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Abstract
As composites of constant, finite (co)product, identity, and powerset functors, Kripke poly-
nomial functors form a relevant class of Set-functors in the theory of coalgebras. The main
goal of this paper is to expand the theory of limits in categories of coalgebras of Kripke
polynomial functors to the context of quantale-enriched categories. To assume the role of the
powerset functor we consider “powerset-like” functors based on the Hausdorff V-category
structure. As a starting point, we show that for a lifting of a Set-functor to a topological
category X over Set that commutes with the forgetful functor, the corresponding category of
coalgebras over X is topological over the category of coalgebras over Set and, therefore, it is
“as complete” but cannot be “more complete”. Secondly, based on a Cantor-like argument,
we observe that Hausdorff functors on categories of quantale-enriched categories do not
admit a terminal coalgebra. Finally, in order to overcome these “negative” results, we com-
bine quantale-enriched categories and topology à la Nachbin. Besides studying some basic
properties of these categories, we investigate “powerset-like” functors which simultaneously
encode the classical Hausdorff metric and Vietoris topology and show that the corresponding
categories of coalgebras of “Kripke polynomial” functors are (co)complete.
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1 Introduction

Startingwith early studies in the nineties to the introduction of uniformnotions of behavioural
metric in the last decade, the study of coalgebras over metric-like spaces has focused on four
specific areas:

1. liftings of functors from the category Set of sets and functions to categories of metric
spaces (see [6–8]), as a way of lifting state-based transition systems into transitions
systems over categories of metric spaces;

2. results on the existence of terminal coalgebras and their computation (see [8,55]), as a
way of calculating the behavioural distance of two given states of a transition system;

3. the introduction of behavioural metrics with corresponding “Up-To techniques” (see
[8,12,57]), as a way of easing the calculation of behavioural distances;

4. and the development of coalgebraic logical foundations over metric spaces (see [6,36,
58]), as a way of reasoning in a quantitive way about transition systems.

In this paper we focus on the first two topics, with particular interest in metric versions
of Kripke polynomial functors. As composites of constant, finite (co)product, identity, and
powerset functors, Kripke polynomial functors form a pertinent class of Set-functors in the
theory of coalgebras (for example, see [13,48] and [37]), which is well-behaved in regard to
the existence of limits in their respective categories of coalgebras—assuming that the pow-
erset functor is submitted to certain cardinality restrictions. The latter constraint is essential
since the powerset functor P : Set → Set does not admit a terminal coalgebra; a well-known
fact which follows from the following:

• in [38] it is shown that the terminal coalgebra of a functor F : C → C is a fixed point of
F, and

• in [15] it is (essentially) proven that the powerset functor P : Set → Set does not have
fixed points.

On the other hand, being accessible, the finite powerset functor Pfin : Set → Set does
admit a terminal coalgebra (see [9]); in fact, the category of coalgebras for Pfin : Set → Set
is complete. Metric counterparts of the powerset functor are often based on the Hausdorff
metric, informally, we call them Hausdorff functors. This metric was originally introduced
in [25,44] (see also [11]), and, recently, has been considered in the more general context of
quantale enriched categories (see [5,52]) in which we discuss the results presented here.

A common theme of the papers [8] and [7] is to study liftings of Set-functors to categories
of metric spaces, or more generally to the category V-Cat of V-categories and V-functors, for
a quantale V, in the sense that the diagram
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V-Cat V-Cat

Set Set

T̄

T

commutes. In Sect. 2 we show that, for such a lifting of a Set-functor, the corresponding
category of coalgebras over V-Cat is topological over the category of coalgebras over Set
(see Theorem 2.5). This implies that it is possible to recast over V-Cat all the theory about
limits in categories of Kripke polynomial coalgebras over Set. However, this result also
highlights that “adding a V-category structure” does not improve the situation regarding
limits by itself. In particular, the Hausdorff functor that considers all subsets of a metric
space does not admit a terminal coalgebra.

Besides cardinal restrictions, another way to “tame” the powerset functor is to equip
a set with some kind of structure and then consider only its “structure relevant” subsets.
This is precisely the strategy employed in [27] where we passed from Kripke polynomial
functors to Vietoris polynomial functors on categories of topological spaces. For instance, it
is implicitly shown in [19, p. 245] that the classic Vietoris functor on the category of compact
Hausdorff spaces and continuous maps has a terminal coalgebra, and this result generalises
to all topological spaces when considering the compact Vietoris functor on Top which sends
a space to its hyperspace of compact subsets (see [27] for details). This fact might not come
as a surprise for the reader thinking of compactness as “generalised finiteness”; however, it
came as a surprise to us to learn that the lower Vietoris functor on Top, where one considers
all closed subsets, also admits a terminal coalgebra.

Motivated by the fact that finite topological spaces correspond precisely to finite ordered
sets, over the past decades several results about topological spaces have been inspired by their
finite counterparts; for a sequence of results see for instance [16,33,34]. One therefore might
wonder if the result regarding the lower Vietoris functor on Top has an order-theoretic coun-
terpart; in other words, does the upset functor Up : Ord → Ord admit a terminal coalgebra?
The answer is negative, as it follows from the “generalized Cantor Theorem” of [18].1 Based
on [18], in Sect. 3 we generalise Cantor’s Theorem further (see Theorem 3.16) and use this
result to show that the (non-symmetric) Hausdorff functor on V-Cat—sending a V-category
to the space of all “up-closed” subsets—does not admit a terminal coalgebra.

To overcome these “negative results” regarding completeness of categories of coalgebras,
in Sect. 4 we add a topological component to the V-categorical setting. More specifically, we
introduce the Hausdorff construction for V-categories equipped with a compatible compact
Hausdorff topology. We note that these V-categorical compact Hausdorff spaces are already
studied in [30,54], being the corresponding category denoted here by V-CatCH. Also, we find
it worthwhile to notice that the notion of V-categorical compact Hausdorff space generalises
simultaneously Nachbin’s ordered compact Hausdorff spaces [42] and the classic notion of
compact metric space; therefore, it provides a framework to combine and even unify both
theories. For example:

• It is known that the specialisation order of a sober space is directed complete (see [35,
Lemma II.1.9]); in [30] we observed that this fact implies immediately that the order
relation of an ordered compact Hausdorff space is directed complete. Furthermore, an
appropriate version of this result in the quantale-enriched setting implies that the metric
of a metric compact Hausdorff space (i.e. a metric space with a compatible compact
Hausdorff topology) is Cauchy complete, generalising the classical fact that a compact

1 We thank Adriana Balan for calling our attention to [18].

123



776 D. Hofmann, P. Nora

metric space (i.e. a metric space where the induced topology is compact) is Cauchy
complete.

• The Hausdorff functor H : V-CatCH → V-CatCH introduced in Sect. 4 combines the
Vietoris topology and the Hausdorff metric; in particular, for a metric compact Hausdorff
space, the Hausdorff metric is compatible with the Vietoris topology (Proposition 4.19).
This result represents a variation of the classic fact stating that, for every compact metric
space X , the Hausdorff metric induces the Vietoris topology of the compact Hausdorff
space X (see [41]).

By “adding topology”, and under mild assumptions on the quantale V, we are able to
show that H : V-CatCH → V-CatCH preserves codirected limits (see Theorem 4.35); which
eventually allows us to conclude that, for every Hausdorff polynomial functor on V-CatCH,
the corresponding category of coalgebras is complete (see Theorem 4.47).

In the last part of this paperwe consider aV-categorical counterpart of the notion of aPriest-
ley space. In [28] we developed already “Stone-type” duality theory for these type of spaces;
here we show thatH : V-CatCH → V-CatCH sends Priestley spaces to Priestley spaces, gener-
alising a well-known fact of the Vietoris functor on the category of partially ordered compact
spaces. Consequently, many results regarding coalgebras for H : V-CatCH → V-CatCH are
valid for its restriction to Priestley spaces as well.

Throughout this paper we assume familiarity with the basic theory of quantale enriched
categories. For the readers convenience, in “Appendix A”we collect some notions and results
and, moreover, present some useful properties of the reflector into the category of separated
V-categories.

2 Strict Functorial Liftings

The main motif of this work is to expand the study of limits in categories of coalgebras of
Kripke polynomial functors to the context of quantale-enriched categories. In more general
terms, thismeans that given an endofunctor F on a categoryA and a faithful functorU : X → A,
our problem consists in studying a “lifting” of F to an endofunctor F̄ on X. In a strict sense,
by “lifting” we mean that the diagram

X X

A A

F̄

U U

F

(2.1)

commutes.

Remark 2.1 If in (2.1) the functor F̄ has a fix-point, then so has F. Hence, if F does not
have a fix-point, then neither does F̄. In particular, any strict lifting of the powerset functor
P : Set → Set does not admit a terminal coalgebra.

Then, we obtain a faithful functor

Ū : CoAlg(F̄) → CoAlg(F)

by “applying U”. In [27, Theorem 3.11] we showed under additional conditions that, if the
forgetful functorU : X → A is topological, then so is the functor Ū : CoAlg(F̄) → CoAlg(F).
We start by improving upon this result.
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Hausdorff Coalgebras 777

In the remainder of this section, let U : X → A be a topological functor, for more infor-
mation about this notion we refer to [4]. We recall that X is fibre-complete, and for an object
A of A we use the suggestive notation (A, α) to denote an element of the fibre of A. Then we
write α ≤ β if 1A : (A, α) → (A, β) is a morphism of X. Since we also assume the existence
of functors F : A → A and F̄ : X → X such that the diagram (2.1) commutes, with a slight
abuse of notation, we often write (FA, Fα) instead of F̄(A, α).

For a U-structured arrow f : A → U(B, β) in A, we denote by (A, f �β ) the corresponding
U-initial lift. Similarly, for f : U(A, α) → B in A, we denote by (B, f �α ) the corresponding
U-final lift. Below we collect some well-known facts.

Proposition 2.2 Let f : A → B be a morphism in A and (A, α) and (B, β) be objects in the
fibres of A and B, respectively. Then the following assertions are equivalent.

(i) f : (A, α) → (B, β) is a morphism in X.
(ii) α ≤ f �β .
(iii) f �α ≤ β.

Proposition 2.3 Let (A, α) and (A, β) be objects in the fibre of an object A of A. If α ≤ β

then Fα ≤ Fβ.

Proposition 2.4 Let c : A → FA be a morphism in A and let A be a collection of objects
(A, α) in the fibre of A such that c : (A, α) → (FA, Fα) is in X. Let (A, αc) be the supremum
of A. Then, c : (A, αc) → (FA, Fαc) is a morphism of X.

