform “intelligent” clinical and
medical tasks. Machine learning algorithms find hidden patterns in data, classify
and associate similar patients/diseases/drugs based on common features (e.g.,
the IBM Watson system which is used to analyse genomic and cancer data).
Future challenges in medicine include understanding bias in data collection (and
also in doctor’s experience) and fostering the ability to integrate evidence from
heterogeneous datasets, from different omics and clinical data, from several lines
of independent data. We believe that machine learning could satisfy well these
needs and that there is also a need to develop methods that offer a hypothesis-
driven approach, so that doctors do not feel that they are going to be replaced.
Such methods could provide them with a personalised and easily interpretable
clinical support decision-making tool that could perform a synthesis of qualita-
tive and quantitative multi-modal evidence. Examples of decision trees used in
current practice for breast cancer diagnosis can be found at pages 598–603 of
[27]. Our logical approach, although focused on driver mutations, goes in such
a direction and could be used with continuous and discrete mixed variables.
This information could be obtainable through single cell experiments on cancer
biopsies (although with large variance), which is now at the stage of passing
from basic science to clinical protocols. Machine learning could analyse cancer
mutation patterns and feed our logic approach with this information that could
be integrated with other rules such as changes on the metabolic networks or
on epigenetics. Other rules could be derived from other levels of cancer clin-
ical investigation such as from image data (changes in fMRI, CT-scans and
microscopy samples), blood analyses (identification and counts of circulating
cancer cells) and other types of medical observations. The long term plan is
to build a portable resource that facilitates diagnostic and therapeutic decision
making and promotes a cost-effective personalised patient workup. This would
represent a new paradigm in personalised and precision cancer treatment which
integrates multi-modality analyses and clinical characteristics in a near-real time
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manner, improving clinical management of cancer. Finally we believe that logical
approaches could improve the harmonisation and standardisation of the report-
ing and interpretation of clinically relevant data.
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Appendix

A Proof of the Adequacy Results

Theorem 1: Adequacy. Let s be a state and Ss = {(s′, r, d) | s
(r,d)−→ s′}. Then,

(s′, r, d) ∈ Ss iff focusing on the encoding of r leads to the following derivation.

system ; [[s′]]t+d � G

system ; [[s]]t � G

Proof. The encoding of the rule r is a bipole [2] (i.e., a formula that, being
focused, will produce a single positive and a single negative phases) of the form

∀t, n. T(t) ⊗ C −◦ T(t + d) ⊗ C′

Focusing on this formula (stored in system) necessarily produces the follow-
ing derivation, starting with rule DC (decision on the classical context):

π
system ;Δ �⇓ T(t) ⊗ C

ψ
system ;Δ′,⇓ T(t + d) ⊗ C′ � G

system ; [[s]]t,⇓ T(t) ⊗ C −◦ T(t + d) ⊗ C′ � G
−◦L

system ; [[s]]t,⇓ ∀t, n. T(t) ⊗ C −◦ T(t + d) ⊗ C′ � G
∀L × 2

system ; [[s]]t � G
DC

Here (Δ,Δ′) is a partition of the atoms in [[s]]t. Since r is fireable in the state
s, then Δ must contain all the atoms needed to prove T(t) and C. Moreover, Δ′

must correspond to the components not affected by the application of r, i.e.,
Δ′ = [[s]]t \ Δ. Hence, derivation π takes the form:

system ; T(t) �⇓ T(t) I
system ; C �⇓ C

I

system ;Δ �⇓ T(t) ⊗ C
⊗R

This means that Δ = {T(t), C}. On the other hand, derivation ψ starts with
the release rule R (since ⊗L must be introduced in the negative phase and then,
focusing is lost) and we have

system ;Δ′, T(t + d), C′ � G

system ;Δ′,⇓ T(t + d) ⊗ C′ � G
R,⊗L

In the last sequent, the negative phase ends. Note that the set {T(t + d), C′}
corresponds to [[s′]]t+d.
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Corollary 1: Adequacy. Let s and s′ be two states. Then s
(r,d)−→ s′ iff the

sequent system; · � [[s]]t −◦ [[s]]t+d is provable.

Proof. Note that after the negative phase, we have:

system;Δ � [[s]]t+d

system; · � [[s]]t −◦ [[s]]t+d

where Δ is the multiset of atoms in [[s]]t. We cannot focus on those atoms (since
they are positive). Moreover, we cannot focus on [[s]]t+d (since the atom T(t + d)
is not in Δ nor in system). Hence, we can only focus on the formulas in system.
We conclude by focusing on the encoding of r and using Theorem 1.

The proof of Corollary 2 follows easily from Theorem 1.

