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A B S T R A C T

As quantum computation becomes increasingly powerful, both in hardware and software, the
number of real-world applications is also growing. The work of this dissertation, explores the
possible application of quantum computation in the field of quantum biology. In particular,
the development of a quantum algorithm to simulate the evolution of the energy transport
in photosynthesis has been done, where quantum effects have been considered.

Multiple quantum algorithms have been analyzed. The chosen one is able to simulate
both the isolated and the open quantum systems in a scalable framework, composed by
light-harvesting molecules. The former was implemented in a real quantum computer, an
IBM Q machine, while the later was employed in a quantum simulator where, artificial
dephase, tunable in its defining parameters, was injected in the system, as random energy
fluctuations. The source of dephase is a fluctuator bath at very high temperatures in a weak
system-bath interaction. Parameters such as the switching rate and the fluctuation strength
controlled the injection of dephase and, consequently, the transport regime of energy in
the system. A full coherent evolution of the system, in the form of quantum beating, was
observed in the isolated system, while in the open quantum system, dephase suppressed
the beating, turning it diffusive. Comparisons between the quantum algorithm and the
classical algorithms, such as the Bloch-Redfield equation and the Haken-Ströbl model, have
been performed. Similar results for both classical and quantum algorithms were obtained,
although the Bloch-Redfield equation failed to provide correct results at some regimes, for
the particular chosen environment. Nevertheless, this allowed a fundamental description of
the quantum mechanisms in system-bath interactions.

Finally, the required computational resources of the quantum algorithm have been evalu-
ated, such as the qubit resources, the quantum gate complexity and the query complexity.

Keywords: Photosynthesis, Energy transport, Quantum simulation, Computational
Physics, Open quantum systems
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R E S U M O

À medida que a computação quântica se torna cada vez mais desenvolvida, tanto no hard-
ware como no software, o número de aplicações no mundo-real também cresce. O trabalho
desta dissertação explora a possı́vel aplicação da computação quântica ao campo da biologia
quântica. Em particular, é desenvolvido um algoritmo quântico para simular a evolução do
transporte de energia na fotossı́ntese, onde os efeitos quânticos foram considerados.

Vários algoritmos quânticos foram analisados. O escolhido simula o sistema quântico,
tanto isolado como aberto, numa estrutura escalável, composto por moléculas captadoras
de luz. O primeiro foi implementado num computador quântico real, na máquina IBM
Q, enquanto o último foi implementado num simulador quântico onde, dephase artificial,
com os seus parâmetros controláveis, foi injetado no sistema, como flutuações aleatórias
nas energias. A origem de dephase é um banho de flutuadores a elevadas temperaturas,
numa interação sistema-banho fraca. Parâmetros tais como a taxa de flutuação e a força da
flutuação controlaram a injeção de dephase e, consequentemente, o regime de transporte de
energia no sistema. Uma evolução totalmente coerente, na forma de batimentos quânticos, foi
observada no sistema isolado, enquanto no sistema aberto, dephase suprimiu os batimentos,
tornando-a difusiva. Comparações entre o algoritmo quântico e algoritmos clássicos, tais
como a equação de Bloch-Redfield e o modelo de Haken-Ströbl, foram efetuadas. Resultados
similares entre os algoritmos clássicos e quânticos foram obtidos, embora a equação de
Bloch-Redfield falhou em demonstrar resultados corretos em alguns regimes, para o ambiente
especificamente implementado. No entanto, este permitiu uma descrição fundamental dos
mecanismos microscópicos nas interaçãos sistema-banho.

Finalmente, os recursos computacionais necessários do algoritmo quântico foram avaliados,
tais como os recursos de qubits, a complexidade das portas quânticas e a complexidade de
consulta.

Palavras-chave: Fotossı́ntese, Transporte de energia, Simulação quântica, Fı́sica computa-
cional, Sistemas quânticos abertos
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Figure 4 Molecular states’ dynamics with two dissipative vibrational normal
modes w1 and w2 (two dimensional coordinate system). (I) is the
vertical Franck-Condon transition followed by the reorganization
dynamics (II), which dissipate the reorganization energy λ (h̄ =

1). ε + λ is the site energy of the molecule. dj is the equilibrium
displacement for each normal mode j and qj is the coordinate of each
normal mode j. The model of the bath as a set of displaced harmonic
oscillators induces a potential energy, in function of the displacement,
in the form of a parabola. Image taken from [24]. 24

Figure 5 Summary of the approaches to the energy transport in photosynthesis.
Image taken from [4]. 27

Figure 6 The molecule excited states |1〉 and |2〉 fluctuate, eventually having
their energy gap ∆ = 0. The lineshape functions, in light-blue and
light-red, establish the type of fluctuations present in each molecule.
Image taken from [3]. 29

Figure 7 Implementation of the diagonal Hamiltonian evolution operator.
|1〉anc is the ancilla qubit initialized at |1〉. |qi〉 is the system’s qubit
state in the energy eigenbasis. 41

Figure 8 Uncorrelated random fluctuations applied to each site molecule en-
ergy ε0 and ε1. In this image, each molecule is affected by one
fluctuator. 43

vi



list of figures vii

Figure 9 Implementation of one iteration of the system with decoherence al-
gorithm. |1〉anc is the ancilla qubit initialized at |1〉. |qsystem〉 is the
system’s qubit state in the site basis. The basis transformation oper-
ators T and T† are implemented with the gates Ry(θ) and Ry(−θ),
respectively. Every set of fluctuators is identical so g′ = g′m. 45

Figure 10 CnNOT decomposition where the work qubits are ancilla qubits.
With n control qubits, n − 1 ancillas are required. This was the
decomposition used in the simulations. Image taken from [43]. 47

Figure 11 Implementation of the one-level unitary matrix O4(1.767146). 55

Figure 12 Implementation of the one-level unitary matrix O3(2.3561945). 55

Figure 13 Implementation of the one-level unitary matrix O2(−2.8470683). 55

Figure 14 Implementation of the one-level unitary matrix O1(1.8653208). 56

Figure 15 Implementation of the two-level unitary matrix RZ−X,6(−2.159845,−1.2680365). 56

Figure 16 Implementation of the two-level unitary matrix RZ−X,5(−1.1780972,−0.103078015). 56

Figure 17 Implementation of the two-level unitary matrix RZ−X,4(−1.9634955,−0.37569928). 57

Figure 18 Implementation of the two-level unitary matrix RZ−X,3(−0.392699,−6.359089×
10−2). 57

Figure 19 Implementation of the two-level unitary matrix RZ−X,2(−0.7853982,−0.23925155). 57

Figure 20 Implementation of the two-level unitary matrix RZ−X,1(−1.5707964,−1.280839). 57

Figure 21 Time evolution of the occupation probabilities for a near-resonant
system: simulated results (points) and theory (lines). 59

Figure 22 Time evolution of the occupation probabilities for a non-resonant
system: simulated results (points) and theory (lines). 59

Figure 23 Time evolution simulation of the occupation probabilities for a four
molecule system initialized at the state |00〉. 60

Figure 24 Time evolution simulation of the occupation probabilities for a four
molecule system initialized at the state |11〉. 61

Figure 25 Time evolution simulation of the occupation probabilities for a near
resonance system with decoherence for different values of fluctuation
strengths. 62

Figure 26 Time evolution simulation of the occupation probabilities for a off
resonance system with decoherence for different values of fluctuation
strengths. 63

Figure 27 Time evolution simulation of the occupation probabilities for a near
resonance system with decoherence for different values of switching
rates. 64



list of figures viii

Figure 28 Time evolution simulation of the occupation probabilities for a off
resonance system with decoherence for different values of switching
rates. 64

Figure 29 Evolution dynamics of the system with decoherence. The environ-
ment is modelled as two fluctuators in each set with different fluctu-
ation strengths. 65

Figure 30 Comparison of the evolution dynamics obtained by employing the
quantum and classical algorithms for the near-resonant system. 67

Figure 31 Comparison of the evolution dynamics obtained by employing the
quantum and classical algorithms for the non-resonant system. 68

Figure 32 Implementation of the two-level unitary matrix decomposition exam-
ple. The gate CU(δ, γ) is performed as CRZ(δ)CRX(γ). 81

Figure 33 Implementation of the one-level unitary matrix example. The Tof-
foli gates plus the CRZ gate denote the decomposition of the C2RZ

gate. 82

Figure 34 Quantum estimator used to measure the elements of the system
density matrix. Image taken from [36]. 87

Figure 35 Controlled-SWAP gate or Fredkin gate decomposition [49]. 89

Figure 36 Optimized quantum circuit for the near-resonance system simula-
tion. 93

Figure 37 Optimized quantum circuit for the off resonance system simula-
tion. 93



1

I N T R O D U C T I O N

1.1 context

Information physics is an emerging branch of physics, which tries to discover new physical
ways to process and manipulate information. Diving into the field of research, several
new technologies such as quantum computation begin to be applied to general problems,
where older technologies, for instance transistors, are reaching an end state of improvement,
evidenced by the saturation of Moore’s law1. Limitations imposed by quantum physics led
the scientific community to turn their focus to other, newer technologies such as quantum
computing. Thus, the notion of quantum computing was introduced by Richard Feynman
[2] which could enable an extraordinary enhancement in the speed of processing information
using the laws of quantum mechanics2. Quantum digital simulation is being used to discover
new phenomena in nature, in which classical computers are plausible soon to no longer
catch up (by well-known limitations). In this context, quantum digital simulation also seems
a very good candidate to be used, in an emerging field of quantum physics, the quantum
biology.

Quantum biology is still in a preliminary stage, as only a few of biologic structures of
nature have been found or believed to have relevant quantum effects which influence their
behaviour. Some of them are: energy transport in photosynthesis, olfact and bird navigation
(magnetoreception) [3]. While the former has been experimentally investigated, the later are
yet to be. In this context, a reasonable approach to explore in detail such complex biologic
mechanics resorts to quantum digital simulation, where complex interactions between the
noisy environment and the system are responsible, at microscopic level, for the observed
behaviour.

1 Moore’s law affirms that transistors would shrink its size to half, roughly doubling the computation performance,
every year [1].

2 As such, all the physical mechanisms, at microscopic level, of nature obey to quantum physics, therefore it seems
logical that, to simulate nature, one use quantum computers, where the fundamental laws of the universe, given
by quantum physics, govern everything. In the recent years, quantum computers are emerging as one of the
most promising technologies of the future, thus the scientific community and companies have been improving
them, whether on the hardware or software.

1
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1.2 motivation

As one of the first applications of quantum computing in the field of quantum biology, the
proposal of simulating an already experimentally observed quantum phenomenon in biology,
in a quantum computer, can show that these machines can already be used in several fields
of research. Not only a quantum system is being simulated by another quantum system, as
the speed of simulation can exceed the standard ways of modelling quantum systems with
classical computers.

Quantum biology works with noisy environments as those present in photosynthetic
biologic structures. Therefore, simulating open quantum systems in a quantum computer
is also a very recent application of these devices, while the current software still does not
allow a generalized application of a quantum algorithm. In this way, creating or using
already existent quantum algorithms to simulate open quantum systems is inevitably an
advancement in quantum simulation.

The light harvesting in photosynthesis, a very small nature mechanism, has a great
potential in changing our day-to-day lives. By understanding the physics of this extremely
efficient phenomenon [3, 4], the transport, if implemented in a biomimetic technology, can
be translated to artificial devices which collect and transport energy very efficiently, which
would allow a transformation on energy-capture based technologies and on the information
transport in society.

1.3 objectives

This dissertation aims to develop an efficient and scalable quantum digital simulation of
the time evolution of energy transport in photosynthesis. To achieve such a goal, our efforts
seek to obtain

• A quantum simulation that provides answers about the mechanisms of the energy
transport system, isolated and in contact with an environment.

• A quantum simulation verifiable with already developed classical algorithms.

• Clear physical and computational explanations about the algorithmic model.

1.4 outline

In chapter 2 the topics in quantum physics, quantum biology and quantum simulation are
reviewed.



1.4. Outline 3

In chapter 3 the development and the decisions made are presented. The simulation model
and implementation are introduced as well as the calculation of the required computational
resources. A number of related quantum circuit optimizations are also explained.

In chapter 4 the setup of the quantum circuit is described, which contains the parameters
used and their manipulation to conceive the simulation. The results and their discussion are
then presented as well as a comparison between the classical algorithms and the quantum
algorithm developed in this work.

Finally, chapter 5 summarizes the overall achievements of this work, and suggests possible
paths to be taken in the future to pursue this line of research.



2

S TAT E O F T H E A RT

2.1 structure of a photosynthetic system

Photosynthesis is a process that converts electromagnetic energy into chemical energy. This
process is found in some bacteria, algae and plants and consists mainly in light-harvesting
followed by transformations of electronic excitation energy in membrane potentials [3]. It
follows the production of the molecules required to create carbohydrates, which the living
being needs.

Photosynthesis has two stages. The first one consists in light-dependent reactions, which
is the focus of this work, and the second one is the Calvin cycle, i.e. a light-independent
reactions stage [5]. The first stage begins with the absorption of photons by the light-
harvesting molecules and ends with the production of ATP (Adenosine Triphosphate) and
NADPH (Nicotinamide Adenine Dinucleotide Phosphate).

A photosystem is composed by a light-harvesting system and reaction centers, existent in a
lipid bilayer structure called the thylakoyd membrane present in plants (inside chloroplasts),
algae and bacteria. An illustration of the structure of chloroplasts and the thylakoid is
presented in figure 1.

4



2.1. Structure of a photosynthetic system 5

Figure 1: Structure of the chloroplast (a) and its thylakoid (b) in plants. In chloroplasts, first stage of
photosynthesis occur at the thylakoyd membrane, while the second stage occurs outside
the thylakoid [5]. Image taken from [6].

The structure of the purple bacteria is introduced in the next subsection. This widely
studied living being has a simpler apparatus than plants, thus being a good start in this
discussion. The structure of photosynthesis in plants is then introduced.

2.1.1 Photosynthesis in bacteria

In the purple bacteria, the light-harvesting system is composed by the LH-I (Light-Harvesting
I) complex and the LH-II complex, whose main goal is to harvest light [5, 3]. The reaction
center (RC) is also present where the primary energy conversions in photosynthesis take
place. LH molecules, in bacteria called bacteriochlorophyll (BChl), are electronically coupled
to each other. They can either absorb solar light or receive excitations from other BChl by
Electronic Energy Transfer (EET) [3, 4].

The BChl molecules absorb light in the wavelength interval [800, 900] nm while, carotenoids,
also located in the LH complexes, harvest light in the middle of the visible spectrum at
around ∼ 500 nm. The excitation of these molecules is transferred very rapidly to the BChl,
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in about 100 f s [3]. Carotenoids are not only an auxiliary light-harvesting molecule but also
help the photosystem to get rid of any excess of energy under intense light, harmful to the
bacteria, as heat dissipation [5].

Reaction centers also have BChl, although in a lower quantity, which can receive the
excitation from LH-I molecules or absorb light by its own. When the excitation energy is
delivered to RC, a charge separation process occurs. This charge (electron) is transferred
along a chain of molecules, which generates a membrane potential [3]. In the green
sulphur bacteria also exists the Fenna-Matthews-Olson complex (FMO), which connects LH
complexes to the RC [3].

In the widely studied purple bacterium Rhodobacter (Rba.), the photosynthetic apparatus
is organized in chromatophore vesicles of almost spherical shape of about 60 nm diameter
as shown in figure 2 [3, 7]. In this figure, it can be seen 4 BChl (blue) at each RC, 56 BChl
(red), in LH-I, form a eight-line shape and at the LH-II complex there are 27 BChl (green)
in a crown-like ring. This ring has 18 BChl while the crown has 9 BChl. There is a total of
∼ 3000 BChl and ∼ 1000 carotenoids in a single chromatophore.
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Figure 2: Rhodobacter (Rba.) spheroides: chromatophore. (a) The structure of the chromatophore
shown in 3 different colours: blue for RC, green for LH-II and red for LH-I. (b) Here only
BChl are shown (without carotenoids). It is worth noticing that plant’s photosystems do
not exhibit such symmetric shapes as bacteria [3]. Image and legends adapted from [3].

Some remarks should be made concerning the efficiency of the energy transport along
the light-harvesting system, which goes from 50% up to more than 95% efficiency of energy
absorption and transport to the RC [4, 3] (under normal environment conditions, usually
the efficiency is higher than 95%). The efficiency depends on the size of the complexes,
the excited state lifetime of the light-harvesting molecules, the arrangement of the light-
harvesting apparatus and the light conditions [4]. The observed lifetime of an excitation in
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the light-harvesting system of a bacteria is around 50 ps [8, 9] while in the light-harvesting
system of plants it is found to be 4 ns [4].

2.1.2 Photosynthesis in plants

In plants, chlorophyll a and chlorophyll b [5, 3] are the pigments that drive energy transport
in the light-harvesting systems through EET. Chlorophyll a absorbs light within the [670, 680]
nm wavelength interval, chlorophyll b at around 650 nm and the carotenoids at [400, 500]
nm [3]. Chlorophyll a is the main component in excitation transfer and photon absorption,
while other components are auxiliary, in lower number, but important because they broaden
the wavelength interval of radiation absorption of the plant photosystem [5].

In plants, there are two photosystems, I and II (PS-I and PS-II respectively), which contain
a light-harvesting system and a reaction center [3]. In short, photosystem II is responsible
for the split of water into oxygen and it is the first photosystem to act. Photosystem I is
responsible for the production of NADPH and it is the second photosystem to act [5]. Each
photosystem has about 300-400 chlorophyll molecules [3]. The light-dependent stage in
plants is slightly different from that in bacteria (mainly in the RC processes). In the next
paragraph, the reaction center processes which occur in photosynthesis (only in plants) are
explained [10]. A summary of this stage is illustrated in figure 3.

After the absorption of a photon and its energy transport to RC in PS-II, a special pair (in
plants, constituted by two chlorophyll molecules) boosts an electron to a higher energy level.
This electron is then passed to an acceptor molecule (pheophytin) and is replaced in the
special pair by an electron delivered from water, H2O. This process splits water into hydrogen
and oxygen. This high energy electron goes through a transport chain, loosing energy. The
transport chain consists in the following: the electron is passed to a plastoquinone (Pq,
which is a type of molecule), then to a cytochrome (Cyt) (a protein which helps the energy
transport) and finally to a copper-containing protein called plastocyanin (Pc). This released
(or lost) energy pumps H+ ions from the stroma (outside of the thylakoid membrane) into
the thylakoid membrane, building a charge gradient. Later, as these ions flow from inside
the thylakoid membrane to the stroma, driven by the proton-motive force originated by the
gradient, they pass through ATP synthase (an enzyme) and ATP is synthesized.

The same process occurs in PS-I, but now the special pair in the corresponding RC is reduced
by the electron which travelled across the transport chain in PS-II. After neutralization of the
special pair, just like the process in PS-II, the high energy electron is transferred to a acceptor
molecule (pheophytin), where it follows an electron transport through transport chain: it is
passed to ferredoxin (Fd, a type of molecule) and then to an enzyme called NADP+ reductase.
At the end of this transport chain, the electron is passed to the molecule NADP+, along with
a second electron which has been boosted to a higher energy level and similarly transported
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across the electron transport chain. This latter electron was originated from the photon
absorption at the light-harvesting system in PS-I and transported to the corresponding RC,
through EET. The transport chain finishes with the production of NADPH.

After NADPH and ATP have been produced, the light-independent stage occurs.

Figure 3: Summary of photosynthesis in plants. Image taken from [10].

2.2 open quantum systems theory

The biological structures briefly described above, quite complex in themselves, such as
e.g. the chlorophyll molecules interacting with the environment, are open systems. In
this section, the most relevant mathematical approaches to open quantum systems will be
presented.