Proof. First note that

(A, αc)
c−−−→

∨
{(FA, Fα) | (X , α) ∈ A}

is a morphism in X, and, by Proposition 2.3, so is
∨

{(FA, Fα) | (X , α) ∈ A} 1FA−−−−→ (FA, Fαc).

Theorem 2.5 The functor Ū : CoAlg(F̄) → CoAlg(F) is topological.

Proof. Let (Ai , αi , ci )i∈I be a family of objects in CoAlg(F̄), and ( fi : (A, c) → (Ai , ci ))i∈I

a cone in CoAlg(F). Consider

αc =
∨

{α | c : (A, α) → (FA, Fα) is inX and, for all i ∈ I , α ≤ fi
�
αi
}.

Then, by Proposition 2.4, c : (A, αc) → (FA, Fαc) is a morphism of X. Moreover, by
construction, αc ≤ fi

�
αi

for all i ∈ I ; hence, ( fi : (A, αc) → (Ai , αi ))i∈I is a cone in X.
Therefore, ( fi : (A, αc, c) → (Ai , αi , ci ))i∈I is a cone in CoAlg(F̄). We claim that this cone
is U-initial.

Let (gi : (B, β, b) → (Ai , αi , ci ) be a cone in CoAlg(F̄), and h : (B, b) → (A, c) a
morphism in CoAlg(F) such that, for every i ∈ I ,

fi · h = gi (2.2)

We will see that h�β ≤ αc. First observe that it follows from (2.2) and Proposition 2.2 that
h�β ≤ fi

�
αi

for all i ∈ I . Furthermore, since c · h = Fh · b in A it follows that c : (A, h�β) →
(F A, F(h�β)) is a morphism of X because h : (B, β) → (A, h�β) is final. Therefore, by
construction of αc, we conclude that h�β ≤ αc.
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778 D. Hofmann, P. Nora

Corollary 2.6 The category CoAlg(F̄) has limits of shape I if and only if CoAlg(F) has limits
of shape I . In particular, CoAlg(F̄) has a terminal object if and only if CoAlg(F) has one.

This means that CoAlg(F̄) cannot be “more complete” than CoAlg(F), one of the reasons
why in Sect. 3.1 we will lift the powerset functor on Set to V-Cat but only “up to natural
transformation”.

On the other hand, Corollary 2.6 also means that CoAlg(F̄) is “at least as complete” as
CoAlg(F), which allow us to recover known results about the existence of limits in CoAlg(F̄).
For example, in [8, Theorem 6.2] it is proven, by implicitly constructing the right adjoint
of U, that every lifting to the category of symmetric metric spaces of an endofunctor on Set
that admits a terminal coalgebra also admits a terminal coalgebra. A similar result was also
obtained in [7, Theorem 4.15] for “V-Catifications”—very specific liftings from Set toV-Cat.

Note that Theorem 2.5 even tells us how to construct limits in CoAlg(F̄) from limits in
CoAlg(F). In particular, ifU is a forgetful functor to Set then a limit in CoAlg(F̄) has the same
underlying set of the corresponding limit in CoAlg(F). This behaviour was already observed
in [7, Theorem 4.16] for some particular liftings to V-Cat.
Example 2.7 Given a subfunctor F of the powerset functor on Set, the corresponding class
of Kripke polynomial functors is typically defined as the smallest class of Set-functors that
contains the identity functor, all constant functors and it is closed under composition with
F, finite sums and finite products of functors. If we are interested in strict liftings to V-Cat,
then Theorem 2.5 tells us that is possible to recast over V-Cat all the theory about limits in
categories of Kripke polynomial coalgebras over Set. For example, if we consider a strict
lifting of the finite powerset functor, then every category of coalgebras of aKripke polynomial
functor is (co)complete, and every limit is obtained as the initial lift of the corresponding
limit of Set-coalgebras.

In the sequel, we give an example of a generic way of lifting a functor F : A → A to a
category X that is topological overA. In particular, this construction is used to lift Set-functors
to categories of metric spaces in [8], and to categories of V-categories in [7].

For a functor F : A → A and A-morphisms ψ : A → Ã and σ : F Ã → Ã, we denote by
ψ♦ : FA → Ã the composite

FA
Fψ−−−−→ F Ã

σ−−−→ Ã

in A.
Consider now a category X equipped with a topological functor U : X → A and an X-

object X̃ whose underlying set UX̃ carries the structure σ : FUX̃ → UX̃ of a F-algebra. Then
(ψ♦ : FUX → UX̃)ψ∈X(X ,X̃) is a U-structured cone, and we define F̄X to be the domain of
the initial lift of this cone. Clearly:

Theorem 2.8 1. The construction above defines a functor F̄ : X → X making the diagram

X X

A A

F̄

U U

F

commutative.
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2. For every ψ : X → X̃ in X, ψ♦ is an X-morphism ψ♦ : F̄X → X̃ . In particular, σ = 1X̃
♦

is an X-morphism σ : F̄X̃ → X̃ .
3. If X̃ is injective with respect to initial morphisms, then F̄ : X → X preserves initial

morphism (compare with [8, Theorem 5.8]).
4. Let α : F ⇒ G be a natural transformation such that σG · αX̃ = σF. Then α lifts to a

natural transformation between the corresponding X-functors.
5. If F = T is part of a monad T = (T, m, e) on A and σ : T|X̃ | → |X̃ | is a T-algebra, then

T lifts naturally to a monad T̄ = (T̄, m, e) on X.

Proof. The first affirmation follows immediately from the commutativity of the diagram

FX FY

X̃ ,

F f

(ψ · f )♦
ψ♦

and similarly the last twoones.The secondaffirmation is true bydefinition. InProposition2.10
we prove a slightly more general version of (3).

Remark 2.9 We note that in Theorem 2.8 (4), the inequality σG ·αX̃ ≤ σF does not guarantee
that αX : FX → GX is an X-morphism (this contradicts [8, Theorem 8.1]). For instance,
consider X = Metsym, X̃ = [0,∞] and F,G : Set → Set with F = G being the identity
functor on Set, λ = 1, σG = 1[0,∞] and σF = ∞ (constant). Clearly, σG · λ[0,∞] ≤ σF.
However,G : Metsym → Metsym is the identity functor and F : Metsym → Metsym transforms
every symmetric metric space into the indiscrete space on the same underlying set. Hence,
for a non-indiscrete space X , λX : FX → GX is not a morphism in Metsym.

In this context it is useful to note that Theorem 2.8 (3) gives a sufficient condition for the
preservation of initial morphisms that can be formulated in a slightly more general way.

Proposition 2.10 Let F : X → X be a functor, σ : FX̃ → X̃ a morphism in X, and U : X → A a
faithful functor. Assume further that X̃ is injective in X with respect to initial morphisms and,
for every object X in X, the cone (ψ♦ : FX → X̃)ψ∈X(X ,X̃) in X is initial. Then F preserves
initial morphisms.

Proof. Let f : X → Y be an initial morphism in X. Since X̃ is injective with respect to initial
morphisms, every morphism ψ : X → X̃ in X factors as hψ · f , for some hψ : Y → X̃
in X. Hence, Fψ = Fhψ · F f . Now, suppose that h : Z → FY is a morphism in X, and
g : UZ → UFX is a function such that UF f · g = Uh. Then, for every morphism ψ : X → X̃
in X, we have

Uψ♦ · g = Uσ · hψ · F f · g = Uσ · hψ · h.

Therefore, the claim follows because the cone (ψ♦ : FX → X̃)ψ∈X(X ,X̃) is initial and U
is faithful.

The injectivity-condition on X̃ is often fulfilled; the proposition below collects some
examples.

Proposition 2.11 1. The V-category (V, hom) is injective in V-Cat with respect to initial
morphisms. Since V-Catsym ↪→ V-Cat preserves initial morphisms (see Theorem A.5),
the symmetrisation of (V, hom) is injective in V-Catsym.

123



780 D. Hofmann, P. Nora

2. The unit interval [0, 1] is injective in PosComp with respect to initial morphisms (see
[42]).

3. The Sierpiński space is injective with respect to initial morphisms in the category Top of
topological spaces and continuous maps.

The next proposition shows that the Hausdorff distance between subsets of metric spaces
(see [25]) emerges naturally in the context of V-categories from the construction discussed
earlier.

Proposition 2.12 The lifting of the powerset functor P on Set to V-Cat with respect to∧ : PV → V sends a V-category (X , a) to (PX ,Ha), where for all A, B ⊆ X,

Ha(A, B) =
∧

y∈B

∨

x∈A

a(x, y).

Proof. Let (X , a) be aV-category and Pa theV-category structure corresponding to the lifting
aforementioned. That is, for every A, B ∈ PX ,

Pa(A, B) =
∧

ψ∈V-Cat(X ,V)

hom

⎛

⎝
∧

x∈A

ψ(x),
∧

y∈B

ψ(y)

⎞

⎠ .

First, observe that for every u ∈ V the function hom(u,−) : V → V preserves infima and
the map hom(−, u) : V → V is antimonotone.

Hence, for every V-functor ψ : (X , a) → (V, hom),

Ha(A, B) ≤
∧

y∈B

∨

x∈A

hom(ψ(x), ψ(y)) ≤
∧

y∈B

hom

(
∧

x∈A

ψ(x), ψ(y)

)

= hom

⎛

⎝
∧

x∈A

ψ(x),
∧

y∈B

ψ(y)

⎞

⎠ .

Therefore, Ha(A, B) ≤ Pa(A, B).
To see that the reverse inequality holds, consider the V-functor f : (X , a) → (V, hom)

below that is obtained by combining Propositions A.3 and A.4.

X VA V�a�

f

∨

Therefore, as hom(−, u) is antimonotone,

Pa(A, B) ≤ hom

⎛

⎝
∧

y′∈A

f (y′),
∧

y∈B

f (y)

⎞

⎠ ≤ hom

⎛

⎝k,
∧

y∈B

∨

x∈A

a(x, y)

⎞

⎠

=
∧

y∈B

∨

x∈A

a(x, y) = Ha(A, B).

Remark 2.13 It is well-known that the formula of Proposition 2.12 defines a V-category
structure on the powerset (for instance, see [5]).

Remark 2.14 The notion of a (symmetric) distance between subsets of a metric space goes
back to [44] and was made popular by its use in [25]. For more information on the history of
this idea we refer to [11].
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Corollary 2.15 The lifting of the powerset functor to V-Cat of Proposition 2.12 preserves
initial morphisms.

