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Abstract
Fuzzy programming languages, such as theFuzzy Arden Syntax (FAS), are used to describe behaviours which evolve in a fuzzy
way and thus cannot be characterized neither by a Boolean outcome nor by a probability distribution. This paper introduces
a semantics for FAS, focusing on the weighted parallel interpretation of its conditional statement. The proposed construction
is based on the notion of a fuzzy multirelation which associates with each state in a program a fuzzy set of weighted possible
evolutions. The latter is parametric on a residuated lattice which models the underlying semantic ‘truth space’. Finally, a
family of dynamic logics, equally parametric on the residuated lattice, is introduced to reason about FAS programs.

1 Introduction

Facing the complex nature of modern societies, computa-
tional systems with a complex, unconventional behaviour
have become the norm rather than the exception in software
engineering design. Often some notion of weight (e.g. a cost,
a probability, a continuous effect, etc.) has to be brought
into the picture leading to a broader understanding of what
a computation may stand for. This entails the need not only
for suitable programming languages able to capture forms of
probabilistic, fuzzy or hybrid computation, but also for for-
malisms for rigorous design, verification and refinement for
such programs. While in the “classical world” Kleene alge-
bras (Kozen 1994, 2000) and dynamic logics (Pratt 1991;
Harel et al. 2000; Fischer and Ladner 1979) provide the
underlying formal setting to establish program correctness,
suitable generalizations to different forms of weighted com-
putation are still object of intense research.
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Uncertainty is a key ingredient (Kozen 1985; Qiao et al.
2008; den Hartog and de Vink 2002; McIver et al. 2008; Fos-
ter et al. 2016) in this setting. Probabilities often emerge as a
natural way to describe behaviour in a variety of application
scenarios. Typically, probabilistic programs are syntactically
equipped with an operator to describe a probabilistic choice
between two executions (Qiao et al. 2008). In the following
expression, for example,

(x := x + 1) +0.6 (y := y × 2),

operator +0.6 represents the nondeterministic execution of
the assignments x := x + 1 and y := y × 2 with probabili-
ties 0.6 and 0.4, respectively. Programs of this kind resemble
a “yes–no” question, modelled by a Bernoulli distribution of
a random variable, whose answer takes the value 1with prob-
ability p and 0 with probability 1− p. A typical illustrative,
real-world scenario is a sequence of (possible biased) coin
tosses, as represented by a binary tree in Fig. 1. Note that,
despite the uncertainty associated with each event, the result
is always Boolean, and therefore, at each stage, only one of
the branches provides an outcome.

Another class of systems in which uncertainty plays a
major role is fuzzy control systems (Zadeh 1965), which
typically express situations that cannot be conceptualized in
terms of a Boolean choice. Fuzzy programming languages
(FPL) are precisely suited to describe such systems, which
are present in a variety of applications, ranging frommedical
diagnosis (Vetterlein et al. 2010) to robotics (Cingolani and
Alcalá-fdez 2013).

The Fuzzy Arden Syntax (FAS) (Vetterlein et al. 2010) is
an example of a FPL designed for medical diagnosis. Actu-
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Fig. 1 Binary tree representing a sequence of (possible biased) coin
tosses

ally, it extends the Arden Syntax (AS) to cater for vague or
uncertain information, typically arising in clinical situations.
A typical example is the following: if the body temperature
of a patient reaches 37.4◦C , and some automatic control sys-
tem defines a lower limit of 37.5◦C for identifying a fever
condition, it may be worthwhile to consider that the patient is
actually reaching a temperature worth of attention. A sharp,
Boolean reasoning will not be adequate to capture this sort of
cases. Actually, often in real life, it is helpful to infer infor-
mation from facts that are not exactly true or false, but so up
to a certain degree.

FAS is based on fuzzy set theory (Zadeh 1965) and fuzzy
logic (Caicedo and Rodriguez 2010; Bou et al. 2011; Han-
soul and Teheux 2013): its data types have been generalized
to represent truth values between the extremes false and true,
and the operations on these types were adapted accordingly.
Intuitive and very close to natural language, it has been suc-
cessfully used to design knowledge-based components in
medical decision support systems (Starren et al. 1994; Anand
et al. 2018; Samwald et al. 2012).

Programs in FAS arewritten as units thatmay interactwith
each other to process clinical information. Composition is
basically achieved through the conditionalif–then–else
and switch statements. Being fuzzy, they entail a sort of
parallel execution of possible alternative paths. Differently
from what happens in probabilistic programming, there is no
(probabilistic) choice of alternative courses of action. Actu-
ally, execution proceeds in parallel with distinct associated
weights — just as a liquid flowing through different chan-
nels at the same time, after a split point, to use a popular
metaphor depicted in Fig. 2. The distinct thicknesses of the
arrows represent, as expected, the distinct ‘flows’ of liquid
(weights).

This paper introduces a proper semantics for conditional
statements in FAS as a form of weighted parallelism. The
underlying mathematical structure is a fuzzy multirelation

R ⊆ W × LW (1)

Fig. 2 Conditionals in a fuzzy programming language have a parallel
flavour as in a course of water flowing through a ‘Y-shaped’ pipe

which relates each state (typed as W ) to a function from W
to a 0-bounded right residuated lattice L, i.e. a reduct of a 0-
bounded residuated lattice without the left residual ←1 and
with the additional axiom of the absorbent property of 0 on
; (axiom (11)). Such a structure is used to capture the fuzzy
evolution of the system.

The concept is based on binary multirelations, whichwere
first used in the context of game logics to distinguish between
angelic and demonic non-determinism (Parikh 1983, 1985;
Rewitzky 2003), i.e. between an internally controlled choice
and a totally external, thus uncontrollable one. Multirela-
tions are also used to base predicate transformer semantics
(Rewitzky and Brink 2006).

In a fuzzy multirelation, on the other hand, each state is
related to a fuzzy set of reachable states leading to multiple
branches that can be explored in parallel, each of them asso-
ciated with a (possibly different) weight. Such weights are
values taken from a truth space modelled by L.

The idea is close to probabilistic multirelations (Tsuma-
gari 2012), but considering amore generic algebra to evaluate
truth degrees, and agnostic with respect to some properties,
such as convexity. Note that, making L = 2, the Boolean
lattice, inclusion (1) boils down to

R ⊆ W × 2W (2)

i.e. the standard notion of a multirelation associating states
to sets of states.

To better understand the intuitive meaning of a fuzzy
multirelation, consider the following simple example. Let
W = {w0, w1, w2} and choose the carrier of L to be the
real interval [0, 1]. Figure 3 depicts a fuzzy multirelation
R = {w0, ϕ} such that ϕ : W → L is defined as ϕ(w0) = 0,
ϕ(w1) = 0.4 and ϕ(w2) = 0.6.

1 Note that while the most common nomenclature for ← (→) is right
(left) division, we follow reference Kozen (1993), where ← (→) is
called left (right) residual.
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Fig. 3 Picturing fuzzy multirelation R

Fuzzy multirelation R may be thought as representing the
following if–then–else statement in FAS:

Example 1 if (Temperature is inFever_cond
ition) then medicine:=5else medicine:=0

where w0 is the initial state, and w1, w2 correspond to the
states achieved up execution of, respectively, assignments
medicine:=5 and medicine:=0. Values ϕ(w1) = 0.4,
ϕ(w2) = 0.6, emerging from the evaluation of condi-
tion Temperature is in Fever_condition, cap-
ture the fact that Temperature has probably not reached
the limit of a fever condition but is close to that limit. Func-
tion ϕ is interpreted as the fuzzy set of states reachable in
parallel from w0. If, instead, the condition above was eval-
uated to a Boolean value, the conditional statement would
behave as an if–then–else in a standard imperative program-
ming languages. In the present scenario, only assignment
medicine:=5 would be executed.