The most used formalism to describe a system’s state in open quantum systems is that of
density matrix. This matrix can describe a system in a mixed state, which cannot be attributed
a state vector. This is a matrix ρ which has diagonal terms (population terms) ∑α Pα |Ψα〉 〈Ψα|,
where each element represents the probability Pα of being in a certain pure state |Ψα〉, and off-
diagonal terms (coherence terms) ∑α 6=β Aα,β |Ψα〉

〈
Ψβ

∣∣, which describe correlations between
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different states. The sum of the diagonal terms must be ∑α Pα = Tr[ρ] = 1. The following
example shows a general form of the density matrix for a two-level system:

ρ =

(
P0 A0,1

A1,0 P1

)
(1)

2.2.1 Kraus operators

One way of modeling open quantum systems is to consider the whole environment plus the
open quantum system as a single closed system. Quantum systems can be composed and
form new larger systems through the Kronecker product of the Hilbert spaces, corresponding
to two sub-systems (in this case the open system S and the environment E):

HS ⊗HE (2)

The state of such a closed system can be given, at the initial time t = 0, by

ρ(0) = ρS(0)⊗ ρE(0) (3)

where ρS corresponds to the open system (denoted from now on as just system) and ρE to its
environment. The environment plus the system maintain a unitary evolution USE(t). The
overall system evolution can be given as follows

ρ(t) = USE(t)[ρS(0)⊗ ρE(0)]U†
SE(t) (4)

where USE is the unitary evolution operator of the pair system plus environment. Generally,
one is only interested in the system and for such, the environment can be disregarded by
tracing it out over an arbitrary environment basis {|k〉} as

ρS(t) = TrE{ρ(t)} = ∑
k
〈k|USE(t)[ρS(0)⊗ ρE(0)]U†

SE(t) |k〉 (5)

where we define the initial environment density matrix to be

ρE(0) = ∑
m

pm |m〉 〈m| (6)

Inserting this definition in equation (5),

ρS(t) = TrE{ρ(t)} = ∑
k,m

pm 〈k|USE(t) |m〉 ρS(0) 〈m|U†
SE(t) |k〉 (7)
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ρS(t) =M [ρS(0)] = ∑
k

EkρS(0)E†
k (8)

M is a superoperator that maps operators to operators. This superoperator preserves
linearity, is trace-preserving (in time evolution mappings) and complete positive [11, 12]. Ek,
in equation (8), is a Kraus operator defined as

Ek = ∑
m

√
pm 〈k|USE |m〉 (9)

The set of Kraus operators, if trace-preserving, fulfill the following condition

∑
k

EkE†
k = I (10)

Next we will introduce the different types of decoherence.

2.2.2 Decoherence

It is possible that, throughout time, correlations are created between a system and its
environment. Such correlations affect the pure states in the system, introducing errors in
states, and ultimately destroy superposition and entangled states in an irreversible manner.
This is the so-called process of decoherence, which has been the main obstacle to the pratical
implementation of quantum computation. Decoherence can be split in three categories: (i)
amplitude damping, (ii) dephasing and (iii) depolarization, which are briefly characterized
below.

Amplitude damping: Environment interactions with the system causing the loss of the
amplitude of one or more system’s states. The spontaneous emission of a photon from the
system to the environment from a two-level atom is an example of this kind of process,
where the atom has a probability decay of being in its excited state [11]. In a two level
system, this type of decoherence contracts the Bloch sphere along the z axis [12].

Phase damping or dephasing: Such interactions conserve the energy of the system,
contrary to the amplitude damping. A phase damping channel removes the superposition of
the system’s state, i.e. the off-diagonal terms of the system’s density matrix decay over time
down to zero. It is a process of removing the coherence of the system, causing a classical
probability distribution of states and, therefore, imposing some classical behaviour in a
quantum system. A simple way to look at this type of decoherence is also to think of the
system interacting with the environment where the relative phases of the system’s states
become randomized by the environment. This randomness comes from a distribution of
energy eigenvalues of the environment. Over time, the coherence between the system’s
states is lost by averaging this interaction.
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Let us consider a qubit interacting with the environment via phase damping [11] and
let |ψ〉 = a |0〉+ b |1〉 be the initial state of the qubit. Averaging the random effect of the
environment on the qubit (given by z-rotations on the Bloch’s sphere) over a Gaussian
distribution of angles θ with zero mean value and variance 2λ yields

ρ =
1√
4πλ

∫ +∞

−∞
dθRz(θ) |ψ〉 〈ψ| R†

z(θ)e
− θ2

4λ (11)

=

(
|a|2 ab∗e−λ

ba∗e−λ |b|2

)
(12)

This is a characteristic result of dephasing. The off-diagonal elements decay exponentially to
0 as λ increases. The variance λ can be taken proportional to a time variable, which means
that coherence decays over time [11]. In a two-level system with a dephasing interaction, the
Bloch sphere contracts in the xy plane [12].

Depolarization: This type of decoherence changes the (pure) system’s state to a mixed
state with a probability P, while with probability (1− P) the system remains in its pure state.
It is equivalent to saying that, for a single qubit, an initial pure state represented on the Bloch
sphere has suffered a contraction over all dimensions of the sphere (with the contraction
degree depending on the probability P) turning the initial pure state into a mixed state. It
can be thought as a combination of the other two types of decoherence [12].

2.2.3 Redfield equations

Redfield equations are a set of time differential equations widely used in open quantum
systems theory to describe the evolution of the system. A weak interaction between the
bath (environment at thermal equilibrium) and the system (weak system-bath coupling)
must exist [3, 12], so that the second-order perturbative time-convolution equation (TC2) or the
second-order perturbative time-convolutionless equation (TCL2, or also called time-dependent
Redfield equation) can then be formulated using a second order perturbation with respect to
the system-bath interaction [3].

Consider the following Hamiltonian [3],

H = HS + HB + HSB (13)

where
HS = ∑

m
h̄Ωm |m〉 〈m| (14)
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HS is the system Hamiltonian in the energy eigenbasis composed by the energy eigenstates
|m〉 with the respective energy eigenvalues h̄Ωm.

HB = ∑
ξ

h̄wξ(b†
ξ bξ +

1
2
) (15)

This is the bath Hamiltonian. The bath is modelled as a set of harmonic oscillators. bξ and
b†

ξ are the creation and annihilation operators for a phonon ξ and wξ is the normal mode of
the phonon ξ.

HSB = ∑
l,ξ

h̄wξ gl,ξ(bξ + b†
ξ )Sl (16)

This is the system-bath interaction Hamiltonian. gl,ξ is the coupling strength of a phonon
ξ with the system via the operator Sl , which is an operator acting on the system’s Hilbert
space. Here, as can be observed, one assumes that the system-bath interaction is linear.

The equations TC2 or TCL2 can be derived with the previous Hamiltonians so that they
take a simple form considering the following conditions [3]: the density matrix can be
initialized as ρ(0) = ρS(0)⊗ ρB(0) and TrB[LSB,I(t)ρB(0)] = 0, (static environment through-
out time), where LSB,I(t)ρB(0) = [HI(t), ρB(0)] and HI(t) = ei(HS+HB)tHSBe−i(HS+HB)t is the
interaction Hamiltonian in the interaction picture. Then, the bath correlation function which
defines the correlations between the system and the environment is [3]

Cll′(t) =
∫ ∞

0
dw Fll′(w)(coth(

βh̄w
2

)cos(wt)− isin(wt)) (17)

where β = 1
kBT , being kB the Boltzmann constant and T the temperature of the bath. The

function Fll′(w) is the spectral density of the bath respective to the system’s operators Sl and
Sl′ defined for a continuum of vibrations as

Fll′(w) = ∑
ξ

gξ,l gξ,l′δ(w− wξ)w2 (18)

Defining the spectral density, one defines the type of bath present (more about spectral
densities at the end of the section).

Then one can find a time non-local quantum master equation (TC2), in the interaction
picture characterized as [3]

dρS,I(t)
dt

= −∑
l

∑
l′

∫ t

0
dτ {Cll′(t− τ)[Sl(t), Sl′(τ)ρS,I(τ)]− Cl′ l(τ − t)[Sl(t), ρS,I(τ)Sl′(τ)]}

(19)
where Sl(t) = eiHtSle−iHt is also defined in the interaction picture. This is the most used
form for the TC2 equation whose derivation resorts to the previously defined Hamiltonians
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[3]. The TCL2 equation can also be derived as a time local equation (with a time local
additional approximation) [3], as follows

dρS,I(t)
dt

= ∑
ll′
Rll′(t)ρS,I(t) (20)

where Rll′(t)(·) is a super-operator applied to some operator (·) defined as

Rll′(t)(·) = −
∫ t

0
dτ {Cll′(t− τ)[Sl(t), Sl′(τ)(·)]− Cl′ l(τ − t)[Sl(t), (·)Sl′(τ)]} (21)

By employing a Markovian1 bath (an additional approximation), one can reach the
following simpler Bloch-Redfield equation from the TC2 or TCL2 equations in the Markovian
limit [3]:

dρnm(t)
dt

= −ih̄Ωnmρnm + ∑
n′,m′

Γnmn′m′ρn′m′ (22)

where ρnm = 〈n| ρS |m〉 is a term of the system’s density matrix in the energy eigenbasis.
Ωnm = Ωn −Ωm and the Redfield tensor Γnmn′m′ is:

Γnmn′m′ = Λm′mnn′ + Λnn′m′m −∑
k

Λnkkn′δmm′ + Λkmm′kδnn′ (23)

with Λm′mnn′ =
1
2 SnmSn′m′ C̃(Ωm′ −Ωn′), Λm′mnn′ =

1
2 SnmSn′m′ C̃∗(Ωm′ −Ωn′) where C̃(w) =∫ ∞

0 dteiwtC(t) and C(t) is the system-bath correlation function for a single system operator l
(for more operators, i.e. l > 1, the equation is described in [13]). Also, Snm = 〈n| S |m〉 and
δmm′ is the Delta-Kronecker function.

Note that in a Markovian bath the correlation function must have a fast decay. Since the
bath has no memory, one must ensure that the timescale of the correlation decay is much
shorter than the decoherence timescale (the inverse of the system-bath interaction rate) [3].

By using a secular approximation (also called rotating wave approximation), one can find
the dynamics in the Lindbland form (defined in the next subsection) from the Bloch-Redfield
equation [13]. The approximation can only be applied if |Ωm −Ωn|−1 << τD for all unequal
n’s and m’s [3, 13], where τD is the decoherence timescale of the system. Sometimes, the
Bloch-Redfield equation does not yield a valid system’s density matrix [3, 13]. In such cases,
the conversion to the Lindbland form, using the secular approximation must be performed
[3, 13].

1 A Markovian approximation means that the dynamics of the system are local in time, i.e. ρs(t + dt) is completely
determined by ρS(t). Because information can flow from the system to the environment, and vice-versa, the
information that has flown to the environment can be, after a while, dissipated back to the system. A Markovian
approximation consists in saying that the environment has a certain time to ”forget” the information that flows
to it and after this time, the information received from the system is forever lost in the environment. If the
timescale of the overall system evolution one wants to observe is higher than the time scale of the environment
to ”forget” the information, one can apply the approximation.
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2.2.4 Lindbland quantum master equation

The Lindbland master equation is also a time differential equation which follows from the
rotating wave approximation applied to the Bloch-Redfield equation [3, 13]. It is defined as:

dρS

dt
= L[ρS] = −i[H, ρS] + ∑

k
(LkρS(t)L†

k −
1
2

ρS(t)L†
k Lk −

1
2

L†
k LkρS(t)) (24)

where L[..] is the Lindbland superoperator. This equation divides in the H, which is usually
the system Hamiltonian term [13], where −i[H, ρS] is the right-hand side term of the
quantum Liouville equation corresponding to the system evolution alone. The remaining terms,
correspond to the dissipative evolution, given by the Lindbland operators Lk. This time
continuous system description can be converted to the Kraus operator representation and
vice-versa [14].

2.2.5 Quantum beating

Quantum beating is an effect of superposed states within the system (coherence). By
measuring this phenomenon, one can directly detect quantum effects, i.e. superposition [3].
This is a property which goes beyond open quantum systems, and of extreme importance to
understand the energy transport in photosynthesis.

Consider the quantum Liouville equation that finds the evolution of a closed system ρ

subjected to an Hamiltonian H (h̄ = 1),

dρ

dt
= −i[H, ρ] (25)

If the density matrix is written in the energy eigenbasis where the Hamiltonian H is diagonal,
then

dρij

dt
= −i(εi − εj)ρij (26)

where εi is the energy eigenvalue of ith energy eigenstate. The populations (matrix elements
ρii) remain constant and the coherence terms (matrix elements ρij, where i 6= j) evolve
oscillating in time as

ρij(t) = e−i(εi−εj)tρij(0) (27)

A wrong way to measure the oscillations would be to measure the energy observable as

〈H〉 = Tr(Hρ) = ∑
i

εiρii (28)

As already seen, populations in the energy eigenbasis are constant under unitary evolution,
so quantum coherence can not be measured by using the energy observable.
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The best way to measure this oscillation is by using an observable operator that does not
commute with the Hamiltonian. This procedure works because the observable operator
written in the Hamiltonian eigenbasis is not diagonal. Therefore, oscillations present in the
coherence terms of the system’s density matrix, in the energy eigenbasis, will be observable
at the population terms in the chosen operator eigenbasis.

In spectroscopy, the dipole moment operator is the chosen operator, Â, to detect quantum
coherence [3]. One example is the detection of quantum coherence in the energy transport of
photosynthesis [15, 16, 17]. These experiments show evidence of coherent energy transport,
in the FMO complex and algae. The oscillations (quantum beating) last for hundreds
of femtoseconds, thus providing evidence that coherence is not rapidly destroyed by the
environment and that it can not be discarded in theoretical energy transport models.

2.2.6 Spectral density

Spectral densities are used to encapsulate the effect of the environment in the system’s
dynamics because it is impossible to know the evolution of all of the environment degrees
of freedom. While the spectral function of the environment is the Fourier transform of
the correlation function, which defines the noise spectrum and the strength of spatial
correlations between sites, the spectral density defines, temperature-independently, the
number of environmental fluctuators and their coupling strength to the system at a certain
frequency [18, 19]. The spectral density for an environment of harmonic oscillators is defined
as:

F(w) = π
N

∑
i=1

c2
i

2miwi
δ(w− wi) (29)

where i is the subscript for a harmonic oscillator, ci is the coupling strength between the
harmonic oscillator i and the system and mi is the mass of the harmonic oscillator [19, 20].

It can also be defined (for a continuum of harmonic vibrations [3]) as:

F(w) =
N

∑
ξ

g2
ξδ(w− wξ)w2 (30)

where gξ denotes the coupling strength of each phonon ξ to the system. In the limit of
an high density bath, where N → ∞, the sum can be converted to an integral over the
frequencies w.

Usually, the environment is modelled as:

F(w) = Awse−w/wc (31)
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This is a common type of spectral density referred to as an Ohmic form. A is a constant
parameter, s is a number that defines the type of the Ohmic spectral density and wc is the
cut-off frequency. When s < 1, the spectral density is of the sub-Ohmic type, if s = 1 it is an
Ohmic spectral density and if s > 1 the spectral density type is super-Ohmic. The cut-off
frequency wc is important because up to this frequency, the spectral density (for the Ohmic
type) is approximated as F(w) = haw when w < wc, where a is a dimensionless strength
system-bath coupling [19] and h is the Planck’s constant. Note that the frequency w defines
the rate of dynamics of the environment. These environment dynamics affect the system,
which also depend on the system-environment coupling strength. The bath motions with
frequencies higher than the cut-off frequency can be thought as if they are too fast to the
system to follow, thus they average out over the system’s dynamics [19], causing the system
to not feel these fast dynamics of the environment. By defining a spectral density, one can
have different environments represented [13, 21, 3].

2.3 description of the energy transport dynamics

This section will introduce the quantum mechanics of the energy transport in the light
harvesting molecules, such as chlorophyll.

The photosynthesis starts by the absorption of photons by the molecules of a light-
harvesting chain, which excite them by creating quasi-particles, generally called excitons.
Such excitons can be transported, along the chain, from excited molecules (donors) to
non-excited ones (acceptors), until they reach a reaction centre, where the energy is trapped,
and the photosynthesis passes to the charge separation stage. Such transport phenomena
between molecules are well-known and pervasive across physics, and can happen by several
mechanisms as it will be discussed.

Two different theories try to explain this transport: Förster theory or incoherent EET
(also called Förster resonance energy transfer, FRET) and coherent EET (coherent electronic
energy transfer). Förster theory is a dissipative theory of electronic energy transfer in a weak
donor-acceptor electronic coupling compared to the high system-environment coupling
resulting in random incoherent hopping jumps of the excitation, from molecule to molecule.
Coherent EET consists of the isolated system evolution (defined by a system Hamiltonian)
which competes against dissipative evolution (defined by the system-environment interaction
Hamiltonian), i.e. it is an unitary evolution of the system plus environment. This theory can
exhibit coherent excitations among the molecules.

The widely studied Förster and Redfield theories are used as approaches based in the
quantum-mechanical perturbation theory, which represent two opposite limits of the energy
transport regime. Förster theory is the first theory to be discussed, then the Redfield theory,
which is based on the master equations of subsection 2.2.3, will be connected to the coherent



2.3. Description of the energy transport dynamics 18

model of energy transport. The main differences between coherent EET and Förster theory
will be explained, followed by an insight about other EET mathematical treatments, different
from these perturbative methods.

2.3.1 Förster Theory

A simple model consists of two molecules where the state |m〉 denotes the excited state of
the molecule m and all other molecules (in this case, only one) are in the ground state.

Consider two baths, one for the acceptor molecule and one for the donor molecule, which
are uncorrelated. The Hamiltonian, in Förster theory, takes the form [3]

H = H0 + HDA + Heb (32)

where
H0 = ED |D〉 〈D|+ EA |A〉 〈A|+ Hb (33)

This is the unperturbed Hamiltonian of the system and the baths. EA and ED are the
energies of the acceptor and donor molecules in the excited state, respectively, and Hb is the
unperturbed Hamiltonian of the two baths defined as

Hb = HbD + HbA (34)

with the terms HbD and HbA denoting the bath Hamiltonians of the donor and acceptor
molecules, respectively. The other Hamiltonian terms are

HDA = J(|D〉 〈A|+ |A〉 〈D|) (35)

which define the interaction between the donor and acceptor molecules with a constant
coupling strength J and

Heb = BD |D〉 〈D|+ BA |A〉 〈A| (36)

is the exciton-bath Hamiltonian where BD and BA are the operators acting on the baths of
the donor and acceptor molecules, respectively.

The density matrix of the system plus bath, at the initial time t = 0, is given as [3] by

ρ(0) = |D〉 〈D| ⊗ e−βHb

Zb
(37)
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where Zb = Trb[e−βHb ] is the bath partition function. The probability of finding the acceptor
molecule in the excited state is

PA(t) = Trb{〈A| e−iHtρ(0)eiHt |A〉} (38)

where the evolution of the density matrix is given in the interaction picture. By differentiating
this probability with respect to time, a energy transfer rate equation can be obtained.
Therefore, using a first order approximation of the evolution operator with respect to HDA,
i.e. J must have a small value, and considering the approximation that the energy transfer only
significantly occurs after the bath of the donor molecule reaches its thermal equilibrium
state, the energy transfer rate can be calculated using the Fermi’s Golden Rule and written
as [22]

kF =
9000ln(10)κ2

128π5NAτDn4
r R6

∫ +∞

−∞
dv

fD(v)εA(v)
v4 (39)

where fD(v) is the area-normalized emission spectrum of the donor, εA(v) is the molar
extinction coefficient of the acceptor or, in other words, the attenuation coefficient per molar
concentration (can be thought as the absorption spectrum), R is the distance between the
donor and acceptor molecule, nr is the refractive index of the medium, NA is the Avogrado
number, τD is the spontaneous decay lifetime of the donor molecule, κ is the orientational
factor which is usually 2

3 and v is equal to 1
λ , being λ the wavelength. The energy transfer

rate can also be defined as [3]

kF =
J2

2πh̄2

∫ +∞

−∞
dwIA(w)LD(w) (40)

where IA(w) is the lineshape function of the acceptor molecule, LD(w) is the lineshape
function of the donor molecule and w is the angular frequency. The lineshape function is
equivalent to the molecule energy spectrum, describing a probability distribution of the
excited state having a certain energy. The energy of it is not completely determined due to
the fluctuations of the environment which broaden the distribution, making the energy of
the excited state to fluctuate.

As can be seen from equations (39) and (40), there must be a considerable overlap
between the acceptor absorption spectrum and the donor emission spectrum to exist a
significant energy transfer rate (this integral is also called spectral overlap). There are two
principal regimes which control the energy transfer. The near-resonance regime, where the
difference of the excited state energies (energy gap) is smaller than their coupling strength,
i.e. |ED − EA| ≤ J and the non-resonant regime where |ED − EA| > J. In the first, the energy
transfer rate is high, leading to the maximum transfer rate when |ED − EA| = 0 (resonance
regime). In a non-resonant system, the energy transfer rate is small. Thus if the coupling
strength is higher than the difference of the excited state energies of both molecules then the
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near-resonance regime is present in the system and the energy transfer is fast. If the coupling
strength is smaller than the difference of the excited state energies of both molecules then
the non-resonant regime is present and the energy transfer is slow.