Another idea to tackle the problem of lifting an endofunctor F on Set toV-Cat is to consider
first a lax extension F̂ : V-Rel → V-Rel of the functor F in the sense of [51]; that is, to require
1. r ≤ r ′ �⇒ F̂r ≤ F̂r ′,
2. F̂s · F̂r ≤ F̂(s · r),
3. F f ≤ F̂( f ) and (F f )◦ ≤ F̂( f ◦).
It follows immediately (see [51]) that

F̂(s · f ) = F̂s · F f and F̂(g◦ · r) = Fg◦ · F̂r .

Then, based on this lax extension, the functor F : Set → Set admits a natural lifting to
V-Cat (see [54]): the functor F̄ : V-Cat → V-Cat sends a V-category (X , a) to (FX , F̂a).
One advantage of this type of lifting is that allows us to use the calculus of V-relations. The
following is a simple example.

Proposition 2.16 F̄ : V-Cat → V-Cat preserves initial V-functors.

Proof. Let f : (X , a) → (Y , b) be a V-functor with a = f ◦ · b · f . Then F̂a = F f ◦ · F̂b · F f .

The result above generalises [8, Theorem 5.8].

Example 2.17 For a V-relation r : X −→
 Y , and subsets A ⊆ X , B ⊆ Y , the formula
∧

y∈B

∨

x∈A

r(x, y)

defines a lax extension of the powerset functor on Set to V-Rel (see [51]). The corresponding
lifting to V-Cat coincides with the one described in Proposition 2.12. In particular, by Propo-
sition 2.16, we obtain another proof for the fact that this lifting preserves initial morphisms.

If we start with a monad T = (T, m, e) on Set, a lax extension of T = (T, m, e) to V-Rel
is a lax extension T̂ of the functor T to V-Rel such that m : T̂̂T → T̂ and e : Id → T̂ become
op-lax:

mY · T̂̂Tr ≤ T̂r · m X , eY · r ≤ T̂r · eX

for all V-relations r : X −→
 Y .
For a lax extension of a Set-monad T = (T, m, e) to V-Rel, the functions eX : X → TX

and m X : TTX → TX become V-functors for each V-category X , so that we obtain a monad
on V-Cat. The Eilenberg–Moore algebras for this monad are triples (X , a, α)where (X , a) is
a V-category and (X , α) is an algebra for the Set-monadT such that α : T(X , a0) → (X , a0)
is a V-functor. A map f : X → Y is a homomorphism f : (X , a, α) → (Y , b, β) of algebras
precisely if f preserves both structures, that is, whenever f : (X , a) → (Y , b) is a V-functor
and f : (X , α) → (Y , β) is a T-homomorphism. For more information we refer to [31,54].

One possibleway to construct lax extensions based on a (lax)T-algebra structure ξ : TV →
V is devised in [26]: for every V-relation r : X × Y → V and for all x ∈ TX and y ∈ TY ,

T̂r(x, y) =
∨{

ξ · Tr(w)

∣∣∣ w ∈ T(X × Y ), Tπ1(w) = x, Tπ2(w) = y
}

.

We note that T̂ preserves the involution on V-Rel, that is, T̂(r◦) = (̂Tr)◦ for all V-relations
r : X −→
 Y (and we write simply T̂r◦).
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Example 2.18 Consider the ultrafilter monad U = (U, m, e) on Set, the quantale 2 and the
U-algebra

ξ : U2 −→ 2

sending every ultrafilter to its generating point. The category of algebras of the inducedmonad
on V-Cat is the categoryOrdCH of (pre)ordered compact Hausdorff spaces introduced in [42]
(see also [54]).

3 Hausdorff Polynomial Functors onV-Cat
In this section we study a class of endofunctors on V-Cat that intuitively is an analogue of
the class of Kripke polynomial functors on Set. We begin by describing a V-Cat-counterpart
of the powerset functor on Set that is based on the upset functor on Ord.

3.1 The Hausdorff Functor onV-Cat

We introduce now some V-categorical versions of classical notions from order theory. We
start with the “up-closure” and “down-closure” of a subset.

Definition 3.1 Let (X , a) be a V-category. For every A ⊆ X , put

↑a A =
{

y ∈ X | k ≤
∨

x∈A

a(x, y)

}
and ↓a A =

{
y ∈ X | k ≤

∨

x∈A

a(y, x)

}
.

As usual, we write ↑a x and ↓a x if A = {x}. We also observe that ↑a A =↓a◦ A which
allows us to translate results about ↑a to results about ↓a , and vice versa. Considering the
underlying ordered set (X ,≤) of (X , a), we note that

↑≤A ⊆↑a A and ↓≤A ⊆↓a A

for every A ⊆ X , with equality if A is a singleton. To simplify notation, we often write ↑A
and ↓A whenever the corresponding structure can be derived from the context.

Remark 3.2 For an ordered set X , with a denoting the V-category structure induced by the
order relation ≤ of X , ↑≤A =↑a A and ↓≤A =↓a A.

Lemma 3.3 For every V-category (X , a) and every A ⊆ X,

A ⊆↑A, ↑↑A ⊆↑A, A ⊆↓A, ↓↓A ⊆↓A.

Proof. It follows immediately from the two defining properties of a V-category.
We call a subset A ⊆ X of a V-category (X , a) increasing whenever A =↑A; likewise,

A is called decreasing whenever A =↓A. Clearly, ↑A is the smallest increasing subset of
X which includes A, and similarly for ↓A. For later use we record some simple facts about
increasing and decreasing subsets of a V-category.
Lemma 3.4 The intersection of increasing (decreasing) subsets of a V-category is increasing
(decreasing).

Lemma 3.5 Let f : X → Y be a V-functor. Then the following assertions hold.
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1. For every increasing (decreasing) subset B ⊆ Y , f −1(B) is increasing (decreasing) in
X.

2. For every A ⊆ X, f (↑A) ⊆↑f (A) and f (↓A) ⊆↓f (A).

In contrast to the situation for ordered sets, the complement of an increasing set is not
necessarily decreasing. This motivates the following notation.

Definition 3.6 Let (X , a) be a V-category and A ⊆ X . Then A is called co-increasing
whenever A� is increasing, and A is called co-decreasing whenever A� is decreasing.

For a V-category (X , a), we consider the V-category
HX = {A ⊆ X | A is increasing},

equipped with

Ha(A, B) =
∧

y∈B

∨

x∈A

a(x, y),

for all A, B ∈ HX (see Remark 2.13).
Moreover, we have the following formulas.

Lemma 3.7 Let (X , a) be a V-category. Then, for all A, B ⊆ X, the following assertions
hold.

1. k ≤ Ha(A, B) ⇐⇒ B ⊆↑A.
2. Ha(A,↑B) = Ha(A, B) and Ha(↑A, B) = Ha(A, B).

Proof. The first assertion is clear, and so are the inequalities Ha(A,↑B) ≤ Ha(A, B) and
Ha(↑A, B) ≥ Ha(A, B). Furthermore, Ha(A, B) ≤ Ha(A, B) ⊗ Ha(B,↑B) ≤ Ha(A,↑B)

and Ha(↑A, B) ≤ Ha(A,↑A) ⊗ Ha(↑A, B) ≤ Ha(A, B).

Corollary 3.8 For every V-category (X , a), the V-category H(X , a) is separated. Moreover,
the underlying order is containment ⊇.

For a V-functor f : (X , a) → (X , a′), the map

H f : H(X , a) −→ H(Y , a′)

sends an increasing subset A ⊆ X to ↑f (A). Then, by Lemma 3.7,

Ha(A, B) ≤ Ha′( f (A), f (B)) = Ha′(↑f (A),↑f (B))

for all A, B ∈ HX . Clearly, for the identity morphism 1X : X → X in V-Cat, H(1X ) is the
identity morphism onHX . Moreover, for all f : X → Y and g : Y → Z in V-Cat and A ⊆ X ,
by Lemma 3.5,

↑g( f (A)) ⊆↑g(↑f (A)) ⊆↑↑g( f (A)) ⊆↑g( f (A));
which proves that the construction above defines a functor H : V-Cat → V-Cat.

We note that this functor is naturally isomorphic to the dual construction H : V-Cat →
V-Cat of the “Hausdorff functor” of [52], witnessed by the family (dX : HX → HX)X

where A ∈ HX is sent to the presheaf Ha(A, {−}) on X . By [52, Section 5.2], each dX

is fully faithful and surjective; since HX is separated, dX is an isomorphism in V-Cat. For
f : (X , a) → (Y , a′) in V-Cat, A ⊆ X increasing and y ∈ Y , we calculate
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∨

z∈A

a′( f (z), y) ≤
∨

x∈X

∨

z∈A

(a(z, x) ⊗ a′( f (x), y))

≤
∨

x∈X

∨

z∈A

(a′( f (z), f (x)) ⊗ a′( f (x), y)) ≤
∨

z∈A

a′( f (z), y)

which proves that (dX )X is indeed a natural transformation. Consequently, the functor H is
part of a Kock–Zöberlein monad H = (H,w , h) on V-Cat where

h X : X −→ HX , w X : HHX −→ HX ,

x 
−→↑x A 
−→
⋃

A

for all V-categories X . Clearly, h corresponds to the unit of the “Hausdorff monad” of [52];
the following remark justifies the corresponding claim regarding the multiplication.

Remark 3.9 For all A ∈ HHX ,
⋃

A = {x ∈ X | ∃A ∈ A . x ∈ A} = {x ∈ X |↑x ∈ A} = h−1
X (A),

therefore
⋃A is indeed increasing. Furthermore, we conclude that w X � H h X in V-Cat.

3.2 Coalgebras of Hausdorff Polynomial Functors onV-Cat

The notion of Kripke polynomial functor is typically formulated in the context of sets and
functions. In this sectionwe study an intuitiveV-Cat-counterpart, where theHausdorff functor
on V-Cat takes the role of the powerset functor on Set. For previous studies of Kripke
polynomial functors see [13,37,48].

Definition 3.10 Let X be a subcategory of V-Cat closed under finite limits and finite colimits
such that theHausdorff functorH : V-Cat → V-Cat restricts to X.We call a functorHausdorff
polynomial on X if it belongs to the smallest class of endofunctors on X that contains the
identity functor, all constant functors and is closed under composition with H, finite products
and finite sums of functors.

In the sequel, wewill see that the category of coalgebras of aHausdorff polynomial functor
on V-Cat is not necessarily complete. Nevertheless, thanks to the next theorem, we are some
small steps away from proving that equalisers always exist.