Note that this fuzzy behaviour is completely different from
the one of a conditional both in a classical and probabilistic
programming language. Actually, the sort of conditional we
are interested here in does not reduce to a non-deterministic
or even a probabilistic choice (McIver et al. 2013). On the
contrary, a fuzzy conditional corresponds to a formof parallel
composition in which branches are parallel courses of action
executed with different weights. This is also different, of
course, from the usual parallel composition which models a
crisp notion of two programs running in parallel (Peleg 1987;
Hoare et al. 2011; Furusawa and Struth 2015), or two actions
being processed at the same time (Prisacariu 2010).

The choice of a concrete L depends, of course, on the
problem to be addressed. Therefore, the paper develops a
generic semantics which is parametric on the definition of L.
This semantics is then extended to a family of �-free dynamic
logics, also parametric in L, to reason about FAS programs.

Structure. This paper is organized as follows. Section 2
introduces fuzzy multirelations and their algebra, parametric
on a 0-bounded right residuated lattice L, as the main math-
ematical component of a semantics and a logic for FAS. This
is used in the following section to provide a formal (denota-
tional) semantics for the language. Section 4 reports on the
paper’s second contribution: the development of a family of
�-free dynamic logics, L(L), parametrized by L, for reason-
ing about FAS programs. Its syntax, semantics, satisfaction
relation and axiomatization are discussed in detail. Finally,
Sect. 6 sums up related research, concludes and enumerates
some topics for future work.

2 The algebra of fuzzymultirelations

This section introduces fuzzy multirelations parametric, as
referred above, on a 0-bounded right residuated lattice, and
their algebra.

2.1 Preliminaries

In order to capture different interpretations of the fuzzy con-
nectives underlying the FAS programming constructors, the
whole formal treatment of FAS in this paper is parametrized
by an 0-bounded right residuated lattice (Galatos et al. 2007).
This structure plays a double role in the sequel: as a compu-
tational model, to interpret programs, and as a truth space,
to give meaning to variables in the corresponding �-free
dynamic logic.

Definition 1 (0-bounded right residuated lattice (Galatos
et al. 2007)) A 0-bounded right residuated lattice is a tuple
L = (L,+, ; , 1, 0,→, ·), where L is a set, 1, 0 are constants,
and +, ; ,→ and · are binary operations over L satisfying
the axioms in Fig. 4. The order relation ≤ is induced by +
as a ≤ b ⇔ a + b = b. This structure is a reduct of a 0-
bounded residuated lattice (Galatos et al. 2007) without the
left residual ←, and with the additional constant 0 and (11)
as an additional axiom. Note that by including ← and the
correspondent residuation axiom, (11) could be derived and
thus omitted from the axiomatization. In other terms, L is
a reduct of a F L-algebra (Galatos et al. 2007) without ←.
Since this paper will only consider such class of residuated
lattices, we refer to this structure simply as right residuated
lattice. L is called a I-right residuated lattice when the iden-
tity of the ; operator coincides with the greatest element, i.e.
1 = �. As this will always be the case in this paper, pre-
fix I will be omitted in the sequel. A right residuated lattice
is complete if every sublattice has both supremum and infi-
mum. Notation L will be used to refer to both the lattice and
its carrier, interchangeably, whenever clear from the context.
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Fig. 4 Axioms for 0-bounded right residuated lattice (based on Kozen
(1993))

The intuition behind these operators come from the double
role L plays, as mentioned above. Operators +, · and →
are taken as logical disjunction (or), conjunction (and) and
implication, respectively. Having a monoidal structure, both
+ and ; admit a distributed version denoted by

∑
and

∏
,

respectively. The generation of dynamic logics illustrated in
Sect. 4 will be parametric on the class of complete right
residuated lattices, since completeness is required to ensure
the existence of arbitrary suprema. The following are typical
examples of such structures.

Example 2 (2 -The Boolean lattice.) TheBoolean latticewith
the standard Boolean connectives,

2 = ({�,⊥},∨,∧,⊥,�,→,∧) .

Example 3 (Ł - The Łukasiewicz arithmetic lattice) The
Lukasiewicz arithmetic lattice

Ł = ([0, 1],max,�, 0, 1, → , min)

where

x � y = max(0, y + x − 1),
x → y = min(1, 1 − x + y).

Example 4 (G - Gödel algebra)] A Gödel algebra is defined
as

G = ([0, 1],max,min, 0, 1,→,min)

where

x → y =
{
1, if x ≤ y

y, if y < x

Example 5 (� - the � product algebra) The product �-
algebra

� = ([0, 1],max, ·, 0, 1,→,min)

where · is the usual multiplication of real numbers and

x → y =
{
1, if x ≤ y

y/x, if y < x

for/the real division.

These lattices provide precisely the operators required for
combining truth values underlying FAS programming con-
structs. The very notion of a fuzzy set is parametric on L.

Definition 2 (Fuzzy set and fuzzy relation (Zadeh 1965))
Let W , W1, W2 be sets and L a complete right residuated
lattice. A fuzzy subset of W is a function ϕ : W → L, with
ϕ(w) defining themembership degree of x in ϕ. The set of all
fuzzy subsets of W is denoted byLW . A fuzzy binary relation
over W1, W2 is a function μ : W1 × W2 → L returning the
weight assigned to the pair (w1, w2).

Fuzzy sets model collections of objects each of them asso-
ciated with a degree of membership; fuzzy relations do the
same for pairs of values. The qualifier extends, as expected,
to multirelations. Recall that a binary multirelation over a
set W (Rewitzky 2003) is a subset of the Cartesian product
W × 2W . Given multirelations R, S, their sequential compo-
sition is given by

R ◦ S ={(w, U ) | ∃V .(w, V ) ∈ R ∧ ∃F :V →U .

(∀v∈V .(v, F(v)) ∈ S) ∧ U =
⋃

F(V )}

and the parallel composition (Peleg 1987) is defined as

R||S = {(a, B ∪ C) | (a, B) ∈ R ∧ (a, C) ∈ S}

2.2 Fuzzy binary multirelations

The semantics of FAS programs proposed in this paper is
based on fuzzy multirelations, which we introduce in this
section.

Definition 3 (Fuzzy binary multirelation) Let W be a set and
L a complete right residuated lattice. A fuzzy binary multire-
lation over W is a set of pairs R ⊆ W × LW . The space of
L-valued fuzzy multi-relations over a set W , 2W×LW

, will be
denoted by ML(W ), or simply M(W ), whenever L is clear
from the context.
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Given two fuzzy (binary) multirelations R and S, their
sequential composition is given by

R ◦ S = { (a, ϕ) | ∃ϕ′ .(a, ϕ′) ∈ R ∧ ∃F :W→LW .∀b∈W .

(b, F(b)) ∈ S ∧ ϕ(u) =
∑

b

(ϕ′(b); F(b)(u)) } (18)

and the parallel composition is given by

R � S = {(a, ϕ ∪ ϕ′) | (a, ϕ) ∈ R ∧ (a, ϕ′) ∈ S} (19)

where (ϕ ∪ ϕ′)(w) = ϕ(w) + ϕ′(w), for each w ∈ W , with
symbol + on the right hand side is sum on lattice L (as in
Definition 1). The new multirelation collects pairs from R
and S whose first component is the same in both relations.
Note this definition generalizes the one given by Peleg (1987)
for sharp multirelations.

The set ML(W ) of fuzzy multirelations over L, together
with operator �, provides a suitable semantic structure for
computations in FAS.

