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On the construction of multi-valued concurrent

dynamic logic
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HASLab INESC TEC - Univ. Minho, Portugal

Abstract. Dynamic logic is a powerful framework for reasoning about
imperative programs. An extension with a concurrent operator [18] was
introduced to formalise programs running in parallel. In other direction,
other authors proposed a systematic method for generating multi-valued
propositional dynamic logics to reason about weighted programs [14].
This paper presents the first step of combining these two frameworks
to introduce uncertainty in concurrent computations. In the developed
framework, a weight is assigned to each branch of the parellel execution,
resulting in a (possible) asymmetric parallelism, inherent to fuzzy pro-
gramming paradigm [21,2]. By adopting such an approach, a family of
logics is obtained, called multi-valued concurrent propositional dynamic

logics (CGDL(A)), parametric on an action lattice A specifying a notion
of “weight” assigned to program execution. Additionally, the validity of
some axioms of CPDL is discussed in the new family of generated logics.

1 Introduction

Over time, the different variations of dynamic logics developed went hand-in-
hand with the very notion of its object, the program. This resulted in a di-
verse myriad of dynamic logics tailored to specific programming paradigms. Ex-
amples include probabilistic [11], concurrent [18], quantum [1] and continuous
[19] computations, and combinations thereof. An example of another non-trivial
paradigm is the fuzzy one [21,2], where the execution of a program differs from
both classical and probabilistic scenarios: a conditional statement may act as a
concurrent execution with a weight associated to each branch. The formalisation
of such behaviour encompasses two non-trivial computational settings: concur-
rency and uncertainty. An extensive research can be found in the literature on
diverse formalisms to reason about programs running in parallel [9,10] and to
deal with uncertainty [11,5,20,4]. However, even when these two components
are combined into a single framework [16], the uncertainty models probabilistic
nondeterminism. Thus we are still missing a proper semantics to describe the
behaviour of the fuzzy paradigm.

Recently, reference [14] initiated a research agenda on the systematic devel-
opment of multi-valued propositional dynamic logics, parametric on an action
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lattice, which defines both the computational paradigm where programs live,
and the truth space where assertions are evaluated. Following another research
line, an extension to propositional dynamic logic (PDL) was introduced in refer-
ence [18], called concurrent propositional dynamic logic (CPDL), to reason about
concurrent computations. In the models presented for this logic, the programs
are interpreted as binary multirelations, to describe a parallel execution from a
state to a set of states.

Combining these research lines, this paper takes the first step on the devel-
opment of a method to generate multi-valued concurrent propositional dynamic
logics. As in [14], the logics are parametric on a generic action lattice, to model
both the computational domain and a (possible graded) truth space where the as-
sertions about programs are evaluated. First, the semantics of CPDL is adapted
to model programs as weighted parallel executions, by introducing the concept
of fuzzy multirelations. That means that a program, in the new logics, is inter-
preted as a relation between a state and a fuzzy set of states. The intuition is
that the weights of the fuzzy set may describe an execution probability of each
branch of the program, an asymmetric parallel flow or even the energy/costs
associated to each branch. The second step of this paper consists on presenting
the actual method of generating (parametric) multi-valued CPDL. The family
of the resulting logics is called CGDL(A).

This paper is organised as follows. Section 2 presents a brief background
overview. Then, Section 3 starts to introduce fuzzy multirelations and defines
some operations over them. Such algebra is the mathematical formalism in which
programs are interpreted in the generated logics. The same section ends with the
study of an axiomatisation for the generated logics. Finally, Section 4 concludes
and enumerates topics for future work.

2 Preliminaries

2.1 Semantics for concurrency

The semantics of CPDL is based on the concept of binary multirelation. The
relevant definition and some operators are recalled below.

Definition 1 (Binary multirelation [7]). Given a set X, a binary multire-
lation is a subset of the cartesian product X × P (X), i.e. a set of ordered pairs
(a,A), where a ∈ X and A ⊆ X. The following operations over multirelations
are defined:

– R ∪ S as the union of R and S;
– the Peleg sequential composition

R · S =
{

(a,A) | ∃B.(a,B) ∈ R∧ ∃f.(∀b ∈ B.(b, f(b)) ∈ S)∧A =
⋃

f(B)
}

;

– the parallel composition R ∩ S = {(a,A ∪B) | (a,A) ∈ R ∧ (a,B) ∈ S}.