Theorem 3.11 ([43, Theorem 2.5.24]). Let F be an endofunctor over a cocomplete category
X that has an (E, M)-factorisation structure such that E is contained in the class of X-
epimorphisms and X is M-wellpowered. If F sends morphisms in M to morphisms in M, then
CoAlg(F) has equalisers.

Corollary 3.12 The Hausdorff functor H : V-Cat → V-Cat preserves initial morphisms.

Proof. Let f : (X , a) → (Y , b) be an initial morphism in V-Cat. Consider the map
↑(−) : P(Y , b) → H(Y , b) defined by A 
→↑A. By Lemma 3.7, ↑(−) is an initial morphism
in V-Cat. Therefore, by Corollary 2.15, we can express H f as the following composition of
initial morphisms

H(X , a) H(Y , b)

P(X , a) P(Y , b)

H f

P f

↑(−) .
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Proposition 3.13 The Hausdorff functor H : V-Cat → V-Cat preserves initial monomor-
phisms.

Proof. We already know from Corollary 3.12 that H preserves initial morphisms, and from
Corollary 3.8 that the image by H of every V-category is separated. Therefore, H preserves
initial monomorphisms.

Proposition 3.14 The category of coalgebras of a Hausdorff polynomial functor V-Cat →
V-Cat has equalisers.

Proof. Being a topological category over Set, the categoryV-Cat is (surjective, initial mono)-
structured and satisfies all conditions necessary to apply Theorem 3.11. By Proposition 3.13,
the Hausdorff functor preserves initial monomorphisms and the remaining cases follow from
standard arguments. Therefore, we can apply Theorem 3.11.

In the remainder of the section, we show that the Hausdorff functor does not admit a
terminal coalgebra. This part is inspired by [18].

Given elements x, y of a V-category (X , a), we write x ≺ y if k ≤ a(x, y) and a(y, x) =
⊥, and we denote by ≺ x the set {y ∈ X | x ≺ y}.
Proposition 3.15 Let (X , a) be a V-category. Then, for every x, y ∈ X, the following asser-
tions hold.

1. The set ≺ x is increasing.
2. ↑x ≺ ≺ x in H(X , a).
3. For every initial V-functor (X , a) → (Y , b), if x ≺ y then f x ≺ f y.

Proof. The set ≺ x is the intersection of the increasing sets ↑x and a(−, x)−1{⊥}. Regarding
the second affirmation, observe thatHa( ≺ x,↑x) ≤ ∨

y∈ ≺x a(y, x) = ⊥. The third affirmation
is trivial.

Theorem 3.16 Let V be a non-trivial quantale, and (X , a) a V-category. A morphism of type
H(X , a) → (X , a) cannot be an embedding.

Proof. Suppose that there exists an embedding φ : H(X , a) → (X , a). We will see that this
implies that there exists x ∈ X such that ↑x = ≺ x , which is a contradiction as V is non-trivial.

Since HX is a complete lattice the map h X ·φ : HX → HX has a greatest fixed point A
that is given by

∨
{I ∈ HX | I ≤↑φ(I )}.

We claim that x = φ(A) has the desired property. The morphism φ is initial and ↑x ≺ ≺ x ,
hence, by Proposition 3.15, x = φ(↑x) ≺ φ( ≺ x) and, consequently, ≺ x ≤↑φ( ≺ x). Therefore,

≺ x ≤↑x because ↑x is the greatest fixed point.

Corollary 3.17 Let V be a non-trivial quantale. The Hausdorff functor H : V-Cat → V-Cat
does not admit fixed points.

Remark 3.18 If V is trivial, that is V = {k}, then H : Set → Set is the functor that sends every
set X to the set {X}. Therefore, the fixed points of H : Set → Set are the terminal objects.

Corollary 3.19 Let V be a non-trivial quantale. The Hausdorff functor H : V-Cat → V-Cat
does not admit a terminal coalgebra, neither does any possible restriction to a full subcategory
of V-Cat.
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Example 3.20 In particular, the (non-symmetric) Hausdorff functor onMet does not admit a
terminal coalgebra, and the same applies to its restriction to the full subcategory of compact
metric spaces. Passing to the symmetric version does not remedy the situation. Here, for a
symmetric compact metric space (X , a), we consider now the metric Ha defined by

Ha(A, A′) = max

{
sup
x∈A

inf
x ′∈A′ a(x, x ′), sup

x∈A′
inf

x ′∈A
a(x ′, x)

}
(3.1)

on the set HX of all closed subsets. Note that Ha(∅, A) = ∞, for every non-empty subset
A ⊆ X . Then, if s : (HX ,Ha) → (X , a) is an isomorphism, we construct recursively a
sequence (xn)n∈N in X as follows:

x0 = s(∅) and xn+1 = s({xn}).
Then a(xm, xl) = ∞, for all m, k ∈ N with m �= k; which contradicts compactness of

(X , a).

Remark 3.21 If we disallow the empty set in the definition of H, then determining if H admits
a terminal coalgebra becomes a trivial problem since, in this variation, H1 � 1. In fact, if
a category X has a terminal object 1, and an endofunctor F : X → X preserves it, then the
unique arrow 1 → F1 defines a terminal coalgebra.

Variants of the Hausdorff functor on categories of metric spaces are studied by various
authors. For instance, in [57] it is shown that the categoryCMet of 1-bounded completemetric
spaces and non-expansive maps is accessible, and that the Hausdorff functor H : CMet →
CMet sending a complete metric space to the space of all non-empty and compact subsets
with distance defined as in (3.1) is accessible. Since the constant functor 1 : CMet → CMet is
accessible, so is the functorCMet → CMet sending X toHX+1 (see [57, Propositions 2–4]),
which is isomorphic to the functor H : CMet → CMet sending a complete metric space to the
space of all compact subsets with distance defined as in (3.1). Therefore also H : CMet →
CMet admits a terminal coalgebra (see [57, Theorem 1]). Trading compact with finite, in [8,
Example 5.31 and Theorem 6.2] it is shown that the “finite Hausdorff functor” on Metsym
admits a terminal coalgebra. Also, we point the reader to [1] where the terminal coalgebra for
the Hausdorff functor on the category CUMet of compact ultrametric spaces and continuous
maps is studied. Among other results, it is shown in [1] that the category CUMet is equivalent
to the category of second countable Stone spaces and continuous maps, and the Hausdorff
functor corresponds to the Vietoris functor on this category. Finally, an extensive study
of categories of coalgebras for Vietoris functors on categories of (compact) spaces was
conducted in [27].

4 Hausdorff Polynomial Functors onV-CatCH
In Sect. 3.2 we saw that the image of a V-category under the Hausdorff functor H on V-Cat
has “too many” elements for H to admit a terminal coalgebra. To filter them, in this section
we add a topological component to our study of V-Cat.

4.1 Adding Topology

To “add topology”, we use the ultrafilter monad U = (U, m, e) on Set. Furthermore:
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Assumption 4.1 Throughout this sectionwe assume thatV is completely distributive quantale
(see [20,47]).

Then

ξ : UV −→ V, v 
−→
∧

A∈v

∨
A

is the structure of anU-algebra on V, and represents the convergence of a compact Hausdorff
topology. Therefore, as discussed at the end of Sect. 2, we obtain a lax extension of the
ultrafilter monad to V-Rel that induces a monad on V-Cat. Its algebras are V-categories
equipped with a compatible compact Hausdorff topology (see [30,54]); we call them V-
categorical compact Hausdorff spaces, and denote the corresponding Eilenberg–Moore
category by

V-CatCH.

Then we have a natural forgetful functor

V-CatCH −→ OrdCH

sending (X , a, α) to (X ,≤, α) where

x ≤ y whenever k ≤ a(x, y).

Moreover, (V, hom, ξ) is a V-categorical compact Hausdorff space with underlying
ordered compact Hausdorff space (V,≤, ξ), where ≤ is the order of V. We denote by ξ≤
the induced stably compact topology. We provide now some information on the topologies
of V.
Remark 4.2 SinceV is in particular a continuous lattice, the convergence ξ is the convergence
of the Lawson topology of V (see [24, Proposition VII-3.10]). A subbasis for this topology
is given by the sets

{u ∈ V | v � u} and {u ∈ V | v � u} (v ∈ V),

where � denotes the way-below relation of V. Furthermore, by [2, Proposition 2.3.6], the
sets

{u ∈ V | v � u} (v ∈ V)

form a basis for the Scott topology of V. By the proof of [24, Lemma V-5.15], the sets

{u ∈ V | v � u} = (↑v)� (v ∈ V)

form a subbasis of the dual of Scott topology of V, which is precisely ξ≤.
Since, moreover, V is (ccd), we have the following.

• By [24, Lemma VII-2.7] and [24, Proposition VII-2.10], the Lawson topology of V
coincides with the Lawson topology of Vop, and the set

{↑u | u ∈ V} ∪ {↓u | u ∈ V}
is a subbasis for the closed sets of this topology which is known as the interval topology.

• Therefore the Scott topology of V coincides with the dual of the Scott topology of Vop;
in particular, the sets ↓v (v ∈ V) form a subbasis for the closed sets of the Scott topology
of V.
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• Finally, with ≪ denoting the totally below relation of V, also the sets

{u ∈ V | v ≪ u} (v ∈ V)

form a subbasis of the Scott topology of V.

We aim now at V-categorical generalisations of some results of [42] regarding ordered
compact Hausdorff spaces. Firstly, we recall [30, Proposition 3.22]:

Proposition 4.3 For a V-category (X , a) and a U-algebra (X , α) with the same underlying
set X, the following assertions are equivalent.

(i) α : U(X , a) → (X , a) is a V-functor.
(ii) a : (X , α) × (X , α) → (V, ξ≤) is continuous.

For the quantale V = 2, the result above reveals that Nachbin’s ordered compact spaces
are precisely the separated V-categorical compact Hausdorff spaces: the topological space
(V, ξ≤) is the Sierpiński space 2 = {0, 1} with {1} closed, and, therefore, the assertion (ii)
translates to “the order relation a is closed in X × X” (see also [54, Proposition 4])).

Corollary 4.4 For a V-category (X , a) and a U-algebra (X , α) with the same underlying set
X, (X , a, α) is a V-categorical compact Hausdorff space if and only if, for all x, y ∈ X and
u ∈ V with u � a(x, y), there exist neighbourhoods V of x and W of y so that, for all x ′ ∈ V
and y′ ∈ W , u �≤ a(x ′, y′).

Proof. It follows from the fact that the sets (↑u)� (u ∈ V) form a subbasis for the topology
ξ≤ on V (see Remark 4.2).