Definition 4 (Algebra of fuzzy multirelations)
Given a set W and a complete right residuated lattice L, the
algebra of fuzzy multirelations over L is the structure

M = (ML(W ),∪, ◦,�,∅, 1◦, 1�)

where:

– ∪ is the binary set union;
– ◦ and � correspond to sequential (18) and parallel (19)
composition of multirelations, respectively;

– 1◦ = {(w, δw) | w ∈ W } is the identity of ◦, with
δw : W → L defined as

δw(w′) =
{

� if w′ = w

⊥ otherwise

– 1� = {(w, 0) | w ∈ W } is the identity of �, where
0 : W → L is the fuzzy set defined as 0(w) = ⊥,
∀w ∈ W ;

Notation r stands for the constant function on r ∈ R, i.e.
the function that returns r ∈ R for every input.

In the context of program semantics, multirelation 1◦ can
be regarded as the semantics of program statement skip, a
common constructor in imperative programming languages,
although not considered in FAS.

Theorem 1 For any complete right residuated lattice L, M is
a proto-trioid, i.e. an algebra satisfying the following axioms:

R ∪ (S ∪ T ) = (R ∪ S) ∪ T (20)

R ∪ S = S ∪ R (21)

R ∪ R = R (22)

R ∪ ∅ = R (23)

(R ◦ S) ◦ T ⊆ R ◦ (S ◦ T ) (24)

R ◦ 1◦ = 1◦ ◦ R = R (25)

(R ◦ S) ∪ (R ◦ T ) ⊆ R ◦ (S ∪ T ) (26)

(R ∪ S) ◦ T = (R ◦ T ) ∪ (S ◦ T ) (27)

R ◦ ∅ = ∅ ◦ R = ∅ (28)

R � (S � T ) = (R � S) � T (29)

R � S = S � R (30)

R � R = R (31)

1� � R = R (32)

R � (S ∪ T ) = (R � S) ∪ (R � T ) (33)

Proof (ML(W ),∪,∅) is a semilattice with least element ∅,
thus satisfying axioms (20)–(23). The proofs of axioms (24)–
(28) are not straightforward and require particular attention.
(24):
Let (a, ϕ) ∈ (R ◦ S) ◦ T . Then,

∃ϕ′ . (a, ϕ′) ∈ (R ◦ S) ∧ ∃F :W→LW .

∀b∈W . (b, F(b)) ∈ T ∧ ϕ(u) =
∑

b

ϕ′(b); F(b)(u)

and, similarly,

∃ϕ′′ . (a, ϕ′′) ∈ R ∧ ∃F ′:W→LW .

∀a′∈W .(a′, F ′(a′)) ∈ S ∧ ϕ′(b) =
∑

a′
ϕ′′(a′); F ′(a′)(b)

Thus,

ϕ(u) =
∑

b

(
∑

a′
(ϕ′′(a′); F ′(a′)(b)); F(b)(u)

)

=
∑

b

(
∑

a′
(ϕ′′(a′); F ′(a′)(b); F(b)(u))

)

=
∑

a′

(
∑

b

(ϕ′′(a′); F ′(a′)(b); F(b)(u))

)

=
∑

a′

(

ϕ′′(a′);
(

∑

b

(F ′(a′)(b); F(b)(u))

))

=
∑

a′
(ϕ′′(a′); F ′′(a′)(u))

where F ′′ : W → LW is defined by

F ′′(a′)(u) =
∑

a′
(ϕ′′(a′); F ′′(a′)(u))
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Clearly (a′, F ′′(a′)) ∈ S ◦ T entails (a, ϕ) ∈ R ◦ (S ◦ T ).
(25):
Case 1: 1◦ ◦ R ⊆ R.

Suppose (a, ϕ) ∈ 1◦ ◦ R. Then,

(∃ϕ′ . (a, ϕ′) ∈ 1◦) ∧ ∃F :W→LW .

∀b∈W . (b, F(b)) ∈ R ∧ ϕ(u) =
∑

b

ϕ′(b); F(b)(u)

⇔
(∃ϕ′ . (a, ϕ′) ∈ 1◦) ∧ ∃F :W→LW .

∀b∈W . (b, F(b)) ∈ R ∧ ϕ(u) = F(a)(u)

because

ϕ(u) =
∑

b

ϕ′(b); F(b)(u) = ϕ′(a); F(a)(u)

= �; F(a)(u) = F(a)(u)

with (a, F(a)) ∈ R. Thus, (a, ϕ) ∈ R.
Case 2: R ⊆ 1◦ ◦ R:
Conversely, let (a, ϕ) ∈ R, and define F : W → LW as

F(b) =
{

ϕ if b = a

0 otherwise
such that (b, F(b)) ∈ R. Thus, ϕ is a function defined as
follows

ϕ(u) =
∑

b

(ϕ′(b); F(b)(u))

=
∑

b

(δa(b); F(b)(u)),

with
(
a,

∑

b

(δa(b); F(b)
) ∈ (1◦ ◦ R)

Thus, (a, ϕ) ∈ 1◦ ◦ R. Let us now prove R ◦ 1◦ = R.
Case 1: R ◦ 1◦ ⊆ R:
Suppose (a, ϕ) ∈ R ◦ 1◦. Then,

∃ϕ′ . (a, ϕ′) ∈ R ∧ ∃F :W→LW .

∀b∈W . (b, F(b)) ∈ 1◦ ∧ ϕ(u) =
∑

b

(ϕ′(b); δb(u))

⇔
∃ϕ′ .(a, ϕ′) ∈ R ∧ ∃F :W→LW .

∀b∈W . (b, F(b)) ∈ 1◦ ∧ ϕ(u) = ϕ′(b)

because

ϕ(u) =
∑

b

(ϕ′(b); δb(u))

= ϕ′(b); δb(b)

= ϕ′(b);�

= ϕ′(b)

with (a, ϕ′) ∈ R. Thus, (a, ϕ) ∈ R.
Case 2: R ⊆ R ◦ 1◦:
Let (a, ϕ) ∈ R, and define F : W → LW as F(b)(u) =
δb(u). Following a similar argument the one above,

ϕ(u) =
∑

b

(ϕ(b); F(b)(u)) =
∑

b

ϕ(b); δb(u)

with
(
a,

∑

b
ϕ(b); δb

) ∈ (R ◦ 1◦).

(26):
Assume (a, ϕ) ∈ (R ◦ S) ∪ (R ◦ T ). Then, (a, ϕ) ∈ R ◦ S ∨
(a, ϕ) ∈ R ◦ T . That means

∃ϕ′ .(a, ϕ′) ∈ R ∧
(
∃F :W→LW .∀b∈W .

(
(b, F(b)) ∈ S ∨ (b, F(b)) ∈ T

))∧
ϕ(u) =

∑

b

(ϕ′(b); F(b)(u))

⇔
∃ϕ′ .(a, ϕ′) ∈ R ∧ (∃F :W→LW .∀b∈W .(b, F(b)) ∈ S ∪ T

)∧
ϕ(u) =

∑

b

(ϕ′(b); F(b)(u))

⇔
(a, ϕ) ∈ R ◦ (S ∪ T )

(27):
We start by proving (R ∪ S) ◦ T ⊆ (R ◦ T ) ∪ (S ◦ T ). Let us
assume (a, ϕ) ∈ (R ∪ S) ◦ T . Then

∃ϕ′ .(a, ϕ′) ∈ (R ∪ S) ∧ ∃F :W→LW .

∀b∈W . (b, F(b)) ∈ T ∧ ϕ(u) =
∑

b

(ϕ′(b); F(b)(u))

⇔
∃ϕ′ .

