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Abstract. We extend dynamic logic with binders (for state variables)
by distinguishing between observable and silent transitions. This dif-
ferentiation gives rise to two kinds of observational interpretations of
the logic: abstractor and behavioural specifications. Abstractor specifi-
cations relax the standard model class semantics of a specification by
considering its closure under weak bisimulation. Behavioural specifica-
tions, however, rely on a behavioural satisfaction relation which relaxes
the interpretation of state variables and the satisfaction of modal for-
mulas ⟨α⟩ϕ and [α]ϕ by abstracting from silent transitions. A formal
relation between abstractor and behavioural specifications is provided
which shows that both coincide semantically under mild conditions. For
the proof we instantiate the previously introduced concept of a behaviour-
abstractor framework to the case of dynamic logic with binders and silent
transitions.

1 Introduction

Observability plays an important role in software development: a system is cor-
rect if it exhibits the desired observable behaviour. Formal observability notions
for abstracting from internal details have been established in the theory of alge-
braic specifications of data types, e.g., by distinguishing between observable and
non-observable sorts, and also in concurrency theory, e.g., by Milner’s notion
of observational equivalence of processes. For algebraic specifications an “exter-
nalised” and an “internalised” view of observability have been pursued lead-
ing to the concepts of abstractor and behavioural specification respectively. An

A. Madeira—This work is supported by ERDF European Regional Development
Fund, through the COMPETE Programme, and by National Funds through FCT -
Portuguese Foundation for Science and Technology - within projects POCI-01-0145-
FEDER-030947 and UID/MAT/04106/2019. This author is supported in the scope of the
framework contract foreseen in the numbers 4, 5 and 6 of the article 23, of the Decree-
Law 57/2016, of August 29, changed by Portuguese Law 57/2017, of July 19.

c⃝ Springer Nature Switzerland AG 2020
L. Soares Barbosa and A. Baltag (Eds.): DaĹı 2019, LNCS 12005, pp. 19–34, 2020.
https://doi.org/10.1007/978-3-030-38808-9_2



lsb@di.uminho.pt

20 R. Hennicker et al.

abstractor specification abstract Sp wrt ≡ abstracts from the standard model
class of a specification Sp by considering its closure under an observational
equivalence relation ≡ between algebras [13,15,16]. A behavioural specification
behaviour Sp wrt |≈ relies on an observational equality relation ≈ between the
elements of an algebra and a behavioural satisfaction relation |≈ which interprets
the equality symbol by observational rather than set-theoretic equality [4,12,14].
It has been shown that for first-order logic specifications both approaches are
semantically equivalent under mild conditions [1]. This result has been trans-
ferred to higher-order logic [8], to arbitrary (concrete) institutions [11] and, more
recently in the context of reactive system specifications [5], to dynamic logic D↓

with binders ↓x .ϕ for state variables. In the case of D↓-logic the abstraction
equivalence ≡ is strong bisimulation between labelled transition systems (LTS)
and behavioural satisfaction |≈ interprets state variables up to (strong) bisim-
ilarity of states. In [7] we were able to extract some general conditions under
which, independently of the concrete logical framework at hand, the behaviour-
abstractor relationships generally hold: (BA1) behavioural satisfaction of sen-
tences must be invariant under abstraction equivalence and, for each semantic
structure, (BA2) an observationally equivalent “black-box structure” must exist
for which (BA3) behavioural satisfaction of sentences coincides with standard
satisfaction. The results of [7] have been applied in [7, Sects. 3 and 4] to first-
order logic and higher-order logic resp., as well as to D↓-logic [7, Sect. 5] and
observable Hennessy-Milner logic [7, Sect. 6].

We extend D↓-logic by distinguishing between observable actions and the
invisible action τ (interpreted by silent transitions). The resulting logic is denoted
by D↓

τ . Then weak bisimulation between LTSs (like in observable Hennessy-
Milner logic) is the adequate choice for the observational abstraction equivalence
≡. For the internalised observational equality we use the greatest weak bisimula-
tion relation ≈M between the states of an LTS M . Behavioural satisfaction |≈ is
now defined by interpreting state variables up to ≈M and the interpretation of
the diamond operator (and thus also of the derived box operator) is relaxed as
in observable modal logic [17] and [7, Sect. 6]: a sentence ⟨a⟩ϕ with observable
action a holds behaviourally in a state w if there exist arbitrarily many silent
transitions starting in w which are followed by an a-transition and then again
by arbitrarily many silent transitions such that the resulting state v satisfies
behaviourally ϕ.

The goal of this paper is to establish also in the setting of D↓
τ a relationship

between abstractor specifications abstract Sp wrt ≡ and behavioural specifica-
tions behaviour Sp wrt |≈. For this purpose, we show that D↓

τ gives rise to an
instantiation of the behaviour-abstractor framework in the sense of [7] satisfy-
ing the conditions (BA1–BA3) as described above. In the context of D↓

τ -logic,
the first condition (BA1) expresses a modal invariance property with respect to
weak bisimulation between labelled transition systems and behavioural satisfac-
tion. For (BA2), we define the black-box structure of a labelled transition system
M in terms of its quotient M/≈M and show that both are weakly bisimilar. For
getting (BA3) we show that for quotients standard satisfaction and behavioural
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satisfaction of formulas is the same. Thus we get a behaviour-abstractor frame-
work and can apply the results in [7] to D↓

τ -logic which show that behavioural
semantics is included in abstractor semantics (of specifications) and both are the
same if and only if standard semantics is included in behavioural semantics.