We consider now the full subcategory V-CatCHsep of V-CatCH defined by the separated
V-categorical compact Hausdorff spaces; i.e. those spaces where the underlying V-category
is separated. The results above imply that the separated reflector R : V-Cat → V-Catsep
lifts to a functor S : V-CatCH → V-CatCHsep which is left adjoint to the inclusion functor
V-CatCHsep → V-CatCH. In fact, for a V-categorical compact Hausdorff space (X , a, α), the
equivalence relation∼ on X is closed in X×X with respect to the product topology, therefore
the quotient topology on X/∼ is compact Hausdorff and, with p : X → X/∼ denoting the
projection map, the diagram

X × X X/∼× X/∼

V

p×p

a
ã

commutes. Consequently, the V-category (X/∼, ã) together with the quotient topology on
X/∼ is a V-categorical compact Hausdorff space. In contrast to Remark A.9, now we have
the following result.

Proposition 4.5 The functor S : V-CatCH → V-CatCHsep preserves codirected limits.

Proof. Let D : I → V-CatCH be a codirected diagram with limit cone (πi : X → Xi )i∈I .
Let (ρi : L → SXi )i∈I be a limit cone of SD in V-CatCHsep and q : SX → L be the
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canonical comparison map. By Corollary A.8, q is initial with respect to the forgetful functor
V-CatCHsep → CompHaus. Since the diagram

X SX L

Xi SXi

p

πi

q

ρi

pi

commutes, q · p is surjective by [14, I.9.6, Corollary 2] hence q is surjective and therefore
an isomorphism in V-CatCHsep.

Besides the compactHausdorff space (X , α), we also consider the stably compact topology
a≤ induced byα and the underlying order of a, as well as the dual space (X , α≤)op of (X , α≤).
We remark that the identity map 1X : X → X is continuous of types

(X , α) −→ (X , α≤) and (X , α) −→ (X , α≤)op.

Therefore a subset A ⊆ X of X is open (closed) in (X , α) if it is open (closed) in (X , α≤)

or in (X , α≤)op. Moreover, every closed subset of (X , α) is compact in (X , α≤) and in
(X , α≤)op.

Corollary 4.6 Let (X , a, α) be a V-categorical compact Hausdorff space. Then also

a : (X , α≤)op × (X , α≤) −→ (V, ξ≤)

is continuous. Hence, for all x, y ∈ X and u ∈ V with u � a(x, y), there exist a neighbour-
hood V of x in (X , α≤)op and a neighbourhood W of y in (X , α≤) so that, for all x ′ ∈ V
and y′ ∈ W , u �≤ a(x ′, y′).

Proof. Follows from the facts that a : X × X → V is continuous of type (X , α)× (X , α) →
(V, ξ≤) and monotone of type (X ,≤)op × (X ,≤) → (V,≤).

Remark 4.7 The result above allows us to construct some useful continuous maps. For
instance, for A ⊆ X compact in (X , α≤)op, the map a : A× X → V is continuous where we
consider on A the subspace topology. Therefore the composite arrow

X VA V�a�

↑aA
∨

is continuous of type (X , α≤) → (V, ξ≤). Note that

↑a
A(x) =

∨
{a(z, x) | z ∈ A},

for every x ∈ X . Similarly, for A ⊆ X compact in (X , α≤), we obtain a continuous map
↓a

A : (X , α≤)op → (V, ξ≤) sending x ∈ X to

↓a
A(x) =

∨
{a(x, z) | z ∈ A}.

Lemma 4.8 Let (X , a, α) be a V-categorical compact Hausdorff space and A ⊆ X. Then
the following assertions hold.

1. If A is compact in (X , α≤)op, then ↑a A is closed in (X , α≤) and therefore also in (X , α).
2. If A is compact in (X , α≤), then ↓a A is closed in (X , α≤)op and therefore also in (X , α).
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In particular, if A is closed in (X , α), then ↑a A and ↓a A are closed in (X , α≤) and hence
also in (X , α).

Proof. Use the maps of Remark 4.7 and observe that

↑a A = (↑a
A)−1(↑k) and ↓a A = (↓a

A)−1(↑k).

From now on we assume the following condition.

Assumption 4.9 The subset

⇓ k = {u ∈ V | u ≪ k}
of V is directed; which implies in particular that k �= ⊥. A quantale satisfying this condition
is called value quantale in [22], whereby in [30] the designation k is approximated is used.

Example 4.10 Consider the quantale V = PN the powerset of N with order given by subset
inclusion and with ⊗ = ∩ intersection. In this case, the neutral element of V is given by N

and, for A, B ∈ PN,

A ≪ B ⇐⇒ A = {x} for some x ∈ B.

Hence, ⇓ N = {{n} | n ∈ N} is not directed, that is, V = PN does not satisfy Assump-
tion 4.9.

Assumption 4.9 implies some further pleasant properties of V, as we recall next.

Lemma 4.11 The ⊗-neutral element k satisfies the conditions

(k ≤ u ∨ v) �⇒ ((k ≤ u) or (k ≤ v)),

for all u, v ∈ V, and

k ≤
∨

u≪k

u ⊗ u.

Proof. See [21, Theorem 1.12] and [29, Remark 4.21].

Lemma 4.12 Let (X , a, α) be a V-categorical compact Hausdorff space and A, B ⊆ X so
that A ∩ B = ∅, A is increasing and compact in (X , α≤)op and B is compact in (X , α≤).
Then there exists some u ≪ k so that, for all x ∈ A and y ∈ B, u �≤ a(x, y).

Proof. Let y ∈ B. Since A is increasing and y /∈ A, there is some vy ≪ k so that

vy �≤
∨

x∈A

a(x, y).

Hence, by Corollary 4.6, for every x ∈ A there exists Uxy open in (X , α≤)op and Wxy

open in (X , α≤) such that y ∈ Wxy and

∀x ′ ∈ Uxy, y′ ∈ Wxy . vy �≤ a(x ′, y′).

Therefore, by compactness of A, there exists an open subset Uy in (X , α≤)op and an open
subset Wy in (X , α≤) such that A ⊆ Uy , y ∈ Wy and

∀x ′ ∈ Uy, y′ ∈ Wy . vy �≤ a(x ′, y′).
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Then B ⊆ ⋃{Wy | y ∈ X , y /∈ V } and, since B is compact, there are finitely many
elements y1, . . . , yn ∈ B with

B ⊆ Wy1 ∪ · · · ∪ Wyn .

Put u = vy1 ∨ · · · ∨ vyn . Then u ≪ k since ⇓ k is directed; moreover, u �≤ a(x, y), for
all x ∈ A and y ∈ B.

Lemma 4.13 Let A ⊆ V be compact subset in (V, ξ≤). If k ≤ ∨
A, then there is some u ∈ A

with k ≤ u.

Proof. Assume that ↑k∩ ↓A = ∅. Since ↑k is increasing and compact in (V, ξ≤)op and
↓A is compact in (V, ξ≤), by Lemma 4.12, there is some u ≪ k so that, for all v ∈ A,
u �≤ hom(k, v) = v. Therefore k �≤ ∨

A.

Combining Remark 4.7 with Lemma 4.13, we obtain:

Lemma 4.14 Let (X , a, α) be a V-categorical compact Hausdorff space with underlying
order ≤. Then, for every compact subset A ⊆ X of (X , α≤)op, ↑a A =↑≤A; likewise, for
every compact subset A ⊆ X of (X , α≤), ↓a A =↓≤A. In particular, for every closed subset
A ⊆ X of (X , α), ↓a A =↓≤A and ↑a A =↑≤A.

Thanks to Lemma 4.14 we can transport several well-known result for ordered compact
Hausdorff spaces to metric compact Hausdorff spaces.

Lemma 4.15 Let (X , a, α) be a V-categorical compact Hausdorff space, A ⊆ X closed and
W ⊆ X open and co-increasing with A ⊆ W . Then ↓A ⊆ W .

Proof. Apply Lemma 4.12 to W � ⊆ A�.

The following result is [42, Proposition 5].

Proposition 4.16 Let (X , a, α) be a V-categorical compact Hausdorff space, A ⊆ X closed
and increasing and V ⊆ X open with A ⊆ V . Then there exists W ⊆ X open and co-
decreasing with A ⊆ W ⊆ V .

Theorem 4.17 Let (X , a, α) be a V-categorical compact Hausdorff space, A ⊆ X closed
and decreasing and B ⊆ X closed and increasing with A∩ B = ∅. Then there exist V ⊆ X
open and co-increasing and W ⊆ X open and co-decreasing with

A ⊆ V , B ⊆ W , V ∩ W = ∅.

Proof. See [42, Theorem 4].

For a V-categorical compact Hausdorff space X = (X , a, α), we put

HX = {A ⊆ X | A is closed and increasing}
and consider on HX the restriction of the Hausdorff structure Ha to HX and the hit-and-miss
topology, that is, the topology generated by the sets

V ♦ = {A ∈ HX | A ∩ V �= ∅} (V open, co-increasing)

and

W � = {A ∈ HX | A ⊆ W } (W open, co-decreasing).

Note that, by Lemma 4.14, the topological part ofHX coincides with the Vietoris topology
for the underlying ordered compact Hausdorff space. In particular:
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Proposition 4.18 For every V-categorical compact Hausdorff space X, the hit-and-miss
topology on HX is compact and Hausdorff.

Proposition 4.19 For every V-categorical compact Hausdorff space X, HX equipped with
the hit-and-miss topology and the Hausdorff structure is a V-categorical compact Hausdorff
space.

Proof. Consider aV-categorical compact Hausdorff space (X , a, α). To establish the compat-
ibility between the topology and theHausdorffV-category structure,we useCorollary 4.4. Let
A, B ∈ HX and u ∈ V. Assume u �≤ Ha(A, B). Since V is (ccd), there is some v ≪ u with
v �≤ Ha(A, B). Hence, there is some y ∈ B with v �≤ ∨

x∈A a(x, y). Therefore v �≤ a(x, y)

for all x ∈ A. By Corollary 4.4 and compactness of A, there exist open subsets U , V ⊆ X
with A ⊆ U , y ∈ V , and v �≤ a(x ′, y′) for all x ′ ∈ U and y′ ∈ V ; by Proposition 4.16, we
may assume that U is co-decreasing and V is co-increasing. We conclude that

A ∈ U�, B ∈ V ♦, u �≤ Ha(A′, B ′)

for all A′ ∈ U� and B ′ ∈ V ♦.

Lemma 4.20 Let f : X → Y be in V-CatCH. Then the map

H f : HX −→ HY , A 
−→↑f (A)

is continuous and a V-functor.

Clearly, the construction of Lemma 4.20 defines a functor

H : V-CatCH −→ V-CatCH.