Note that the union of binary multirelations is just the set union. The se-
quential composition operator is rather more complex. A pair (a,A) belongs to
the sequential composition of multirelations R and S if and only if a is related
with some intermediate set of states B and every b ∈ B must be related with
some subset of A such that the union of all those subsets is A. Finally, an ele-
ment (a,A) ∈ R ∩ S indicates a parallel execution of a program from a state a
to a set of states in A, “combining” the arriving states of R and S into A. Note
that such composition is dual to R ∪ S, where (a,B) and (a, C) correspond to
distinct executions. The first kind of choice in commonly called demonic, while
the latter is known as angelic.

2.2 Concurrent propositional dynamic logic

Concurrent propositional dynamic logic (CPDL), as introduced in [18], is an ex-
tension of PDL with a parallel operator ∩ added to the syntax of programs.The
semantics interprets programs as binary multirelations R ⊆ W × P (W ), where
composed programs are interpreted according to the operators of Definition 1.
Intuitively, an element (a,A) of a binary multirelation expresses that the a pro-
gram executed from a state a ends in all states of A in parallel. Models of CPDL
consist of tuples (W,V, J−K) whereW is a set of states, V is a valuation function
which attributes a subset of W to each atomic formula, and J−K attributes a
subset of W × P (W ) to each atomic program. For instance, the formula 〈π〉ρ
holds in a state w if and only if ∃U ⊆ W s.t. (s, U) ∈ JπK and U ∈ V (ρ).
For more details about the semantics of CPDL see [18]. The axiom system of
CPDL is that of PDL with the additional axiom 〈π1 ∩ π2〉ρ ≡ 〈π1〉ρ ∧ 〈π2〉ρ and
restricting 〈π0〉(ρ ∨ ρ

′) ≡ 〈π0〉 ∨ 〈π0〉ρ
′ to atomic programs.

2.3 Parametric construction of multi-valued dynamic logics

Thus subsection provides a short review of the dynamisation method introduced
in [14]. Let us start by revisiting the following definition:

Definition 2 ([12]). An action lattice is a tuple A = (A,+, ; , 0, 1, ∗,→, ·), that
is a residuated lattice with order ≤ induced by +: a ≤ b iff a + b = b, plus the
axioms 1 + a+ (a∗; a∗) ≤ a∗ and (x→ x)∗ = x→ x.

An action lattice is called a I-action lattice when the identity of the ; operator
coincides with the greatest element of the residuated lattice, i.e. 1 = ⊤. More-
over, an action lattice A is complete when every subset of A has both supremum
and infimum. Since operators + and ; are associative, we can generalise them to
n-ary operators and use the notation

∑

and
∏

to represent their iterated ver-
sions, respectively. The generation of dynamic logics illustrated in the Section 3
will be parametric on the class of complete action lattices, since completeness is
required to ensure the existence of arbitrary suprema. The general construction
of multi-valued dynamic logics is revisited bellow.



Signatures. Signatures of GDL(A) are pairs (Π,Prop) corresponding to the
denotations of atomic programs and propositions, respectively.

Formulæ. The set of composed programs, denoted by Prg(Π), contains all ex-
pressions generated by π ∋ π0 |π;π |π + π |π∗ for π0 ∈ Π . Given a signature
(Π,Prop), the GDL(A)-formulæ for (Π,Prop) are the ones generated by the
grammar ρ ∋ ⊤ |⊥ | p | ρ ∨ ρ | ρ ∧ ρ | ρ → ρ | ρ ↔ ρ | 〈π〉ρ | [π]ρ for p ∈ Prop and
π ∈ Prg(Π).

Semantics. The space where the computations of GDL(A) are interpreted is
given by the algebra Mn(A) = (Mn(A),+, ;,0,1,*) where Mn(A) is the space
of (n × n)-matrices over A, the operators +, ; are the usual matrix sum and
multiplication, respectively, 0, 1 are the zero matrix and the identity matrix,
respectively, and * is the operator defined as in [3,13]. The matrix representation
of a program expresses, for each pair of states s, s′, the weight (e.g. probability,
cost, uncertainty) of the program going from s to s′.