B Proof of the Properties of the Model

Property 1. The following sequent is provable:
system ; . � ∀n, t. T(t) ⊗ C(n, blood, 3, [EPCAM,CD47])

−◦∃d. T(t + d) ⊗ C(n, bone, 8, [EPCAM,CD47,CD44,MET])

Proof. After the negative phase (using the rules ∀R, ⊗L, −◦R), we have only one
proof obligation: system ; C(n, blood, 3, [EPCAM, CD47]), T(t) � G, where G is

∃td.T(t + td) ⊗ C(n, bone, 8, [EPCAM, CD47, CD44, MET])

Note that the only non-atomic formulas are G and those formulas in system.
The proof proceeds by focusing, several times, on the formulas in system thus
transforming the state C(n, blood, 3, [EPCAM, CD47]). In the end, we focus on G
and the proof ends. Using the rules of the system as macro logical rules (see
Corollary 2), we have the following:

π
system ; C(n, bone, 8, [EPCDCDME]), T(t + d42(3) + d52(5) + d72(7)) � G

system ; C(n, blood, 7, [EPCDCDME]), T(t + d42(3) + d52(5)) � G
rl(bleccm2.7)

system ; C(n, blood, 5, [EPCAM, CD47, CD44]), T(t + d42(3)) � G
rl(blecc2.5)

system ; C(n, blood, 3, [EPCAM, CD47]), T(t) � G
rl(blec2.3)

In the above derivation, we note that, in the last sequent (bottom-up) we already
reach the state C(n, bone, 8, [EPCAM, CD47, CD44, MET]), with delay td = d42(3) +
d52(5)+d72(7). Hence, the derivation π corresponds to focusing and decomposing
entirely the formula G:

system ; T(t + td) �⇓ T(t + td)
I

system ; C(n, bone, 8, [EPCDCDME]) �⇓ C(n, bone, 8, [EPCDCDME]) I

system ; · · · �⇓ T(t + td) ⊗ C(n, bone, 8, [EPCDCDME])
⊗R

system ; C(n, bone, 8, [EPCDCDME]), T(t + td) �⇓ G
∃R
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Property 2. The following sequent is provable:

system ; � ∀n, t. T(t) ⊗ (C(n, blood, 3, [EPCAM, CD47]) ⊕ C(n, blood, 4, [EPCAM, CD47]))−◦
∃td. T(t + td)⊗

(C(n, bone, 6, [EPCAM, CD47, CD44, MET]) ⊕ C(n, bone, 7, [EPCAM, CD47, CD44, MET])⊕
C(n, bone, 8, [EPCAM, CD47, CD44, MET]) ⊕ C(n, bone, 9, [EPCAM, CD47, CD44, MET]))

Proof. After the negative phase (using the rules ∀R, ⊗L, ⊕L, −◦R), we have two
proof obligations (due to ⊕L)

(PO1) system ; C(n, blood, 3, [EPCAM, CD47]), T(t) � G
(PO2) system ; C(n, blood, 4, [EPCAM, CD47]), T(t) � G

where G is the goal
∃td.T(t + td) ⊗ ( C(n, bone, 6, [EPCAM, CD47, CD44, MET]) ⊕ first choice

C(n, bone, 7, [EPCAM, CD47, CD44, MET]) ⊕ second choice

C(n, bone, 8, [EPCAM, CD47, CD44, MET]) ⊕ third choice

C(n, bone, 9, [EPCAM, CD47, CD44, MET])) last choice

Let us start with the proof obligation (PO1). Similar to the proof of
Property 1, we start by focusing on the formulas in system so that we may
later focus on G. One of the possible paths/proofs leading to the conclusion of
the goal G is the following:

π
system ; C(n, bone, 6, [EPCDCDME]), T(t + d40(3) + d42(2) + d50(4) + d52(3) + d72(5)) � G

system ; C(n, blood, 5, [EPCDCDME]), T(t + d40(3) + d42(2) + d50(4) + d52(3)) � G
rl(bleccm2.5)

system ; C(n, blood, 3, [EPCDCD]), T(t + d40(3) + d42(2) + d50(4)) � G
rl(blecc2.3)

system ; C(n, blood, 4, [EPCDCD]), T(t + d40(3) + d42(2)) � G
rl(blecc0.4)

system ; C(n, blood, 2, [EPCAM, CD47]), T(t + d40(3)) � G
rl(blec2.2)

system ; C(n, blood, 3, [EPCAM, CD47]), T(t) � G
rl(blec0.3)

In such a derivation, the rules rl(blec0) and rl(blecc0) could be used
zero or more times - as long as the fitness remains positive. More-
over, in the last sequent (bottom-up) we have already reached the state
C(n, bone, 6, [EPCAM, CD47, CD44, MET]), with delay td = d40(3) + d42(2) + d50(4) +
d52(3) + d72(5) and derivation π proceeds as in the proof of Property 1.

The proof obligation (PO2) can be discharged similarly by several paths,
depending (as in PO1) on the order of mutations CD44 and MET and the eventually
many passenger mutations (rules blec0, blecc0, blecc0, and blecm0). We give here the
shortest path and one of the longest paths, as an illustration.

C(n, blood, 4, [EPCAM, CD47]) ⊗ T(t)
−◦T(t + d42(4)) ⊗ C(n, blood, 6, [EPCAM, CD47, CD44]) − rl(blec2.4)
−◦T(t + d42(4) + d52(6)) ⊗ C(n, blood, 8, [EPCAM, CD47, CD44, MET]) − rl(blecc2.6)
−◦T(t + d42(4) + d52(6) + d72(8)) ⊗ C(n, bone, 9, [EPCAM, CD47, CD44, MET]) − rl(bleccm2.8)