Our results extend both, the behaviour-abstractor relationships investigated
for D↓-logic in [7, Sect. 5] and the Hennessy-Milner style instantiation of the
behaviour-abstractor framework in [7, Sect. 6]. In contrast to [7, Sect. 6] we do
not use in formulas the special empty action ε but the invisible action τ instead.
Though both are equivalent in the observational interpretations of the logic D↓

τ

they are not in the standard interpretation of D↓
τ . Compared to [7, Sect. 6] this

leads to a significant simplification and generalisation since we do not need to
restrict our results to weakly deterministic models.

The remainder of this paper is structured as follows: In Sect. 2 we present D↓
τ -

logic, the basis of our approach. Then, in Sect. 3, we consider two observational
interpretations of D↓

τ in terms of abstractor and behavioural specifications. In
Sect. 4 we recall the general concept of a behaviour-abstractor framework and we
show how it can be instantiated with D↓

τ -logic and its observational interpreta-
tions. Thus we get the semantic relationships between abstractor and behavioural
specifications for free. All investigations are accompanied by examples. Conclud-
ing remarks are given in Sect. 5.

2 A Dynamic Logic with Binders and Silent Transitions

Dynamic logic with binders, called D↓-logic, has been introduced in [9] as a logic
which allows to express properties of reactive systems from abstract safety and
liveness properties down to concrete ones specifying the (recursive) structure of
processes. Thus D↓-logic supports a stepwise refinement methodology for the for-
mal development of reactive systems. The logic combines modalities indexed by
regular expressions of actions, as in Dynamic Logic [3], and state variables with
binders, as in Hybrid Logic [2]. In this section we extend D↓-logic by splitting
atomic actions into observable actions and the invisible action τ . The new logic,
denoted by D↓

τ , is technically only a small modification of D↓ but, as we will see
in the forthcoming sections, the differentiation between observable and invisible
actions provides a powerful basis for observational interpretations.

Signatures and Sentences. A D↓
τ -signature is a set A = O ∪ {τ} of atomic

actions comprising observable actions O and the invisible action τ . The class of
D↓

τ -signatures is denoted by SD↓
τ . The set of composed actions Act(A) over A is

given by
α :: = a | α;α | α + α | α∗

where a ∈ A and ; represents the sequential composition of actions, + the choice
between actions, and ∗ the iteration of an action.

For any A ∈ SD↓
τ , the set of A-formulas is given by

ϕ :: = tt | ¬ϕ | ϕ ∨ ϕ | ⟨α⟩ϕ | x | ↓x .ϕ | (@x)ϕ
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where α ∈ Act(A) is a composed action and x ∈ X is a variable belonging to
a universal set X of state variables. We use the usual abbreviations ff = ¬tt,
ϕ ∧ ψ = ¬(¬ϕ ∨ ¬ψ), [α]ϕ = ¬⟨α⟩¬ϕ, etc. An A-sentence is an A-formula ϕ
containing no free variables, where free variables are defined as usual with ↓
being the only operator binding variables. The set of A-sentences is denoted by
SenD

↓
τ (A).

The idea of the binder operator ↓x .ϕ is to assign to variable x the current
state of evaluation and then to continue with evaluating ϕ. The operator (@x)ϕ
evaluates ϕ in the state assigned to x. D↓

τ retains from Hybrid Logic these
two constructions but omits the use of nominals since we are only interested in
properties of states reachable from the initial state, i.e., processes.

Structures. The semantic structures of D↓
τ are reachable, labelled transition sys-

tems (LTS) with initial state. For an A ∈ SD↓
τ , an A-structure M = (W,R,w0)

consists of a set of states W , a family of transition relations R = (Ra ⊆
W × W )a∈A, and the initial state w0 ∈ W such that, for each w ∈ W , either
w = w0 or there is a finite sequence of transitions (wk−1, wk) ∈ Rak , 1 ≤ k ≤ n,
with ak ∈ A, such that wn = w. Transitions in Rτ are called silent transitions.
The class of A-structures is denoted by StrD

↓
τ (A).

Satisfaction Relation. To define the satisfaction relation we extend, as usual,
the interpretation of actions over a structure M = (W,R,w0) ∈ StrD

↓
τ (A) to

composed actions from Act(A) by Rα;α′ = Rα · Rα′ , Rα+α′ = Rα ∪ Rα′ and
Rα∗ = (Rα)⋆ with the operations ·, ∪ and ⋆ standing for relational composition,
union and reflexive-transitive closure. A valuation is a function g : X → W .
Given such a valuation g, a variable x ∈ X, and a state w ∈ W , g{x .→ w}
denotes the valuation with g{x .→ w}(x) = w and g{x .→ w}(y) = g(y) for
any y ∈ X \ {x}. For any A-structure M = (W,R,w0) ∈ StrD

↓
τ (A), valuation

g : X → W and state w ∈ W ,

– M, g,w |=D↓
τ

A tt is true;
– M, g,w |=D↓

τ
A ¬ϕ iff it is false that M, g,w |=D↓

τ
A ϕ;

– M, g,w |=D↓
τ

A ϕ ∨ ϕ′ iff M, g,w |=D↓
τ

A ϕ or M, g,w |=D↓
τ

A ϕ′;
– M, g,w |=D↓

τ
A ⟨α⟩ϕ iff there is a v ∈ W with (w, v) ∈ Rα and M, g, v |=D↓

τ
A ϕ;

– M, g,w |=D↓
τ

A x iff g(x) = w;
– M, g,w |=D↓

τ
A ↓x .ϕ iff M, g{x .→ w}, w |=D↓

τ
A ϕ;

– M, g,w |=D↓
τ

A (@x)ϕ iff M, g, g(x) |=D↓
τ

A ϕ.