The coupling strength J can be expressed as [3]:

J2

µ2
Dµ2

A
=

κ2

n4
r R6 (41)

where µD and µA are the transition dipole moments of the donor and acceptor molecule
which define the transition from the ground state to the excited state of the molecule (creation
of a dipole). This equation is a dipole-dipole approximation which is only valid for relatively
large distances between molecules (10-20 nm).

Dexter considered [23] a generalization of the Förster coupling which includes multipole-
multipole interaction. This coupling is relevant for closer distances between molecules or
when there is a forbidden transition dipole moment in a molecule. In such cases, one needs
to consider an higher order expansion of the Coulomb interaction. In particular, Dexter
considered dipole-quadrupole interaction (forbidden transition in the acceptor) where a R−8

dependence in the transfer rate is present [23]. Finally, at very small distances, when there is
an overlap of the wavefunctions, an electron exchange via tunneling can take place. This
type of interaction decays exponentially with the inter-molecular distance.

The energy transfer equation (39) or (40) can be defined taking account some generaliza-
tions [3]:

- Non-equilibrium generalization (N-FRET): The energy transfer occurs before the equi-
librium in the donor excited state becomes complete. If it does, the emission profile of the
donor has a dependence on time. Then the energy transfer rate is changed to:

kF =
J2

2πh̄2

∫ +∞

−∞
dwIA(w)LD(t, w) (42)

If t → ∞, LD(∞, w) = LD(w) and the original expression is recovered. This means the
energy transfer in the original Förster Theory only occurs when the stationary equilibrium
is reached in the donor excited state, i.e. the energy only jumps to the next molecule after
the donor molecule reaches the equilibrium of its excited state (passed a long time).
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- Inelastic generalization (I-FRET): The coupling strength J is not constant. The molecules
can be in a soft environment or locked by a bridge molecule thus the coupling strength J
can be modulated by the bath. Then, the energy transfer rate must be changed to:

kF =
1

2πh̄2

∫ +∞

−∞
dw

∫ +∞

−∞
dw′ IA(w′)LD(w)KJ(w− w′) (43)

The function KJ(w−w′) modulates the spectral overlap because it depends on the frequency
of the dynamics of other physical objects (caused by orientational fluctuations of the dipoles).
The original Förster theory is recovered when KJ(w− w′) approaches a delta-Dirac function.

- Multichromophoric generalization (MC-FRET): The original Förster theory only con-
sidered two molecules in the system. This is not the case in most photosystems, where light
harvesting molecules can feel the electronic coupling of multiple molecules. Therefore it is
added a sum over all the donors and a sum over all the acceptors in the Förster rate equation.
This sum is only applied if the donors group is separated from the acceptors group so they
have a clear distinction between them. The following equation represents the generalized
Förster equation with diagonalized lineshapes:

kF ≈∑
j

∑
k

J2
jk

2πh̄2

∫ +∞

−∞
dwIkk

A (w)Ljj
D(∞, w) (44)

If j and k represent the donor and acceptor molecule subscripts, this is a sum over the
independent transfer rates of each pair where each exciton is completely localized at each
molecule.

This equation can also be used for weak system-bath couplings in the exciton basis, where
j and k represent delocalized excitons, i.e. superposition of excitations.

The Förster theory only allows an incoherent energy hopping between the molecules
and at the multi-chromophoric generalization (MC-FRET), superposition of the excitation
over several sites is allowed, but it is weak (due to the approximation of small J). If the
inter-molecular coupling strength J has a medium or high value, then several molecules can
feel the coupling and coherence can not be neglected, therefore one should adopt a different
quantum theory formalism for coherent regimes.

2.3.2 Coherent EET

In this section, it will be explained how to formulate the Hamiltonians used in coherent EET.
In this model, the resonance condition is still valid and a parameter called reorganization
energy is introduced as the coupling of the environment with the system. In a more abstract
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sense, the two couplings (molecule-molecule electronic coupling and system-environment
coupling) compete with one another, and each one represents different dynamics. The
system-environment coupling represents the decoherence process and the electronic coupling
between molecules represents the isolated system dynamics. The review of coherent EET is
adapted from [3].

To find the Hamiltonians which drive the coherent energy transport one considers a light-
harvesting molecule m to have a restricted electronic spectrum composed by the ground
state

∣∣Ψmg
〉

and the first excited state |Ψme〉. At close proximity with another light-harvesting
molecule, the excitation can be transferred to it. There is no orbital overlap, thus electrons
can be completely assigned to one molecule or another. Then the Hamiltonian to describe
EET in a system with N molecules is:

HEET =
N

∑
m=1

∑
a=g,e

Hma(x) |Ψma〉 〈Ψma|+ ∑
m,n

h̄Jmn |Ψme〉
〈
Ψmg

∣∣⊗ ∣∣Ψng
〉
〈Ψne| (45)

where Hma = εma(x) + nuclear kinetic energy , is the Hamiltonian describing the nuclear
dynamics of an electronic state |Ψma〉 where εma(x) is the potential energy dependent of
the nuclear coordinates x. The electronic coupling Jnm is also influenced by the nuclear
dynamics, however it is considered to be very small [3]. Then, one can consider a state[
|m〉 = |Ψme〉∏k 6=m

∣∣Ψkg
〉]

m=1,...,N where each state |m〉 represents only one excited molecule
in the entire system, as in the state representation used in Förster theory. Then the Hamilto-
nian is changed to:

HEET =
N

∑
m=1

[
Hme(x) + ∑

k 6=m
Hkg(x)

]
|m〉 〈m|+ ∑

m,n
Jmn |m〉 〈n| (46)

Next, one defines the evolution of the environment and system-environment interaction.
One considers the anharmonic motion is irrelevant to EET timescales [3] thus a normal
mode treatment to the environment is employed. There are no large permanent dipoles in
the molecule [3], thus the nuclear configurations are very similar in the ground and excited
states. Then Hmg and Hme are modeled as a set of displaced harmonic oscillators:

Hmg(x) = εmg(x0
mg) + ∑

ξ

h̄wmξ

2
(p2

mξ + q2
mξ) (47)

Hme(x) = Hmg(x) + h̄Ωm −∑
ξ

h̄wmξdmξqmξ (48)

where x0
mg is the equilibrium configuration of the nuclear coordinates of the electronic

ground state of the molecule m, qmξ is the dimensionless normal mode coordinate with
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frequency wmξ and momentum pmξ and dmξ is the dimensionless displacement between
the minima of the ground and excited state’s potential energy of the ξ phonon in the
molecule m (sometimes called configurational coordinate). The last term in equation (48)
describes the relaxation of the excited state caused by the accommodation of atomic nuclei’s
positions in the molecule, the Franck-Condon effect. One sets εmg(x0

mg) = 0 for convenience
and the Franck-Condon transition energy is h̄Ωm = εme(x0

mg) which is also called site
energy. After a vertical Franck-Condon transition, where the electronic transition is much
faster than the nucleus motion, nucleus reorganization takes place from the ground state
equilibrium coordinate x0

mg to the excited state equilibrium coordinate x0
me, thus the so called

reorganization energy h̄λ = εme(x0
mg) − εme(x0

me) is dissipated. This energy can also be
defined, site-dependently, as h̄λm = ∑ξ h̄wmξd2

mξ/2 [24]. The reorganization process has a
definite timescale defined by τB, which depends on the bath dynamics; see figure 4 for a
simple illustrated example of the molecule-phonons dynamics previously described. The
molecule passes to the vibrational excited state that contributes to the higher wavefunction
overlap with the vibrational ground state the molecule is in before absorbing the photon.

The Hamiltonian defining EET can be then constructed as an electronic system (electronic
degrees of freedom) coupled to a phonon bath (nuclear degrees of freedom) as:

HEET = HS + HB + HSE (49)

where the first term is the electronic excitation Hamiltonian (system Hamiltonian) with
respect to the equilibrium nuclear configuration of the ground state x0

mg :

HS = ∑
m

h̄Ωm |m〉 〈m|+ ∑
m,n

Jmn |m〉 〈n| (50)

The second term in equation (49) describes the environment. It is the normal mode Hamilto-
nian (or phonon Hamiltonian):

HE = ∑
ξ

h̄wξ

2
(p2

ξ + q2
ξ) (51)

The third Hamiltonian term describes the coupling between the nuclear motion and the
electronic excitations (or between the system and the environment):

HSE = ∑
m

SmVm (52)

where Sm = |m〉 〈m| and Vm = −∑ξ h̄wξdξqξ . Note that the definition of HE and HSE

depend on the nuclear coordinates one chooses. One also supposes that the initial density
matrix at t = 0, is in a factorized product ρ(0) = ρS(0)⊗ ρE(0) and that the environment is
in thermal equilibrium, thus it is initialized as ρE(0) = e−βHE /TrE[e−βHE ]. This factorized
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initial condition is in accordance with the definition of the electronic states in a vertical
Franck-Condon transition, i.e. the transition is much faster than the nuclear motion, thus
the transition is not correlated with the nucleus dynamics.

Note that in Redfield equations, one uses these Hamiltonians in the second quantization
formalism, where Sl = Sm and gl,ξ = dm,ξ in equation (16). Therefore, in the weak system-
bath coupling regime, the Redfield equations describe the dynamics of the coherent EET in
a perturbative approximation.

Figure 4: Molecular states’ dynamics with two dissipative vibrational normal modes w1 and w2 (two
dimensional coordinate system). (I) is the vertical Franck-Condon transition followed by the
reorganization dynamics (II), which dissipate the reorganization energy λ (h̄ = 1). ε + λ is
the site energy of the molecule. dj is the equilibrium displacement for each normal mode j
and qj is the coordinate of each normal mode j. The model of the bath as a set of displaced
harmonic oscillators induces a potential energy, in function of the displacement, in the form
of a parabola. Image taken from [24].

The model described in this section is the one used to model the energy transport in
photosynthesis. The Hamiltonians derived in this subsection as well as the defined environ-
ment can be used in quantum master equations beyond the weak system-bath coupling and
Markovian baths, to calculate the evolution of the energy transport in photosynthesis.

2.3.3 Differences between Förster theory and coherent EET

In this section, some differences between the Förster theory and coherent EET will be
presented. The electronic coupling between molecules and the reorganization energy
essentially define the regime in which the energy transfer occur. Experimentally, the
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inter-molecular coupling J is usually in the interval [0.5, 500] cm−1 and the reorganization
energy is typically in the interval [50, 100] cm−1 [4]. Two different perturbative formalisms
have derived two different theories (Förster theory and Redfield theory). If the electronic
coupling between molecules J is small in comparison to the system-bath coupling, which
is characterized by the reorganization energy λ, the Förster regime is present (incoherent
transport). If the system-bath coupling is small it is possible to derive a quantum master
equation by the Redfield theory which treats this coupling perturbatively. Just as the
parameters J and λ are important, the timescale of the relaxation to the nucleus equilibrium
position induced by the bath, τB , and the timescale of the inter-molecular energy transfer
with no additional perturbations, J−1 , also are [3]. When2 τB << J−1 coherence is not
allowed over multiple molecules. The nuclear reorganization introduces fast dephasing in
the system and the energy transfer only occurs after the nuclear reorganization. In this
case, diffusive dynamics appear, where coherence (quantum beating) is not present thus
one can use the energy transfer rate equation provided by the Förster theory, i.e. this is
the Förster regime [3]. If τB >> J−1, the energy is transferred over several molecules with
no perturbation of the environment (nucleus relaxation). Thus coherent energy transfer
is allowed and the evolution of the excitation transfer is given by wave packets traveling
across the molecules keeping its phase coherence, i.e. very small dephasing rates are
present because the energy transfer dynamics occur at timescales much smaller than the
reorganization timescale [3]. In the coherent EET regime, the Förster energy transfer rate
law fails, and one must use other quantum theories, as the previously overviewed Redfield
theory, for small system-bath couplings.

Nowadays, coherent energy transport is mostly believed to drive the energy transfer faster
than the (incoherent) Förster theory [4, 16, 25]. Quantum beating makes the populations
oscillate, which can yield a momentarily higher probability to the acceptor molecule be
excited than simple diffusive dynamics, which is the typical system’s behaviour of incoherent
energy transport. However a full coherent energy transport is not desired for reasons will
be discussed in the section 2.3.5 and dephasing can help to enhance the energy transfer.
Therefore, the two limits, Förster and Redfield theories, do not allow the fastest energy
transport. When τB ∼ J−1, i.e. the intermediate (fastest energy transport) regime at which
energy transfer in photosynthesis usually occurs, perturbative and Markovian methods
fail to give an appropriate answer, thus one needs to introduce other quantum theory
formalisms.

2 J is usually measured in spetrocospic units of frequency, cm−1 .
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2.3.4 Other approaches to the energy transport

Other theories to explain the dynamics of energy transport exist [4, 3] such as the Hierarchical
Equation of Motion (HEOM), which is based on exact numerical calculations, Polaron
Transformation Redfield Theory (PTRT), etc. They are briefly discussed below [26, 3].

The PTRT approach can give answers beyond the weak system-bath coupling as a second
order perturbation approach to the system-bath interaction, that accounts for non-Markovian
effects [3]. This approach consists of applying a unitary transformation to the Hamiltonian,
so that a quantum master equation in the moderate system-bath coupling is constructed.
A second order approximation with respect to the system-bath couplings is used which
can indeed be treated perturbatively and still ensuring good results in the limit of strong
system-bath couplings of the original Hamiltonian [3]. Using super-ohmic spectral densities,
the polaron transformation approach can be used in the intermediate regimes, in which
neither Förster theory or the Redfield theory can give the correct results. For other types of
environment one can use the variational polaron transformation which is derived in [26].

HEOM is derived in a non-Markovian context and applies to all the system-bath coupling
regimes. It is a powerful technique because it is derived in a non-perturbative way and
has an exact formalism with no approximations. It can give answers about site-dependent
reorganization dynamics as well as an appropriate description of Gaussian fluctuations in
the electronic energies to produce the lineshapes used in Förster theory. Thus, all regimes
can be described by this theory. The downside of using it is that it suffers from heavy
numerical calculations of the system density matrix because it needs to solve a high number
of coupled differential equations [27].

Figure 5 shows the different existent theories currently used in order to derive a description
of the energy transport.
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Figure 5: Summary of the approaches to the energy transport in photosynthesis. Image taken from
[4].

2.3.5 The role of decoherence in coherent EET

For a chain of light-harvesting molecules in which the last one is the reaction centre where
energy is trapped, it can be shown that the transport of energy throughout the chain is
more efficient when it is coherent [4]. Therefore, coherence increases the probability of
the excitation being found in the reaction centre [25]. However, the action of the dephasing
processes, caused by the environment in realistic conditions, progressively eliminates the
coherence (off-diagonal) elements in the system’s density matrix, causing the oscillation
amplitude to decay (quantum beating supression). It eventually turns the diagonal matrix
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elements (populations) into (non-correlated) classical probabilities, a process known as
thermal relaxation, for which the existence of coherence in a system is time limited.

For the relevant mathematical formalism, let us consider the system Hamiltonian:

HS = ∑
m

εm |m〉 〈m|+ ∑
m 6=n

Jmn |m〉 〈n| (53)

where εm corresponds to each site energy m (site basis) and Jmn is the electronic coupling (e.g.
Förster coupling) between the states. One can employ the Haken–Ströbl pure-dephasing
model [28] where only dephasing is introduced in the system, making it to loose the phase
coherence as time elapses [29].

Using Lindbland equation to model the system and its interaction with the environment
[28],

dρ

dt
= L[ρ] = −i[HS, ρ] + γ ∑

m
(Lmρ(t)L†

m −
1
2

ρ(t)L†
mLm −

1
2

L†
mLmρ(t)) (54)

where Lm = |m〉 〈m| and γ is the dephasing rate. This equation corresponds to the high
temperature limit [13, 29]. One wants to find the energy transfer efficiency when the
system is subjected to different dephasing rates. To account for exciton recombination
and exciton trapping, the system Hamiltonian is changed to HS − iHtrapp − iHrecomb where
Htrapp = ∑m κm |m〉 〈m| and Hrecomb = Γ ∑m |m〉 〈m| [29]. κm is the trapping rate of the
excitation and Γ is the exciton recombination rate assumed indepedent of m (i.e. it represents
the lifetime of an excitation, which is usually very long in comparison with the energy
transfer dynamics).

The probability of the exciton being captured at site m in the time interval [t, t + dt] is
2κm 〈m| ρ(t) |m〉 dt so the transport efficiency within an interval [0, t], for a set of M energy
trapping sites is [29]:

η(t) = 2
M

∑
m=1

κm

∫ t

0
ds 〈m| ρ(s) |m〉 (55)

For a two site system, the optimal dephasing rate for an optimal noise assisted transport
is found to be, using equation (55) [3]:

γopt =
|E|
h̄
− κ − 2Γ (56)

The energy gap E = ε0 − ε1 is matched by the dephasing, trapping and exciton recom-
bination rates [3]. Thus, a non-resonant system can achieve resonance with the help of
dephasing.

At a more abstract physical point of view, it can be explained how dephasing can enhance
the energy transfer in coherent EET, as well. Firstly, it yields random fluctuations in the
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energy spectrum of each molecule, which can bridge the energy gap between the molecules,
momentarily turning a non resonant system into a resonant one [3]. This process is illustrated
in figure 6.

Figure 6: The molecule excited states |1〉 and |2〉 fluctuate, eventually having their energy gap ∆ = 0.
The lineshape functions, in light-blue and light-red, establish the type of fluctuations present
in each molecule. Image taken from [3].

Secondly, dephasing can also help avoiding the existence of coherence traps, a kind of
deadlocks in energy transport. In system with a deviation from the linear chain of molecules,
antisymmetric superposition excited states that can eventually form in the middle of the
structure can block the energy transfer [3]. Dephasing can destroy the superposition, thus
removing such a coherent trap.

However, very low or very high dephasing rates can bring undesired effects to the energy
transfer process, the latter diminishing the transfer probability and leading, as the limiting
case, to a static, non-evolving system (so called quantum Zeno regime) [29].

One can observe now, that a coherent energy transport can enhance the energy transport,
although a complete coherent energy transfer is also undesired. Coherent traps can block
the energy transfer and in non-resonant molecules, even coherent energy transport alone,
can not enhance the energy transfer because the energy gap is too high. Thus, dephasing
can destroy coherence and induce fluctuations in the site energies which help the molecules
overcome the energy barrier. These effects are desired to enhance the energy transfer, but
note that this enhancing requires only an appropriate (intermediate) degree of dephasing.

2.4 quantum simulation

Quantum systems can be simulated through quantum analog simulation or quantum digital
simulation. The former consists of simulating a physical system with other physical system.
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The later consists of simulating the physical system in a quantum computer as a digital
simulation. Different methods to simulate a temporal evolution are next presented.

2.4.1 Isolated quantum systems simulation

One starts by defining the initial state of the isolated system and then implements the
evolution operator for a time-independent Hamiltonian H as

U(t) = e−iHt (57)

This operator is unitary. Simulating several system dynamics, multiple Hamiltonians can be
used, thus H = ∑j Hj. If the Hamiltonians commute with each others then

U(t) = e−i ∑j Hjt = ∏
j

e−iHjt (58)

The unitary evolution, in a quantum circuit, is done by applying the evolution operators of
each Hamiltonian in sequence. If the Hamiltonians do not commute, an approximation to the
unitary evolution operator must be implemented. There are several different methods with
minimum computational resources such as Trotter formula based algorithms, the truncated
Taylor series algorithm and the qubitization algorithm. These methods, except the last one,
are briefly explained below.

Trotter formula based methods

Trotter product formula [30] is:

e−iHt ≈
[
∏

j
e−iHj

t
N

]N

(59)

where N is the number of iterations. It is bounded by an error ε = O(∆t2/N). The number
of iterations required to achieve results within a given error is N = O(∆t2/ε) [30]. The
former equation gives the scaling of the number of times that the approximated unitary
operator must be implemented to simulate a system with an error ε. This scaling is also
called the query complexity.