C(n, blood, 4, [EPCAM, CD47]) ⊗ T(t)
−◦T(t + d40(4)) ⊗ C(n, blood, 3, [EPCAM, CD47]) − rl(blec0.4)
−◦T(t + d40(4) + d43(3)) ⊗ C(n, blood, 4, [EPCAM, CD47, MET]) − rl(blec3.3)
−◦T(t + d40(4) + d43(3) + d60(4) ⊗ C(n, blood, 3, [EPCAM, CD47, MET]) − rl(blecm0.4)
−◦T(t + d40(4) + d43(3) + d60(4) + d62(3)) ⊗ C(n, blood, 5, [EPCAM, CD47, CD44, MET]) − rl(blecm2.3)
−◦T(t + d40(4) + d43(3) + d60(4) + d62(3) + d72(5)) ⊗ C(n, bone, 6, [EPCAM, CD47, CD44, MET]) − rl(blecm2.5)

Note that along with the time delay td we are looking for, the proof provides
also the fitness of the extravasating CTC.
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Property 3. The following sequents are provable:
system ; . � ∀n, t. T(t) ⊗ C(n, breast, 1, [EPCAM]) −◦ ∃d. T(t + d) ⊗ C(n, breast, 2, [EPCAM]) and
system ; . � ∀n, t. T(t) ⊗ C(n, breast, 2, [EPCAM]) −◦ ∃d. T(t + d) ⊗ C(n, breast, 1, [EPCAM])

Proof. In this case we present the Coq script needed to discard this proof. We
prove separately the two sequents above:

Lemma Property3_Seq1: forall n t,
exists d,

|−F− Theory ; [ E{ fun _ x ⇒ perp TX{ fc1 d (var x)}} ∗∗ (C{ n; breast; 2; EP} ) ;
Atom T{ Cte t} ; Atom C{ n ; breast ; 1 ; EP}] ; UP [] .

Proof with solveF .
idtac "Property3: Proving Cycle 1" .
intros.
eexists.
applyRule (bre0r 1).
(* Proving the goal *)
eapply tri_dec1

with (F:= E{ fun (T : Type) (x : T) ⇒ perp TX{ DX{ d20 2, var x}}} ∗∗ C{ n; breast; 2; EP} ) ...
eapply tri_tensor ...
eapply tri_ex with (t:= (Cte t)) ...
eapply Init1...
eapply Init1...

Qed.

Lemma Property3_Seq2: forall n t,
exists d,

|−F− Theory ; [ E{ fun _ x ⇒ perp TX{ fc1 d (var x)}} ∗∗ (C{ n; breast; 1; EP} ) ;
Atom T{ Cte t} ; Atom C{ n ; breast ; 2 ; EP}] ; UP [] .

Proof with solveF .
idtac "Property3: Proving Cycle 2" .
intros.
eexists.
applyRule (bre0 2).
(* Proving the goal *)
eapply tri_dec1 with

(F:= E{ fun (T : Type) (x : T) ⇒ perp TX{ DX{ d20 2, var x}}} ∗∗ C{ n; breast; 1; EP} ) ...
eapply tri_tensor ...
eapply tri_ex with (t:= (Cte t)) ...
eapply Init1...
eapply Init1...

Qed.

Property 4. Let Δ be a multiset of atoms of the form C(·). Then, in any deriva-
tion of the form

system;Δ, T(t + d), St � G

system;Δ, T(t), C(n, c, 0,m) � G
rl(·)

we have St = A(n).

Proof. We know that the above derivation must start by focusing on one of
the formulas in system (Theorem FocusOnlyTheory in our formalisation). Then, we
proceed by case analysis on all of the rules. If the rule is not fireable, then we
cannot focus on that rule since the initial rule cannot be applied (and the above
derivation is not valid). If the rule can be fired, due to Corollary 2, we know that
the resulting St is necessarily the one-step transformation of C(n, c, 0,m), that,
in this case, satisfies St = A(n).
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Property 5. Let Δ be a multiset of atoms of the form C(·). Then, in any deriva-
tion of the form

system;Δ, T(t + td), St � G

system;Δ, T(t), C(n, blood, f,m) � G
rl(·)

with m containing CD47, it must be the case that

1. either St = C(n, blood, f − 1,m),
2. or St = A(n),
3. or St = C(n, blood, f +2,m′) with m′ being as m plus an additional mutation,
4. or St = C(n, bone, f + 1,m) with m = [EPCAM, CD47, CD44, MET].

Proof. In this case we present the Coq script needed to discard this proof. Def-
inition GoalP5 is just a shorthand to denote the goal we need to prove.
Definition GoalP5 (f n t m:nat) :=

|-F- Theory ; [ Atom T{ Cte t} ; Atom C{ n ; blood; f ; m} ] ; UP [] →
In m [EPCDCD ;EPCDCDME;EPCDCDMEse] →

exists (d m’ :nat),

|-F- Theory ; [ Atom T{ d s+ Cte t} ; Atom C{ n ;blood; f -1; m } ] ; UP [] ∨
|-F- Theory ; [ Atom T{ d s+ Cte t} ; Atom A{ n} ] ; UP [] ∨
(|-F- Theory ; [ Atom T{ d s+ Cte t} ; Atom C{ n ;blood; f +2; m’ } ] ; UP [] ∧ (plusOne m m’) ) ∨
(m = EPCDCDME ∧ |-F- Theory ; [ Atom T{ d s+ Cte t} ; Atom C{ n ;bone; f + 1; EPCDCDME } ] ; UP []) .