(
(a, ϕ′) ∈ R ∨ (a, ϕ′) ∈ S

) ∧ ∃F :W→LW .

∀b∈W . (b, F(b)) ∈ T ∧ ϕ(u) =
∑

b

(ϕ′(b); F(b)(u))

⇔
(∃ϕ′ .(a, ϕ′) ∈ R ∧ ∃F :W→LW .

∀b∈W . (b, F(b)) ∈ T ∧ ϕ(u) =
∑

b

(ϕ′(b); F(b)(u))
) ∨

(∃ϕ′ .(a, ϕ′) ∈ S ∧ ∃F :W→LW .

∀b∈W . (b, F(b)) ∈ T ∧ ϕ(u) =
∑

b

(ϕ′(b); F(b)(u))
)

⇔
(
(a, ϕ) ∈ R ◦ T

) ∨ (
(a, ϕ) ∈ S ◦ T

)

⇔
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(a, ϕ) ∈ (R ◦ T ) ∪ (S ◦ T ).

Conversely, assume (a, ϕ) ∈ (R ◦ T ) ∪ (S ◦ T ). Then

(a, ϕ) ∈ R ◦ T ∨ (a, ϕ) ∈ Q ◦ T

⇔
(∃ϕ′ . (a, ϕ′) ∈ R ∧ ∃F :W→LW .

∀b∈W . (b, F(b)) ∈ T ∧ ϕ(u) =
∑

b

(ϕ′(b); F(b)(u))
) ∨

(∃ϕ′ s f (a, ϕ′) ∈ S ∧ ∃F :W→LW .

∀b∈W . (b, F(b)) ∈ T ∧ ϕ(u) =
∑

b

(ϕ′(b); F(b)(u))
)

⇔
∃ϕ′ . ((a, ϕ′) ∈ R ∨ (a, ϕ′) ∈ S) ∧ ∃F :W→LW .

∀b∈W . (b, F(b)) ∈ R ∧
∑

b

(ϕ′(b); F(b)(u))

⇔
∃ϕ′ . (a, ϕ′) ∈ R ∪ S ∧ ∃F :W→LW .

∀b∈W . (b, F(b)) ∈ T ∧
∑

b

(ϕ′(b); F(b)(u))

⇔
(a, ϕ) ∈ (R ∪ S) ◦ T

(28):
Let us prove ∅ ◦ R ⊆ ∅. Suppose (a, ϕ) ∈ ∅ ◦ R. Then,

∃ϕ′ . (a, ϕ′) ∈ ∅ ∧ ∃F :W→LW .

(b, F(b)) ∈ R ∧ ϕ(u) =
∑

b

(ϕ′(b); F(b)(u))

But �ϕ′ .(a, ϕ′) ∈ ∅ since ∅ is the empty set. So there is no
(a, ϕ) ∈ ∅ ◦ R, and thus, (a, ϕ) ∈ ∅.

To prove that R ◦ ∅ ⊆ ∅, assume (a, ϕ) ∈ R ◦ ∅. Then,

∃ϕ′ .(a, ϕ′) ∈ R ∧ ∃F :W→LW .

∀b∈W . (b, F(b)) ∈ ∅ ∧ ϕ(u) =
∑

b

(ϕ′(b); F(b))

But there is no (b, F(b)) ∈ ∅ since ∅ is the empty set. Hence
(a, ϕ) ∈ ∅. The two converse inclusions are trivial.
(29)–(31):

These axioms come directly from Definition 3 and the
properties of a residuated lattice.
(32):

Consider an arbitrary fuzzy multirelation R over a set of
states W . Then,

R � 1�
= { definition of � (19) and 1�}

{(a, ϕR ∪ {(a,∅) | a ∈ W }) | (a, ϕR) ∈ R}
= { for any a ∈ W , ϕR(a) + 0 by (6)}

{(a, ϕR) | (a, ϕR) ∈ R}
= { identity}

R

(33):
First we prove R � (S ∪ T ) ⊆ R � S ∪ R � T . Assume
(a, ϕ) ∈ R � (S ∪ T ). Then,

∃ϕ1,ϕ2 .(a, ϕ1) ∈ R ∧ (a, ϕ2) ∈ S ∪ T ∧ ϕ = ϕ1 + ϕ2

⇒
∃ϕ1,ϕ2 .

((
(a, ϕ1) ∈ R ∧ (a, ϕ2) ∈ S

) ∨
(
(a, ϕ1) ∈ R ∧ (a, ϕ2) ∈ T

)) ∧ ϕ = ϕ1 + ϕ2

⇒
(
(a, ϕ) ∈ R � S

) ∨ (
(a, ϕ) ∈ R � T

)

⇒
(a, ϕ) ∈ (R � S) ∪ (R � T )

Conversely, suppose that (a, ϕ) ∈ (R � S) ∪ (R � T ). Then,

(a, ϕ) ∈ R � S ∨ (a, ϕ) ∈ R � T

⇒
∃ϕ1,ϕ2 .

((
(a, ϕ1) ∈ R ∧ (a, ϕ2) ∈ S

)

∨ (
(a, ϕ1) ∈ R ∧ (a, ϕ2) ∈ T

)) ∧ ϕ = ϕ1 + ϕ2

⇒
∃ϕ1,ϕ2 .

(
(a, ϕ1) ∈ R

∧ (
(a, ϕ2) ∈ S ∨ (a, ϕ2) ∈ T

)) ∧ ϕ = ϕ1 + ϕ2

⇒
∃ϕ1,ϕ2 .

(
(a, ϕ1) ∈ R ∧ (a, ϕ2) ∈ S ∪ T

)
∧ ϕ = ϕ1 + ϕ2

⇒
(a, ϕ) ∈ R � (S ∪ T )

��

3 The Fuzzy Arden Syntax

The Fuzzy Arden Syntax is a fuzzy programming language
optimized for the design of fuzzy control systems for clinical
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decision-making. After a brief overview of its syntax, this
section introduces a denotational semantics for FAS based
on fuzzy multirelations.

3.1 Syntax

FAS is syntactically supported by the following elements:

– A set X of variables (e.g. Temp, O2_low);
– A set F of function symbols. Each (Fn)n∈N0 ⊆ F denotes
a family of function symbols with arity n ∈ N0. Symbols
c ∈ F0 are called constants. Semantically, a function
symbol f in F is interpreted as f (t1, . . . , tn) : R

n → R.
– A set of P of predicate symbols. Each (Pn)n∈N0 ⊆ P

denotes a family of predicate symbols with arity n ∈ N0.
Semantically, a predicate symbol p in P is interpreted as
p(t1, . . . , tn) : R

n → 2.

Notation T (X) stands for the set of terms with variables in
X . In particular: TF (X) represents its restriction to functional
terms (e.g. Temp+5, O2*2,

CO2_very_high-3 or O2_low+5). Similarly, TP (X)

is the restriction to predicate terms, as in, for example,
O2_low < 90).

A program π in FAS is either an assignment

x := t

a conditional statement

if p then π1 else π2 endif

or a generalized conditional

switch

p1 then π1

. . .

pn then πn

endswitch

where pi , 1 ≤ i ≤ n are predicate terms in TP (V ), x ∈ X is
a variable, t ∈ TF (X) a term over X . We denote the set of all
assignments by At and the set of all programs by Prg(At).