If ϕ is an A-sentence, then the valuation is irrelevant, i.e., M, g,w |=D↓
τ

A ϕ

iff M,w |=D↓
τ

A ϕ. M satisfies an A-sentence ϕ, denoted by M |=D↓
τ

A ϕ, if
M,w0 |=D↓

τ
A ϕ.

A specification Sp = (A,Φ) over D↓
τ consists of a signature A ∈ SD↓

τ and a set
Φ ⊆ SenD

↓
τ (A) of A-sentences, also called axioms, specifying required properties.
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The semantics of Sp is given by its model class ModD
↓
τ (Sp), which is the class

of all A-structures satisfying the axioms of Sp, i.e.,

ModD
↓
τ (Sp) = {M ∈ StrD

↓
τ (A) | ∀ϕ ∈ Φ .M |=D↓

τ
A ϕ} .

3 Abstractor and Behavioural Specifications over D↓
τ

3.1 Motivation and Example

Though D↓
τ extends D↓ with its distinction between observable and invisi-

ble actions, its satisfaction relation does not take this difference into account.
It interprets the invisible action τ in the same way as observable actions:
M, g,w |=D↓

τ
A ⟨τ⟩ϕ iff there is a v ∈ W with (w, v) ∈ Rτ and M, g, v |=D↓

τ
A ϕ. A

proper integration of the invisible action τ should make clear that this action
is in fact not observable: performing or not performing just τ actions should be
equivalent from the observational point of view. The following example motivates
the need for observational interpretations in the presence of silent transitions.

M : w0

in

w1

out

in

w2

out

Fig. 1. A model of 2Buf

I : w′
0

in

w′
1

τ

w′
2

in

out

w′
3

out

Fig. 2. LTS of two composed one element buffers

Example 1. We consider a specification 2Buf for buffers of size 2. There are two
observable actions in and out . For simplicity, we do not specify the nature of the
elements inserted by in or removed by out from the buffer. It is assumed that
the specification 2Buf has the following sentence ϕ as an axiom1:

ϕ = ↓x0 . ⟨in⟩↓x1 . (⟨out⟩x0 ∧ ⟨in⟩↓x2 . ⟨out⟩x1)

Obviously, the LTS M shown in Fig. 1 satisfies ϕ and hence M ∈ Mod(2Buf ).
Now we want to construct an implementation of a two element buffer by

composing two one element buffers. The composition should be achieved in a
1 In general there could be other axioms as well specifying, e.g., disallowed behaviours.
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way such that the first (one element) buffer inputs an element from the outside,
then it synchronises its output with the input of the second (one element) buffer
and thus transmits the received element to the second buffer. Then either the
first buffer can input another element or the second buffer outputs its element
to the outside, etc. Figure 2 shows an LTS I which models the (behaviour of the)
synchronous composition of two one element buffers. Shifting an element from
the first to the second buffer is invisible to the outside and thus modelled by a
silent τ -transition.

Note that the LTS I does not satisfy the axiom ϕ since after an in-action an
out is not possible (and also another in is not possible). Hence I /∈ Mod(2Buf ).
Nevertheless I should be regarded as a correct implementation of 2Buf . It has the
expected observable behaviour of a two element buffer since the shift of elements
is not visible. Hence we are faced with the question: How can we formally justify
the correctness of the implementation I? There are, in principle, two possible
solutions.

First, we notice that I is weakly bisimilar (for the formal definition see below)
to the model M of 2Buf . A weak bisimulation relation between the states of M
and I is given by the set B = {(w0, w′

0), (w1, w′
1), (w1, w′

2), (w2, w′
3)}. Thus, by

constructing the closure of the model class of 2Buf under weak bisimulation the
LTS I will be an element of this “abstracted” model class and therefore can be
considered as a correct implementation of 2Buf . Another possibility is to relax
the satisfaction relation for modal formulas ⟨α⟩ϕ (and hence [α]ϕ) by abstracting
from silent transitions (for the formal definition of behavioural satisfaction see
below). Then the LTS I does behaviourally satisfy the axiom ϕ and therefore I
can be considered again as a correct implementation of 2Buf . ⊓1

In the sequel we will formalise the two approaches to observational interpre-
tations of D↓

τ illustrated in Example 1 and we will study relationships between
them.