Moreover:

Proposition 4.21 The diagrams

OrdCH OrdCH

V-CatCH V-CatCH

H

H

V-CatCH V-CatCH

OrdCH OrdCH

H

H

of functors commutes.

Remark 4.22 Despite the commutative diagrams of Proposition 4.21 above, we cannot apply
Theorem 2.5 because, in general, the functors are not topological. In fact, even the functor
Met → Ord fails to be fibre-complete since a metric d in the fibre of {0 ≤ 1} is completely
determined by the value d(1, 0) ∈ (0,∞]. On the other hand, the functor V-CatCH →
CompHaus is topological and it is easy to see that the Hausdorff V-category structure is
compatible with the classical Vietoris topology on CompHaus. Therefore, Theorem 2.5 tell
us that equipping the Vietoris space on CompHaus with the Hausdorff V-category structure
yields a “powerset kind of” functor onV-CatCH that, in some sense, disregards theV-category
structure of the objects, but whose category of coalgebras is (co)complete.

Theorem 4.23 The functor H is part of a Kock–Zöberlein monad H = (H,w , h) on V-CatCH;
for every X in V-CatCH, the components h X and w X are given by

h X : X −→ HX , w X : HHX −→ HX .

x 
−→↑x A 
−→
⋃

A
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We recall from [32] that to everyV-category one can associate a canonical closure operator
which generalises the classic topology associated to a metric space.

Proposition 4.24 For every V-category (X , a), A ⊆ X and x ∈ X,

x ∈ A ⇐⇒ k ≤
∨

z∈A

a(x, z) ⊗ a(z, x).

Moreover, the closure operator (−) is topological for every V-category and defines a
functor

LV : V-Cat −→ Top

which commutes with the forgetful functors to Set. Moreover, LV(X) = LV(Xop) for every
V-category X.

Proof. See [32].

Recall that we assume ⇓ k to be directed.

Proposition 4.25 1. For every V-category (X , a), the topology of LV(X , a) is generated by
the left centered balls

L(x, u) = {y ∈ X | u ≪ a(x, y)} (x ∈ X , u ≪ k)

and the right centered balls

R(x, u) = {y ∈ X | u ≪ a(y, x)} (x ∈ X , u ≪ k).

2. For every separated V-category (X , a), the space L(X , a) is Hausdorff.

Proof. Regarding first statement, see [29, Remark 4.21] and [21]. The proof of the second
statement is analogous to the one for classic metric spaces. In fact, assume that (X , a)

is separated and let x, y ∈ X with x �= y. Without loss of generality, we may assume that
k � a(x, y). Hence, there is some u ≪ k with u � a(x, y). Take v,w ≪ k with u ≤ v⊗w.
Then

L(x, v) ∩ R(y, w) = ∅

since, if z ∈ L(x, v) ∩ R(y, w), then

u ≤ v ⊗ w ≤ a(x, z) ⊗ a(z, y) ≤ a(x, y),

a contradiction.

Until the end of this section we require also the following condition.

Assumption 4.26 For all u, v ∈ V,
(k ≤ u ⊗ v) �⇒ (k ≤ u and k ≤ v).

Remark 4.27 For every subset A ⊆ X of a V-category (X , a),

A ⊆↑A∩ ↓A.

In fact, if x ∈ A, then

k ≤
∨

z∈A

(a(x, z) ⊗ a(z, x)) ≤
(

∨

z∈A

a(x, z)

)
⊗

(
∨

z∈A

a(z, x)

)
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and therefore k ≤ ∨
z∈A a(x, z) and k ≤ ∨

z∈A a(z, x)). In particular, every increasing and
every decreasing subset of X are closed with respect to the closure operator of (X , a).

Corollary 4.28 The identity map on V is continuous of type LV → (V, ξ≤).

Recall from [30, Proposition 3.29] that the identity map on X × X is continuous of type

LV(X , a) × LV(X , a) −→ LV((X , a) ⊗ (X , a)),

for every V-category (X , a); hence, the composite map

LV(X , a)op × LV(X , a) −→ LV((X , a)op ⊗ (X , a))
a−−−→ LVV −→ (V, ξ≤)

is continuous. Therefore, if (X , a) is separated and LV(X , a) is compact, then these two
structures define a V-categorical compact Hausdorff space. In fact, with V-Catcomp,sep denot-
ing the full subcategory of V-Catsep defined by those separated V-categories X where LV is
compact, the construction above defines a functor V-Catcomp,sep → V-CatCH (see [30, Theo-
rem 3.28]). Similarly to a well-known property of metric spaces, [30, Corollary 4.21] affirms
that, under suitable conditions, every compact separated V-category is Cauchy-complete.

For classical compact metric spaces, it is well-known that the Hausdorff metric induces
the hit-and-miss topology. Below we give an asymmetric version of this result in the context
of V-categories.
Lemma 4.29 For theV-categorical compact Hausdorff space induced by a compact separated
V-category X, the hit-and-miss topology on HX coincides with the topology induced by the
Hausdorff structure on HX.

Proof. Let (X , a) be a compact separated V-category. We show that the topology induced
by Ha is contained in the hit-and-miss topology; then, since the former is Hausdorff and the
latter is compact, both topologies coincide.

Let A ∈ HX and u ≪ k. For every v ∈ V with u ≪ v ≪ k, put

Uv =
⋃

x∈A

L(x, v).

We show that L(A, u) = ⋃
u≪v≪k U�

v . To see this, let B ∈ L(A, u), hence, u ≪
Ha(A, B). Let v ∈ V with u ≪ v ≪ Ha(A, B). Then, for every y ∈ B, exists x ∈ A with
v ≪ a(x, y), that is, y ∈ L(x, v). Therefore B ⊆ Uv , which is equivalent to B ∈ U�

V .
Let now B ∈ U�

v , for some u ≪ v ≪ k. Then, for all y ∈ B, there is some x ∈ A with
v ≪ a(x, y); hence

u ≪ v ≤
∧

y∈B

∨

x∈A

a(x, y) = Ha(A, B).

Let now B ∈ R(A, u), and take u′, v ∈ V with u ≪ u′ ≪ v ≪ Ha(B, A). For every
x ∈ A, there exists y ∈ B with v ≪ a(y, x), that is, y ∈ B ∩ R(x, v). Take w ≪ k with
u′ ≪ v ⊗ w. By compactness, there exist x1, . . . , xn ∈ A with

A ⊆ L(x1, w) ∪ · · · ∪ L(xn, w).

Then B ∈ R(x1, v)♦∩· · ·∩R(xn, v)♦; moreover, R(x1, v)♦∩· · ·∩R(xn, v)♦ ⊆ R(A, u).
To see the latter, let B ′ ∈ R(x1, v)♦ ∩ · · · ∩ R(xn, v)♦ and x ∈ A, then x ∈ L(xi , w) for
some i ∈ {1, . . . , n}. Let y ∈ B ′ ∩ R(xi , v), then

u′ ≪ v ⊗ w ≤ a(y, xi ) ⊗ a(xi , x) ≤ a(y, x),
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which implies u ≪ u′ ≤ Ha(B ′, A).

Theorem 4.30 The functor H : V-Cat → V-Cat restricts to the category V-Catcomp,sep, more-
over, the diagram

V-Catcomp,sep V-Catcomp,sep

V-CatCH V-CatCH

H

H

commutes.

4.2 Coalgebras of Hausdorff Polynomial Functors onV-CatCH

In this section we show that by “adding topology” we can improve the results of Sect. 3.2
about limits in categories of coalgebras of Hausdorff polynomial functors. Throughout this
section we still require Assumptions 4.1 and 4.9.

We begin by showing that the category of coalgebras of the Hausdorff functor on V-CatCH
is complete. The following result summarizes our strategy.

Theorem 4.31 Let X be a category that is complete, cocomplete and has an (E, M)-
factorisation structure such that X is M-wellpowered and E is contained in the class of
X-epimorphisms. If a functor F : X → X sends morphisms in M to morphisms in M and
preserves codirected limits, then the category of coalgebras of F is complete.

Proof. The claim follows by combining Corollary 3.11, [10, Proposition 7 of Section 9.4],
[3, Remark 4.4] and [40, Corollary 2].

Also, the theorem bellow will help us to replace “preserves codirected limits” with “pre-
serves codirected initial cones”.

Theorem 4.32 ([4, Proposition 13.15]). Let U : X → A be a limit preserving faithful functor
and D : I → X a diagram. A cone C for D is a limit in X if and only if the cone UC is a limit of
UD in A and C is initial with respect to U.

Proposition 4.33 The Hausdorff functor on V-CatCH preserves codirected initial cones with
respect to the forgetful functor V-CatCH → CompHaus.

Proof. Let ( fi : (X , a, α) → (Xi , ai , αi ))i∈I be a codirected initial cone with respect to the
functor V-CatCH → CompHaus. We will show that for every A, B ⊆ X the inequality

u =
∧

i∈I
Hai (H fi (A),H fi (B)) ≤ Ha(A, B)

holds. Note that since V is (ccd) it is sufficient to prove that v ≤ Ha(A, B) for every v ≪ u.
Let b ∈ B and fix v ∈ V such that v ≪ u. Then, for every i ∈ I,

u ≤ Hai ( fi (A), fi (B)) ≤
∨

x∈A

ai ( fi (x), fi (b)),

since Hai (H fi (A),H fi (B)) = Hai ( fi (A), fi (B)) by lemma 3.7. Hence, for every i ∈ I,
there exists an element xi ∈ A such that v ≤ ai ( fi (xi ), fi (b)). Thus, for every i ∈ I, the set

Ai = A ∩ {x ∈ X | v ≤ ai ( fi (x), fi (b))}
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is non-empty and closed because ↑v ⊆ V is closed (see Remark 4.2) and a : (X , α) →
(V, ξ≤) is continuous (see Proposition 4.3). This way we obtain a codirected family of closed
subsets of X that has the finite intersection property since the cone ( fi )i∈I is codirected.
Consequently, by compactness of X , there exists xb ∈ ⋂

i∈I Ai such that for every i ∈ I,
v ≤ ai ( fi (xb), fi (b)). Therefore, v ≤ a(xb, b) since the cone ( fi )i∈I is initial, which implies
v ≤ Ha(A, B).

Corollary 4.34 The Hausdorff functor on V-CatCH preserves initial monomorphisms with
respect to the forgetful functor V-CatCH → CompHaus.

Theorem 4.35 The functor H : V-CatCH → V-CatCH preserves codirected limits.

Proof. From Proposition 4.21, the diagram below commutes.