Proposition Property5 : forall (f n t m:nat) ,

GoalP5 f n t m.

idtac "Proving Property 5".

intros f n t m HProof HCaseM.

apply FocusOnlyTheory in HProof;auto;

destruct HProof as [R HProof]; destruct HProof as [HIn HProof];

time "Solve:" repeat (first [ CaseRule | DecomposeRule; FindUnification | SolveGoal]) .

Qed.
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using network-based Cox regression: a methodological andcomputational practice.
Front. Physiol. 7 (2016)

23. Iuliano, A., Occhipinti, A., Angelini, C., Feis, I.D., Liò, P.: Combining pathway
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Abstract. Dynamical organization of bivalents during meiosis may play
a significant role in the appearance of joint genic expression, as the result
of persistent overlapping domains of constitutive pericentromeric hete-
rochromatin coming from different bivalents during pachytene.

We present early findings of an ongoing research in which we apply
standard global threshold segmentation techniques for assessing corre-
lation between observed sizes of sets of overlapping heterochromatin
domains in spreads of meiotic Mus m. domesticus 2n=40 spermatocytes
during pachytene and their simulated counterparts.

Simulated spreads were produced ad libitum using a special non homo-
geneous Bernoulli site percolation process, called P-Percolation, acting
upon the fullerene’s dual C′

1200, in which clusters of pericentromeric het-
erochromatin are depicted by random chromatin neigborhoods (ranches)
arising from a process characterized by a vector P of independent
Bernoulli random variables. We show that under the hypothesis made, a
vector P of at least three dimensions is needed for establishing coherence
between observed and simulated values.

Keywords: Random chromatin neighborhoods · Pachytene ·
2n=40 Mus m. domesticus · Inhomogeneous Bernoulli site percolation ·
Fullerene · Image segmentation

1 Introduction

The mouse Mus m. domesticus 2n=40 has been extensively used for modeling
purposes for a number of remarkable characteristics. Among them, the morphol-
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ogy characteristics of having practically indistinguishable chromosomes (save for
the sex chromosomes X and Y) makes it particularly well suited for attempting
probabilistic descriptions in the dynamics of chromosome’s associations. In [2]
and [4] a specific stage of meiosis - pachytene - has been considered for establish-
ing a probabilistic model of associations of bivalents, in terms of simple statis-
tics of the observed clusters appearing in preparations (prophase meiotic nuclei),
called spreads or squashes. In them, pericentromeric heterochromatin surround-
ing the bivalent’s short arm synaptonemal complexes is highlighted, revealing
domains of overlapping heterochromatin, also called association domains.

As stated in [1], these regions allow - for example - joint expression of genes
coming from different bivalents, hence the associations themselves could be con-
ceived as a form of dynamical organization from which joint genic expression
can be produced or expressed.

The modeling process considered first the most eye-catching features of the
observed phenomena, namely the probabilistic description of heterochromatin
clusters of the telomere’s bivalents attached to the nuclear envelope during
pachytene.

First statistics for these clusters were established by considering the number
of bivalents in each subcluster, which lead to considering partitions of the number
19 (since for Mus m. domesticus 2n=40 there are 19 autosomal bivalents plus the
sex bivalent XY in pachytene state) by observing a set of 400 spreads, reported
in [2], in which bivalents were represented by indistinguishable objects being
randomly placed at the nuclear envelope. The envelope was assumed to be planar
and with an hexagonal tiling.

Then, in [4] the nuclear envelope was replaced by a locally planar six-regular
graph, which means that each position upon the nuclear envelope accepts exactly
six neighbors. Finally, in [1] a clustering process was proposed based on the
notion of Random chromatin neighborhoods (ranchs) and an association process
derived from a special type of site non-homogeneous percolation processes upon
vertices of a fullerene’s dual C ′

1200, called P-percolation.
Hence, for the purposes of this work, we simulate spreads by means of ran-

dom chromatin neighborhoods generated by a P-percolation process, as in [1],
that represent both the pericentromeric heterochromatin (CPCH) surrounding
the Synaptonemal Complexes (SC’s) and the SC’s themselves, attached to the
envelope, which is modelled by C ′

1200.
Since ranches uniformly distributed in a bounded domain will overlap and

hence produce clusters, their size distribution will be determined in a fashion
depending solely upon the Bernoulli random variables driving the percolation
process.

In this work we continue the interrogation of the model by processing the
original data in order to estimate coherence between our theoretical model and
the biological subject, by relating the observed nuclear surface being taken by
the ranches, on one side, and the simulated surface being taken by the clusters
in dependency upon the individual Bernoulli random variables used to construct
the associated percolation process, on the other.



144 S. Berŕıos et al.

The article proceeds then as follows: In the next section, Materials and Meth-
ods, we present the data acquisition method used for obtaining the statistics of
the cluster’s distribution and explain the main biological concepts used through-
out this article. We further explain the global threshold segmentation method
used for estimating observed chromatin surfaces in the spreads.

We proceed then with the model of the nuclear envelope and explain the
terminology used, in particular P-Percolation and the notion of ranches. We
provide some theoretical results for the average chromatin surface in terms of
the underlying Bernoulli random variables that drive the percolation.

We then briefly discuss the determination of length 3 for the P-vector in
the percolation as yielding optimal coherence between simulated and observed
values. We close the article with a brief discussion of our results as well as
providing some possible lines of future research.

2 Materials and Methods

A dataset of 400 photographs (in jpg format) was considered, which are the result
of removing the nuclear envelope of spermatocytes in the meiosis’s pachytene
state, exposing DNA related structures associated to the individual bivalents:
The synaptonemal complex and the constitutive pericentromeric heterochro-
matin. Each one of these preparations are called spreads.