3.2 Abstractor Specifications over D↓
τ

Abstractor specifications are based on weak bisimulation equivalence. For its def-
inition (cf. [10]), we first define the τ -closure of transition relations with observ-
able actions. For A = O ∪ {τ} ∈ SD↓

τ , let M = (W,R,w0) be an A-structure
with transition relations R = (Ra ⊆ W × W )a∈A. For each o ∈ O, the τ -closure
of Ro is the relation R̂o ⊆ W ×W such that (w, v) ∈ R̂a if and only if there is a
finite sequence of transitions in R from w to v containing exactly one transition
labelled with observable action a surrounded by arbitrarily many τ -transitions.
The relation R̂τ ⊆ W ×W contains all pairs (w, v) such that there is a finite, pos-
sibly empty, sequence of τ -transitions from w to v, i.e., either w = v or there are
(wk, wk+1) ∈ Rτ for 1 ≤ k ≤ n with n ≥ 1, such that w1 = w and wn+1 = v. The
τ -closure for atomic actions extends to composed actions by R̂α;α′ = R̂α · R̂α′ ,
R̂α+α′ = R̂α ∪ R̂α′ , and R̂α∗ = (R̂α)⋆.
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Definition 1 (Weak bisimulation). Let M = (W,R,w0) and M ′ = (W ′, R′,
w′

0) be two A-structures. A weak bisimulation relation between M and M ′ is a
relation B ⊆ W × W ′ that contains (w0, w′

0) and satisfies

(weak-zig) for any a ∈ A, w, v ∈ W , w′ ∈ W ′ such that (w,w′) ∈ B:
if (w, v) ∈ Ra, then there is a v′ ∈ W ′ such that (w′, v′) ∈ R̂′

a and (v, v′) ∈ B;
(weak-zag) for any a ∈ A, w ∈ W , w′, v′ ∈ W ′ such that (w,w′) ∈ B:

if (w′, v′) ∈ R′
a, then there is a v ∈ W such that (w, v) ∈ R̂a and (v, v′) ∈ B.

Two A-structures M,M ′ ∈ StrD
↓
τ (A) are weakly bisimulation equivalent,

denoted by M ≡D↓
τ

A M ′, if there exists a weak bisimulation relation between M
and M ′.

Weak bisimulation relations extend to composed actions and their τ -closures:

Lemma 1. Let M and M ′ be two A-structures and B ⊆ W × W ′ be a weak
bisimulation. Then the following holds:

(weak-zig∗) for any α ∈ Act(A), w, v ∈ W , w′ ∈ W ′ such that (w,w′) ∈ B:
if (w, v) ∈ R̂α, then there is a v′ ∈ W ′ such that (w′, v′) ∈ R̂′

α and (v, v′) ∈ B;
(weak-zag∗) for any α ∈ Act(A), w ∈ W , w′, v′ ∈ W ′ such that (w,w′) ∈ B:

if (w′, v′) ∈ R̂′
α, then there is a v ∈ W such that (w, v) ∈ R̂α and (v, v′) ∈ B.

It is well known that, for any A ∈ SD↓
τ , weak bisimulation equivalence ≡D↓

τ
A

is an equivalence relation on the class of A-structures. An abstractor specifica-
tion (over D↓

τ ) is an expression abstract Sp wrt ≡D↓
τ

A where Sp = (A,Φ) is a
specification over D↓

τ . The semantics of an abstractor specification is given by
the closure of the model class of Sp under weak bisimulation, i.e.,

ModD
↓
τ (abstract Sp wrt ≡D↓

τ
A ) =

{M ∈ StrD
↓
τ (A) | ∃N ∈ ModD

↓
τ (Sp) .M ≡D↓

τ
A N} .

Example 2. Let I be the LTS in Fig. 2. Then, as discussed in Example 1, I ∈
ModD

↓
τ (abstract 2Buf wrt ≡D↓

τ
A ). ⊓1

3.3 Behavioural Specifications over D↓
τ

Behavioural specifications rely on a behavioural satisfaction relation. The crucial
idea of behavioural satisfaction in the context of D↓

τ is twofold: first, we relax
the satisfaction of the diamond modality (and hence of the derived box oper-
ator) by abstracting from invisible τ -transitions as done for observable modal
logic in [17]. Secondly, we interpret state variables x by states which are not
necessarily identical but only observationally equal to the current value of x.
For the latter purpose, we recall that for any A-structure M = (W,R,w0) there
exists a greatest weak bisimulation relation between the states of M . We denote
this relation by ≈M ⊆ W × W and call it observational equality. Note that ≈M

is an equivalence relation.
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Definition 2 (Behavioural satisfaction). Let M = (W,R,w0) be an A-
structure, g : X → W a valuation and w ∈ W . The behavioural satisfaction
of an A-formula ϕ w.r.t. valuation g in state w, denoted by M, g,w |≈D↓

τ
A ϕ,

is defined analogously to the satisfaction relation for D↓ (see Sect. 2) with the
exception of diamond and state variable formulas:

– M, g,w |≈D↓
τ

A ⟨α⟩ϕ iff there is a v ∈ W with (w, v) ∈ R̂α and M, g, v |≈D↓
τ

A ϕ;
– M, g,w |≈D↓

τ
A x iff g(x) ≈M w.

For an A-sentence ϕ ∈ SenD
↓
τ (A), the valuation is irrelevant and M satisfies

behaviourally ϕ, denoted by M |≈D↓
τ

A ϕ, iff M,w0 |≈D↓
τ

A ϕ.