To simplify reasoning about FAS programs at a later stage,
it is useful to decompose FAS conditional and switch state-
ments into more elementary operators,

namely tests, as well as parallel and sequential compo-
sition of programs. Such operators, although not explicitly
part of the syntax, can easily be added to the language as
generated by the following rule:

π ::=π0 | p? | π;π | π ||π

where π0 ∈ At and p? stands for a notion of test. The latter
depends, of course, on the space of truth values in the pro-
posed semantics, i.e. on the particular choice of a complete
right residuated lattice L. Hence, a conditional statement

if p then π1 else π2 endif

is encoded as

p?;π1||(not p)?;π2

where not p denotes the negation of p and is defined in
Sect. 3.2. Note that in this encoding parallel composition
plays the role usually assigned to the choice operator + in
the decomposition of conditionals for classical imperative
languages. The motivation for this definition is to suitably
capture the behaviour of conditionals in FAS, as informally
explained in the Introduction.

A few examples will help the reader to get familiar with
the language. Thus, statement

Temp:=38

assigns the real number 38 to a variable of type number (i.e.
in data domain R). Similarly,

O2_low:=FUZZY SET((70,0),

(75,1),(85,1),(90,0))

assigns a fuzzy set to the fuzzy variable O2_low. The nota-
tion used means that O2_low is defined as a fuzzy set, linear
on the open intervals ]70, 75[, ]75, 85[, [85, 90] and constant
on ] − ∞, 70[ and ]90,+∞[. Formally,

O2_low(r) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

r/5 − 14 if 70 ≤ r ≤ 75

1 if 75 ≤ r ≤ 85

−r/5 + 18 if 85 ≤ r ≤ 90

0 otherwise

for each r ∈ R, as plotted in Fig. 5.
Intuitively it gives, for each oxygen value, a degree which
measures how “low” such value actually is. In other words,
it defines numerically what it means for the variable to rep-
resent a low level of oxygen concentration.

Generically, a fuzzy set, i. e. a function σ : R → [0, 1],
is denoted by

FUZZY SET((a1, t1), . . . , (ak, tk))

where ti = σ(ai ) for i = 1, . . . , k, such that σ is linear
on each open interval ]a1, a2[, ..., ]ak+1, ak[, and constant
on ] − ∞, a1[ and ]ak,∞[. Naturally, although the example
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Fig. 5 Graph of the fuzzy variable O2_low

presented has a trapezoidal form, other types of fuzzy sets
can be defined in FAS. For instance, we can have a fuzzy
variable defined as the triangle (70, 0), (80, 1), (90, 0).

3.2 Semantics

Let L be a complete right residuated lattice and X a set of
variables. Denotationally, programs in FAS are interpreted
over computational states defined as weighted valuations of
variables, i.e. functions

w : X × R → L

To illustrate the proposed semantics, we will resort, along
this subsection, to the following example, taken from Vetter-
lein et al. (2010).

Example 6

O2_low:=FUZZY SET((70,0),(75,1),

(85,1),(90,0))

if O2 is in O2_low

then PIP_inc:=5 else PIP_inc:=0

The program represents an excerpt of a module of a medical
fuzzy control system which provides support for mechan-
ically ventilated patients after cardiac surgery. The code
instantiates, in the first line, the fuzzy variable O2_low to a
fuzzy set. The next instruction defines a fuzzy control rule,
encoded in a if–then–else statement. Depending on the
oxygen level of a patient, the rule makes a modification to
the peak inspiratory pressure (PIP_inc).

In this setting, functional and predicate terms are inter-
preted as follows.

Definition 5 (Interpretation of functional terms) Let F be
a set of function symbols and X a set of variables. The inter-
pretation of terms t ∈ TF (X) in a state w ∈ W is given by
the map

�_�w : TF (X) → LR

defined as follows:

�x�w(r) = w(x)(r)

�c�w(r) = δc(r) =
{

� if r = c

⊥ otherwise

�f(t1, . . . , tn)�w(r) =
∑

i∈I

⎧
⎨

⎩

n∏

j=1

�t j �w(r i
j ) | f (r i

1, . . . , r i
n) = r

⎫
⎬

⎭

where I is the cardinality of the set of all possible solutions
of f (r i

1, . . . , r i
n) = r in R, with each f of arity n being

interpreted as a function on real numbers R
n → R (e.g.

+,×,2 , √ , . . .), x ∈ X and c, f(t1, . . . , tn) are the syntactic
representations of the constant c ∈ R and the functional term
f (t1, . . . , tn) ∈ TF (X), respectively.

Let us illustrate this semantics resorting to Example 6 and
choosingL as the latticeG of Example 2.We already defined,
in the previous subsection, the fuzzy variable O2_low.

Consider computing the value of term O2_low+5 in state
w0. According to Definition 5, the term 5 is defined as

�5�w0(r) →
{
1 if r = 5

0 , otherwise

The vertices are computed as follows:

�O2_low+5�w0(75) =�O2_low�w0(70); �5�w0(5)

=min{0, 1} = 0

�O2_low+5�w0(80) =�O2_low�w0(75); �5�w0(5)

=min{1, 1} = 1

�O2_low+5�w0(90) =�O2_low�w0(85); �5�w0(5)

=min{1, 1} = 1

�O2_low+5�w0(95) =�O2_low�w0(90); �5�w0(5)

=min{0, 1} = 0

For an intermediate value of r , e.g. r = 77, this yields

�02_low+5�w0(77) = �O2_low�w0(72); �5�w0(5)

= min{0.4, 1} = 0.4
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Fig. 6 Graph O2_low (blue line) and O2_low+5 (red line)

Note that the interpretation of the term O2_low+5 in w0 is
given by a horizontal translation of the graph of O2_low by
5 units, as depicted in Fig. 6:

Definition 6 (Interpretation of predicate terms) Let P be
a set of predicate symbols. The interpretation of a predicate
p ∈ TP (X) in a state w ∈ W is given by the map

�_�w : TP (X) → L

defined by

�p(t1, . . . , tn)�w =
∑

i∈I

⎧
⎨

⎩

n∏

j=1

�t j �w(r i
j ) | p(r i

1, . . . , r i
n)

⎫
⎬

⎭

where I is the cardinality of the set of all possible values
(r i

1, . . . , r i
n) ∈ R

n satisfying p(r i
1, . . . , r i

n), with p of arity n
interpreted as a predicate (e.g. ≤, =, . . .).

As an example, let us compute the interpretation of the
predicate O2_low ≤ 75, according to Definition 6.

�O2_low ≤ 75�w0 = �O2_low�w0(75); �75�w0(75) + · · ·
+ �O2_low�w0(70); �75�w0(75)

= 1; 1 + · · · + 0; 1
= max{min{1, 1}, . . . ,min{0, 1}}
= 1

For another example, consider predicate O2 is in
O2_low, whose interpretation in the same state w0 is the
function

�O2 is in O2_low�w0(r)

=
{

w0(O2_low, r) for the only r .�O2�w0(r) = �
⊥ otherwise

We are now able to introduce the semantics of FAS pro-
grams as function

�_� : Prg(At) −→ ML(W )

Thus, Assignment.

�x := t� = {(w, ϕ(w, t)) | w ∈ W }

where

ϕ(w, t) = λ w′ .
⎧
⎪⎨

⎪⎩

� if ∀x ′ �=x,r∈R . w′(x ′)(r) = w(x ′)(r)

∧ w′(x)(r) = �t�w(r)

⊥ otherwise

Note that although tha variables involved may be fuzzy, the
assignment itself is a crisp binary relation on the set of states.
Concretely, an assignment x := t connects any state w with
a set of states w′ such that the weight of x in w′ is the value
of term t in w.

In Example 6, the assignment �PIP_inc:=5� attributes
the term 5 to the variable PIP_inc, formally

�PIP_inc�w1(r) = �5�w0(r)

for all r ∈ R.
In order to capture conditional operators
if–then–else and switch entail the need for a

notion of test, whose syntax is, as mentioned above, p?, for
a predicate p ∈ TP (X). Its interpretation is as follows:
Test.