2.1 Biology and Data

The methodology of the data collection is described through 4 steps:

– Animals: Spermatocytes were taken from two male three-month-old Mus m.
domesticus 2n=40 C3H mice. Mice were maintained at 22 ◦C with a light/dark
cycle of 12/12 h and fed ad libitum. Procedures involving the use of - and
upon - mice were approved by the Animal Ethics Committee of the Faculty
of Medicine, Universidad de Chile.

– Spermatocyte nuclear spreads: Spermatocyte spreads were obtained fol-
lowing the procedure described by Peters et al. [7], and Page et al. [6]. Briefly,
a testicular cell suspension in 100 mM sucrose was spread onto a slide dipped
in 1% para-formaldehyde in distilled water containing 0.15% Triton X-100
then left to dry for two hours in a moist chamber. The slides were subse-
quently washed with 0.08% Photoflow (Kodak), air-dried, and re-hydrated in
PBS.

– Immunochemical identification of bivalents: The slides were incubated
for 24 h at 4 ◦C in a moist chamber with the primary antibodies: mouse anti-
SYCP3 1:100 (Santa Cruz, 74569) and rabbit anti-H3K9me3 1:200 (Abcam
ab8580). Then, the slides were incubated for 30 min at room temperature
with the secondary antibodies: FITC-conjugated goat anti-mouse IgG (1:50)
(Sigma), or Texas red-conjugated goat anti-rabbit IgG (1:200) (Jackson).
Finally, slides were rinsed in PBS and mounted in Vectashield (Vector).
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– Image registration: Stained slides were viewed and photographed on a
Nikon Optiphot or an Olympus BX61 epifluorescent microscope at 1000X
equipped with Nikon PL-APO 100X, 1.30 NA objective lenses to monitor
staining and assess results. Individual photographs were produced with a DS
camera control unit DS-L1 Nikon or captured with an Olympus DP70, with
digital center-weighted average metering mode and manual exposure, and
with X and Y Resolution set to 0.01 in RGB format (JPG) of 2560× 1920
pixels.

A bivalent is a complex structure consisting in two synapsed homologous
chromosomes through the synaptonemal complex SC. All SC’s appear green in
the photographs and each is surrounded by a cloud of constitutive pericentro-
metric heterochromatin, CPCH. If two bivalents exhibit overlapping domains of
CPCH near to their short arms (tainted red), then they are said to be in asso-
ciation. Hence in the spreads, association domains appear as a connected set of
pixels tainted red and the number of bivalents in association correspond to the
number of green tainted SC’s belonging to a given connected domain.

We count the number or bivalents in each connected domain and assign to
the spread the corresponding Partition of the number 19 thus determined.

As an illustration of this procedure, refer to Fig. 1, which depicts a represen-
tative instance of a pachytene nuclear spread. Observe the 19 indistinguishable
autosomal bivalents and the sex chromosomes X and Y. The partition of 19
associated to this photograph corresponds to 19 = 7 + 4 + 2 + 1 + 1 + ... + 1,
which means that the biggest cluster contains 7 bivalents, the second contains
4, etc.

We say that the spread in Fig. 1 belongs to 1st-Class 7 and 2nd-Class 4.

Fig. 1. A representative pachytene spermatocyte spread of 2n = 40 Mus domesti-
cus mice treated by immunocytochemical techniques. In red the pericentromeric hete-
rochromatin domains, in green the synaptonemal complexes. The (sex) bivalent XY is
indicated. (Color figure online)

All 400 spread photographs were classified and the distribution made avail-
able in the previous works, see [1,2] and [4]. For the purposes of this article, we
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denote by f1
O[i] the frequence of spreads belonging to the 1st – Class i. Similarly,

we denote by f2
O[i] the frequence (in %) of spreads belonging to the 2nd – Class i.

The following table, reprinted partially from [1], gives the 1st-Class frequen-
cies (Table 1):

Table 1. Observed 1st-Class frequencies of sizes 1 to 19

i 1 2 3 4 5 6 7 8 9 10 11 12 · · ·
f1
O[i] 0.00 0.50 11.25 23.25 23.50 18.50 10.25 6.50 4.25 1.25 0.75 0.00 · · ·

Analogously, we can consider the second Class (meaning the frequencies of
the second biggest cluster) and obtain the table for the f2

O values. This values
were also reported in [1] and hence we omit them here. But for establishing a
quality parameter for our approximations, we will refer to the quadratic error in
the determination of the associated 1st Class (resp. 2d-Class) frequencies, which
we call ε21 (resp. ε22), see Eq. (4.1) below.

2.2 Global Threshold Image Segmentation for Chromatin Surface
Determination

Images in RGB format are presented in three frames, one for each color, and
correspond numerically to a matrix of pixels in 3D dimensions. Pixel values in a
given frame are either integers between 0 and 256 or normalized between 0 and
1, we used only normalized images in our analysis. A Grayscale image can be
produced for each frame or for the combined RGB by weighting the individual
frames according to standard polynomial conversions, as in luminosity (21%
Red, 72% Green and 7% Blue), which follows ITU-R recomendation BT709 [8]
(Fig. 2). This procedure has been used elsewhere for luminance derived image
processing, see for example [3]. An histogram of intensities was produced for
each image, as in Fig. 3.