To generate an approximated unitary evolution, the first order Lie-Trotter-Suzuki formula
[30] can be used, defined for a sum of m Hamiltonians Hj , as

Ũ1(∆t) =

(
m

∏
j=1

e−iHj
∆t
2

)(
1

∏
j=m

e−iHj
∆t
2

)
(60)
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Higher order versions of this formula are obtained by employing the Suzuki recursive
method [30]. The approximated error for a kth order formula is at most proportional to
O(∆t2k+1) [30]. Applying a repetition of kth order unitary operators Ũk, where each one
evolves for an arbitrary time ∆t, the query complexity gets O(∆t1+ 1

2k /ε
1
2k ) [31]. Note that

using very high orders is disadvantageous because the number of terms, i.e. the number of
gates, increases exponentially [30].

Truncated Taylor series method

In short, this method consists of expanding the evolution operator (57) in a (truncated)
Taylor series [32] for a sum of time-independent Hamiltonians H = ∑L

j=0 αjHj where Hj is
unitary and does not commute with other Hamiltonians, such that

e−iHt/r ≈
K

∑
k=0

L

∑
j1,...,jk=1

(−it/r)k

k!
αj1 ...αjk Hj1 ...Hjk (61)

where r is the number of iterations needed to simulate the system at a time t. Then consider

e−iHt/r ≈ Ũ =
m−1

∑
l=0

βlVl (62)

where the unitary operator Vl = (−i)k Hj1 ...Hjk and βl = βk,j1,...,jk = (t/r)k

k! αj1 ...αjk . The
previous sum is not exactly unitary due to the truncated series, so it is bounded by an error.
Consider now an operator B applied to an ancilla state |0〉 such that

B |0〉 = 1√
s

m−1

∑
l=0

√
βl |l〉 (63)

where s = ∑m−1
l=0 βl . Next, it is defined an operator which selects the Vl operator to be

applied to the system state |Ψ〉 with the help of the ancilla state as

(select V) |l〉 |Ψ〉 = |l〉Vl |Ψ〉 (64)

Defining an operator W = (B†
anc ⊗ IS)(select V)(Banc ⊗ IS) and applying it at the initial

ancilla plus system state

W |0〉 |Ψ〉 = 1
s
|0〉 Ũ |Ψ〉+

√
1− 1

s2 |Φ〉 (65)



2.4. Quantum simulation 32

where |Φ〉 is an ancillary state orthogonal to the initial state |0〉 of the ancilla subspace.
Applying oblivious amplitude amplification, i.e. applying an operator A = −WRW†RW,
where R = (I − 2 |0〉 〈0|)anc ⊗ IS, results in

A |0〉 |Ψ〉 = |0〉 Ũ |Ψ〉 (66)

Time-dependent Hamiltonians can also be simulated using a similar approach [32]. For a
time-independent Hamiltonian H, a simulation with an error ε can be obtained by applying
a truncated Kth order Taylor series (query complexity), where the order is given by

K = O
(

log(T/ε)

loglog(T/ε)

)
(67)

where T = (α1 + ... + αL)t and T/r = ln(2) or if T is not a multiple of ln(2) then set
r = dT/ln(2)e [32]. In this algorithm, an additional O(log(L) log(T/ε)

loglog(T/ε)
) ancilla qubits are

required and the operator B can be constructed with O(log(L) log(T/ε)
loglog(T/ε)

) single qubit and
CNOT gates. A detailed description of this algorithm can be found in [32].

Qubitization

Another simulation method with some similarities with the former, is the recently developed
qubitization algorithm using quantum signal processing [33], which achieves a query
complexity of O(αt + log(1/ε)

loglog(1/ε)
), with α = ∑L

j=0 αj. This method will not be discussed here
but a description can be found in [33, 34].

2.4.2 Open quantum systems simulation

The energy transport in photosynthesis may include an environment interacting with the
system. Hence, the open quantum system formalism may be used. Quantum algorithms
which simulate such systems are still underdeveloped and there are only a few of them
generally applied to any system. The process of irreversibility and non-unitary of open
systems when temporal evolution is simulated presents an obstacle because quantum gates
must be reversible and unitary. Also if quantum open systems need to be simulated, the
open system evolution can not be the only system one is interested in, as in isolated systems,
because there is an environment which must also be simulated. In this context, a few
open quantum system simulation algorithms have been already developed. Among them,
we mention Kraus operators based algorithms [11, 35] and an algorithm which defines a
qubit model of an environment, i.e. the Hilbert space of the overall system is dilated to
include the environment Hilbert space, and its interactions with the system [36]. The latter
algorithm was initially implemented, although discarded at an advanced state of the work.
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Its model and implementation, as well as some comments, are explained in Appendix B. A
different algorithm can be used to simulate pure-dephasing system-environment interaction
dynamics, which was the one implemented in this work. It consists in applying random
energy fluctuations in the system, thus creating a dephasing effect. This simulation method
will not be explained in this section, but in the next.

Kraus operators based simulation

Kraus operators are density matrix maps that transform the system’s density matrix at an
initial time into another at a chosen final time t. The first step to simulate a open quantum
system, through this method, is to calculate the Kraus operators (9) (for instance, using the
evolution operator). Therefore the Hamiltonians of the system, the environment and the
system-environment interaction must be known.

In simple systems and environments calculating the Kraus operators can be a rather easy
task, they can be expressed through simple phase damping or amplitude damping operators
applied to the system [11]. An exponential decay of a population term or a decay of the
coherence terms is observed, a characteristic result of Markovian environments [13]. If these
(Markovian) operators describe the dynamics of the system then the set of Kraus operators
can be easily translated into a simple quantum circuit such as the ones described in [11].
Usually, open quantum systems are not so simple and the explicit evolution operator of the
system, environment and their interaction is required. In such cases, these operators can
have complex forms and their translation to quantum circuits can be done by the recently
developed algorithm [35].

In this algorithm, the application of the Kraus operators is done by augmenting the
Hilbert space of the system, adding an ancilla Hilbert space. Each Kraus operator Ek is
then converted to a unitary operator Uk which is applied to the ancilla and system Hilbert
space using a minimal Hilbert space dilation, i.e. using the minimum number of ancilla
qubits. This is possible by making use of the Sz.-Nagy theorem [35]. Then the evolution of the
system’s density matrix modeled as

ρS(t) =
m

∑
k

EkρS(0)Ek (68)

is converted to

ρS(t) =
m

∑
k

Uk(ρS(0)⊗ ρanc)Uk (69)

where each Uk is computed separately, i.e. the evolution of the system’s density matrix
is given by m different quantum circuits, each with a different Uk. The population terms
can be found by projection measurements, where the system’s density matrix is assembled
after all the measurements are over, i.e. ρS(t) = ∑i,k pi,k(t) |Φi,k〉 〈Φi,k|, where ρS(0) =
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∑i pi(0) |Ψi〉 〈Ψi| is defined to be the initial state of the system. The coherence terms of the
density matrix can be found by quantum state tomography [35, 11].

2.5 summary

The structure of photosynthetic systems, as well as their energy transport dynamics have
been discussed in this chapter. Some of the open quantum systems theory approaches have
been reviewed as well as their application to the most currently used models to explain
the different regimes of energy transport. On the other hand, decoherence, injected by the
environment into the system, was shown to produce undesired effects on the energy transfer
as well as enhancing effects if taken at an appropriate rate. Finally, an introduction has been
given to current quantum algorithms used to simulate the temporal evolution of a system.
Among these, the open quantum systems simulation methods are particularly important in
to work.



3

D E V E L O P M E N T

The focus in this chapter will be the model and the algorithmic theory used in the photosyn-
thetic energy transport simulation.

This chapter is divided in the decisions taken to develop an algorithm followed by the
explanation of its implementation. Then the computational resources of the proposed
algorithm will be evaluated. Finally, possible optimizations of the quantum circuit will be
discussed.

3.1 decisions

The approach consisted firstly in the simulation of the energy transport in photosynthesis,
considering a light-harvesting system as isolated, i.e. without decoherence. In this approach,
it was used a simple Hamiltonian, the one described by equation (50), accounting only for
the unitary system evolution. The second stage of this work consisted in injecting artificial
decoherence in the previous isolated system, making it an open quantum system.

This section begins with a brief explanation of the methods used to synthesize a quantum
circuit to implement the no decoherence model simulation. Then, the artificial decoherence
simulation methods considered to simulate a real open quantum system will be presented.
The section ends with the explanation of the qubit model used in the simulation.

3.1.1 Quantum circuit synthesis

To implement the evolution operator of the system Hamiltonian, diagonalization of it was
required, so the software Mathematica was used. From a simple program, the eigenvalues
and the unitary basis transformation matrices were found. Finding the quantum circuit that
is equivalent to the diagonalized evolution operator of the system Hamiltonian is trivial. But
modelling the basis transformation matrices, required for the simulation, into a quantum
circuit is not so simple. A rotation decomposition algorithm based in [11, 37] was used. A
first approach was to implement this algorithm using Matlab, with the code given by [37].

35
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This algorithm did not result in the decomposition of two-level unitary matrices that were
required to implement the basis transformation operators. The last two-level matrix to be
calculated was not unitary, therefore it can not be applied in a quantum circuit. Due to this
problem, this code, in [37], was not used for the basis transformation operator synthesis.

Another possible way to decompose an unitary matrix is to use the exact circuit synthesis
[38]. However, this algorithm could not be used because the elements of the basis transfor-
mation matrices do not belong to the ring Z[ 1√

2
, i] which means that the elements were not

in the form 1
2n (a + bi + c

√
2 + id

√
2) where n ∈N and a, b, c, d ∈ Z.

The approach adopted consisted of using the language Haskell with the Quipper library
to transform an unitary basis transformation matrix in the multiplication of one-level and
two-level unitary matrices. After this process, Gray code [11] was used to find the gates
needed to implement the sequence of one-level and two-level unitary matrices in a quantum
circuit. This was the option chosen to decompose the basis transformation matrices in
quantum gates and discussed in detail in the Appendix A.

3.1.2 Artificial decoherence simulation methods

Three algorithms were initially proposed to model the artifical decoherence injection in the
system which can be found, in detail, in [35, 36]. At the end of the decision process, it
remained one algorithm that was implemented, i.e. two algorithms were discarded. The
main differences between the three algorithms are presented below, in order to explain the
decisions taken.

Dilation of the system Hilbert space

The first algorithm as proposed in [36] was not implemented in this work. It consists of
maintaining the system Hamiltonian (50) and adding a bath (a dilated Hilbert space of the
system) which evolves with its bath Hamiltonian (15) and interacts with the system via the
interaction Hamiltonian (16). In this algorithm, there are environment qubits in thermal
equilibrium and the system’s qubits. The algorithm was discarded in the course of work,
therefore its model and quantum circuit implementation are described in the Appendix B as
well as some comments about what went wrong with it. Essentially, the bath model defined
in [36] is not a convenient description for the simulation of any open quantum system
dynamics such as the one of light-harvesting systems in photosynthesis and it unfolded
some wrong physical assumptions described in Appendix B. Therefore, it was concluded
that simulating photosynthesis with this algorithm was not the best path to follow.
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Kraus operators

The second algorithm that was also discarded consisted of using the evolution operator
to formulate the Kraus operators. Therefore, the system Hamiltonian (50) was kept, the
environment Hamiltonian HE was the one formulated in equation (15) and the interaction
Hamiltonian HSE was described by equation (16). To formulate Kraus operators, one needs
to employ equation (9) where

√
pm |m〉 is the initial environment state and |k〉 is the chosen

final environment state. Thus, considering the final environment state to be a normal mode
|k〉 = |wk〉 and the initial environment state to be a normal mode in thermal equilibrium,

i.e. using h̄ = 1, one gets
√

pm |m〉 =
√

e−βEk
Z |wk〉 where wk is a normal mode of the

environment, β = 1
kBT , Ek = [nk +

1
2 ]wk denotes the energy eigenvalue of the environment

energy eigenstate (nk is the number of excitations of the normal mode wk, which at thermal
equilibrium can be given by the Bose-Einstein statistics) and Z is the partition function of
the bath. U is the unitary evolution operator applied to the environment and the system
defined as

U(t) = e−i(HS+HE+HSE)t (70)

An effort has been made to calculate the Kraus operators with a similar approach to Ramsey-
like dynamics in photosynthesis, as the one employed in the supplementary information
section of [39] but these operators have not been found. As an alternative, it was thought to
use a generalized amplitude damping Kraus operator [11], i.e. a thermal relaxation operator,
and a phase damping Kraus operator as the ones derived in [11]. However, using these
kind of operators can underestimate the role of decoherence in the system, where the only
controllable environment parameters are the dephasing rate and the final state of the system,
i.e. the thermal equilibrium state (controlled by the thermal relaxation operator). Employing
a set of Kraus operators with thermal relaxation can also have a complex form, therefore it
can be difficult to employ such operators in a quantum circuit.

Another issue arises if the Hamiltonians in the evolution operator do not commute. If this
is the case, the Trotter product formula (59) can be used to separate the Hamiltonians in
different exponentials, which requires a time segmentation. However, in the Kraus operator
formulation one needs always to start from a defined initial environment state |m〉 and
end in a definite environment end state |k〉. Therefore to apply the Kraus operators to a
system density matrix at any time, one has to make sure that the environment state is always
the same, |m〉, before the operator application. Using the Trotter product formula, the use
of several iterations of the evolution operator is required. Hence, to employ these Kraus
operators, it is required a Markovian approximation, where the environment state must
be reset to its initial state at each iteration (forgetting the system-environment correlations
created in the previous iterations). If a Markovian approximation can indeed be made, then
using the algorithm in [35] explained in the subsection 2.4.2, each Kraus operator must be
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computed in a different quantum circuit. This is computationally quite costly, because each
quantum circuit defining a Kraus operator must be applied at each iteration. If K Kraus
operators and N iterations are considered, then to simulate a system at a time t = N∆t, it
would require KN quantum circuits to perform the simulation!

This algorithm was discarded because if the Hamiltonians do not commute, which is the
case for the photosynthesis dynamics (the Hamiltonians (16) and (50) do not commute),
then the simulation becomes practically unfeasible. Another reason is that Kraus operators
have also not been found. The option of using simpler Kraus operators which commute
with the system Hamiltonian (50), such as thermal relaxation and dephasing operators, can
underestimate the role of decoherence in the system’s dynamics. For instance, not having an
explicit system-environment coupling can cause a poor definition of the decoherence effects
in the transport regimes, such as in the coherent EET and Förster regimes.

Implementing decoherence as a closed system

Following a proposal in [36], the third algorithm considered was implemented as a pure-
dephasing model (which should be physically relevant at high temperatures). It consists of
keeping the system Hamiltonian and adding a perturbation, which is defined by random
fluctuations in the site energies of the molecules. This interaction does not need to originate
from an external Hilbert space (as a bath) and can be implemented as a closed system. This
algorithm is simple enough to give appropriate dynamics of the energy transport, even
only containing pure dephasing. It is not heavy in computational resources and it is an
algorithm which is ”flexible” in the implementation whether the perturbation commutes or
not with the system Hamiltonian. An important aspect of this algorithm is that it can model
some types of Markovian environments, i.e. different types of spectral densities, and it can
simulate coherent EET (it fails in the Förster regime).

This is also the algorithm which requires less quantum computational resources, specially
in the number of qubits, which is a consequence of the non-dilation of the system’s Hilbert
space. The implementation of this algorithm is described, in detail, in the next section.

3.1.3 The system’s qubit model

The model implemented in all the simulations consisted in considering each state of the
qubits |m〉 = |q1〉 ⊗ ... ⊗ |qk〉 to be the representation of an excited state of a molecule
(and all other molecules in the ground state) in the computational basis, where 2k denotes
the dimension of the system’s Hilbert space. The initial state prepared for most of the
simulations was chosen as |m〉 = |01〉 ⊗ ...⊗ |0k〉, i.e. the first molecule is excited. Each state
denotes an excited state of a different molecule, thus a superposition of the qubit states is a
superposition of excited molecules. This is the model for a system with no interaction with
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the environment, introduced in the subsection 2.3.2. In this work, it was considered that
the set of molecules represents a chain of molecules. Therefore, no other quantum effects
derived from other geometries, such as coherent traps, will be present.

The molecule representation was chosen in order to perform a scalable quantum simulation.
If each qubit would represent a molecule with states |0〉 and |1〉 for the ground state and the
excited state respectively, a quantum simulation of a real system would require 200− 300
qubits, so that the 200− 300 molecules of a real photosystem can be represented. In the
chosen representation where each system state is an excited molecule state, one would
require 8− 9 qubits for a real quantum simulation of a photosystem (28− 29 light-harvesting
molecules). A real quantum simulation of energy transport in photosynthesis in this chosen
model can already be achieved with current available quantum computers at least in terms of
qubit resources.

3.2 implementation

3.2.1 Isolated system (no decoherence)

The first stage is to implement the isolated system’s evolution as previously explained.
The considered system Hamiltonian is described by equation (53). This Hamiltonian is in
accordance with the modelled system Hamiltonian in several simulations as [24, 39, 3] and it
is described in detail, in subsection 2.3.2. It has been considered that the spontaneous decay
of the excited state occurs at very long times relatively to the energy transport timescale [3].

The Hamiltonian, in matrix form, for four molecules reads

HS =


ε1 J12 J13 J14

J21 ε2 J23 J24

J31 J32 ε3 J34

J41 J42 J43 ε4

 (71)

The temporal evolution is the process one wants to simulate, thus the unitary evolution
operator needs to be applied (h̄ = 1)

U(t) = e−iHst (72)

After applying the unitary operator, for each time t, the system’s qubit states at the site
basis are measured.
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Isolated system quantum circuit implementation

To find the evolution operator in matrix form (assume from now on, a four molecule system),
diagonalization of the Hamiltonian is used, so that

HS = T†HS−diagT (73)

where T is the basis transformation matrix with dimensions 4x4 which changes the site basis
to the energy eigenbasis. HS−diag is the diagonal Hamiltonian. This way,

e−iHSt = T†e−iHS−diagtT (74)

After finding the basis transformation matrices, a rotation decomposition algorithm is
employed [11]. The process of decomposing the basis transformation matrices in quantum
gates is described in the Appendix A.

Knowing how to apply the basis transformation matrix T and its conjugate T† in a
quantum circuit, one can apply the operator e−iHS−diagt in the energy eigenbasis as

e−iE1t 0 0 0
0 e−iE2t 0 0
0 0 e−iE3t 0
0 0 0 e−iE4t

 (75)

The Hamiltonians are usually given in units cm−1, so a conversion is performed to rad.THz,
which can be straighforwardly done by the application of the following formula: E′j = 2πcEj,
where c ≈ 0.029972 cm.ps−1 is the speed of light in vacuum.

To implement the operator (75) in a quantum circuit, a gate C2RZ(θ) is applied with
controls at the system’s qubits and target at an ancilla qubit initialized at |1〉. The gate
C2RZ(θ) can only be applied if the energy system eigenstate

∣∣∣E′j〉 can be specifically selected,
where θ = −2E′jt (The coefficient 2 comes from the Qiskit implementation of the gate RZ(φ)

which is e−i θ
2 Ẑ). To select the eigenstates, X-Pauli gates are used. This process can be applied

in sequence to all the energy eigenstates as demonstrated in the following equation (76) and
illustrated in the figure 7.

The unitary evolution is then modelled as

U(t) = e−iHSt = T†

[
4

∏
j=1

e−iE′jt

]
T (76)

where j is the subscript denoting each energy eigenstate.
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|q0〉 X • X X • X • •

|q1〉 X • X • X • X •

|1〉anc RZ(−2E′1t) RZ(−2E′2t) RZ(−2E′3t) RZ(−2E′4t)

Figure 7: Implementation of the diagonal Hamiltonian evolution operator. |1〉anc is the ancilla qubit
initialized at |1〉. |qi〉 is the system’s qubit state in the energy eigenbasis.

At the end of the quantum circuit (after applying T†), a measurement in each of the two
system’s qubits is performed. This way, the population terms of the system’s density matrix
can be known.

For a two molecule system (one qubit representing the system), the algorithm of the basis
transformation decomposition given in the Appendix A does not need to be employed,
because usually the basis transformation matrices are simple T = RY(θ) and T† = RY(−θ) .