V-CatCH V-CatCH CompHaus

OrdCH OrdCH

H

H

Therefore, taking into account Theorem 4.32, the claim follows from Proposition 4.33.

Corollary 4.36 For H : V-CatCH → V-CatCH, the forgetful functor CoAlg(H) → V-CatCH is
comonadic.

Corollary 4.37 The category of coalgebras of the Hausdorff functorH : V-CatCH → V-CatCH
is complete. Moreover, the functor CoAlgH → V-CatCH preserves codirected limits.

Proof. Being a topological category over CompHaus, the category V-CatCH is (surjective,
initialmono)-structured. Therefore, the categoryV-CatCH satisfies all conditions necessary to
apply Theorem4.31. Furthermore, the previous results show thatH also satisfies the necessary
requirements to apply Theorem 4.31.

In the sequel we describe the terminal coalgebra of the Hausdorff functor on V-CatCH;
which is the limit of the codirected diagram

1 ←− H1 ←− HH1 ←− · · · , (4.1)

where the morphisms are obtained by applying successively H to the unique morphism
f! : H1 → 1.
First, we analyse the case of V = 2. To do so, let (X , τ d) denote the discrete space with

underlying set X , and observe that for every positive integer n,

H(n,≥, τ d) = (n + 1,≥, τ d) and Hn f!(k) = min(k, n).

Lemma 4.38 Consider the one-point compactification (N +∞, τ ∗) of the space (N, τ d).
The cone

(min(−, n) : (N+∞,≥, τ ∗) −→ (n + 1,≥, τ d))n∈N (4.2)

is a limit in OrdCH of the diagram (4.1).
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Proof. The assertion follows immediately from the “Bourbaki” criterion described in [27,
Theorem 3.29]: firstly, for every n ∈ N, the map min(−, n) : (N+∞,≥, τ ∗) → (n + 1,≥
, τ d) is surjective, monotone and continuous; secondly, the cone (4.2) is point-separating and
initial with respect to the canonical forgetful functor OrdCH → CompHaus.

Theorem 4.39 The map f : (N+∞,≥, τ ∗) → H(N+∞,≥, τ ∗) defined by

f (n) =

⎧
⎪⎨

⎪⎩

∅, n = 0

N+∞, n = ∞
↑(n − 1), otherwise,

is a terminal coalgebra for H : OrdCH → OrdCH.

Proof. Since H : OrdCH → OrdCH preserves codirected limits we can compute its terminal
coalgebra from the limit of the diagram of Lemma 4.38. Therefore, the assertion holds by
routine calculation.

Remark 4.40 The setN is an upset in (N+∞,≥, τ ∗) but it is not compact.

As a consequence of the theorem above we can describe the terminal coalgebra of the
lower Vietoris functor on Top.

Corollary 4.41 Consider the lower Vietoris functor V : Top → Top and the space (N+∞, τ )

whose topology is generated by the sets [n,∞], for n ∈ N. The map f : (N +∞, τ ) →
V(N+∞, τ ) defined by

f (n) =

⎧
⎪⎨

⎪⎩

∅, n = 0

N+∞, n = ∞
↑(n − 1), otherwise.

is a terminal coalgebra for V : Top → Top.

Proof. The lower Vietoris functor V : Top → Top restricts to the category StablyComp of
stably compact spaces and spectral maps (see [49]) which is isomorphic to the category
OrdCHsep (see [23]). As observed in [27, Theorem 3.36], the terminal coalgebra of the
lower Vietoris functor on Top can be obtained from the terminal coalgebra of the lower
Vietoris on StablyComp. Since H : OrdCHsep → OrdCHsep preserves codirected limits (see
[27, Corollary 3.33] or Theorem 4.35 and Proposition 4.5) and the limit and diagram of
Lemma 4.38 actually live in OrdCHsep, the claim follows by applying the functor

OrdCHsep
�−−−→ StablyComp −→ Top

to the map of Theorem 4.39.

In the following we will see that the terminal coalgebra of H : V-CatCH → V-CatCH
“coincides” with the terminal coalgebra of H : OrdCH → OrdCH.

Proposition 4.42 Consider the lattice homomorphism i : 2 → V; that is i(0) = ⊥ and i(1) =
$. The map i induces a limit-preserving functor I : OrdCH → V-CatCH that keeps morphisms
unchanged and sends an ordered compact Hausdorff space (X , a, τ ) to (X , i · a, τ ).
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Proof. Let (X , a, τ ) be an ordered compact Hausdorff space. First, observe that i is a lax
homomorphism of quantales, hence (X , i ·a) is a V-category; furthermore, it is clear that i is
a continuous function from (2, ξ≤) → (V, ξ≤), hence by Proposition 4.3, (X , i ·a, τ ) defines
an object of V-CatCH. Now, a limit in V-CatCH is a limit in CompHaus equipped with the
initial structure with respect to the functor V-Cat → Set. Therefore, since i preserves infima,
it follows that I : OrdCH → V-CatCH preserves limits.

Corollary 4.43 The map f : (N+∞, i · ≥, τ ∗) → H(N+∞, i · ≥, τ ∗) defined by

f (n) =

⎧
⎪⎨

⎪⎩

∅, n = 0

N+∞, n = ∞
↑(n − 1), otherwise,

is a terminal coalgebra for H : V-CatCH → V-CatCH.

Proof. LetH′ denote theHausdorff functor onOrdCH. Since I : OrdCH → V-CatCH preserves
limits then I(1) is the terminal object in V-CatCH. Moreover, the lattice homomorphism
i : 2 → V preserves infima and suprema, thus we obtain I · H′ = H · I. Consequently,

I(1 ←− H′1 ←− H′H′1 ←− · · · ) = 1 ←− H1 ←− HH1 ←− · · · .

Therefore, the claim follows from Theorem 4.39 and Proposition 4.42.

The corollary above affirms implicitly that, in general, the terminal coalgebra of the
Hausdorff functor on V-CatCH is rather simple. After all, independently of the quantale V,
we end up with a terminal coalgebra whose carrier is an ordered set. Hausdorff polynomial
functors seem far more interesting in this regard.

Definition 4.44 Let X be a subcategory of V-CatCH closed under finite limits and finite
colimits such that the Hausdorff functor H : V-CatCH → V-CatCH restricts to X. We call a
functor Hausdorff polynomial on X if it belongs to the smallest class of endofunctors on X
that contains the identity functor, all constant functors and is closed under composition with
H, finite products and finite sums of functors.

Proposition 4.45 Every Hausdorff polynomial functor onV-CatCHpreserves initial monomor-
phisms with respect to the functor V-CatCH → CompHaus.

Proof. Immediate consequence of Corollary 4.34 since the remaining cases trivially preserve
initial monomorphisms.

Proposition 4.46 Every Hausdorff polynomial functor on V-CatCH preserves codirected lim-
its.

Proof. We already know from Theorem 4.35 that H : V-CatCH → V-CatCH preserves codi-
rected limits. Moreover, a routine calculation reveals that the sum of functors that preserve
codirected initial cones with respect to the forgetful functor V-CatCH → CompHaus also
does so. Consequently, the sum preserves codirected limits by Theorem 4.32 since the sum
on CompHaus preserves codirected limits (for instance, see [27]). The remaining cases are
trivial.

In light of the previous results, now we can apply Theorem 4.31 to obtain:

Theorem 4.47 The category of coalgebras of a Hausdorff polynomial functor on V-CatCH is
(co)complete.
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Note that for Hausdorff polynomial functors, in general, we cannot apply the same reason-
ing that led us to conclude that the terminal coalgebra of the Hausdorff functor on V-CatCH
“coincides” with the terminal coalgebra of the Hausdorff functor on OrdCH. For example, if
A is a V-categorical compact Hausdorff space that does not come from an ordered set, then
applying the Hausdorff polynomial functor H · (A × Id) to the terminal object of V-CatCH
does not necessarily yields a V-category structure that comes from an ordered set.

Now, by taking advantage of the results of “Appendix A”, we can deduce similar results
for Hausdorff polynomial functors on V-CatCHsep. However, to avoid repetion, we conclude
this paper by generalising the more interesting case of Hausdorff polynomial functors on
Priest discussed in [27].

Assumption 4.48 Until the end of the section we assume that V is a commutative and unital
quantale such that for every u ∈ V the map hom(u,−) : (V, ξ) → (V, ξ) is continuous.

Definition 4.49 We call a V-categorical compact Hausdorff space X Priestley if the cone
V-CatCH(X ,Vop) is initial and point-separating. We denote the full subcategory of V-CatCH
defined by all Priestley spaces by V-Priest.
Example 4.50 ForV = 2, our notion of Priestley space coincides with the usual nomenclature
for ordered compact Hausdorff spaces (see [45,46]).

Proposition 4.51 The category V-Priest is closed under finite coproducts in V-CatCH.

Proof. Let A and B be Priestley spaces. Note that for every morphism f : A → Vop and
g : B → Vop in V-CatCH, the maps f + ⊥ and ⊥ + g, where ⊥ represents the constant
function ⊥, are morphisms of type A + B → Vop in V-CatCH. Since A and B are Priestley
spaces, it follows that the cone of all these morphisms is initial and point-separating with
respect to the functor V-CatCH → CompHaus.

Remark 4.52 The inclusion functor V-Priest ↪→ V-CatCH is right adjoint (see [4, Theo-
rem 16.8]); in particular V-Priest is complete and cocomplete and V-Priest ↪→ V-CatCH
preserves and reflects limits. Moreover, a mono-cone ( fi : X → Xi )i∈I in V-Priest is
initial with respect to V-Priest → CompHaus if and only if it is initial with respect to
V-CatCH → CompHaus.

Proposition 4.53 The V-categorical compact Hausdorff space Vop is an algebra for H with
algebra structure inf : HVop → Vop that sends an element A ∈ HVop to

∨
A (taken in V).

Proof. Clearly, inf : HVop → Vop is a V-functor; moreover, by [24, Proposition IV-3.9], inf
is also continuous.

We recall that, given a morphism ψ : X → Vop of V-CatCH, we denote by ψ♦ the
composite

HX
Hψ−−−−→ H(Vop)

inf−−−−→ Vop

in V-CatCH. With respect to the algebra structure of Proposition 4.53 above, we have the
following result. For the pertinent notions from enriched category theory, we refer to [53].