Background noise can be cut off in order to produce the nucleus including
the chromatin, and the chromatin, respectively. Distinct outliers (in our case,
zones with illuminated pixels that do not correspond to CPCH) from non related
structures in the image can be removed by hand. In Fig. 3, background noise is
contained in the interval [0, 0.2] approximately, which correspond to position
kl = 17 in the histogram, while the chromatin clusters exhibit pixel intensities
above 0.4 (or position ku ≥ 27). Figure 4 shows the nucleus and chromatin for the
example image where the cut-off pixel intensities were set to be 0.25 and 0.475.
With these values, the relative surface being taken by the chromatin, which is
proportional to the number of highlighted pixels, corresponds to an equivalent of
27.9 % of the total surface of the nucleus. In terms of the graph with 602 nodes,
this corresponds to 168 nodes, which is consistent with a P-percolation generated
by a P-vector of probabilities with at least three dimensions, see discussion below.
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Fig. 2. Image RAD50001 in (a) composite (R, G, B) representation, (b) Red (c) Green
and (d) Blue (in Gray scale for better visualization) (Color figure online)
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Fig. 3. Histogram for Red frame of Image RAD50001. Noise threshold correspond to
kl = 17, chromatin threshold to ku ≥ 27 (Color figure online)
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Fig. 4. Nucleus and chromatin content for image RAD50001

We use a gray-level histogram based thresholding for assessing segmentation
of the images, as depicted in [9], in which a global threshold is used for discrim-
ination of the structures. We use two levels of intensities at positions kl and ku

of the histogram, considered as a vector. Hence, if H denotes the histogram of
an image, and f(m,n) denotes the pixel intensity at coordinates (m,n) of the
image, the nuclei will be the set of pixels that satisfy H(kl) > f(m,n) and the
heterochromatin cluster will satisfy H(ku) > f(m,n). In our case, all images are
2560 × 1920 matrices with pixel intensities in [0, 1].

To provide the best mean chromatin surface in a first approximation, we
selected 20 spreads satisfying homogeneity criteria: similar in intensity and in
color made by the same person with the same process. For those 20 spreads, we
computed the mean of surface chromatin S for different couples of (kl, ku), with
values for lower and upper thresholds, needed for determining the nucleus and
the chromatin clusters, satisfying the restrictions: 15 ≤ kl ≤ 20, 27 ≤ ku ≤ 33
and 12 ≤ ku − kl ≤ 13.

We obtain the following Table 2:

Table 2. Pixel thresholds and corresponding theoretical surface in the graph approxi-
mation

(kl, ku) (15,27) (16,28) (17,29) (18,30) (19,31) (20,32)

S 171.5 172.2 174.75 177 181 186

(kl, ku) (15,28) (16,29) (17,30) (18,31) (19,32) (20,33)

S 156.9 158.95 161 163.45 167.7 172.7

The arithmetic mean of the values obtained in this fashion is Ŝ = 170.2625.
This corresponds well to the observed surface in correspondence with the 602
size of the associated graph.

Since the contours of the heterochromatin (CPCH clusters) and of the nucleus
itself are not sharp enough, because the nuclear envelope was removed before
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taking the photograph, it is hard to select the best objective parameter couple
(kl, ku) based on pixel gradients alone or from first principles. Other approaches
like Sobel segmentation as in [5], Renyi’s entropy [9] or even a cellular neural
networks (CNN) based algorithm [10] are currently under review and will not
be reported here.

3 P-Percolation and Ranches

For self-containedness purposes we recall briefly the model of the clustering pro-
cess based on Random chromatin neighborhoods (ranches) [1], which are the
result of a special site non-homogeneous percolation processes acting upon ver-
tices of a fullerene’s dual C ′

1200.
Recall that the dual of the fullerene C1200 is a graph of 602 nodes, all but 12

of them are six-regular (those exceptional 12 are five-regular), which means that
we can safely consider the entire graph as being six-regular, a condition required
by first principles in [2] that has been preserved in [1] and [4].

The P-Percolation process upon the six-regular graph proceeds then as fol-
lows: a random vertex is chosen, which will be the position of the Synaptonemal
Complex SC of a given bivalent upon the nuclear envelope. The percolation pro-
cess now selects vertices in an outward direction, layer by layer according to
independent Bernoulli random variables with probabilities P1, P2, etc.

Each Bernoulli process B(Pi) acts upon vertices in the i-th layer, selecting
those sites that are reachable from the preceding layer (i.e., bonds between ver-
tices of the same layer are not relevant and thus not considered). Reachable
means here that an already selected vertex in the previous layer exists that lies
at distance one of the candidate vertex (Fig. 5).

Hence, this site percolation process is a special type in which the set of
selected vertices in a neighborhood of up to κ layers represent a random chro-
matin neighborhood centered at the position of the starting SC, which we call
ranch. This process is repeated according to the number of SC’s present in the
spermatocyte and the induced clustering is determined by overlapping vertices
chosen from ranches belonging to different SC’s and fully determined by the
vector of probabilities P = (P1, P2, . . . , Pκ).

As a consequence, let us denote by MC the set of vertices of G = C ′
1200 that

represent the position of the SC ′s and by ranchP (w) the ranch associated to
each w ∈ MC, (notice that by definition w ∈ ranchP (w), for all w ∈ MC). In
Fig. 6, an element of MC is represented by a big dot. An element of a ranch is
represented by a small dot. When two ranches overlaps they belongs to the same
cluster. All the elements belonging to the same cluster have the same color.