3.2.2 Artificial decoherence injection

System with decoherence model

It has been followed an approach to implement artificial decoherence as pure-dephasing, by
taking into account Markovian fluctuations, which constitutes a good approximation in a
high-temperature regime [40, 29, 13]. The actual algorithm that has been used is the one of [36],
a quantum algorithm that simulates open quantum systems, with pure-dephasing, modeling
the action of the decoherence as classical (Gaussian) random fluctuations (a telegraph-type
classical noise affecting the system). The actual Hamiltonian of this system, reads as

H = HS + HF (77)

and it consists of the system Hamiltonian HS explained above, under the perturbation of
a bi-stable fluctuator environment, HF, i.e. sets of fluctuators representing the environment
(at thermal equilibrium) which inject random energy fluctuations in a molecule. These
objects switch between two values, ±g/2, at a given fixed rate γ, where g is the fluctuation
strength (or coupling strength to a molecule). Physically, the action of the fluctuations is
typically stronger in the excited state energies than in the couplings between the molecules
[40, 41], thus we resorted to the approximation that the fluctuations are only applied to
the molecule excited states. In addition, we approximate the environment to be modeled
by independent and identical sets of fluctuators with no interaction of any sort between
them, as supported by [42], so that each set of fluctuators only affects the energy of a single
molecule excited state (a diagonal term of the system’s density matrix in the site basis).
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The random fluctuations applied to a two molecule system are illustrated in figure 8. The
fluctuator interaction Hamiltonian ĤF, can be defined following [36], as

HF(t) = ∑
m

χm(t)Am (78)

where Am is the projection operator |m〉 〈m|, and χm(t) is the action of a set of fluctuactors on
the molecule m. The action, for one fluctuator per set, is defined as follows

χm(t) = gmξm(t) (79)

where gm is the fluctuation strength (or coupling strength of the fluctuator with the molecule
m) and the function ξm(t) is the generator of the random fluctuations, which switches
between values −1/2 and 1/2 at a rate γm. This type of action can, obviously, be generalized
to a higher number of uncorrelated fluctuators per set

χm(t) = ∑
j

gjmξ jm(t) (80)

where gjm is the coupling strength between the fluctuator j and the molecule m.

The random fluctuations have been generated with a classical algorithm. To generate the
functions ξm(t), it can be used a classical pseudo-random generator with a probability of
50% of outputting either value −1/2 or 1/2. This pseudo-random generator is implemented
before the execution of each quantum simulation and these values are stored in lists. Each
time a switch of a fluctuator takes place in the simulation, a random value is picked from a
list.

Another idea for generating the fluctuations is to model the functions ξm(t) as a simple
quantum circuit composed by an Hadamard gate applied to a qubit initialized at |0〉. The
Hadamard gate sets the qubit state to (|0〉+ |1〉)/

√
2 and then this qubit is measured. This

way, the output will be a random value 0 or 1 with 50% probability each. Depending on the
time t in which the system is simulated, several runs of the algorithm can be performed as
well as several qubits can be used. Although one can achieve a true random generator with
this quantum circuit, this is a costly process in quantum computational resources, so it was
not implemented.
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Figure 8: Uncorrelated random fluctuations applied to each site molecule energy ε0 and ε1. In this
image, each molecule is affected by one fluctuator.

Environment definition with fluctuators

The contribution of a fluctuator to the bath spectral density takes the Lorentzian form [36]

fi(w) =
g2

i γi

4π(w2 + γ2
i )

(81)

where gi is the fluctuation strength of the fluctuator i and γi is the switching rate of the
fluctuator i.

The spectral density of a set of fluctuators is given as a sum of the contributions of all
fluctuators present in the set [36] as

F(w) = ∑
i

g2
i γi

w2 + γ2
i

(82)

One can reproduce several types of environments by choosing the parameters accordingly.
Note, however, that only low-frequency environments can be represented by a fluctuator
environment.

Quantum circuit implementation: Two molecule system and one fluctuator per set

The usual approach to implement the system’s evolution is to employ the evolution operator
(57). The general Hamiltonian is given by a sum of Hamiltonians, i.e. H = HS + HF(t), where
HF(t) is time-dependent. Nevertheless, time-dependency is given by sudden switching acts
which commute at different times. Therefore its evolution operator can be constructed as a
product of evolution operators as long as the Hamiltonian stays constant as it freely evolves
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in some constant time interval, i.e. there is no fluctuation switch between some time t′

and t′ + ∆t f . The unitary evolution, which defines the system-bath interaction, for a time
t = N f ∆t f , where N f is the number of fluctuation switches and ∆t f is the fluctuator waiting
time (interval of time between switches), is given by

U f (N f ∆t f ) =
N f

∏
n f =1

e−iHF(n f ∆t f )∆t f (83)

where HF(n f ∆t f ) must have a constant action throughout the interval of time [(n f −
1)∆t f , n f ∆t f ].

Both Hamiltonians HS and HF do not commute in the general case, therefore the Trotter
product formula (59) must be applied, where each iteration time-step ∆t must be considered
smaller or equal to the previous fluctuator waiting time ∆t f . Therefore the switching
act is performed at every 1

γ∆t iterations, where a∆t = ∆t f = 1
γ , a ∈ N. Note that the

iteration time-step is dependent on the fluctuator switching rate, a requirement caused by
the implemented evolution as iterations. The unitary evolution, for a time t = N∆t where
∆t is the iteration time-step and N is the number of iterations, becomes:

U(N∆t) =
N

∏
n=1

(
e−iHF(n∆t)∆tT†e−iHS∆tT

)
=

N

∏
n=1

([
1

∏
m=0

e±i gm
2 ∆t

]
T†

[
1

∏
m=0

e−iEm∆t

]
T

)
(84)

Note that the operator |m〉 〈m| is not present in the fluctuator interaction evolution operator
because it is employed in its eigenbasis, i.e. site basis, and therefore it is substituted by
its eigenvalues. To implement one fluctuator interaction evolution operator e±i gm

2 ∆t to the
molecule m, one needs to apply X-Pauli gates to identify which molecule m, i.e. system’s
state |m〉, the fluctuation is applied, similarly to the implementation of e−iHS∆t. Then a
controlled gate CRZ(φm) where φm = ±gm∆t and the sign ± is determined by the random
output of the switch at every 1

γ∆t iterations, and applied with control at the system’s qubit
and target at the ancilla qubit (it can be the same ancilla used in the implementation of
e−iHS∆t). The fluctuation strength is given in units cm−1, thus the same unit conversion to
rad.THz as the performed on the computation of the system Hamiltonian is employed, i.e.
g′ = 2πcg . The circuit implementation for a complete iteration is shown in figure 9.
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∣∣qsystem
〉

Ry(θ) X • X • Ry(−θ) X • X •

|1〉anc RZ(−2E′1∆t) RZ(−2E′2∆t) RZ(±g′∆t) RZ(±g′∆t)

Figure 9: Implementation of one iteration of the system with decoherence algorithm. |1〉anc is the
ancilla qubit initialized at |1〉. |qsystem〉 is the system’s qubit state in the site basis. The basis
transformation operators T and T† are implemented with the gates Ry(θ) and Ry(−θ),
respectively. Every set of fluctuators is identical so g′ = g′m.

Generalized quantum circuit implementation

If more than one fluctuator is present in each set, the procedure is very similar, although one
must account for the different switching rates. The time-step of the iteration must be equal
or smaller than the waiting time of the fluctuator with the highest switching rate γh in the
set, i.e. l∆t = 1

γh
, l ∈N. Using this method, the switching rates of the other fluctuators

(denoted by the subscript j) must fulfill the following condition: pjγj = γh , pj ∈N. These
conditions are a requirement because the system’s evolution is made by time iterations. For
a number of F fluctuators in a set and M molecules,

U(N∆t) =
N

∏
n=1

([
M

∏
m=0

F

∏
j=0

e±j i
gj,m

2 ∆t

]
T†

[
M

∏
m=0

e−iEm∆t

]
T

)
(85)

where ±j denotes the act of switching of the fluctuator j to be applied when (n∆t) mod 1
γj

=

0.

The generalized implementation of the fluctuator interaction evolution operator is the
following:

• Step 1: Select a system’s state |m〉 by applying X-gates. Then apply a CnNOT, where n
is the number of qubits that represent the system, with controls at the system’s qubits
and target at the ancilla qubit. Then proceed to step 2.

• Step 2: If all the fluctuators have already interacted with the molecule, then proceed
to step 3. Otherwise, choose a fluctuator j with the corresponding coupling gj. Then
apply a CRZ(φ) with control at the ancilla qubit and target at the same ancilla used
in the system’s Hamiltonian evolution operator. The sign of the angle φ = ±∆tgj

depends on the switching rate of the fluctuator j. If the current iteration is the one
where the switching act must be performed then a new random value must be picked
from a list, generated with random values before the execution of the quantum circuit.
If the current iteration is not the one where the fluctuator j switches its fluctuation sign,
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then pick the random value in the list used in the previous iteration for the fluctuator
j. Then repeat this whole step, by choosing another fluctuator j + 1.

• Step 3: Reverse the circuit in step 1. If all the system’s states |m〉 have been chosen,
the implementation of the fluctuator interaction evolution operator is over for this
iteration. If all the system’s states have not been chosen, then proceed to step 1 and
choose another system’s state |m〉 different from the ones already chosen.

Usually in an open quantum system with a dilated system’s Hilbert space, one needs to
perform different measurement techniques [11, 36] than the one used in the no decoher-
ence algorithm, however the system here implemented is modelled in closed form so the
measurement procedure is done directly at the system’s qubits in the site basis.

The full algorithm (random values generator plus the actual simulation) must be per-
formed several times, so that the results of all runs are averaged. The requirement of an high
number of runs motivated the multiprocess parallelization of the code for faster executions
of the full algorithm in the quantum simulator. It was used the Python multiprocessing library
to parallelize the code in different processes with concurrency control. The overall algorithm
is sent to a number P of processes. Each process executes N different programs, each one
with different random functions ξ. Each n program, n ∈ {1, 2, ..., N}, in each p process,
p ∈ {1, 2, ..., P}, produces a list of random values 0 and 1 and then this list is used for the
execution of the quantum circuit. Each process p and each program n perform a number
of S shots. A shot s, s ∈ {1, 2, ..., S}, is a run of the quantum circuit. At the end, one has
E = P× N × S executions of the algorithm with P× N different random-valued functions ξ

for each fluctuator. The population terms, for a M molecule system, are found by calculating

ρS(t) =
M

∑
i=1

Ei(t)
E
|i〉 〈i| (86)

where Ei(t) is the sum of all the measurements of the system’s qubits which resulted in the
state |i〉 at time t and E = P× N × S. The value Ei(t)/E is the probability of getting the
state |i〉 by measuring the final system state |Ψ(t)〉.

The concurrency control was implemented with a lock when the number of measurements
of a determined state in each process is added to the number of measurements of another
process and when the parameters required for the implementation are read at the start of
the simulation.
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3.3 computational resources

In this section, the quantum computational resources required by both previous implemented
algorithms are calculated, as well as the query complexity of the system with decoherence
algorithm. Finally the number of required random numbers is calculated.

Qubit resources

The system and ancilla qubits are the only qubits required, therefore n = log2(Nmol) qubits
represent the system’s qubits, being Nmol the number of the system’s molecules. Considering
the ancilla qubits, then the simulation requires log2(Nmol) + d qubits where d is the number
of ancillas. A CnNOT decomposition requires log2(Nmol)− 1 qubits (see figure 10) and one
more ancilla qubit is required to implement the diagonal evolution operator of the system
Hamiltonian and the basis transformation matrix decomposition (the target qubit of the
gates CRZ, when decomposing the one-level matrices), thus the final number of needed
ancilla qubits is d = log2(Nmol). The system’s qubits plus the ancilla qubits gives a total of
2log2(Nmol) required qubits for both previous algorithms.

Figure 10: CnNOT decomposition where the work qubits are ancilla qubits. With n control qubits,
n− 1 ancillas are required. This was the decomposition used in the simulations. Image
taken from [43].

Quantum gate resources

Any CnNOT gate can be decomposed using O(n) CNOT gates [11].
The matrix T decomposition has a complexity of O(N2

mol) two-level matrices (the one-level
matrices are left out, for reasons that will be explained in the next section). Each two-level
unitary matrix needs O(log2[Nmol ]) single qubit and CnNOT gates to reach the state |k〉
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from the state |j〉 [11] (see Appendix A) and each CnNOT needs O(log2[Nmol ]) CNOT gates
to be decomposed. Therefore, the final complexity of the basis transformation operator
is O(N2

mol log2
2[Nmol ]) [11]. If the number of iterations, given by I, is taken into account

O(I × N2
mol log2

2[Nmol ]) single qubit and CNOT gates will be required.
The diagonal evolution operator of the system Hamiltonian can be applied using
O(Nmol log2[Nmol ]) single qubit and CNOT gates. For each term in the diagonal evolution
operator, O(log2[Nmol ]) gates are required to decompose the CnRZ(θ). The diagonal Hamilto-
nian has Nmol diagonal elements, so the gate complexity of the diagonal evolution operator is
calculated as O(Nmol log2[Nmol ]). Considering the number of iterations I, the final complexity
of the diagonal evolution operator of the system’s Hamiltonian is O(I[Nmol log2(Nmol)]).

The no-decoherence algorithm has a final quantum gate complexity of

O(N2
mol log2

2[Nmol ]) (87)

where the quantum gate computational cost is dominated by the decomposition of the basis
transformation matrix in a sequence of single qubit and CNOT gates.

The complexity of the fluctuator interaction evolution operator is, for one iteration,
O(Nmol [log2(Nmol) + F]), where F is the number of fluctuators in a set. Each molecule
interacts with its set of fluctuators, thus Nmol CnNOT gates are required to define the
interaction of all the fluctuator sets which gives a complexity of O(Nmol log2[Nmol ]). It
is also required to implement F CRZ gates for each molecule present in the system, i.e.
the interactions between a molecule and the F fluctuators in a set, which gets a total of
O(INmol [log2(Nmol) + F]) single qubit and CNOT gates, for I iterations.

The quantum gate complexity for one run of the system with decoherence algorithm, for
a time t = I∆t, is

O
(

t
∆t
{N2

mol log2
2[Nmol ] + Nmol F}

)
(88)

Note that the algorithm must be run several times to average the results. One can
parallelize the algorithm in a quantum computer so that it requires less time to fully execute
it, but comes with the cost of an higher number of qubits.

Query complexity

The system with decoherence algorithm used the Trotter product formula (59), therefore the
query complexity for a single run is O(∆t2/ε), where ε is the desired error one wishes to
obtain in the simulation by using an iteration time-step ∆t.

Next, the calculation of the number of runs of the simulation required to obtain an error
ε > 0 by averaging the results is performed.
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Each fluctuation can assume two random values (with signs + and −) and each set of
the environment interacting with a molecule has F different fluctuators. Therefore after
one iteration, a molecule has 2F different possibilities of having an excited state energy
different from the initial site energy εm, in the worst case. At every iteration, the possible
configurations of a molecule excited state increase by 2F, because at each iteration each
molecule interacts again with F fluctuators. This is, for a number of I iterations, 2FI
configurations of the excited state of a molecule are possible. Converting the number of
iterations to I = t

∆t , then the number of possible configurations, in function of time, is
2F t

∆t . Each possible energy configuration of the system for a time t, has a well defined
probability. Note that the random fluctuations applied to the system cause a discrete
Gaussian probability distribution of measuring some possible energy state outcome in each
molecule. For a chain of Nmol molecules, the fluctuations are independently applied to each
molecule, which means that the probability of having a configuration of an excited state
of a molecule as an outcome can be equal to the probability of outcome of a configuration
of the excited state of another molecule. This means that for a chain of Nmol molecules,
the probability of having a determined chain energy state outcome can be equal to another
chain energy state outcome (this is called degeneration). Running R times the simulation
and averaging the results, an error relatively to the average value of ε = σ√

R
is obtained,

where σ is the standard deviation which scales with O(F t
∆t ), i.e. it scales with the number

of possible chain energy configurations with different probabilities of outcome, for a time t,
because the probability distribution must be normalized to 1 for the discrete domain of
energies. Therefore, to obtain an error ε by averaging the results, the number of times the
simulation must be run is

O
(
[F t

∆t ]
2

ε2

)
(89)

Number of required random numbers

The random numbers are calculated by taking into account how many switches are needed
for the whole algorithm. Each fluctuator j needs a random value to be implemented at a
rate γj, thus a set of fluctuators with F elements and a desired simulation for a time t, needs

∑F
j=0 tγj random values. If Nmol molecules are present in the system, the number of required

random numbers increases to Nmol × ∑F
j=0 tγj. Using multiprocess parallelization with P

processes where each executes Nprog programs with different random-valued functions,
gives a total of R = PNprog runs of the simulation. The total of random values needed for
the full implementation, for a time t, is:

O(R× Nmol ×
F

∑
j=0

tγj) (90)
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3.4 quantum circuit optimizations

This section discusses some possible optimizations for the simulation.

3.4.1 Simple optimizations

One simple optimization that can be done is to not implement some types of quantum gates
at the same qubits, consecutively. For instance, two X-Pauli or two CNOT gates consecutively
applied to the same qubits can be removed because the final state is the same as if the two
consecutive gates were not applied. This is a very small optimization which does not reduce
the quantum gate complexity, however it still slightly reduces the number of quantum gates
in the circuit.

Another simple optimization is to put the state of each ancilla qubit at |0〉 whenever it is
possible. The T1 (or longitudinal) relaxation time of the qubit is an important parameter of
the quantum hardware, which can produce significant errors in the simulation. Therefore,
not letting the qubit unexpectedly decay to the state |0〉 (its decay probability obeys to an
exponential decay tendency in function of time) by changing it to that state on purpose, can
reduce the error rate. In the performed simulations, an ancilla initialized at |1〉 has been
used as a target qubit for the gates CnRZ. Whenever the basis transformation operator is
performed, in a simulation with a high number of molecules or fluctuators, a X-Pauli gate can
be implemented at the ancilla, before and after the basis transformation operator application.
This operator requires a high number of gates to be implemented, i.e. a high interval of time
to be fully applied, thus the ancilla qubit is not used along this time (considering that the
one-level matrices are not applied, as it will be discussed next). Then the ancilla qubit should
be set to the state |1〉 only when the diagonal system evolution operator or the fluctuator
interaction evolution operator are to be implemented, because it is needed at the application
of these operators. Obviously, adding the extra X-Pauli gates increases the number of gates,
but by only implementing them when is strictly necessary, a balance between the minimum
number of gates and the minimum error rate produced by the longitudinal relaxation decay
can be achieved.

3.4.2 Basis transformation matrix decomposition

The most expensive method to implement the simulation is the basis transformation matrix
decomposition. Considering an Hamiltonian with no imaginary terms, as the ones consid-
ered in this work, the energy eigenstates of the system are composed by a superposition
of site eigenstates with 0 relative phase between them, i.e. the basis transformation matrix
is given by real numbers only. Therefore, the unitary one-level matrices outputted by the
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Quipper algorithm described in Appendix A can be neglected because they only apply
a phase, which is not required. This optimization does not decrease the quantum gate
complexity of implementing the basis transformation operator, because in the previous
section, the complexity is formulated accounting only for the two-level unitary matrices, but
it still reduces the overall number of gates of the quantum circuit by removing unnecessary
quantum gates.

3.4.3 Query complexity optimization

If seeking for a simulation, using the system with decoherence algorithm, with an error
ε > 0, then the use of the Trotter product formula (59) to approximate the evolution operator
gives an error scaling of ε = O(∆t2/N) [30]. Another approximation it can be used is the Lie-
Trotter-Suzuki formula up to some kth order where the error scales with ε = O(∆t2k+1/N2k)

[31], being N the number of iterations with iteration time-step ∆t. It can be observed that
using a different technique, the error derived from the approximation is smaller to the same
N and (small) ∆t than using Trotter approximation.

The other evolution operator decomposition techniques addressed in subsection 2.4.1 are
also an optimization, concerning only the query complexity.

3.5 summary

The decisions made in order to develop a quantum algorithm which describes faithfully
the energy transport in photosynthesis have been presented and justified. The model and
the quantum circuit implementation have been theoretically formulated and demonstrated,
for an isolated and open system quantum simulation. The algorithm has been evaluated in
terms of its computational resources: the required qubits, quantum gate complexity, query
complexity and the number of required random numbers. Finally, some optimizations which
can be straightforwardly applied to the quantum circuit were presented.
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A P P L I C AT I O N

4.1 computational setup

In this section, the calculations required to perform the quantum simulation in the no
decoherence regime, for a two and four molecule system will be presented. Typical energy
parameters for the site energies and inter-molecular coupling strengths have been used [39,
41].