�p?� =
{

(w, ϕ) | ϕ(w′) =
{

�p�w if w = w′

⊥ otherwise

}}

FAS supports the predicates composed with the usual logical
connectives and, or and not.

Conjunction (and) and disjunction (or) are interpreted
as operators · and + on L, respectively. Moreover, since
the semantics is based on I-residuated lattices, i.e. with 1 as
the greatest element, “negation” of value �p�w, syntactically
not p, is interpreted as 1 − �p�w.
Conditional.

�if p then π1 else π2 endif�

= �p?;π1||(not p)?;π2�
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= �p?� ◦ �π1� � �(notp)?� ◦ �π2�

Switch.

�switch pi then πi · · · endswitch�

= �p1?;π1|| . . . ||pn?;πn� =
⊎

i

(�pi?� ◦ �πi �)

Intuitively, both operators relate a state w with a fuzzy set
of states w′, which assigns a weight of execution to each πi .
Each one of these weights is the value of the evaluated pred-
icate corresponding to the branch in which πi is executed.

Although in standard imperative programming languages,
the semantics of conditionals is expressed through choice
(union), conditionals in FAS do not represent a choice,
but a form of parallel evaluation. The parallel composi-
tion � suits better the idea that we want to capture, since
the execution of those commands in FAS does not repre-
sent a choice. Consider the following simple example. Let
W = {w0, w1, w2} be a set of states and consider fuzzy mul-
tirelations R = {(w0, ϕ1)}, with ϕ(w1) = 0.4, and S =
{(w0, ϕ2)}, with ϕ(w2) = 0.6. The union of R and S is the
set {(w0, ϕ1), (w0, ϕ2)}, which carries the standard interpre-
tation of conditionals as a nondeterministic choice between
(w0, ϕ1) and (w0, ϕ2). On the other hand, the parallel com-
position R � S represents a single execution {(w0, ϕ1 ∪ ϕ2)}
from state w0 going simultaneously to states w1 and w2.

Let us now illustrate the suitability of the proposed
semantics by computing the interpretation of the conditional
fragment of our reference example, choosing again L = G.

�if O2 is inO2_low

then PIP_inc:=5 else PIP_inc:=0�

= �p?;PIP_inc:=5 || (not p)?;PIP_inc:=0�

= �p?� ◦ �PIP_inc:=5� � �(not p)?� ◦ �PIP_inc:=0�

=
{
(w, ϕ1) | ∃ϕ′

1
.(w, ϕ′

1) ∈ �p?� ∧
∃F1:W→LW . ∀b∈W . (b, F ′(b)) ∈ �PIP_inc:=5�

∧ ϕ1(u) =
∑

b

(
ϕ′
1(b); F1(b)(u)

)}

�
{
(w, ϕ2) | ∃ϕ′

2
.(w, ϕ′

2) ∈ �(not p)?� ∧
∃F2:W→LW . ∀b∈W . (b, F2(b)) ∈ �PIP_inc:=0�

∧ ϕ2(u) =
∑

b

(
ϕ′
2(b); F2(b)(u)

)}

= {(w, ϕ1) | ϕ1(u) = ϕ′
1(w); F1(w)(u)}

� {(w, ϕ2) | ϕ2(u) = ϕ′
2(w); F2(w)(u)}

= {(w, ϕ1) | ϕ1(u) = �p�w; 1}
� {(w, ϕ2) | ϕ2(u) = �not p�w; 1}

= {(w, �p�w)} � {(w, �not p�w)}

where p = if O2 is in O2_low.

4 A �-free dynamic logic for FAS

4.1 The logic

Each complete right residuated lattice L induces a �-free
dynamic logic L(L) to reason about fuzzy imperative pro-
grams in FAS, with L giving a precise interpretation of
“fuzziness”. This section works out the details and exem-
plifies the logic in action through a number of examples.

Once a language for programs is fixed, as done in the
previous section, the set of formulas for L(L) introduces an
existential modality over FAS programs. Formally,

Definition 7 A signature for L(L) is a tuple

Δ = ((F, P),Π)

where (F, P) is a data signature composed by function and
predicate symbols, and Π ⊆ At. The set of L(L)-formulae
for Δ, denoted by FmL(L)(Δ), is generated by the following
rule

ρ::=� | ⊥ | p | ρ ∨ ρ | ρ ∧ ρ | ρ → ρ | 〈π〉ρ

for p ∈ TP (Y ) and π ∈ Prg(At).

By abuse of notation, we use the same symbols � and ⊥ to
refer to both the greatest and lowest element of the lattice L
and the logic formula, whenever clear from context.

Definition 8 LetL be a complete right residuated lattice. The
weighted satisfaction relation forL(L) consists of a function

|�L(L) : W × FmL(L)(Δ) → L

recursively defined by

– (w |�L(L) �) = �
– (w |�L(L) ⊥) = ⊥
– (w |�L(L) p) = �p�w

– (w |�L(L) ρ ∧ ρ′) = (w |�L(L) ρ) · (w |�L(L) ρ′)
– (w |�L(L) ρ ∨ ρ′) = (w |�L(L) ρ) + (w |�L(L) ρ′)
– (w |�L(L) ρ → ρ′) = (w |�L(L) ρ) → (w |�L(L) ρ′)
– (w |�L(L) 〈π〉ρ) = ∑

ϕ∈Π2�π�

( ∑

u∈U

(
ϕ(u); (u |�L(L) ρ)

))

In several situations, as the one of Example 6, some con-
textual assumptions must be taken into account. Thus, to
verify a formula in L(L), we assume the validity of a set of
contextual rules Γ . Notation

(Γ ,w |�L(L) ρ)
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stands for the value of (w |�L(L) ρ) assuming Γ , i.e. given
that (w |�L(L) Γ ) = �.

The (graded) satisfaction of (w, g |�L(L) 〈π〉ρ) is given
by the weight of some fuzzy set ϕ which is related to state
w by some fuzzy multirelation, and the weight of formula ρ

for some state u in the domain of ϕ (U ).

4.2 Some properties ofL(L)

This section establishes a number of properties of L(L). The
following two lemmas, the second one establishing auxiliary
properties relevant to prove the axiomatization of L(L), can
be proved along the lines of the second author previous work
(Madeira et al. 2016).

Lemma 1 Let L be a complete right residuated lattice. Then,

(w |�L(L) ρ → ρ′) = �
⇔ (w |�L(L) ρ) ≤ (w |�L(L) ρ′) (34)

(w |�L(L) ρ ↔ ρ′) = �
⇔ (w |�L(L) ρ) = (w |�L(L) ρ′) (35)

Lemma 2 The following properties hold for any right resid-
uated lattice L:

a ≤ b & c ≤ d ⇒ a + c ≤ b + d (36)

a; (b · c) ≤ (a; b) · (a; c) (37)

Additionally, for I finite,

∑

i∈I

(ai · bi ) ≤
∑

i∈I

ai ·
∑

i∈I

bi (38)

Lemma 3 Let L be a complete right residuated lattice. The
following are valid formulæ in L(L):

(3.1) 〈π〉(ρ ∨ ρ′) ↔ 〈π0〉ρ ∨ 〈π0〉ρ′, π0 ∈ At
(3.2) 〈π〉(ρ ∧ ρ′) → 〈π〉ρ ∧ 〈π〉ρ′
(3.3) 〈π1;π2〉ρ ↔ 〈π1〉〈π2〉ρ
(3.4) 〈π〉⊥ ↔ ⊥
(3.5) 〈π1||π2〉ρ ↔ 〈π1〉ρ ∨ 〈π2〉ρ

Proof (3.1):