A behavioural specification (overD↓
τ ) is an expression behaviour Sp wrt |≈D↓

τ
A

where Sp = (A,Φ) is a specification over D↓
τ . The semantics of a behavioural spec-

ification is given by the class of all A-structures which satisfy behaviourally the
axioms of the specification, i.e.,

ModD
↓
τ (behaviour Sp wrt |≈D↓

τ
A ) = {M ∈ StrD

↓
τ (A) | ∀ϕ ∈ Φ .M |≈D↓

τ
A ϕ} .

Example 3. Let I be the LTS in Fig. 2. Then I behaviourally satisfies the speci-
fication 2Buf , i.e., I ∈ ModD

↓
τ (behaviour 2Buf wrt |≈D↓

τ
A ). For instance, after

an in-action an out-action preceded by a silent transition and also an in-action
preceded by a silent transition is possible. ⊓1

In the remainder of this section we show that under certain conditions
behavioural satisfaction and standard satisfaction coincide. The first condition is
full abstraction; it expresses that observational equality and set-theoretic equal-
ity of elements are the same.

Definition 3 (Full abstraction). An A-structure M = (W,R,w0) is fully
abstract if for all w,w′ ∈ W it holds that w ≈M w′ if and only if w = w′.

The second condition is observational saturation; it expresses that all ele-
ments which are related by the τ -closure of an action a are already related by
the action a itself. While the idea of full abstraction is well-known, we are not
aware of a notion related to observational saturation.

Definition 4 (Observational saturation). An A-structure M = (W,R,w0)
is observationally saturated if for all a ∈ A it holds that R̂a = Ra.

Obviously, observational saturation extends to composed actions α ∈ Act(A)
(which can be shown by structural induction on the form of α).

Lemma 2. Let M = (W,R,w0) be an observationally saturated A-structure.
Then for all α ∈ Act(A) it holds that R̂α = Rα.
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The following lemma is used to show that for fully abstract and observation-
ally saturated structures there is no difference between behavioural and standard
satisfaction.

Lemma 3. Let M = (W,R,w0) ∈ StrD
↓
τ (A) be a fully abstract and observation-

ally saturated A-structure. Then for any w ∈ W , valuation g : X → W and for
any A-formula ϕ, we have

M, g,w |≈D↓
τ

A ϕ ⇐⇒ M, g,w |=D↓
τ

A ϕ .

Proof. The proof is performed by structural induction over the form of the for-
mula ϕ. The only interesting cases are diamond and state variable formulas.
Case ϕ = ⟨α⟩ψ: M, g,w |≈D↓

τ
A ⟨α⟩ψ iff there is a v ∈ W with (w, v) ∈ R̂α

and M, g, v |≈D↓
τ

A ψ. Since M is observationally saturated, this is, by Lem. 2,
equivalent to (w, v) ∈ Rα and M, g, v |≈D↓

τ
A ψ. By induction hypothesis this is

equivalent to (w, v) ∈ Rα and M, g, v |=D↓
τ

A ψ which is in turn equivalent to
M, g,w |=D↓

τ
A ⟨α⟩ψ.

Case ϕ = x : M, g,w |≈D↓
τ

A x iff g(x) ≈M w. Since M is fully abstract this is
equivalent to g(x) = w which is in turn equivalent to M, g,w |=D↓

τ
A x. ⊓1

As a direct consequence of Lemma 3 we obtain the following theorem.

Theorem 1. Let M = (W,R,w0) ∈ StrD
↓
τ (A) be a fully abstract and observa-

tionally saturated A-structure. Then, for all ϕ ∈ SenD
↓
τ (A), we have that

M |≈D↓
τ

A ϕ ⇐⇒ M |=D↓
τ

A ϕ .

4 Behaviour-Abstractor Framework for D↓
τ -logic

Having defined abstractor and behavioural specifications over D↓
τ an obvious

question is whether their semantics can be related. For this purpose we will show
that D↓

τ -logic and its observational interpretations give rise to an instantiation
of the behaviour-abstractor framework introduced in [7].

4.1 Behaviour-Abstractor Framework

The concept of a behaviour-abstractor framework identifies a small but signif-
icant set of abstract requirements which are enough to define behavioural and
abstractor specifications independently of a concrete logic and to study relation-
ships between their semantics.



lsb@di.uminho.pt

28 R. Hennicker et al.

Definition 5 ([7]). A behaviour-abstractor framework BA = (S,Str ,Sen, |=,
≡, |≈,BB) consists of

– a class S of signatures,
– a family Str = (Str(Σ))Σ∈S of classes Str(Σ) of Σ-structures,
– a family Sen = (Sen(Σ))Σ∈S of sets Sen(Σ) of Σ-sentences,
– a family |= = (|=Σ)Σ∈S of satisfaction relations |=Σ ⊆ Str(Σ) × Sen(Σ),
– a family ≡ = (≡Σ)Σ∈S of abstraction equivalences ≡Σ ⊆ Str(Σ) × Str(Σ),
– a family |≈ = (|≈Σ)Σ∈S of behavioural satisfaction relations |≈Σ ⊆ Str(Σ)×

Sen(Σ), and
– a family BB = (BBΣ)Σ∈S of black-box functions BBΣ : Str(Σ) → Str(Σ),

such that the following conditions (BA1–BA3) are satisfied for each signature
Σ ∈ S and for all Σ-structures M,M ′ ∈ Str(Σ):

(BA1) if M ≡Σ M ′, then M |≈Σ ϕ ⇐⇒ M ′ |≈Σ ϕ for all ϕ ∈ Sen(Σ);
(BA2) M ≡Σ BBΣ(M);
(BA3) BBΣ(M) |≈Σ ϕ ⇐⇒ BBΣ(M) |=Σ ϕ for all ϕ ∈ Sen(Σ).