Let S be the theoretical chromatin surface: S = | ∪v∈MC ranchP (v)|. The
expected (mean) chromatin surface for a 3-dimensional P-percolation process is
given by
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Fig. 5. The discrete nuclear envelope model G = C′
1200.

Fig. 6. A spread simulation with P = (P1, P2, P3) = (0.6, 0.415, 0.3). The cluster
description is 19 = 6 + 3 + 2 + 2 + 1 + 1 + 1 + 1 + 1 + 1

Theorem 1. Let P = (P1, P2, P3) be a probability vector of length κ = 3 for the
P-percolation upon G = C ′

1200. Then

μ(S) = 19 + 583
18∑

k=1

(−1)k+1qk1 + 602q19,1

with

qk1 =
19k

602k
P k
1

∑

n1+n2a+n2b+n3a+n3b=k
n1≤6, n2a≤6n2b≤6

n3a≤6, n3b≤12

(
n1

6

)(
n2a

6

)(
n2b

6

)(
n3a

6

)(
n3b

12

)

×P k−n1
2 (2 − P1)n2bPn3a+n3b

3 (3 − P1 − P1P2(2 − P1))n3b

Proof: Consider a vertex v of G = C ′
1200 and denote by qk the probability that

v belongs to – at least – k ranches. Put

qk = qk0 + qk1
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in which qk0 is the probability of v to belong to at least k ranches knowing that
v ∈ MC and qk1 is the probability of v to belong to at least k ranches knowing
that v /∈ MC.

Since the number of SC is 19 and the number of vertices of G is 602,

μ(S) = 602
19∑

k=1

(−1)k+1qk

The probability for a vertex to be in MC is 19
602 and v ∈ ranchP (v), thus

q10 = 19
602 and qk0 = 19

602qk−1,1 for k > 1.

We obtain μ(S) = 602
19∑

k=1

(−1)k+1qk

= 602
19∑

k=1

(−1)k+1(qk0 + qk1)

= 602(q10 +
18∑

k=1

(−1)k+1(qk1 − 19
602

qk1) + q19,1)

= 602(q10 +
18∑

k=1

(−1)k+1 583
602

qk1 + q19,1).

= 19 + 583
18∑

k=1

(−1)k+1qk1 + 602q19,1

Notice that qk1 depends on κ and P .
In the following we restrict ourselves to κ = 3, i.e., P = (P1, P2, P3). A

generalization of the formula for κ > 3 can be readily obtained and will be
omitted here.

Now assume that v is at the center of a local view of the graph, see Fig. 7:

– If w ∈ MC and d(v, w) = 1, the vertex v belongs to ranchP (w) with proba-
bility δ1 = P1.

– If w ∈ MC and d(v, w) = 2, there are two possibilities:
• w = Z(2, 2j) with j = 0, 1, 2, 3, 4 or 5, then v belongs to ranchP (w) with

probability δ2a = P1P2

• if w = Z(2, 2j + 1) with j = 0, 1, 2, 3, 4 or 5, the vertex v belongs to
ranchP (w) with probability δ2b = P1P2(2 − P1)

– If w ∈ MC and d(v, w) = 3, there are also two cases:
• if w = Z(3, 3j) with j = 0, 1, 2, 3, 4 or 5, the vertex v belongs to

ranchP (w) with probability δ3a = P1P2P3

• if w = Z(3, 3j + 1) or w = Z(3, 3j + 2) with j = 0, 1, 2, 3, 4 or 5, the
vertex v belongs to ranchP (w) with probability δ3b = P1P2P3(3 − P1 −
P1P2(2 − P1))
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Fig. 7. Reachable set at distance 3 for the (site) Bernoulli P-Percolation process (repro-
duced from [1]).

Let us fix a quintuplet of integers (n1, n2a, n2b, n3a, n3b) such that n1 ≤ 6,
n2a ≤ 6, n2b ≤ 6 , n3a ≤ 6, and n3b ≤ 12 and let us assume that there are at
least

– n1 elements of MC at distance 1 of v;
– n2a elements of MC at distance 2 of v which have a position Z(2, 2j)
– n2b elements of MC at distance 2 of v which have a position Z(2, 2j + 1)
– n3a elements of MC at distance 3 of v which have a position Z(3, 3j)
– n3b elements of MC at distance 3 of v which have a position Z(3, 3j + 1) or

Z(3, 3j + 2).

With this assumption, the probability for v to belong to a set of at least n1 +
n2a + n2b + n3a + n3b = k vertices is given by

19k

602k

(
n1

6

)
δn1
1

(
n2a

6

)
δn2a
2a

(
n2b

6

)
δn2b
2b

(
n3a

6

)
δn3a
3a

(
n3b

12

)
δn3b
3b .