GDL(A)-models for a signature (Prop,Π), denoted by ModGDL(A)(Π,Prop),
consists of tuples A = (W,V, (Aπ)π∈Π) where W is a finite set (of states),
V : Prop×W → A is a valuation function, and Aπ ∈ Mn(A), with n standing
for the cardinality of W .

The interpretation of a program π ∈ Prg(Π) in a model

A ∈ ModGDL(A)(Π,Prop) is recursively defined, from the set of atomic programs
(Aπ)π∈Π , as Aπ;π′ = Aπ ;Aπ′ ,Aπ+π′ = Aπ +Aπ′ and Aπ∗ = A*

π.

Satisfaction. The (graded) satisfaction relation, for a model

A ∈ ModGDL(A)(Π,Prop), with A complete, consists of a function

|= :W × FmΓ (A)(Π,Prop) → A recursively defined as follows:

– (w |= ⊤) = ⊤

– (w |= ⊥) = ⊥

– (w |= p) = V (p, w), for any p ∈ Prop

– (w |= ρ ∧ ρ′) = (w |= ρ) · (w |= ρ′)

– (w |= ρ ∨ ρ′) = (w |= ρ) + (w |= ρ′)

– (w |= ρ→ ρ′) = (w |= ρ) → (w |= ρ′)

– (w |= ρ↔ ρ′) = (w |= ρ→ ρ′); (w |= ρ′ → ρ)

– (w |= 〈π〉ρ) =
∑

w′∈W

(

Aπ(w,w
′); (w′ |= ρ)

)

– (w |= [π]ρ) =
∏

w′∈W

(

Aπ(w,w
′) → (w′ |= ρ)

)

The (graded) satisfaction in a given state gives the degree of certainty of a
formula in such state. For instance M,w |= 〈π〉ρ gives the certainty that ρ is
achieved from state w through the execution of π. It is relevant to note that
GDL(A) is a generalisation of PDL, for each action lattice A. In particular, by
considering the Boolean lattice, the generated logic GDL(2) coincides with PDL.



3 Multi-valued concurrent dynamic logic

Before presenting the construction of the logic, we introduce the mathematical
formalism to define the model where the programs will be interpreted.

3.1 Fuzzy binary multirelations

Definition 3 (Fuzzy set [22]). Given a set X and a complete residuated lattice
L, a fuzzy subset of X is a function φ : X → L; φ(x) defines the membership
degree of x in φ. The set of all fuzzy subsets of X is denote as LX. The support
of φ is a fuzzy subset ψ such that ψ(x) > 0, ∀x ∈ X.

Since an action lattice is an extension of a residuated lattice, the concept
of fuzzy set can be defined as well for the former. Such is the case for all the
remaining formalisms introduced in this paper.

Definition 4 (Fuzzy binary multirelation). Given a set X and a complete
action lattice A over carrier A, a fuzzy binary multirelation R over X is a
set R ⊆ X × AX . The following operations for fuzzy binary multirelations are
defined:

– R ∪ S as the union of R and S;

– R · S =
{

(a, φ) | φ(c) =
∑

(a,φa)∈R

(

∏

(b,φb)∈S φa(b);φb(c)
)}

– R ∩ S = {(a, φR ∪ φS) | (a, φR) ∈ R and (a, φS) ∈ S}, where φR ∪ φS is the
union of fuzzy sets φR and φs, as defined in [22];

– R∗ =
⋃

{Rn : n ≥ 0}.

We denote by M(X) the set of all fuzzy binary multirelations over X .
Note, particularly, how this definition generalises the concept of binary mul-

tirelations, particularly to the role of lattice A. This structure supports a set of
truth values beyond the classical true and false, which are associated to the ele-
ments of the second component of R. By using such formalisation we are able to
model a program as an execution with multiple “arrows” leaving a state to a set
of states in parallel, with a (possible different) fuzziness degree associated with
each “arrow”.Note that if A is the Boolean lattice 2, any fuzzy multirelation
R ⊆ X × 2X is a binary multirelation. Since the goal is still to model programs
as binary input-output relations, only the binary case is considered, and thus
the remaining of this paper refers to fuzzy binary multirelations simply as fuzzy
multirelations. Another aspect that is relevant for the formalisation of the logics
is the restriction to fuzzy multirelations R ⊆ X × AX where the fuzzy set φ in
AX is defined such that φ(x) > 0, ∀x ∈ X . In other words, we take only the
support of fuzzy sets for the fuzzy multirelations considered in this paper.