The idea of an abstraction equivalence is to relate structures which show the
same observable behaviour. The idea of behavioural satisfaction is to relax the
(ordinary) satisfaction relation such that it is sufficient if properties are satis-
fied from the observational point of view and not necessarily literally. Condition
(BA1) relates abstraction equivalence and behavioural satisfaction by requir-
ing that abstraction equivalence preserves behavioural satisfaction of sentences.
This means that behavioural satisfaction of sentences is invariant under abstrac-
tion equivalence. The black-box function constructs, for each Σ-structure M , a
so-called black-box view of M . The intuitive idea is that BBΣ(M) shows the
observable behaviour of M abstracting away implementation details which are
not visible for the user of a system. Of course, the black-box view of M should be
equivalent to M according to the abstraction equivalence, and this is expressed
by condition (BA2). Condition (BA3) formalises an intrinsic property of black-
box views, for which behavioural satisfaction of sentences should be the same as
ordinary satisfaction.

Given a behaviour-abstractor framework BA, a specification Sp = (Σ,Φ)
over BA consists of a signature Σ ∈ S and a set Φ ⊆ Sen(Σ) of Σ-sentences.
The (ordinary) semantics of Sp is given by Mod(Sp) = {M ∈ Str(Σ) | ∀ϕ ∈
Φ .M |=Σ ϕ}. On top of Sp an abstractor specification abstract Sp wrt ≡ and
a behavioural specification behaviour Sp wrt |≈ can be constructed with their
model classes defined as follows:

Mod(abstract Sp wrt ≡) = {M ∈ Str(Σ) | ∃N ∈ Mod(Sp) .M ≡Σ N} ,
Mod(behaviour Sp wrt |≈) = {M ∈ Str(Σ) | ∀ϕ ∈ Φ .M |≈Σ ϕ} .
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The purpose of the behaviour-abstractor framework is to identify the crucial
concepts needed to relate (the semantics of) behavioural and abstractor speci-
fications such that one gets for free the results of the following theorem when-
ever a concrete formalism is a behaviour-abstractor framework. The first part
of the theorem shows that behavioural semantics is always included in abstrac-
tor semantics; the second part shows that behavioural and abstractor semantics
coincide if all ordinary models of a specification Sp satisfy also behaviourally the
axioms of Sp2.

Theorem 2 ([7]). Let BA = (S,Str ,Sen, |=,≡, |≈,BB) be a behaviour-
abstractor framework and Sp a specification over BA.

1. Mod(behaviour Sp wrt |≈) ⊆ Mod(abstract Sp wrt ≡).
2. Mod(Sp) ⊆ Mod(behaviour Sp wrt |≈) ⇐⇒

Mod(behaviour Sp wrt |≈) = Mod(abstract Sp wrt ≡).

4.2 Instantiation of the Behaviour-Abstractor Framework with D↓
τ

We can instantiate the behaviour-abstractor framework with the notions of D↓
τ -

logic as follows. Signatures, structures, sentences and the (ordinary) satisfaction
relation of D↓

τ have been defined in Sect. 2; black-box functions are discussed
below. As abstraction equivalences we use weak bisimulation (Definition 1) and
the behavioural satisfaction relation is the one of Definition 2.

In the context of D↓
τ -logic, condition (BA1) of a behaviour-abstractor frame-

work (cf. Definition 5) expresses modal invariance of A-sentences w.r.t. weak
bisimulation equivalence and behavioural satisfaction. The proof of this modal
invariance property relies on the following lemma which can be shown by struc-
tural induction over formulas (using Lemmma 1 for the case of diamond formu-
las).

Lemma 4. Let M = (W,R,w0) and M ′ = (W ′, R′, w′
0) be two A-structures

and B ⊆ W × W ′ a weak bisimulation. Then for any w ∈ W,w′ ∈ W ′ with
(w,w′) ∈ B, for any valuations g : X → W , g′ : X → W ′ with (g(x), g′(x)) ∈ B
for all x ∈ X, and for any A-formula ϕ, we have

M, g,w |≈D↓
τ

A ϕ ⇐⇒ M ′, g′, w′ |≈D↓
τ

A ϕ .

As a direct consequence of Lem. 4 we obtain the following theorem that
verifies the first condition of a behaviour-abstractor framework.

Theorem 3. For any A ∈ SD↓
τ and for all M,M ′ ∈ StrD

↓
τ (A),

(BA1D
↓
τ ) if M ≡D↓

τ
A M, then ∀ϕ ∈ SenD

↓
τ (A) .M |≈D↓

τ
A ϕ ⇐⇒ M ′ |≈D↓

τ
A ϕ .

2 It may sound strange that ordinary satisfaction does not always imply behavioural
satisfaction but there are indeed some cases where this can happen; see Example 6.
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Black-Box Function. To define the black-box view of an A-structure M we use
the following quotient construction. It identifies observationally equal states and
relates equivalence classes [w]≈M and [v]≈M by an action a if there are elements
w′ in [w]≈M and v′ in [v]≈M which are related by the τ -closure of a (w.r.t. the
transitions of M).