(w |�L(L) 〈π0〉(ρ ∨ ρ′))
= { definition of |�L(L)}

∑

ϕ∈Π2�π0�

(
∑

u∈U

(
ϕ(u); (u |�L(L) ρ ∨ ρ′)

)
)

= { definition of |�L(L)}
∑

ϕ∈Π2�π0�

(
∑

u∈U

(
(ϕ(u); (

(u |�L(L) ρ)

+ (u |�L(L) ρ′)
))

)

= { by (9)}
∑

ϕ∈Π2�π0�

(
∑

u∈U

(
ϕ(u); (u |�L(L) ρ)

+ ϕ(u); (u |�L(L) ρ′)
)
)

= { π0 atomic; thus, w is related to a singleton {u}}
∑

ϕ∈Π2�π0�

(
ϕ(u); (u |�L(L) ρ) + ϕ(u); (u |�L(L) ρ′)

)

= { by (3) and (4)}
∑

ϕ∈Π2�π0�

(
∑

u∈U

(
ϕ(u); (u |�L(L) ρ)

)
)

+
∑

ϕ∈Π2�π0�

(
∑

u∈U

(
ϕ(u); (u |�L(L) ρ′)

)
)

= { definition of |�L(L)}
(w |�L(L) 〈π0〉ρ) + (w |�L(L) 〈π0〉ρ′)

= { definition of |�L(L)}
(w |�L(L) 〈π0〉ρ ∨ 〈π0〉ρ′)

Therefore, by (35),
〈π0〉(ρ ∨ ρ′) ↔ 〈π0〉ρ ∨ 〈π0〉ρ′ holds.
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(3.2):

(w |�L(L) 〈π〉(ρ ∧ ρ′))
= { definition of |�L(L)}

∑

ϕ∈Π2�π�

(
∑

u∈U

(
ϕ(u); (u |�L(L) ρ ∧ ρ′)

)
)

= { definition of |�L(L)}
∑

ϕ∈Π2�π�

(
∑

u∈U

(
ϕ(u); (

(u |�L(L) ρ) · (u |�L(L) ρ′)
))

)

≤ { by (37) and (36)}
∑

ϕ∈Π2�π�

(
∑

u∈U

(
(ϕ(u); (u |�L(L) ρ))

·(ϕ(u); (u |�L(L) ρ′))
)
)

≤ { by (38) }
∑

ϕ∈Π2�π�

(
∑

u∈U

(
ϕ(u); (u |�L(L) ρ)

)
)

·
∑

ϕ∈Π2�π�

(
∑

u∈U

(
ϕ(u); (u |�L(L) ρ′))

)
)

= { definition of |�L(L)}
(w |�L(L) 〈π〉ρ) · (w |�L(L) 〈π〉ρ′)

= { definition of |�L(L)}
(w |�L(L) 〈π〉ρ ∧ 〈π〉ρ′)

Therefore, by (34), 〈π〉(ρ ∧ ρ′) → 〈π〉ρ ∧ 〈π〉ρ′ holds.
(3.3):

(w |�L(L) 〈π1;π2〉ρ) ⇔
∃ϕ′∈Π2�π1�,F :W→LW .∀b∈W .

(b, F(b)) ∈ �π2� ∧ ϕ(u) =
∑

b

(ϕ′(b); F(b)(u))

This yields.

(w |�L(L) 〈π1;π2〉ρ)

= { definition of |�L(L) and �_�}
∑

u∈U

((
∑

b
(ϕ′(b); F(b)(u))

); (u |�L(L) ρ)

)

= { by (4)}
∑

b

(
( ∑

u∈U
(ϕ′(b); F(b)(u))

); (u |�L(L) ρ)

)

= { by (10)}
∑

b

(
∑

u∈U
(ϕ′(b); F(b)(u); (u |�L(L) ρ)

))

= { by (9)}
∑

b

(
ϕ′(b);

(
∑

u∈U
(F(b)(u); (u |�L(L) ρ))

)
)

But since (w, ϕ′) ∈ Π2�π1� and (b, F(b)) ∈ �π2�, for all
b ∈ W , we have

∑

b

(

ϕ′(b);
(

∑

u∈U

(F(b)(u); (u |�L(L) ρ))

))

= (w |�L(L) 〈π1〉〈π2〉ρ)

Hence, by (35), 〈π1;π2〉ρ ↔ 〈π1〉〈π2〉ρ is valid.
(3.4):

(w |�L(L) 〈π〉⊥)

= { definition of |�L(L)}
∑

ϕ∈Π2�π�

(
∑

u∈U

(
ϕ(u); (u |�L(L) ⊥)

)
)

= { definition of satisfaction}
∑

ϕ∈Π2�π�

(
∑

u∈U

(
ϕ(u);⊥)

)
∑

ϕ∈Π2�π�

(
∑

u∈U
⊥

)

= { by (6)}
⊥

Therefore, by (35), 〈π〉⊥ ↔ ⊥ is valid.
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(3.5):

(w |�L(L) 〈π1||π2〉ρ)

= { definition of |�L(L)}
∑

ϕ∈Π2�π1||π2�

(
∑

u∈W
(ϕ(u); u |�L(L) ρ)

)

= { definition of �_�}
∑

ϕ1∪ϕ2∈Π2�π1||π2�

(
∑

u∈W

(
(ϕ1 ∪ ϕ2)(u); (u |�L(L) ρ)

)
)

= { (ϕ1 ∪ ϕ2)(u) = ϕ1(u) + ϕ2(u)}
∑

ϕ1∈Π2�π1�
∧ϕ2∈Π2�π2�

(
∑

u∈W

(
(ϕ1(u) + ϕ2(u)); (u |�L(L) ρ)

)
)

= { by (9)}
∑

ϕ1∈Π2�π1�
∧ϕ2∈Π2�π2�

(
∑

u∈W

(
ϕ1(u); (u |�L(L) ρ)

+ϕ2(u); (u |�L(L) ρ)
)
)

= { by (3), (4) and definition of ||}
∑

ϕ1∈Π2�π1�

(
∑

u∈W

(
ϕ1(u); (u |�L(L) ρ)

)

+
∑

ϕ2∈Π2�π2�

(
∑

u∈W

(
ϕ2(u); (u |�L(L) ρ)

)
)

= { definition of |�L(L)}
w |�L(L) 〈π1〉ρ + w |�L(L) 〈π2〉ρ

= { definition of |�L(L)}
w |�L(L) 〈π1〉ρ ∨ 〈π2〉ρ

Therefore, by (35), 〈π1||π2〉ρ ↔ 〈π1〉ρ ∨ 〈π2〉ρ is valid. ��

5 An illustration

In order to illustrate the logic at work, let us consider a sim-
pler version of Example 6, which consists of a fuzzy control

system suggesting a value for the peak inspiratory pressure
(PIP) based on the O2 level measured in a patient after a
cardiac surgery. The situation is described in FAS by the fol-
lowing conditional statement:

ρ
abv= if O2 is in O2_low

then PIP:=0 else PIP:=5

Let us also assume that, in an initial state w0, the patient has
a O2 level of 89 2. Our goal is to verify how ‘normal’ the O2
level of the patient is after running the controller from state
w0.

Formally, this problem corresponds to computing the
value of the following L(L) formula

w0 |�L(L) 〈ρ〉 φ (39)

where φ
abv= O2 is in O2_normal.

In order to shorten the proof, we use the encoding defined
in Sect. 3.1 to represent program ρ as

ψ?;π1||(not ψ)?;π2

where

π1
abv= PIP_inc:=0

π2
abv= PIP_inc:=5

ψ
abv= O2 is in O2_low

The value of

w0 |�L(L) 〈ψ?;π1||(not ψ)?;π2〉 φ (40)

is obtained through the satisfaction relation established in
Definition 8, as follows.