Proposition 4.54 Let X be a V-categorical compact Hausdorff space. Consider a V-
subcategory R ⊆ VX that is closed under finite weighted limits and such that (ψ : X →
Vop)ψ∈R is initial with respect to V-CatCH → CompHaus. Then the cone (ψ♦ : HX →
Vop)ψ∈R is initial with respect to V-CatCH → CompHaus.
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Proof. We denote by Ï the totally above relation of V. Recall from Remark 4.2 that, for
every u ∈ V, the set

�

u = {w ∈ V | u Ï w}
is open with respect to ξ≤. Let A, B ∈ HX and

u Ï Ha(A, B) =
∧

y∈B

∨

x∈A

a(x, y).

Hence, there is some y ∈ B so that, for all x ∈ A,

u Ï a(x, y) =
∧

ψ∈R
hom(ψ(y), ψ(x)).

Let x ∈ A. There is some ψ ∈ R with u Ï hom(ψ(y), ψ(x)). With v = ψ(y) we put
ψ̂ = hom(v, ψ(−)). Then ψ̂ ∈ R sinceR is closed under cotensors and

u Ï ψ̂(x) and k ≤ ψ̂(y).

Therefore

A ⊆
⋃

{ψ−1(

�

u) | ψ ∈ R, k ≤ ψ(y)};
by compactness, there exist finitely many ψ1, . . . , ψn ∈ R so that k ≤ ψi (y) and

A ⊆ ψ−1
1 (

�

u) ∪ · · · ∪ ψ−1
n (

�

u).

Put ψ̂ = ψ1 ∧ · · · ∧ ψn . By hypothesis, ψ̂ ∈ R. Then k ≤ ψ̂(y) and u Ï ψ̂(x), for all
x ∈ A. Therefore

hom(ψ̂♦(B), ψ̂♦(A)) ≤ hom(k, u) = u.

Proposition 4.55 Let ( f : X → Xi )i∈I be a codirected cone in V-CatCH. Then

{ϕ fi | i ∈ I , ϕ : Xi → Vop ∈ V-CatCH} ⊆ VX

is closed under finite weighted limits.

By Proposition 4.54, the Hausdorff functor restricts to a functor H : V-Priest → V-Priest,
hence the Hausdorff monad H restricts to V-Priest.

Theorem 4.56 Every Hausdorff polynomial functor on V-Priest preserves codirected limits.

Proof. Every Hausdorff polynomial functor on V-Priest corresponds to the restriction to
V-Priest of a Hausdorff polynomial functor onV-CatCH and the inclusion functorV-Priest →
V-CatCH preserves and reflects limits (see Proposition 4.51 and Remark 4.52).

Corollary 4.57 For every Hausdorff polynomial functor F on V-Priest, the forgetful functor
CoAlg(F) → V-Priest is comonadic.

Theorem 4.58 The category of coalgebras of a Hausdorff polynomial functor F on V-Priest
is complete. Moreover, the functor CoAlg(F) → V-Priest preserves codirected limits.

Proof. The category V-Priest inherits the (surjective, initial mono-cone)-factorisation struc-
ture fromV-CatCH. Therefore, the previous discussion shows thatwe can applyTheorem4.31.

123



Hausdorff Coalgebras 801

As a consequence of Theorem 4.56 andRemark 4.52, we can describe a terminal coalgebra
of the Hausdorff functor on V-Priest.
Corollary 4.59 The map of Corollary 4.43 is a terminal coalgebra for the Hausdorff functor
on V-Priest.

Proof. Note that the sequence 1 ←− H1 ←− HH1 ←− · · · in V-CatCH actually lives in
V-Priest.
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A Appendix

In this section we collect some facts aboutV-categories andV-functors, whereV is a quantale;
for more information we refer to [39,53]. Furthermore, we present some useful properties of
the reflector into the category of separated V-categories that follow from standard arguments,
but seem to be absent from the literature.

Definition A.1 Let V be a commutative and unital quantale. A V-category is a pair (X , a)

consisting of a set X and a map a : X × X → V satisfying

k ≤ a(x, x) and a(x, y) ⊗ a(y, z) ≤ a(x, z),

for all x, y, z ∈ X . Given V-categories (X , a) and (Y , b), a V-functor f : (X , a) → (Y , b)

is a map f : X → Y such that

a(x, y) ≤ b( f (x), f (y)),

for all x, y ∈ X .

In particular, the quantale V becomes a V-category with structure hom : V× V → V. We
refer to [53] for a list of examples of quantales V and the corresponding categories V-Cat of
V-categories and V-functors.

For every V-category (X , a), a◦(x, y) = a(y, x) defines another V-category structure on
X , and the V-category (X , a)op := (X , a◦) is called the dual of (X , a). A V-category (X , a)

is called symmetric whenever (X , a) = (X , a)op.
Clearly, V-categories and V-functors define a category, denoted as V-Cat. The full subcat-

egory of V-Cat defined by all symmetric V-categories is denoted as V-Catsym.
Remark A.2 Given V-categories (X , a) and (Y , b), we define the tensor product of (X , a)

and (Y , b) to be the V-category (X , a) ⊗ (Y , b) = (X × Y , a ⊗ b), with

a ⊗ b((x, y), (x ′, y′)) = a(x, x ′) ⊗ b(y, y′).

This operationmakesV-Cat a symmetricmonoidal closed category,where the internal hom
of (X , a) and (Y , b) is the V-category [(X , a), (Y , b)] = (V-Cat((X , a), (X , b)), [−,−]),
with

[ f , g] =
∧

x∈X

b( f (x), g(x)).

We note that [(X , a), (Y , b)] is a V-subcategory of the X -fold product (Y , b)X of (Y , b).
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The following propositions are particularly useful to construct V-functors when combined
with the fact that V-Cat is symmetrical monoidal closed.

Proposition A.3 For every set I , the assignments f 
→ ∨
i∈I f (i) and f 
→ ∧

i∈I f (i)
define V-functors of type VI → V.

Proposition A.4 For every V-category (X , a), the map a : (X , a)op ⊗ (X , a) → (V, hom) is
a V-functor.

The category V-Cat is well behaved regarding (co)limits.

Theorem A.5 The canonical forgetful functor V-Cat → Set is topological. For a structured
cone ( fi : X → (Xi , ai )), the initial lift (X , a) is given by

a(x, y) =
∧

i∈I

ai ( fi (x), fi (y)),

for all x, y ∈ X. Moreover, V-Catsym is closed in V-Cat under initial cones; therefore the
canonical forgetful functor V-Catsym → Set is topological as well, and the inclusion functor
V-Catsym ↪→ V-Cat has a left adjoint.

We also recall that V-Catsym ↪→ V-Cat has a concrete right adjoint which sends the
V-category (X , a) to its symmetrisation (X , as) given by

as(x, y) = a(x, y) ∧ a(y, x),

for all x, y ∈ X .
Every V-category (X , a) carries a natural order defined by

x ≤ y whenever k ≤ a(x, y),

which can be extended pointwise to V-functors making V-Cat a 2-category. The natural order
of V-categories defines a faithful functor V-Cat → Ord. A V-category is called separated
whenever its underlying ordered set is anti-symmetric, and we denote by V-Catsep the full
subcategory of V-Cat defined by all separated V-categories. Tautologically, an ordered set is
separated if and only if it is anti-symmetric.

Theorem A.6 V-Catsep is closed in V-Cat under monocones. Hence, the forgetful functor
V-Catsep → Set is mono-topological and the inclusion functor V-Catsep ↪→ V-Cat has a left
adjoint.

Let us describe the left adjoint S : V-Cat → V-Catsep of V-Catsep ↪→ V-Cat. To do so,
consider a V-category (X , a). Then

x ∼ y whenever x ≤ y and y ≤ x

defines an equivalence relation on X , and the quotient set X/∼ becomes a V-category
(X/∼, ã) by putting

ã([x], [y]) = a(x, y); (A.1)

this is indeed independent of the choice of representants of the equivalence classes. Then the
projection map

q(X ,a) : X −→ X/∼, x 
−→ [x]
is a V-functor q(X ,a) : (X , a) → (X/∼, ã), it is indeed the unit of this adjunction at (X , a).
Furthermore, by (A.1), q(X ,a) : (X , a) → (X/∼, ã) is a universal quotient and initial with
respect to V-Cat → Set.
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Lemma A.7 A cone ( fi : (X , a) → (Xi , ai ))i∈I in V-Catsep is initial with respect to
V-Catsep → Set if and only if

a(x, y) =
∧

i∈I

ai ( fi (x), fi (y)), (A.2)

for all x, y ∈ X.

Proof. Clearly, if (A.2) is satisfied then ( fi : (X , a) → (Xi , ai ))i∈I is initial with respect
to V-Catsep → Set since it is initial with respect to V-Cat → Set. Suppose now that
( fi : (X , a) → (Xi , ai ))i∈I is initial with respect to V-Catsep → Set. Fix x, y ∈ X . Then

a(x, y) ≤
∧

i∈I

ai ( fi (x), fi (y)) = u

because fi : (X , a) → (Xi , ai ) is a V-functor for every i ∈ I . It is left to show that u ≤
a(x, y). This is certainly true if u = ⊥; assume now that ⊥ < u. Let 2u be the separated
V-category with underlying set {0, 1} and structure au defined by

au(0, 1) = u, au(0, 0) = au(1, 1) = k, and au(1, 0) = ⊥.

Consider h : {0, 1} → X with h(0) = x and h(1) = y. Then fi · h is a V-functor, for
every i ∈ I . Hence, since ( fi : (X , a) → (Xi , ai ))i∈I is initial, h : 2u → X is a V-functor,
which implies u ≤ a(x, y).

Corollary A.8 The functor S : V-Cat → V-Catsep preserves initial cones with respect to the
canonical forgetful functors.

Proof. Let ( fi : (X , a) → (Xi , ai ))i∈I be an initial cone with respect to V-Cat → Set. Then,
for every [x], [y] ∈ S(X , a) = (X/∼, ã), and with S(Xi , ai ) = (X/∼, ãi ) for all i ∈ I ,

ã([x], [y]) = a(x, y) =
∧

i∈I

ai ( fi (x), fi (y)) =
∧

i∈I

ãi ([ fi (x)], [ fi (y)])

=
∧

i∈I

ãi (S fi ([x]), S fi ([y])).

Therefore, the claim follows by Lemma A.7.

Remark A.9 In [17] it is shown that S : V-Cat → V-Catsep preserves finite products. However,
S does not preserve limits in general, in particular, S does not preserve codirected limits. For
instance, consider the “empty limit” of [56] and equip every Xi (i ∈ I ) with the indiscrete
V-category structure ai where ai (x, y) = $ for all x, y ∈ Xi . Then S(Xi , ai ) has exactly
one element, for each i ∈ I ; hence the limit of the corresponding diagram in V-Catsep has
one element.
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