The code used to diagonalize the Hamiltonians can be found in the following URL:
https://github.com/jakumin/Photosynthesis quantum-simulation code.

4.1.1 One qubit system

The first case study consists of a two molecule non-resonant system, considered as isolated
from the universe. The numerical Hamiltonian to implement this system is given by

HS =

(
12900 132
132 12300

)
cm−1 (91)

This matrix is diagonalized and it yields

HS−diag =

(
12927.8 0

0 12272.2

)
cm−1 (92)

where the energy eigenvalues are later converted to rad.THz. The unitary basis transforma-
tion matrices are

T =

(
−0.9786 0.205773
−0.205773 −0.9786

)
(93)

and its conjugate T†. It can be seen that the energy eigenstate |E0〉 can be decomposed
in a superposition of the site eigenstates as |E0〉 = −0.9786 |0〉+ 0.205773 |1〉 and |E1〉 can
also be decomposed in a similar superposed form. For a two molecule system, the basis
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transformations matrix T is given as an unitary RY(θ) gate applied to the system qubit
where θ/2 ≈ −2.934. The basis transformation T† is applied as RY(−θ).

A second case study of the no decoherence algorithm is performed with a system of two
molecules in near resonance. In this case the Hamiltonian is

HS =

(
13000 126
126 12900

)
cm−1 (94)

Diagonalizing it, one gets

HS−diag =

(
13086 0

0 12814

)
cm−1 (95)

The corresponding unitary basis transformation matrix is

T =

(
−0.8273 0.5618
−0.5618 −0.8273

)
(96)

The T matrix can be implemented with a gate RY(θ) where θ/2 ≈ −2.545.

4.1.2 Two qubit system

We shall consider now a system consisting of two pairs of molecules (four in total); its
simulation requires two qubits. The model of the four molecule system simulation was
explained in subsection 3.2.1.

The first pair (first and second molecules) is near-resonant as well as the second pair
(third and fourth molecules), while the two pairs are in off resonance between them. The
Hamiltonian of the system is

HS =


13000 126 16 5

126 12900 132 16
16 132 12300 126
5 16 126 12200

 cm−1 (97)

After diagonalization it reads

HS−diag =


13096 0 0 0

0 12834 0 0
0 0 12360 0
0 0 0 12109

 cm−1 (98)
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and the basis transformation matrix is given as

T =


−0.7957 0.6054 −0.0176 −0.0057
−0.5923 −0.772421 0.2119 0.0829
−0.1193 −0.1850 −0.7779 −0.5886
−0.0318 −0.0515 −0.5913 0.8042

 (99)

The procedure is to input this matrix to the Quipper program to know how to implement it
in a quantum circuit. The procedure of the basis transformation decomposition is detailed
in Appendix A. The code used to decompose matrix (99) is available at the URL: https:
//github.com/jakumin/Photosynthesis quantum-simulation code.

First, recall the matrices that the Quipper program outputs:

RZ−X(δ, γ) =



I
... 0

... 0
. . . e−iδ/2cos(γ/2) . . . −ie−iδ/2sin(γ/2) . . .

0
... I

... 0
. . . −ieiδ/2sin(γ/2) . . . eiδ/2cos(γ/2) . . .

0
... 0

... I


(100)

Where the bold 0 are square 0-matrices, the dots denote 0 columns or rows and I is the
identity matrix. The unitary square one-level matrix eiθ is:

O(θ) =

 I
... 0

. . . eiθ . . .

0
... I

 (101)

The output of the program is given in the order of mathematical application (left-to-right)
but note that in the quantum circuit the application is from right to left.

The T basis transformation matrix decomposition outputted by the Quipper program is:

T = RZ−X,1(−1.5707964,−1.280839)RZ−X,2(−0.7853982,−0.23925155)

RZ−X,3(−0.392699,−6.359089× 10−2)RZ−X,4(−1.9634955,−0.37569928)

RZ−X,5(−1.1780972,−0.103078015)RZ−X,6(−2.159845,−1.2680365)

O1(1.8653208)O2(−2.8470683)O3(2.3561945)O4(1.767146)

The Gray Code is then applied where each matrix contains the numbers j and k (or only
j) outputted by the Quipper program. The quantum circuit optimizations discussed in the

https://github.com/jakumin/Photosynthesis_quantum-simulation_code
https://github.com/jakumin/Photosynthesis_quantum-simulation_code
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previous chapter are neglected in the following application of the Gray Code. Each matrix is
implemented in a circuit sequence as provided below,

O4(1.767146) (102)

where j = 0. Using the system qubit notation |q0〉 ⊗ |q1〉, the eiθ term is applied to state |00〉
in the matrix (101). Therefore the quantum circuit for this gate is depicted in figure 11.

|q0〉 X • • X

|q1〉 X • • X
|0〉anc •

|1〉anc RZ(2× 1.767146)

Figure 11: Implementation of the one-level unitary matrix O4(1.767146).

O3(2.3561945) (103)

This matrix has j = 1, so it corresponds to the state |01〉. The matrix is then implemented as
depicted in figure 12.

|q0〉 X • • X
|q1〉 • •
|0〉anc •

|1〉anc RZ(2× 2.3561945)

Figure 12: Implementation of the one-level unitary matrix O3(2.3561945).

O2(−2.8470683) (104)

where j = 2 corresponds to the state |10〉. The quantum circuit representing this gate is
illustrated in figure 13.

|q0〉 • •
|q1〉 X • • X
|0〉anc •

|1〉anc RZ(2×−2.8470683)

Figure 13: Implementation of the one-level unitary matrix O2(−2.8470683).
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O1(1.8653208) (105)

where j = 3 corresponds to the state |11〉. This gate is implemented as in figure 14.

|q0〉 • •
|q1〉 • •
|0〉anc •

|1〉anc RZ(2× 1.8653208)

Figure 14: Implementation of the one-level unitary matrix O1(1.8653208).

RZ−X,6(−2.159845,−1.2680365) (106)

where j = 2 and k = 3, thus |j〉 = |10〉 and |k〉 = |11〉. Using notation U3(γ) =

U3(γ,−π/2, π/2), the quantum circuit representing this matrix is presented in figure
15.

|q0〉 • •
|q1〉 U3(−1.2680365) RZ(−2.159845)

Figure 15: Implementation of the two-level unitary matrix RZ−X,6(−2.159845,−1.2680365).

RZ−X,5(−1.1780972,−0.103078015) (107)

where j = 1 and k = 3. Thus the respective states are |01〉 and |11〉. The matrix is
implemented as in figure 16.

|q0〉 U3(−0.103078015) RZ(−1.1780972

|q1〉 • •
Figure 16: Implementation of the two-level unitary matrix RZ−X,5(−1.1780972,−0.103078015).

RZ−X,4(−1.9634955,−0.37569928) (108)

where j = 1 and k = 2. The respective states are |01〉 and |10〉. The quantum circuit which
represents this gate is illustrated in figure 17.
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|q0〉 • •

|q1〉 • U3(−0.37569928) RZ(−1.9634955) •

Figure 17: Implementation of the two-level unitary matrix RZ−X,4(−1.9634955,−0.37569928).

RZ−X,3(−0.392699,−6.359089× 10−2) (109)

where j = 0 and k = 3. Here, |j〉 = |00〉 and |k〉 = |11〉. The quantum circuit is implemented
as in figure 18.

|q0〉 X • X U3(−6.359089× 10−2) RZ(−0.392699) X • X

|q1〉 • •

Figure 18: Implementation of the two-level unitary matrix RZ−X,3(−0.392699,−6.359089× 10−2).

RZ−X,2(−0.7853982,−0.23925155) (110)

where j = 0 and k = 2, i.e. |00〉 and |10〉, respectively. This matrix is modeled as presented
in figure 19.

|q0〉 U3(−0.23925155) RZ(−0.7853982)

|q1〉 X • • X

Figure 19: Implementation of the two-level unitary matrix RZ−X,2(−0.7853982,−0.23925155).

RZ−X,1(−1.5707964,−1.280839) (111)

where j = 0 and k = 1. The corresponding states are |00〉 and |01〉. This final matrix is
applied with the circuit depicted in figure 20.

|q0〉 X • • X

|q1〉 U3(−1.280839) RZ(−1.5707964)

Figure 20: Implementation of the two-level unitary matrix RZ−X,1(−1.5707964,−1.280839).

The basis transformation matrix implementation is now completed. To apply T†, the
reversed matrix sequence is implemented and the two-level matrices are applied with the
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gate CU3(γ, π/2,−π/2)CRZ(−δ). The one-level matrices are applied with negative angles
as C2RZ(−2θ).

The implemented operator T is correct if it represents the basis transformation matrix,
i.e. if both matrices are equal. To check this, the system’s qubits are prepared in a non
superposed state, the T operator is applied to them and measurements are performed in
the corresponding qubits. Then, Qiskit outputs the amount of times the qubit states were
measured, which we denote by Mi for each measured state |i〉. Therefore, the amplitude

αi of some measured state i is αi =
√

Mi
S , where S is the number of shots performed. By

initializing the qubits at a state |m〉, applying the operator T and measuring the resulting
state a number of S times (shots), the amplitudes αi of the resulting states |i〉 can be known.
Therefore, each αi must be equal to the element in row |i〉 of the column |m〉 (prepared initial
state) of the basis transformation matrix. This process can be generally applied to check
if all the elements of the basis transformation matrix are equal to all the elements of the
implemented operator T.

4.2 results and discussion

Experiments of simulation of the energy transport in photosynthesis, were conducted, for
both the isolated system and pure dephasing regimes, in near-resonant and non-resonant
scenarios, according to the algorithms described throughout the previous chapter and the
computational setups of the previous section. For the purpose of validation, for the isolated
one system qubit, the simulation results were compared with the theoretical prediction, whose
derivation is available in Appendix C. Since the circuit for the isolated one qubit system
simulation is small, it was directly implemented in the online Qiskit editor [44], while for
the isolated two qubit system and one system qubit decoherent case, the QASM editor was used.

The code used for all the experiments can be found in the URL: https://github.com/

jakumin/Photosynthesis quantum-simulation code.

4.2.1 Isolated system results

One qubit system

The results for both the near resonance and non resonant regimes are shown in figures 21

and 22, respectively. They were obtained in an actual quantum device (the IBMQ london
with 5 qubits). Due to the stochastic nature of quantum computers, the experiments were
conducted with 2048 shots for each time value. The specific optimized quantum circuits
used in this experiment, are presented in Appendix D.

https://github.com/jakumin/Photosynthesis_quantum-simulation_code
https://github.com/jakumin/Photosynthesis_quantum-simulation_code
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In the following results, the probabilities of the donor and acceptor molecules being
excited are denoted by P(0) = 〈0| ρS(t) |0〉 and P(1) = 〈1| ρS(t) |1〉, respectively.

Figure 21: Time evolution of the occupation probabilities for a near-resonant system: simulated
results (points) and theory (lines).

Figure 22: Time evolution of the occupation probabilities for a non-resonant system: simulated results
(points) and theory (lines).

Taking the fluctuator’s switching rate to be γ = 0 or the fluctuation strength to be g = 0,
one has the no-decoherence regime. These simulations show the Redfield regime where there
is a very weak system-environment coupling g, relatively to the inter-molecular coupling
J, in the limit of null g, i.e. the full coherent regime. The quantum beating, observed in the
simulation results, can be thought as a reversible transfer of energy between the molecules,
where the excitation goes back and forward across the molecules [25], an equivalent of the
Rabi oscillations.

In the performed simulations, the near-resonant and the non-resonant regime have a
maximum probability of ∼ 90% and ∼ 20%, respectively, of the energy being transferred to
the acceptor molecule. Using the quantum Liouville equation [3] (the derivation is provided
in Appendix E), the period of the quantum beating is Tnear−res ≈ 123 f s for the near-resonant
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regime and Tnon−res ≈ 51 f s for the non-resonant regime. These periods are in the f s
timescale according to the experimentally observable quantum beatings [15, 17, 16]. The
simulation results show a similar behaviour as the ones predicted by the Schrödinger and
quantum Liouville equation, where the off curve points are predominantly originated by
errors in the quantum hardware.

Two qubit system

The results were obtained with 5000 shots for each time value t.
The elements of the system’s density matrix shown in the following results are

ρS =


P(0) ρ0,1 ρ0,2 ρ0,3

ρ1,0 P(1) ρ1,2 ρ1,3

ρ2,0 ρ2,1 P(2) ρ2,3

ρ3,0 ρ3,1 ρ3,2 P(3)

 (112)

Figure 23: Time evolution simulation of the occupation probabilities for a four molecule system
initialized at the state |00〉.
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Figure 24: Time evolution simulation of the occupation probabilities for a four molecule system
initialized at the state |11〉.

In figure 23, the first two molecules 0 and 1 exhibit approximately the same behaviour as
in the previously discussed qubit system simulation, fig. 21. It can also be observed that
the molecules 2 and 3 oscillate with very low amplitudes. The reason is the non resonance
regime of the first pair of molecules with respect to the second pair, which strongly blocks
the energy transfer between them. The initial state of the system is the excited molecule
0. Energy is only significantly transferred among near-resonant molecules, therefore the
energy trapping in the first two molecules occurs. Still, quantum beating permits the second
pair to have a small probability of becoming excited.

In contrast, figure 24 shows that energy is trapped in the second pair of molecules. The
excitation is initially present in molecule 3, therefore the energy can only be significantly
transferred to the near-resonant molecule 2.

4.2.2 Results for the system with decoherence

The simulations were performed with two molecules and only one fluctuator per set of the
environment.

A large number of samples had to be measured in order to produce reliable results. The
algorithm was implemented with 250 runs, where 5000 shots were performed for each time
t.

Fluctuation strengths

In figures 25 and 26 the simulation results for different values of fluctuation strengths are
presented, in the near resonant and non resonant systems, respectively. The switching rate
was chosen to be 125 THz.



4.2. Results and discussion 62

(a) g = 100 cm−1. (b) g = 300 cm−1.

(c) g = 700 cm−1. (d) g = 1000 cm−1.

Figure 25: Time evolution simulation of the occupation probabilities for a near resonance system
with decoherence for different values of fluctuation strengths.
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(a) g = 100 cm−1. (b) g = 300 cm−1.

(c) g = 700 cm−1. (d) g = 1000 cm−1.

Figure 26: Time evolution simulation of the occupation probabilities for a off resonance system with
decoherence for different values of fluctuation strengths.

It can be observed in Figures 25 and 26 that oscillation amplitudes decay over time, as
expected, due to the loss of phase coherence between the molecule excited states, evidenced
by the vanishing of quantum beating, which is associated with the irreversible evolution,
where the system loses capacity of performing coherent transport. Additionally, it is also
observable that, as correlated probabilities are eliminated along with quantum beating, the
system is led to a classical distribution of the populations in the site eigenbasis.

In the regime under the study, where the environment is assumed to be at thermal
equilibrium, the final probability distribution is calculated as the limit of the classical
Boltzmann distribution 〈m| ρS(t → ∞) |m〉 = const × e−

εm
kBT , where kB is the Boltzmann

constant, T is the temperature of the bath and const is a normalization constant [13].
Taking the limit at very high temperatures, the population terms approach the Boltzmann
distribution 〈0| ρS(t→ ∞) |0〉 ≈ 〈1| ρS(t→ ∞) |1〉 ≈ 1

2 , which is compatible with the results
obtained.

The switching rate must be high enough to observe the dephasing effects. For this, it
has been employed a value about ≈ 33 times larger than the transport rate J (that is, the
fluctuator waiting time is shorter than the inverse of the J−1). As observed in the simulations,
it was is a suitable value to observe the relevant effects of the random fluctuations applied
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to the system. At very low rates, it leads the system’s evolution to a very similar behaviour
as the previously observed in the no-decoherence regime, figs. 21 and 22.

In figures 25a, 26a and 26b the relaxation can not be fully observed because an high
number of iterations would be required.

In a recent experiment, the quantum beating has been observed for a timescale higher
than 660 f s [16], a timescale which can be modeled by the present simulation by changing
the fluctuation strength.

Switching rates

In figures 27 and 28, the simulations results for different values of switching rates are
presented, for the near resonant and non resonant systems, respectively. The fluctuation
strength was chosen to be g = 300 cm−1. Some of the previously presented results are also
used in the following figures for comparison.

(a) γ = 12.5 THz. (b) γ = 125 THz.

Figure 27: Time evolution simulation of the occupation probabilities for a near resonance system
with decoherence for different values of switching rates.

(a) γ = 12.5 THz. (b) γ = 125 THz.

Figure 28: Time evolution simulation of the occupation probabilities for a off resonance system with
decoherence for different values of switching rates.
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The switching rate dictates how long the quantum beating lasts, for a fixed fluctuation
strength. However, note that the effect of the former is not quite the same as that of the latter.
While the fluctuation strength controls the degree of fluctuations, the switching rate controls
the rate at which they appear. A balance between both is required to observe the desired
dephasing effects. Note that very high switching rates have not been employed because
many iterations would be required to watch the system’s evolution in relevant timescales.

In figures 27a and 28a, the evolution of the population terms is not so smooth as in figures
27b and 28b, because at every 10 iterations the system is affected by the switching act while
in figures 27b and 28b, the act is performed at every iteration. The action of the fluctuator
is a sudden jump in the molecule excited state energies, which makes the system to evolve
in two different transport regimes for a time ∆t (iteration time-step). On the one hand the
system has a free transport evolution, when there is no environment interaction, while on
the other hand, the system evolves in a competition between the environmental interaction
and the free energy transport, when the switching act is performed. The combination of
these evolutions causes the non uniform evolution of the population terms observed in
figures 27a and 28a. By employing the act at every iteration (figs. 27b and 28b), the system
does not evolve in a combination of two types of evolution, but always in a competition
between the environmental action and the free evolution, which allows for more uniform
dynamics at the chosen observable timescale ∆t.

Several fluctuators

In figures 29a and 29b, the simulations results for two fluctuators in each set of the envi-
ronment are presented, for the near resonant and non resonant systems, respectively. The
switching rate was chosen to be 125 THz for all the fluctuators and the fluctuation strengths
g1 = 300 cm−1 and g2 = 700 cm−1.

(a) Near-resonant regime. (b) Non-resonant regime.

Figure 29: Evolution dynamics of the system with decoherence. The environment is modelled as two
fluctuators in each set with different fluctuation strengths.
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These results show that the effect of the highest fluctuator coupling strength in the system
dominates its evolution. Oscillations are suppressed as in the simulation with only one
fluctuator at g = 700 cm−1, figures 25c and 26c. This means that, in the presence of a
fluctuator which induces high fluctuations (high g), adding another fluctuator to the same
set, with a lower fluctuation strength, does not significantly change the dynamics of the
system.

4.2.3 Comparisons of the classical algorithms and the quantum algorithm

In this subsection, comparisons between the Haken-Strobl model, introduced in the subsec-
tion 2.3.5 by equation (54) (in the Lindbland form), the Bloch-Redfield equation (22) and the
quantum algorithm developed in this work will be discussed.

The classical algorithms (Lindbland and Bloch-Redfield equations) were solved using a
open quantum systems framework, Qutip [45]. The solving methods for the Bloch-Redfield
equation and the Lindbland equation are presented in the Qutip User Guide, in the following
URL: http://qutip.org/documentation.html .

The Bloch-Redfield equation has been implemented with an identical environment to the
one used in the quantum algorithm, i.e. with the spectral density given by equation (82),
which was directly inputted to the time differential equation solver, as demonstrated in the
Qutip User Guide. The derivation of the Bloch-Redfield equation in the subsection 2.2.3 is
similar to the one presented in Qutip User Guide, where the main differences lie in choosing
two interaction operators Sl = |l〉 〈l| , l = 0, 1 which are the projection operators in the site
basis and the function Re[C̃(w)] = F(w) (the imaginary part was neglected as suggested in
Qutip User Guide), where F(w) denotes the fluctuator spectral density in equation (82).

The Lindbland equation has been solved with the only environmental parameter being
the dephasing rate. Therefore, for each quantum simulation performed, a fitting process is
employed by adjusting the dephasing rate, so that the system’s evolution in both classical
and quantum simulations have similar behaviours. This enables one to perform a direct
comparison between both theories and to find the actual dephasing rate of the modeled
environment over the various regimes implemented in this work.