Definition 6 (Quotient structure). Let M = (W,R,w0) ∈ StrD
↓
τ (A) be

an A-structure. The quotient of M w.r.t. ≈M is the A-structure M/≈M =
(W/≈M , R/≈M , [w0]≈M ), where

– W/≈M = {[w]≈M | w ∈ W} with [w]≈M = {w′ |w′ ≈M w};
– R/≈M = ((R/≈M )a)a∈A with

(R/≈M )a = {([w]≈M , [v]≈M ) | ∃w′ ∈ [w]≈M , v′ ∈ [v]≈M . (w′, v′) ∈ R̂a}

for any a ∈ A.

Since ≈M is an equivalence relation, M/≈M is well-defined and any state [w]
is reachable from the initial one. For any M ∈ StrD

↓
τ (A), the black-box view of

M is defined by BBD↓
τ

A (M) =def M/≈M .

w1

a,τ

w0

a

τ
w2

b

w3

[w0]≈M

a,τ

b

a,τ

[w2]≈M

b

τ

[w3]≈M

τ

Fig. 3. A structure M and its quotient M/≈M

Example 4. Figure 3 shows an LTS M and its quotient M/≈M . By definition of
quotients there is a τ -loop for each state [w]≈M ∈ M/≈M . The states w0 and w2

of M are not observationally equivalent since the silent τ -transition from w0 to
w2 removes the possibility to execute a. Hence the τ -transition remains in the
quotient, now between the different states [w0]≈M and [w2]≈M . ⊓1

The next theorem verifies the second condition of a behaviour-abstractor
framework.

Theorem 4. For any A-structure M ∈ StrD
↓
τ (A), it holds

(BA2D
↓
τ ) M ≡D↓

τ
A BBD↓

τ
A (M) .
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Proof. It is straightforward, though somewhat technical, to show that the rela-
tion B ⊆ W × W/≈M with B = {(w, [w]≈M ) | w ∈ W} is a weak bisimulation
relation between M and M/≈M , and hence between M and BBD↓

τ
A (M). ⊓1

Let us now consider the third condition of a behaviour-abstractor framework
requiring that behavioural and standard satisfaction coincide for black-box struc-
tures in D↓

τ . For the proof we use the next two lemmas. The first one says that
quotient structures, and hence black-box structures, are fully abstract.

Lemma 5. For any M = (W,R,w0) ∈ StrD
↓
τ (A), BBD↓

τ
A (M) is fully abstract,

i.e., for all w,w′ ∈ W it holds that [w]≈M ≈
BBD↓

τ
A (M)

[w′]≈M iff [w]≈M = [w′]≈M .

Proof. Only the direction “⇒” is not trivial. It is straightforward, but technical,
to show that the relation B ⊆ W × W with

B = {(w,w′) | [w]≈M ≈
BBD↓

τ
A (M)

[w′]≈M }

is a weak bisimulation relation between the states of M . Now, let w,w′ ∈ W such
that [w]≈M ≈

BBD↓
τ

A (M)
[w′]≈M holds. Then (w,w′) ∈ B. Since ≈M is the greatest

weak bisimulation relation on M we have w ≈M w′ and therefore [w]≈M =
[w′]≈M . ⊓1

The second lemma says that quotient structures, and hence black-box struc-
tures, are observationally saturated.

Lemma 6. For any M = (W,R,w0) ∈ StrD
↓
τ (A), BBD↓

τ
A (M) is observationally

saturated, i.e., for each a ∈ A,

̂(R/≈M )a = (R/≈M )a.

Proof. Let us write R̃ for R/≈M ; ̂̃
R for R̂/≈M ; and w̃ for [w]≈M . The claim

then reads ̂̃
R = R̃. R̃ ⊆ ̂̃

R is obvious. For the converse inclusion, we first show
for every a ∈ A = O ∪ {τ}

(∗) if (w̃1, w̃2) ∈ R̃τ and (w̃2, w̃3) ∈ R̃a, then (w̃1, w̃3) ∈ R̃a;
(∗∗) if (w̃1, w̃2) ∈ R̃a and (w̃2, w̃3) ∈ R̃τ , then (w̃1, w̃3) ∈ R̃a.

Indeed, for (*), (w̃1, w̃2) ∈ R̃τ and (w̃2, w̃3) ∈ R̃a imply that there are v1 ∈ w̃1,
v2, v′

2 ∈ w̃2, and v′
3 ∈ w̃3 with (v1, v2) ∈ R̂τ and (v′

2, v
′
3) ∈ R̂a. Since v2, v′

2 ∈ w̃2,
we have v2 ≈M v′

2, and thus, by applying (weak-zig∗) of Lem. 1 to (v′
2, v

′
3) ∈ R̂a,

there is a v3 ∈ W with (v2, v3) ∈ R̂a and v′
3 ≈M v3. Now (v1, v2) ∈ R̂τ and

(v2, v3) ∈ R̂a and hence (v1, v3) ∈ R̂a. By v3 ≈M v′
3 ∈ w̃3 we obtain v3 ∈ w̃3 and

thus (w̃1, w̃3) ∈ R̃a. The proof for (**) is symmetric.
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With these auxiliary facts we obtain, for o ∈ O and writing the relation in
infix notation,

w̃1
̂̃
Ro w̃2 =⇒ w̃1 R̃τ · . . . · R̃τ · R̃o · R̃τ · . . . · R̃τ w̃2

(∗)
=⇒ w̃1 R̃o · R̃τ · . . . · R̃τ w̃2

(∗∗)
=⇒ w̃1 R̃o w̃2 .