From this, we obtain

qk1 =
19k

602k
∑

n1+n2a+n2b+n3a+n3b=k
n1≤6, n2a≤6n2b≤6

n3a≤6, n3b≤12

(n1

6

)
δn1
1

(n2a

6

)
δn2a
2a

(n2b

6

)
δ
n2b
2b

(n3a

6

)
δn3a
3a

(n3b

12

)
δ
n3b
3b

=
19k

602k
Pk
1

∑

n1+n2a+n2b+n3a+n3b=k
n1≤6, n2a≤6n2b≤6

n3a≤6, n3b≤12

(n1

6

)(n2a

6

)(n2b

6

)(n3a

6

)(n3b

12

)

× Pk−n1
2 (2− P1)n2bP

n3a+n3b
3 (3− P1 − P1P2(2− P1))n3b

Remark: Since for k ≥ 6, qk1 is almost negligible, we can safely truncate the
series.
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4 Surface, Clusters and Best P−Percolation

This section is devoted to the correlation between the theoretical surface and the
non homogeneous Bernoulli site percolation process. For the present analysis, we
consider a P-percolation with a P-vector of length 3 and express the chromatin’s
surface S in terms of the equivalent number of vertices in C ′

1200.
Figure 8 depicts the contour lines of the theoretical chromatin surface

together with the empirical best approximation obtained for 1st-Class, i.e., the
biggest cluster. Best approximation means that the selected vector minimizes
the sum of the squares in observed (f1

O) versus simulated (f1
S) 1st-Class cluster

distribution (respectively 2d-Class):

ε21 :=
19∑

i=1

|f1
O(i) − f1

S(i)|2 (4.1)

In Fig. 8(a), we consider first P3 = 0. The red dots correspond to those (P1, P2)
values for which ε1 is minimal under P−percolation with P = (P1, P2, 0). The
computation was made with 105 iterations. The black line corresponds to a spline
interpolation with a degree 3 piece-wise polynomial in P2 that approximates the
red dots. Contour lines of the surface equation S = σ (σ from 100 to 400 by 5)
were added in grey in the background. We observe that a few contour lines cross
the best approximation line. In the borders, the minimal (lower) and maximal
(upper) contour lines have been marked in dashed blue.

The same observation applies for P3 = 0.2 (Fig. 8(b)), P3 = 0.3 (Fig. 8(c))
and P4 = 0.4 (Fig. 8(d)).

The curve which fits best the experimental observations is obtained with P3 =
0.3, with P−percolation probability vectors as given in the following Table 3:

Table 3. P -percolation vectors

P1 P2 P3 ε1 ε2 S

0.5 0.53 0.3 3.06 9.13 170.16

0.55 0.467 0.3 3.10 8.45 170.2

0.6 0.415 0.3 2.97 7.78 170.43

0.65 0.375 0.3 2.72 7.62 171.53

0.7 0.335 0.3 2.37 7.60 171.5

The corresponding 1st-Class i frequencies are found to be (Table 4):
Figure 6 above showed a spread simulation with P = (0.6, 0.415, 0.3). More-

over the simulated mean surface turns out to be 169.4656, in close agreement
with the expected value.
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Table 4. 1st-Class i frequencies with P = (0.6, 0.415, 0.3)

i 1 2 3 4 5 6 7 8 9 10

f1
o [i] 0.000 0.822 10.630 22.461 22.448 16.647 11.044 6.860 3.992 2.395

i 11 12 13 14 15 16 17 18 19

f1
o [i] 1.321 0.725 0.371 0.174 0.074 0.025 0.008 0.003 0.000

Fig. 8. Best approximation for 1st-Class obtained with P-percolation P = (P1, P2, P3)
in (P1, P2)−space (in black) and contour lines of the surface equation S = σ (σ from 100
to 400 by 5) coupled with the lower and uooer contour lines S = σmin and S = σmax

(in dashed blue): (a) P3 = 0, σmin = 187, σmax = 200, (b) P3 = 0.2, σmin = 172,
σmax = 184. (c) P3 = 0.3, σmin = 170, σmax = 181,(d) P3 = 0.4, σmin = 164,
σmax = 183. (Color figure online)
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5 Conclusion

In this work we considered P - percolation as the underlying dynamics of
CPCH cluster formation in spermatocytes of Mus m. domesticus 2n=40 dur-
ing pachytene. Using simple threshold segmentation analysis we gained insight
upon the set of suitable P vectors that provide best approximations to the obser-
vations.

We cannot help but to emphasize that neither an homogeneous nor a non
homogeneous percolation process of length 2 suffices to adequately explain the
observed distribution of the 1st- Class cluster distribution, so that necessarily a
P-percolation process with P-vector of length tree – at least – seems appropriate
for a proper description of the underlying randomness in this state.

The non homogeneous kind of percolation represents also an interesting
aspect to be further elucidated in future works. Moreover, even if the contour
lines of the spread images are not sharp, due to the intrinsic technique of remov-
ing the envelope, but also because of the staining techniques used for revealing
the CPCH’s and SC’s structures during pachytene, further improvements in
accuracy or P length determination should be obtained through better image
segmentation methods, a task that is presently under development.

From this perspective, the results show that, while a three vector approxima-
tion yields promising expectations, we need still to work also on other character-
istics of the distributions, as for example the 2ndClass too. Indeed, we focused
here upon the quality of our model with respect to the results obtained mainly
for the 1stClass and the corresponding approximation of the surface.

We see that the results on ε2 are not yet as good as those of ε1. At the present
time, we haven’t decided whether a P vector of length greater than three can
furnish an even better approximation for the distributions in terms of both ε1
and ε2 and whether this would provide a chromatin surface in better correlation
with the observed surface. This is a matter of ongoing research.

We thank the referees for their valuable comments.
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