The following results, figs. 30 and 31, compare the results from the classical algorithms
previously introduced and the quantum algorithm developed in this work, by varying the
fluctuation strength, for the near-resonant and non-resonant systems, respectively. Each
set of the environment contains only one fluctuator with switching rate γ = 125 THz. The
dephasing rate γdeph in the Lindbland equation is adjusted by observing the behaviour of
the system under the influence of a specific fluctuation strength g.

http://qutip.org/documentation.html
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(a) g = 100 cm−1, γdeph = 2.3 THz. (b) g = 300 cm−1, γdeph = 10 THz.

(c) g = 700 cm−1, γdeph = 41 THz. (d) g = 1000 cm−1, γdeph = 70 THz.

Figure 30: Comparison of the evolution dynamics obtained by employing the quantum and classical
algorithms for the near-resonant system.
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(a) g = 100 cm−1, γdeph = 2.3 THz. (b) g = 300 cm−1, γdeph = 10 THz.

(c) g = 700 cm−1, γdeph = 41 THz. (d) g = 1000 cm−1, γdeph = 70 THz.

Figure 31: Comparison of the evolution dynamics obtained by employing the quantum and classical
algorithms for the non-resonant system.

Overall, the classical algorithms show evolution behaviours similar to the quantum
algorithm. However it can be observed, in figures 30 and 31, that by increasing g, the
Bloch-Redfield equation shows a stronger quantum beating suppression than the quantum
algorithm. This can be related to the mathematical formalism employed to produce the Bloch-
Redfield equation, which is different from the quantum algorithm formalism. However,
some formal similarities still hold in the quantum algorithm, such as the approximation
of a constant environment (at thermal equilibrium) throughout time, i.e. ρE(t) ≈ ρE , [12].
The quantum algorithm not only neglects dissipation in the system just as the Redfield
equation does, but the environment’s density matrix variation is also neglected, i.e. it
does not change over time, which is the same approximation used to derive the Redfield
equations [12]. Thus, the quantum algorithm used here is valid only in the no dissipation
regime, i.e. in the weak system-environment interaction regime (weak with respect to the
reorganization energy, where its dynamics were neglected). Therefore, using the Markovian
approximation and implementing a pure-dephasing model, the simulation does not capture
any dissipative process, i.e. any reorganization dynamics. Förster theory implicitly involves
energy dissipation hence, the Förster regime could not be simulated in this work.



4.2. Results and discussion 69

The Lindbland equation shows results more similar to the quantum algorithm than the
Bloch-Redfield equation. In fact, increasing the dephasing rate in the Lindbland formalism,
corresponds to an increasing fluctuation strength in the quantum algorithm, which by its
own corresponds to an higher suppression of the quantum beating, as theoretically predicted
[29]. For a range of fluctuation strengths, in the quantum algorithm, of [100, 1000] cm−1, the
corresponding dephasing rate range in the Haken-Ströbl model lies in the ∼ [2.3, 70] THz
range.

The comparison between the classical and quantum algorithms by varying the switching
rate presents some challenges. The Lindbland equation lacks environmental parameters
to perform a direct comparison when it comes to switching rates, because by varying the
dephasing rate, the non-uniformity of the populations dynamics, seen in the quantum
algorithm results (figures 27 and 28), would not be observed in this classical algorithm. The
Bloch-Redfield algorithm shows the behaviour opposite to that predicted by the quantum
algorithm, when one increases or decreases γ. Decreasing γ, it is expected the quantum
beating (oscillations) to last for more time, as supported by the quantum algorithm results.
In fact, when the rate decreases, the Bloch-Redfield equation suppresses the oscillations.
Increasing the rate, the Bloch-Redfield equation holds the quantum beating for longer.
However, when γ ∼ 125 THz, both quantum and Bloch-Redfield algorithms show a similar
behaviour. This is a strange and probably nonphysical behaviour of the classical algorithm.
Decreasing the switching rate should allow the system to keep its coherence for longer
times and in the limit of γ = 0, the system should not feel any dephasing action from outer
systems. This is not verified in the Bloch-Redfield equation results. In fact, at γ = 0, the
Bloch-Redfield algorithm does not provide a valid system’s density matrix. It is known that
the Bloch-Redfield equation, sometimes, does not give a correct system’s density matrix [13],
therefore it is hypothesized this classical algorithm only gives a valid system’s evolution in
the ∼ 125 THz switching rate regime. In a recent paper [18], some issues with the Bloch-
Redfield equation have been addressed, such as the non-validity of the system’s density
matrix in some physical models. In particular, a non-Markovian spectral density can be
related to the fluctuator spectral density at small switching rates in this work, which can
yield an invalid system’s density matrix using the Bloch-Redfield equation.

Changing the number of fluctuators in the Bloch-Redfield equation, i.e. adding Lorentzian
terms to the spectral density (82) with different flucutation strengths and equal switching
rate γ = 125 THz, gives similar results to the quantum algorithm simulations, fig. 29.

Information on the classical complexity of the Bloch-Redfield and Lindbland equation
solvers in Qutip has not been found, thus a comparison of the computational complexity
between the classical and the quantum algorithms could not be made.
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4.2.4 Final considerations

As discussed above, the quantum algorithm created in this work, is only valid in the weak
system-environment interaction regime, with respect to the reorganization energy λ. This
coupling is not the same as the fluctuation strength (or the fluctuator-molecule coupling
strength) g. While g determines only the fluctuation magnitude of dephasing, λ contains
information about the reorganization dynamics of the molecule excited state, i.e. dissipation,
as well as the dephasing effect. Furthermore, by neglecting the reorganization dynamics (as
previous approaches also did [28, 29]), it is being considered that the reorganization of the
nucleus timescale is very high relatively to the free energy transport evolution timescale, i.e.
τB >> J−1 as discussed in subsection 2.3.3 . This essentially means, once again, that this is
the non-dissipative, coherent regime.

It is also worth noticing that the switching rate is not the same as the dephasing rate.
The latter is the rate at which the system and the environment interact, while the switching
rate gives the rate at which the fluctuator changes its fluctuation value. In the developed
model, the fluctuators are always in interaction with the system and the switching rate
only controls the randomness rate. The fluctuator strength plus the switching rate define the
dephase, which, after all, is not so simple as the Haken-Ströbl model shows (which uses the
Lindbland equation, with only the dephasing rate as an environmental parameter). All in
all, the decoherence in the quantum algorithm is modelled as dephasing, which is applied
to the system as Gaussian energy fluctuations. From the quantum information point of view,
the fluctuations relate to classical random walks applied to each molecule’s excited state.

The results provided for the quantum algorithm are very similar to those presented in a
recent paper [39], where a quantum analog simulation using Nuclear Magnetic Resonance
(NMR) is reported. The timescale of the energy transfer in these paper results, is not the
same as in the quantum algorithm results, because the authors of the paper scaled down the
energies.

The quantum gate complexity of this algorithm increases approximately in a polynomial
way with the number of molecules and the qubit resources increase logarithmical with the
number of molecules in the system. The complexity of the rotation decomposition matrices
is the most costly operation in the algorithm, which is one of the main disadvantages of
this algorithm. Another disadvantage of using this algorithm is that it requires a specific
number of runs to correctly average the results, although this number is not dependent on the
number of molecules. The re-run process is a consequence of implementing dephasing directly
at the system’s qubits. These two disadvantages, together with the use of the iterated Trotter
product formula, only allows the system to be simulated with a few molecules in the current
quantum computers, or even quantum simulators.
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The advantages of using the quantum algorithm consist of providing a direct implementa-
tion of the evolution operators in the system. This does not require great calculations and
it is an intuitive method to be employed. Furthermore, the implementation of dephasing
in this algorithm, as fluctuations, is very focused in the actual environment interactions
on the system, such as performing classical random walks in the energy spectrums. As
a comparison, in the paper [46], a classical algorithm was developed to calculate random
walks in the energies of the molecules which is not as intuitive as the quantum algorithm
developed in this work.

As a final note, the quantum algorithm results on the near-resonance regime, show how
coherent energy transport can, indeed, be more efficient than incoherent energy transport
(diffusive dynamics), as affirmed by others [4, 25, 16]. The quantum beating, provides the
acceptor molecule to have, momentarily, a high probability of being excited. This probability
can be higher than the final thermal equilibrium state occupation, which in this work, at very
high temperatures, is 1

2 (50%). Therefore, in a few oscillations, the acceptor molecule can
trap the energy in it (the trapping efficiency depends on the trapping rate of the molecule
[29]). In diffusive dynamics, i.e. incoherent regime (high g), however, the highest probability
of having the excitation in the acceptor molecule is the thermal equilibrium state probability
(50%) which is smaller than the 90% achieved in the full-coherent regime (no decoherence).
Thus, it can be observed how coherence can enhance the energy transport in near-resonant
systems. In non-resonant systems, quantum beating does not significantly enhance the
energy transfer, because the momentarily high probability induced by the oscillations is
lower than the thermal equilibrium state probability. Therefore, in this scenario, a fast
thermal relaxation is desired (diffusive dynamics), so that the acceptor molecule reaches the
50% probability of being excited, the fast as possible. Concluding, in photosystems, near-
resonant and non-resonant subsystems are present, therefore a balance between quantum
beating and diffusive dynamics, i.e. coherent and incoherent regimes, is necessary to have
the most efficient energy transport. This can be translated to the requirement of a balanced
proportion of dephase injected in the system, so that coherent and incoherent transport
regimes can be present as stated in the subsection 2.3.5 .

4.3 summary

In this chapter, the computational setup of the quantum circuits used in the simulations was
presented. The results were gathered under various resonance regimes, as well as several
environmental regimes. The discussion of the results was given, followed by a comparison
between the developed quantum algorithm and some existent classical algorithms. Finally,
some remarks about the proposed quantum algorithm were presented.
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C O N C L U S I O N

5.1 conclusions

The quantum simulation of photosynthesis, focused on the energy transport in photosystems,
has been implemented in a quantum computer as an isolated system. Coherence has been
observed to be present, in the form of quantum beating. Aiming to produce a simulation of
real photosystems, decoherence, in the form of pure-dephasing, was artificially introduced
in the system. This provided answers about how coherence can last for timescales which
can significantly affect energy transfer over molecules. These questions are much debated
within the scientific community [4] due to the fact that biological environments are too
noisy so that quantum effects can hardly play any role [3]. In fact, coherence can enhance
the energy transfer if present in the right proportion [4]. This was demonstrated in this
work, by implementing a very high temperature environment composed by fluctuators. Such
environments can indeed simulate real photosystems, in the limit of a coherent regime. This
scenario is suitable to simulate in a quantum computer, where dephasing, the ultimate
frontier between the quantum and classical world, limits the time quantum effects last in
the system. Unfortunately, the algorithm proposed and implemented in this work required
some heavy computational resources to be implemented in current real quantum computers.
Therefore a quantum simulator was used to demonstrate the results. Classical algorithms
were compared with the proposed quantum algorithm for verification of the results. The
quantum algorithm, formulated in the form of a quantum circuit, provided a way to simulate
quantum systems in a direct approach to the Hamiltonians without the need to use advanced
and complicated calculations as classical algorithms require. Furthermore, the environment
derived in this dissertation, provided a clear understanding of the interactions between the
system and the biological environment, using energy fluctuations, in the energy transport
regime where quantum phenomena are relevant.

The state-of-art approaches on photosynthesis are currently in an advanced stage, where
various quantum models explain their properties and dynamics. The algorithm proposed
in this dissertation opened up some possibilities for quantum computation in the field.
However, quantum simulation is still at an underdeveloped stage, where open quantum
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systems simulation still requires a breakthrough to be widely applied to more general
transport regimes or biological systems.

5.2 future work

The current knowledge about quantum effects in photosynthesis, already goes beyond the
regime simulated in this work, where non-Markovian dynamics are currently simulated in
classical computers as well as real environments, which induce dissipation and dephasing
in the system. These processes, are not currently possible to be simulated in real quantum
computers where more knowledge about quantum software, specifically, open quantum
systems simulation, is required. To this end, research on the creation of new quantum
algorithms for simulating open systems should be, in the future, addressed and possibly
applied to the photosynthesis.

Quantum effects in photosynthesis, particularly in the energy transport, are of extreme
importance, where solar energy harvesting can be a main application of discoveries in this
field. For instance, artificial biological systems have started to be investigated [47] and a
clear understanding of the microscopic biological structures and dynamics in photosynthesis
is fundamental to create biomimetic light-harvesting devices. Therefore, in a future work, it
could be further investigated how quantum effects may play a role in such artificial devices.

Quantum simulation and quantum effects in biology seem to be as emergent fields with
plenty of challenges as well as quantum phenomena still not fully understood. Therefore,
both offer several open problems which make them very attractive for future research.
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[4] Aurélia Chenu and Gregory D Scholes. “Coherence in energy transfer and photosyn-
thesis”. In: Annual review of physical chemistry 66 (2015), pp. 69–96.

[5] Khan Academy. Photosynthesis. url: https://www.khanacademy.org/science/biology/

photosynthesis-in-plants.

[6] David G. Nicholls and Stuart J. Ferguson. Bioenergetics 2. Academic Press, 1992.
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A
R O TAT I O N D E C O M P O S I T I O N O F T H E B A S I S T R A N S F O R M AT I O N
M AT R I C E S

The notion of two-level unitary matrix is primarily introduced following [11]. Such type
of matrix consists of a d× d unitary matrix where only the element in the j column and k
row, the element in the k row and j column, the element in the j column and j row and the
element in the k column and k row can have a value different from 0 or 1. The remaining
diagonal terms of the matrix must be 1 and all the other off-diagonal elements must be 0.
Note that the matrix must be unitary. Examples of a 3× 3 two-level matrix are

U =

a 0 b
0 1 0
c 0 d

 (113)

or

U =

1 a b
0 c d
0 0 1

 (114)

The rotation decomposition algorithm [11] is now introduced. It will be given an example
of a decomposition and then the generalization to other matrices will be explained. Consider
a 3× 3 unitary matrix U given as

U =

a d g
b e h
c f j

 (115)

to be decomposed in products of two-level unitary matrices, such that

U3U2U1U = I (116)

or, equivalently
U = U†

1 U†
2 U†

3 (117)
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Un is an unitary two-level matrix, thus its transconjugate is also an unitary two-level matrix.
The procedure to find these matrices is the following: create and multiply a matrix U1 by U
that sets b equal to 0. If b is already 0, then choose U1 = I. If one multiplies U1U, then

U1U =

a′ d′ g′

0 e′ h′

c′ f ′ j′

 (118)

Next, change c′ in U1U to 0 by multiplying U2 by U1U. If c′ is already 0, then choose

U2 =

a′∗ 0 0
0 1 0
0 0 1

 (119)

where the superscript ∗ denotes the conjugate value. The resulting matrix is

U2U1U =

1 d′′ g′′

0 e′′ h′′

0 f ′′ j′′

 (120)

Since U2, U1 and U are unitary, then U2U1U is also unitary so d′′ = 0 and g′′ = 0 since the
first row of U2U1U must have norm 1. Finally the next step is to choose

U3 =

1 0 0
0 e′′∗ h′′∗

0 f ′′∗ j′′∗

 (121)

and multiply this matrix by U2U1U so that U3U2U1U = I or, equivalently, U = U†
1 U†

2 U†
3 .

This process can be generalized for a d× d unitary matrix U. Matrices U1, ..., Ud−1 are
multiplied such that Ud−1...U1U has a 1 in the top left corner element and all zeros in the
respective column and row. Then, this process is repeated for the [d− 1]× [d− 1] unitary
matrix in the lower right hand corner of Ud−1...U1U. This way, every two-level unitary
matrix Ui will be found. The final result for a d× d matrix is U = U†

1 ...U†
k where U†

i is a
two-level unitary matrix and k ≤ (d− 1) + (d− 2) + ... + 1 = d(d− 1)/2. In a system with
n qubits, U can be decomposed at most in 2n−1(2n − 1) two-level unitary matrices [11].
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The previous described decomposition algorithm is available in Quipper (newsynth library).
It decomposes the matrix U in a multiplication of two-level matrices RZ−X and one-level
matrices eiθ . The unitary square RZ−X matrix is given as

RZ−X(δ, γ) =



I
... 0

... 0
. . . e−iδ/2cos(γ/2) . . . −ie−iδ/2sin(γ/2) . . .

0
... I

... 0
. . . −ieiδ/2sin(γ/2) . . . eiδ/2cos(γ/2) . . .

0
... 0

... I


(122)

Where bold 0 are square 0-matrices, the dots denote 0 columns or rows and I is the identity
matrix. The unitary square one-level matrix eiθ is I

... 0
. . . eiθ . . .

0
... I

 (123)

A basis transformation matrix T with dimensions 2n × 2n, where n is the number of
system qubits, is decomposed, using Quipper, into two-level unitary matrices RZ−X and
one-level unitary matrices eiθ . The input of the program is the basis transformation matrix
and it outputs the order of application of the RZ−X(δ, γ) and eiθ matrices, each matrix angles
γ, δ and θ, and for each two-level matrix, the program outputs the j and k numbers (where
the values which can be different from 0 and 1 in the matrices (122) and (123) are located).
These numbers are important so that, using Gray code, each two-level matrix RZ−X can be
decomposed in a sequence of gates composed by X-Pauli, Cn−1NOT’s and the gate, defined
below, Cn−1U(δ, γ). For the one-level matrices, only the number j is outputted. These
matrices can be decomposed in a multiplication of X-Pauli and CnRZ(θ) gates.

Cn−1U gates must be in the form

Cn−1U(δ, γ) = |Ψ〉 〈Ψ|c ⊗ It + |11..1〉 〈11..1|c ⊗Ut(δ, γ) (124)

where |11..1〉c is the state of all control qubits at |1〉 and |Ψ〉c represent all the other control
qubit states. The control qubits are the n− 1 system’s qubits and the target is the remaining
system’s qubit. U is defined as

U(δ, γ) =

(
e−iδ/2cos(γ/2) −ie−iδ/2sin(γ/2)
−ieiδ/2sin(γ/2) eiδ/2cos(γ/2)

)
(125)
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Cn−1U(δ, γ) can be found by the product Cn−1RZ(δ)Cn−1RX(γ) where
RX(γ) = U3(γ,−π/2, π/2) in Qiskit. Gray code can be now introduced [11, 37].

After performing the previous rotation decomposition for an unitary matrix T with
dimensions 4 × 4, the basis transformation matrix is decomposed in two-level unitary
matrices and one-level unitary matrices, both with dimensions 4× 4 for a system with four
molecules. The goal is to decompose the two-level unitary matrices into matrices 2× 2 as
the gates in matrix form (124) with n = 2 as well as X-Pauli and CNOT gates. In view of
that, numbers j and k of each matrix, which the program outputs, are used. These numbers
can be seen as system’s states. For instance, the first column, i.e. j = 0, is the state |00〉.
The second column, i.e. j = 1, is the state |01〉 and so on up to the column j = 3 which is
the state |11〉. This process is also applied to rows. Therefore, when the program outputs
numbers j and k, they will be equal to some state |j〉 and some state |k〉, respectively. The
procedure is the following: consider as if the initial state of the system is |j〉 and perform a
sequence of quantum gates so that the initial state is changed to a final state |k〉. The last
change, i.e. the last step which changes some state |Φ〉 to the state |k〉, is performed by
applying a CU gate (because for a system with four molecules, entails n = 2 in the matrix
(124)). Then the process is reversed by applying all the changes corresponding to |Φ〉 → |j〉.
Consider a RZ−X matrix which outputs the number j = 0 and k = 3. This is equal to states
|00〉 and |11〉, respectively, where the notation |q0〉 ⊗ |q1〉 is used from now on, so that q0 is
the qubit 0 and q1 is the qubit 1. Therefore, the global change that needs to be performed
is |00〉 → |11〉. First, do the change |00〉 → |01〉 in the quantum circuit. This is done by
applying a X-Pauli gate in the qubit 0, followed by a CNOT with control at qubit 0 and
target at qubit 1 followed by another X-Pauli gate applied to qubit 0. The system’s state
can be thought to be now |01〉. Then, the second step is to do the change |01〉 → |11〉, but
because it is the last step to be done, one uses a CU gate with control at the qubit 1 and
target at qubit 0. Then, the process is reversed by applying again, the step |00〉 → |01〉. In
figure 33, it is demonstrated the implementation of this example.

|q0〉 X • X RX(γ) RZ(δ) X • X

|q1〉 • •

Figure 32: Implementation of the two-level unitary matrix decomposition example. The gate CU(δ, γ)
is performed as CRZ(δ)CRX(γ).