2 Note that the system only suggests a modification in the value of
PIP_inc and such alteration is carried out manually by some health
professional.
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w0 |�L(L) 〈ψ?;π1||(not ψ)?;π2〉 φ

= { Lemma 3}
w0 |�L(L) 〈ψ?〉〈π1〉 φ + w0 |�L(L) 〈(not ψ)?〉〈π2〉 φ

= { definition of |�L(L)}
∑

ψ1∈Π2�ψ?�

(
∑

u∈U

ψ1(u);
⎛

⎝
∑

ϕ1∈Π2�π1�

(
∑

u∈U

ϕ1(u); u |�L(L) φ

)⎞

⎠

+
∑

ψ2∈Π2�(not ψ)?�

( ∑

u∈U

ψ2(u);
⎛

⎝
∑

ϕ2∈Π2�π2�

(
∑

u∈U

ϕ2(u); u |�L(L) φ

)⎞

⎠

= { definition of �_�}
ψ1(w0); (ϕ1(u1); u1 |�L(L) φ)

+ ψ2(w0); (ϕ2(u2); u2 |�L(L) φ)

= { definitions of �_�}
ψ1(w0); (�; u1 |�L(L) φ) + ψ2(w0); (�; u2 |�L(L) φ)

= { (8)}
ψ1(w0); u1 |�L(L) φ + ψ2(w0); u2 |�L(L) φ

Let us now interpret this problem using a concrete evalu-
ation environment encoded in the following context rules

Γ =
{
PIP_inc = 0 → O2 = 89

PIP_inc = 5 → O2 = 92

which describe the impact of increasing the ventilator’s
PIP_inc on the O2 level of the patient. The increment
of PIP_inc by 5 units results in an increase in the O2
from 89 to 92, whereas if no action is performed, this level
does not suffer any modification. In turn, these new val-
ues for O2 entail a new value for the predicate O2 is in
O2_normal.

It is relevant to mention that the output of the program
and the concrete decision of the health professional oper-
ating the system do not necessarily coincide. The values
ψ1(w0) and ψ2(w0), which correspond to the weights of the
predicatesO2 is in O2_normal and not O2 is in
O2_normal, highlightwhich branch ismore relevant to exe-
cute. This way, we are in presence of an uncertainty about
which path will be chosen by the user. It is precisely over
such an uncertainty that the logic reasons about. The actual
execution of the command, which will be decided according
to the weight of each branch, is not reflected in the logic.

Assuming Γ , we can discuss the problem instantiating L
with different lattices, namely Ł, G and �. Starting with Ł,

we obtain

0.2; 1 + 0.8; 0.8 = max(0.2, 0.6) = 0.6

The value 0.6 is interpreted as the certainty that the execution
of the fuzzy controller ρ adjusts the O2 level of the patient to
‘normal’. The formula (40) evaluates precisely the impact of
the suggestion made by the fuzzy controller on the O2 level
of the patient. Note, in particular, that the values of predicates
O2 is in O2_low, not O2 is in O2_low and O2
is in O2_normal affect the value of (40), with the ‘else’
branch having a stronger impact due to its higher weight
compared to the ‘then’ branch.
Considering now the lattice G, it yields

max(min(0.2, 1),min(0, 0.8)) = max(0.2, 0) = 0.2

Finally, the instantiation with � entails

max(0.2 × 1, 0 × 0.8) = max(0.2, 0) = 0.2

Despite the strictness of the logic, the discrepancy between
the values of the three lattices suggests that the truth space
for each concrete application context needs to be carefully
selected by the user.

6 Conclusion and further work

This paper introduced a formal semantics and a family of
�-free dynamic logics for the Fuzzy Arden Syntax, paramet-
ric on an complete right residuated lattice which supports a
truth space in which ‘fuzziness’ is interpreted. The seman-
tics is based on the notion of fuzzy binary multirelationwhich
models a program going from a state to a fuzzy set of states.
On the logical side, the modal operators are adapted from
Peleg (1987) to account for ‘fuzziness’ in the execution of
programs.

Numerous variants of fuzzy, modal and dynamic logics,
or combinations thereof, were previously considered for rea-
soning with fuzziness degrees either in the evaluation logical
formulas, program executions or both. Some approaches add
modalities to fuzzy logics over concrete lattices (e.g. Gödel
or Łukasiewicz) and define corresponding Kripke models
(Caicedo and Rodriguez 2010; Hansoul and Teheux 2013;
Hájek 2010). Others, more generic, define many-valued
modal logics (Bou et al. 2011) and propositional dynamic
logics (Sedlár 2020), inwhich both the truth space of proposi-
tions and the semantics of transitions are values in an arbitrary
mathematical structure: a residuated lattice, in the former,
and a FL-algebra, in the latter. Still other approaches, aiming
specifically at program verification purposes, are discussed
in Madeira et al. (2016) and Gomes et al. (2019). The former
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proposes a family of propositional dynamic logics, paramet-
ric on an action lattice, to interpret and reason about generic,
weighted programs. The latter extends such a family by con-
sidering that both programs and propositions are built over a
signature with variables and terms over them. In such a con-
text, programs can represent uncertainties in their courses
of execution or resources consumed. However, despite the
weighted nature of both programs and predicates, the con-
ditional statements are encoded, in those two approaches
by choice, i.e. the + operator of Kleene algebra, whose
semantics is defined as fuzzy set union. Other papers, built
with different application scenarios in mind, include Liau
(1999), which uses logics to reason about expected utility
of actions with applications to decision theory, and Teheux
(2014), Di Nola et al. (2020), aiming to generalize PDL to
include reasoning with Łukasiewicz logics and their alge-
braic counterparts. Another example of a PDL extension is
Hughes and Kimiaghalam (2006), which adapts the classic
PDL semantics to a probabilistic scenario, as a way to mea-
sure the efficacy of menas-end relations. In such proposal,
probabilities are added to transition systems and formulas
are evaluate as fuzzy predicates.

The attentive reader may observe that, contrary to what is
common in first-order dynamic logic (e.g. Harel et al. 2000),
our proposal is quantifier free. Actually there is not any tech-
nical problem in enriching the formalismwith quantification.
However, as variables in this paper are instantiatedwith func-
tion values, such an enrichment would enforce additional
technicalities in the interpretation of formulas which could
hinder our fundamental message.

Certainly, this approach can be extended in several direc-
tions. In particular, we are experimenting semantic variants
for sequential composition of fuzzy multirelations through
generalizing the three corresponding operators proposed for
the crisp case, by Furusawa et al. (2017). We are also looking
at capturing the semantics of FAS aggregate statement as
a generic operation in the lattice.

We believe that the parametric nature of our framework
may benefit research on fuzzy program analysis. Taking as
parameter other instances of lattices beyond the ones dis-
cussed above will extend the range of applications to other
non-trivial computational domains. The method scales to
deal with, for example, resource management or minimiza-
tion of energy costs, by considering the tropical algebra

R = (R+ ∪ {∞},min,+,∞, 0,→,min)

or even to model a discrete truth space, by taking the algebra
of Blok and Ferreirim (2000). Regarding the former inter-
pretation, we would want to study in which terms such an
instance of our logic is related with the PDL generalization
presented in Behounek (2008).

Finally, we want to discuss the suitability of this frame-
work to interpret other fuzzy programming languages. One
such example is jFuzzyLogic (Cingolani and Alcalá-fdez
2013), an open-source Java library which provides an inter-
face and an Eclipse plugin to facilitate the development of
fuzzy control applications.
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