For w̃1
̂̃
Rτ w̃2 either w̃1 = w̃2 or there is a non-empty sequence w̃1 R̃τ

· . . . · R̃τ w̃2. In the first case, we note that w1R̂τw1 and hence, by definition
of quotients, w̃1 R̃τ w̃1. Since w̃1 = w̃2 we have w̃1 R̃τ w̃2. In the second case,
either the sequence has length one and we are done or

w̃1
̂̃
Rτ w̃2 =⇒ w̃1 R̃τ · . . . · R̃τ w̃2

(∗)
=⇒ w̃1 R̃τ w̃2 .

⊓1

Since BBD↓
τ

A (M) is fully abstract and observationally saturated we can apply
Theorem 1 such that we obtain the third condition of a behaviour-abstractor
framework in the context of D↓

τ .

Theorem 5. Let M ∈ StrD
↓
τ (A). Then, for all ϕ ∈ SenD

↓
τ (A), we have that

(BA3D
↓
τ ) BBD↓

τ
A (M) |≈D↓

τ
A ϕ ⇐⇒ BBD↓

τ
A (M) |=D↓

τ
A ϕ .

Corollary 1. BAD↓
τ = (SD↓

τ ,SenD
↓
τ ,StrD

↓
τ , |=D↓

τ ,≡D↓
τ , |≈D↓

τ ,BBD↓
τ ) is a behav-

iour-abstractor framework.

We thus can instantiate Theorem2 and get the respective relationships
between behavioural and abstractor specifications in the context of D↓

τ -logic.

Corollary 2. Let Sp be a specification over D↓
τ .

1. ModD
↓
τ (behaviour Sp wrt |≈D↓

τ
A ) ⊆ ModD

↓
τ (abstract Sp wrt ≡D↓

τ
A )

2. ModD
↓
τ (Sp) ⊆ ModD

↓
τ (behaviour Sp wrt |≈D↓

τ
A ) ⇐⇒

ModD
↓
τ (behaviour Sp wrt |≈D↓

τ
A ) = ModD

↓
τ (abstract Sp wrt ≡D↓

τ
A )

Example 5. We consider the specification 2Buf of Example 1 with axiom ϕ. Since
ϕ is a positive formula (not containing negation), for all A-structures N , N |=D↓

τ
A

ϕ impliesN |≈D↓
τ

A ϕ. Hence, ModD
↓
τ (2Buf ) ⊆ ModD

↓
τ (behaviour2Bufwrt |≈D↓

τ
A ).

Therefore, by Cor. 2(2),

ModD
↓
τ (behaviour 2Buf wrt |≈D↓

τ
A ) =

ModD
↓
τ (abstract 2Buf wrt ≡D↓

τ
A ) .

⊓1
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Let us still point out that the condition ModD
↓
τ (Sp) ⊆ ModD

↓
τ

(behaviour Sp wrt |≈D↓
τ

A ) in Cor. 2(2) does not always hold.

Example 6. (i) Consider the signature of 2Buf and the sentence ϕ′ =
⟨in⟩¬⟨in⟩tt. Then, for the structure I in Fig. 2, we have I |=D↓

τ
A ϕ′ but

I |̸≈D↓
τ

A ϕ′.
(ii) The {a}-structure M in Fig. 4 gives another example where standard satis-

faction does not imply behavioural satisfaction. The reason is that w0 and
w1 are different but observationally equal states.

⊓1

M : w0

a

w1

a

Fig. 4. M |=D↓
τ

A ↓x . ⟨a⟩¬x but M |̸≈D↓
τ

A ↓x . ⟨a⟩¬x

5 Concluding Remarks

We have studied two observational interpretations of D↓
τ -logic, a dynamic logic

with binders and silent transitions. The two approaches, behavioural and abstrac-
tor specifications, follow the lines of an intensive study of behavioural and
abstractor semantics in the area of algebraic specifications which has been taken
up for reactive systems in [5]. The major result is that behavioural semantics,
based on a behavioural satisfaction relation, and abstractor semantics, based on
observational abstraction of model classes by weak bisimulation, coincide if and
only if any standard model of a specification is a behavioural model as well. To
establish this result we have shown that our logic instantiates the general, logic-
independent requirements of a behaviour-abstractor framework proposed in [7].
As a side-effect we get that behavioural satisfaction of D↓

τ -sentences is modally
invariant under weak bisimulation.

There are several interesting research questions for future work. We want
to integrate D↓

τ -logic and its observational interpretations in the development
methodology for reactive systems suggested in [9]. This would involve explicit
implementation constructors, e.g., for information hiding and parallel composi-
tion. Larger case studies and tools for validating the observational interpreta-
tions of D↓

τ -logic would be another issue. This would include the investigation of
proof methods for deriving observational consequences from specifications. As an
extension of our work we would like to integrate data states following the ideas
of [6]. Moreover it would be interesting to see what would happen if we replace
weak bisimulation by other equivalence notions like, e.g., branching bisimulation.

Acknowledgement. We would like to thank the anonymous reviewers of this work
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