To the one-level unitary matrices, the Quipper program outputs only one number j and
the angle θ. This number j corresponds to the j column and the j row of the matrix (123),
where the element eiθ is, i.e. some state |j〉 in which the phase is applied. This matrix
is easily converted to a quantum circuit by having an ancilla qubit initialized at |1〉. The
procedure is the following: apply the change |j〉 → |11..1〉 to the system’s qubits using



82

X-Pauli gates, where the state |11..1〉 denotes all the qubit states at |1〉. Then a CnRZ with
controls at the n system qubits and target at an ancilla qubit, initialized at |1〉, is applied.
The process is reversed by implementing the same previous applied X-Pauli gates. Consider
as an example, an one-level unitary matrix with dimensions 4× 4 where the term eiθ is in
the j = 2 column and row. Then this column and row represent state |10〉, where the used
notation is |q0〉 ⊗ |q1〉. The following circuit is implemented to represent this gate: apply a
X-Pauli gate to the qubit 1, so the change |10〉 → |11〉 is employed. Then, a decomposition
of the gate C2RZ is implemented. A Toffoli gate with controls at qubits 0 and 1 and target at
an ancilla qubit, which was initialized at state |0〉, is applied. Then, a CRZ(2θ) is applied
with control at the ancilla qubit initialized at |0〉 and target at the other ancilla which was
initialized at |1〉. As explained before, the coefficient 2 comes from the implementation of the
gate RZ(θ) in Qiskit, which is e−i θẐ

2 . Finally, the circuit is reversed, by applying the Toffoli
gate followed by the X-Pauli gate at the qubit 1 again. In figure 33, the implementation of
this example can be visualized.

|q0〉 • •

|q1〉 X • • X

|0〉anc •

|1〉anc RZ(2θ)

Figure 33: Implementation of the one-level unitary matrix example. The Toffoli gates plus the CRZ
gate denote the decomposition of the C2RZ gate.

The ancilla initialized at |1〉 should be the same used in the implementation of the system
Hamiltonian evolution operator, as illustrated in figure 7, so that the minimum number of
qubits are utilized.
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A D I F F E R E N T A P P R O A C H T O T H E A RT I F I C I A L D E C O H E R E N C E
I N J E C T I O N

This appendix discusses an algorithm which considers the system as an open system
interacting with a bath. Some comments have been written about the wrong physical
assumptions which were made, unwary, in the development of this algorithm.

The open quantum system (molecule system) is assumed to interact with a bath. Therefore,
the Hilbert space of the overall system will be H = HS ⊗HB. Assume that at the initial time
t = 0 , the density matrix is defined by ρ(0) = ρS(0)⊗ ρB(0) so that somehow there are no
correlations between the system and the bath at the initial time. The qubit model of the
system is the one introduced in subsection 3.1.3.

b.1 qubit model of the bath

The bath is defined as a set of harmonic oscillators in thermal equilibrium. The initialization
of the bath state is given following [36]. Each molecule is considered to have its own
bath, with no correlations with any other baths [42]. The baths are considered identical.
The absence of interactions between the normal modes of each bath allows each qubit to
represent a normal mode state |wk,m〉 of a bath m, i.e. the energy eigenvalue of each bath
can be decomposed as

E(ρth
B ) = ∑

k
Ek |wk〉 〈wk| (126)

The m subscript was dropped because every bath m has the same structure. The bath density
matrix is then given as

ρth
B = ⊗N

k=1ρth
k (127)

where N is the number of qubits in a bath representing its N normal modes. Each normal
mode qubit is initialized with the following density matrix

ρth
k = (1− pk) |0〉 〈0|+ pk |1〉 〈1| (128)
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where pk is the probability of the normal mode qubit being in thermal equilibrium, i.e.
the state |1〉 denotes a thermal equilibrium state and the state |0〉 denotes a non-thermal
equilibrium state. This probability depends on the type of bath considered, i.e. a bosonic
bath or a spin bath. Paper [36] employs a spin bath, however a bosonic bath (harmonic
oscillator bath) is implemented in this work (in accordance with the coherent EET formalism
introduced in subsection 2.3.2). For a bosonic bath, the probability of a phonon being found
in the state |wk〉 can be given as the mean occupation number of phonons in a single particle
state (h̄ = 1) as pk = 1

eβwk−1
. The probability can only have values between 0 and 1 so the

assymptotic behaviour of this probability distribution can be limited to 1 at low frequencies
where the mean occupation number exceeds 1. This bath initialization can easily be applied
with a RY(θ) gate where each bath qubit represents a normal mode of the bath wk and

sin(θ/2) =

√
1

eβwk − 1
(129)

with an upper bound of 1 for lower frequencies, i.e. limited when wk << kBT, at the classical
regime.

Comments:

• The initialization of the bath assumes that the thermal non-equilibrium phonons
and the thermal equilibrium phonons have orthogonal states, relatively to each other.
This can be a false assumption because, in a bath, there are always thermodynamic
fluctuations, where the phonons can deviate from their mean energy eigenvalue.

• The mean occupation number of phonons in each state is not the probability of finding
a phonon in the respective state.

b.2 the model

The system, the bath and their interaction have an unitary temporal evolution so one
can implement an unitary evolution operator e−iHt acting in the Hilbert space HS ⊗HB .
Therefore, the Hamiltonian H is defined as

H = HS + HB + HSB (130)

where HS is the system Hamiltonian, as implemented in the no-decoherence model, equation
(53). HB is the bath Hamiltonian defined as (h̄ = 1)

HB = ∑
m,k

wth
k (a†

k ak +
1
2
)
∣∣∣m, wth

k

〉 〈
m, wth

k

∣∣∣
B
= ∑

k
wth

k (nth
k +

1
2
)
∣∣∣m, wth

k

〉 〈
m, wth

k

∣∣∣
B

(131)
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where k is the subscript for a normal mode and m the subscript for the molecule bath m. The
bath Hamiltonian is considered as being applied to a normal mode in thermal equilibrium,
thus

nth
k =

1

eβwth
k − 1

(132)

Comment:

• The non-equilibrium phonons must also evolve in time. Their evolution can not be
employed by an operator acting in the state

∣∣∣m, wn−th
k

〉
(state |0〉 in the bath qubit

model), because one can not know how many non-equilibrium phonons (nn−th
k ) exist

in this state.

The system-bath interaction Hamiltonian HSB is defined as

HSB = ∑
m
|m〉 〈m|∑

k
gm,k

∣∣∣wth
k.m

〉 〈
wth

k,m

∣∣∣
B

(133)

There are two main reasons this interaction Hamiltonian was chosen in this form. The
first is the simplicity of employing its evolution operator, which can be implemented by
a simple quantum gate CxRZ. However, this requires one to admit the weak system-bath
interaction approximation, because the projection operators in the Hamiltonian, applied to
the bath Hilbert space do not change the normal mode qubit state up to a phase.

Comments:

• The creation and annihilation phonon operator terms, (a†
m,k + am,k), in the interaction

Hamiltonian defined in Redfield equations (16), can not be simply neglected. At
very high temperatures they can be substituted by a value, however they can not be
removed. The implemented operator

∣∣∣wth
k,m

〉 〈
wth

k,m

∣∣∣
B

, which acts in the bath Hilbert
space, is an ad-hoc implementation. This operator can not substitute the creation and
annihilation phonon operators.

• The non-equilibrium phonons can also have an interaction with the system which is
not simply the application of the identity operator to the system’s Hilbert space, i.e.∣∣∣wn−th

k,m

〉 〈
wn−th

k,m

∣∣∣
B
⊗ IS.

b.3 quantum circuit implementation

The Hamiltonian HSB does not commute with HS (in general) thus Trotter product formula
(59) must be performed so that the evolution operators of the Hamiltonians can be applied
in series. The bath Hamiltonian commutes with the interaction Hamiltonian (they share
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the same bath basis) and also commutes with the system Hamiltonian (commutes with
the identity operator, applied in the bath Hilbert space, of HS ⊗ IB), so the bath evolution
operator can be applied in both basis. Thus, the following unitary evolution is applied in
the quantum circuit, where ∆t is the iteration time-step and N is the number of iterations

U(N∆t) =
N

∏
n=1

(
e−iHSB∆te−iHB∆tT†e−iHS∆tT

)
(134)

where T is the basis transformation matrix. This is the same transformation basis matrix
implemented in the no decoherence algorithm.

The evolution operator of the bath Hamiltonian, using Trotter product formula, for one
iteration is

e−iHB∆t = ∏
m

∏
k

e−iwth
k,m(n

th
k + 1

2 )∆t
∣∣∣wth

k,m

〉 〈
wth

k,m

∣∣∣ (135)

This evolution operator can be implemented with a gate RZ(θ) applied at each qubit
representing a normal mode wk , where θ = −wk(nth

k + 1/2)∆t.
The evolution operator of the interaction Hamiltonian becomes, for one interaction only,

e−iHSB∆t = ∏
m

∏
k

e−igm,k∆t |m〉 〈m|S ⊗
∣∣∣wth

k,m

〉 〈
wth

k,m

∣∣∣
B

(136)

The generalized implementation of e−iHSB∆t is described in the following sequence:

Step 1: Select a system’s state |m〉 and use X-Pauli gates to change it to |11...1〉, i.e. each
system’s qubit state at |1〉.

Step 2: Apply a Cn+1RZ(θk) where n is the number of system’s qubits and the +1 comes
from choosing a normal mode qubit wk from the bath m. θk = −2gk∆t and the target qubit
is the same target ancilla used in the system Hamiltonian evolution operator.

Step 3: Once all the normal modes of the bath m have interacted, in this iteration, with
the molecule m, reverse the process of step 1 by applying the same X-Pauli gates, so that
|11...1〉 → |m〉. Then proceed to step 4. If they have not all interacted, go back to step 2
and repeat the process but choose a different qubit k from the bath m for the control of the
Cn+1RZ(θk). Choose each normal mode to interact with the system only once per molecule.

Step 4: If all the molecules have interacted with the corresponding baths then the
evolution operator implementation of the interaction Hamiltonian is over for this iteration,
otherwise go back to the step 1 and pick another system’s state |m〉 different from the ones
previously picked and its corresponding bath m.

The process for the conversion of units in the exponent of the bath and interaction
evolution operators is the same of the system’s evolution operator. HSB and HB must have
units rad.THz.
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Coupling strengths

For a discrete distribution of frequencies one can formulate the spectral density of each bath
as [36]

F(w) = π ∑
k

g2
kδ(w− wk) (137)

If the spectral density is a smooth continuous function over w, the coupling strengths can
be found by discretizing the function [36] as

∫ wk+∆w/2

wk−∆w/2
dwF(wk) ≈ F(w)∆w = πg2

k (138)

where the interval ∆w must be small enough for a precise definition of the bath. This
requires a high number of qubits representing the normal modes wk in each bath.

b.4 measurement

The third stage of the implementation is the measurement of the population terms in the
system’s density matrix (at the site basis). A quantum estimator can be used, as defined in
[36] where it is illustrated in figure 34. It is required an ancilla qubit, where the measurement
is performed, a set of qubits in the initialized state |ϕ〉 and, obviously, the qubits defining
the system.

Figure 34: Quantum estimator used to measure the elements of the system density matrix. Image
taken from [36].

After some mathematical derivation [48] one obtains,

P(0) =
1
2
(1 + 〈ϕ |ψ〉2) (139)
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where P(0) is the probability of measuring the state |0〉 in the ancilla qubit. If ρS is in a
mixed state then

P(0) =
1
2
(1 + 〈ϕ| ρS |ϕ〉) (140)

If one prepares the second set of qubits ϕ in the eigenstate |n〉 of an arbitrary operator
eigenbasis {|n〉}, then ρS

nn = 〈n| ρS |n〉. This way the population terms can be found. If the
real part of the coherence terms are needed, the second set of qubits ϕ is prepared in a state
|ϕ〉 = (|m〉+ |n〉)/

√
2, thus ρS

mn = 〈m| ρS |n〉, where |m〉 is also an eigenstate of the arbitrary
operator eigenbasis {|n〉}. The imaginary part of the coherence terms is found by setting
|ϕ〉 = (|m〉+ i |n〉)/

√
2.

A controlled-SWAP gate or Fredkin gate can be decomposed as in figure 35. In a four
molecule system, a controlled SWAP gate is performed with target qubit at the first qubit
of the ϕ set of qubits and at the first qubit of ρS. Then another controlled SWAP gate is
performed, in sequence, with target qubit at the second qubit of the ϕ set of qubits and at
the second qubit of ρS.

In a four molecule system, four implementations of this algorithm with different ϕ states
must be performed, so all the population terms of the system’s density matrix can be known.
The code can be parallelized in four different processes in the quantum simulator using
Python multiprocessing library to faster simulation executions. Concurrency control can also
be implemented with the use of a lock to agglomerate the results, so they can be printed,
and to read the input parameters in each process. The first algorithm is sent to one process
with the state |ϕ〉 = |00〉, then at the second process another algorithm is executed with the
state |ϕ〉 = |01〉, at the third process the state |ϕ〉 is set to |10〉 and in the fourth process the
state |ϕ〉 = |11〉 is used. Therefore, the measurements in the ancilla qubit read:

ρS =


2P1(0)− 1 ρ12 ρ1,3 ρ1,4

ρ2,1 2P2(0)− 1 ρ2,3 ρ2,4

ρ3,1 ρ3,2 2P3(0)− 1 ρ3,4

ρ41 ρ4,2 ρ4,3 2P4(0)− 1

 (141)

where Pk(0) is the probability of measuring the state |0〉 in the ancilla qubit at the process
k. The trace of the density matrix sometimes may not be equal to 1 because, N runs
of the algorithm are executed for the corresponding N different diagonal terms of the
system’s density matrix. The non-deterministic nature of quantum mechanics causes the
measurement results to conform to a probability distribution, thus the sum of the different
diagonal system’s density matrix elements measured in different runs of the algorithm, i.e.
its trace, can give a value lower or higher than 1. To normalize the trace of the system’s
density matrix to 1, each population term is divided by Tr[ρS(t)].
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• •

SWAP
= •

• •

Figure 35: Controlled-SWAP gate or Fredkin gate decomposition [49].

b.5 computational resources

b.5.1 Qubit resources

The qubits required for the implementation are 3log2(Nmol) + Nmol M + 1 where Nmol is the
number of molecules in the system and M is the number of normal modes a bath has. Nmol

baths must be implemented and each bath has M normal modes which are represented each
one by a qubit. Therefore, Nmol M qubits to define all baths are required. The number of
ancilla qubits can be reduced to log2(Nmol) + 1 qubits, where log2(Nmol) ancillas are required
for the Cn+1RZ decomposition in the interaction evolution operator , where n = log2(Nmol)

is the number of system qubits. One more ancilla qubit is required, which is the target qubit
of Cn+1RZ. The measurement procedure needs another log2(Nmol) qubits to define the set of
qubits ϕ, therefore a total of 3log2(Nmol) + Nmol M + 1 qubits must be used.

b.5.2 Quantum gate resources

The evolution operator of the bath Hamiltonian can be applied with O(Nmol M) RZ gates for
each iteration.

The evolution operator of the interaction Hamiltonian can be applied withO(Nmol Mlog2[Nmol ])

single qubit and CNOT gates. The bath m interacts with the molecule m, where m ∈
{1, 2, ..., Nmol}, and each bath has M normal modes, so O(Nmol M) Cn+1RZ gates are re-
quired to implement all the interactions in a single iteration. Decomposing Cn+1RZ requires
an additional O(log2[Nmol ]) single qubit and CNOT gates thus the quantum gate complexity
of the interaction evolution operator is O(Nmol Mlog2[Nmol ]).

The bath initialization needs O(Nmol M) RY gates.
The measurement procedure needsO(log2[Nmol ]) CNOT gates to implement the controlled

SWAP gate.
The total algorithm quantum gate complexity in single qubit and CNOT gates, for a

number I of iterations, considering the basis transformation matrix decomposition algorithm
is

O(I[N2
mol log2

2(Nmol) + Nmol Mlog2(Nmol)]) (142)
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Note however that to know all the population terms of the system’s density matrix, O(Nmol)

runs of the algorithm must be performed.



C
T H E O R I C A L E V O L U T I O N O F T H E T W O M O L E C U L E S Y S T E M

Making use of the Schrödinger equation (h̄ = 1)

i
δ

δt
|Ψ〉 = H |Ψ〉 (143)

and writing the state |Ψ〉 in the site basis as

|Ψ〉 = α |0〉+ β |1〉 (144)

where |α|2 + |β|2 = 1, one gets the following, by applying the Schrödinger equation to the
state |Ψ〉 and multiplying it by 〈0| and 〈1|

iα̇ = ε0α + Jβ (145)

iβ̇ = ε1β + Jα (146)

By making the substitions α = ae−iε0t and β = be−iε1t so that

α̇ = ȧe−iε0t − iε0α (147)

β̇ = ḃe−iε1t − iε1β (148)

one has, taking into account the substitutions and the equations (145) and (146),

iȧ = Je−iwtb (149)

iḃ = Jeiwta (150)
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where w = ε1 − ε0. Then the variable c is introduced as c = aeiwt. One can observe through
equation (149) that ȧ = (ċ− iwc)e−iwt so that i(ċ− iwc) = Jb. Differentiating with respect to
time and using equation (150), one has

c̈− iwċ + J2c = 0 (151)

By seeking solutions as c = eiλt,

−λ2 + wλ + J2 = 0 (152)

one gets

λ0,1 =
w
2
±
√

w2

4
+ J2 =

1
2
(w±Ω) (153)

where Ω =
√

w2 + 4J2. The solution of equation (151) is

c = Aeiλ0t + Beiλ1t (154)

then,
a(t) = Aei Ω−w

2 t + Be−i Ω+w
2 t (155)

and b(t) is found by using equation (150),

b(t) =
Ω + w

2J
Bei w−Ω

2 t − Ω− w
2J

Aei w+Ω
2 t (156)

The constants A and B depend on the initial conditions. If the donor molecule is the only
one excited (|0〉) at the initial time t = 0, then α(0) = 1 and β(0) = 0. Thus, a(0) = 1 and
b(0) = 0 and one gets A = Ω+w

2Ω and B = Ω−w
2Ω . The solutions are

a(t) =
λ0

Ω
e−iλ0t − λ1

Ω
e−iλ1t (157)

b(t) =
J

Ω
[eiλ0t − eiλ1t] (158)

and the system’s density matrix becomes

ρ = |Ψ〉 〈Ψ| =
(
|α|2 αβ†

α†β |β|2

)
=

(
|a(t)|2 a(t)b†(t)eiwt

a†(t)b(t)e−iwt |b(t)|2

)
(159)



D
O P T I M I Z E D Q UA N T U M C I R C U I T S ( T W O M O L E C U L E S Y S T E M )

This annex contains the optimized circuits used to build the quantum simulations of the
one qubit system in the no decoherence regime for the near resonance (figure 36) and off
resonance (figure 37) regimes.

Figure 36: Optimized quantum circuit for the near-resonance system simulation.

Figure 37: Optimized quantum circuit for the off resonance system simulation.
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E
C A L C U L AT I O N O F T H E Q UA N T U M B E AT I N G F R E Q U E N C Y

For a two molecule system, in the energy transport of photosynthesis, the energy eigenvalues
E0 and E1 become, after diagonalizing the system Hamiltonian in equation (53),

E0 =
1
2

[
ε0 + ε1 +

√
(ε0 − ε1)2 + 4J2

]
(160)

and
E1 =

1
2

[
ε0 + ε1 −

√
(ε0 − ε1)2 + 4J2

]
(161)

Following the quantum beating derivation in subsection 2.2.5 and resorting to the equation
(27), the coherence terms in the system’s density matrix in the energy eigenbasis evolve as

ρkj(t) = e−iΩtρkj(0) (162)

where the frequency of the quantum beating is given by Ω =
√
(ε0 − ε1)2 + 4J2. The period

of the oscillations is 2π
Ω .

Notice that the density matrix in Appendix C, equation (159), is presented in the site basis.
In such a representation, both diagonal and non-diagonal terms oscillate with time, while
the populations are constant in the energy eigenbasis.
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