The operations for fuzzy multirelations are interpreted buying intuitions from
the classic definition. One such case is the operator ∪, which corresponds to the
classical set union. Regarding the sequential composition, the expression for φ
computes the weight of an execution that starts from a state a, arrives at a set
of intermediate states φa and ends in a set of states ϕb. The parallel composition
considers the union of fuzzy sets for computing the external choice, which is just
a generalisation of the set union used for CPDL.



3.2 Parametric construction of multi-valued concurrent dynamic
logics

Each complete action lattice A induces a multi-valued, concurrent propositional
dynamic logic CGDL(A), with weighted computations interpreted over A. Its
signature, formulæ, semantics and satisfacton are presented below.

Signatures. Signatures of CGDL(A) are pairs (Π,Prop) corresponding to the
denotations of atomic programs and propositions, respectively.

Formulæ. The set of composed programs, denoted by Prg(Π), consists of all
expressions generated by π ∋ π0 |π;π |π ∩ π |π + π |π∗, for π0 ∈ Π . Given a
signature (Π,Prop), the CGDL(A)-formulæ for (Π,Prop), denoted by

FmΓ (A)(Π,Prop), are the ones generated by the grammar
ρ ∋ ⊤ |⊥ | p | ρ ∨ ρ | ρ ∧ ρ | ρ→ ρ | ρ↔ ρ | 〈π〉ρ, for p ∈ Prop and π ∈ Prg(Π).

Semantics. The space where the programs are interpreted is given by the set
of all fuzzy multirelations over a set of states W , denoted by M(W ), and the
operations over its elements, as in Definition 4.

CGDL(A)-models for a signature (Π,Prop) are tuplesM = (W,V, J−K) where
W is a set of states, V is a valuation function V : Prop × W → A and J−K
attributes a fuzzy multirelation R ⊆W ×AW to each atomic program.

The interpretation of a program π ∈ Prg(Π) in a model M is recursively
defined as:

Jπ;π′K = JπK · Jπ′K, Jπ∩π′K = JπK∩ Jπ′K, Jπ+π′K = JπK∪ Jπ′K and Jπ∗K = JπK*.
The satisfaction relation for a model M = (W,V, J−K) is given by the valua-

tion function |=CGDL:W × FmΓ (A)(Π,Prop) → A recursively defined as:

– (w |=CGDL ⊤) = ⊤
– (w |=CGDL ⊥) = ⊥
– (w |=CGDL p) = V (p, w), for any p ∈ Prop
– (w |=CGDL ρ ∧ ρ

′) = (w |=CGDL ρ) · (w |=CGDL ρ
′)

– (w |=CGDL ρ ∨ ρ
′) = (w |=CGDL ρ) + (w |=CGDL ρ

′)
– (w |=CGDL ρ→ ρ′) = (w |=CGDL ρ) → (w |=CGDL ρ

′)
– (w |=CGDL ρ↔ ρ′) = (w |=CGDL ρ→ ρ′); (w |=CGDL ρ

′ → ρ)

– (w |=CGDL 〈π〉ρ) =
∑

φ|(w,φ)∈JπK

(

∏

u∈U

(

φ(u); (u |=CGDL ρ)
)

)

– (w |=CGDL [π]ρ) =
∏

φ|(w,φ)∈JπK

(

∏

u∈U

(

φ(u) → (u |=CGDL ρ)
)

)

where U ⊆W . We say that ρ is valid when, for any modelM , and for each state
w ∈W , (w |=CGDL ρ) = ⊤.

The satisfaction of formula (w |=CGDL 〈π〉ρ) is given by the weight of some
fuzzy set φ which is related with state w by some fuzzy multirelation, and that
of ρ for every state of the domain of φ. Moreover, the satisfaction for the box
operator follows [14], where every execution of the program must lead to a set
of states all of which satisfy ρ.



As mentioned in Section 2, the axiomatisation of CPDL was presented as
being that of PDL, except for one that is restricted to atomic programs, plus
an additional axiom for concurrency. Below we study such axiomatisation in the
new models presented for CGDL(A).

First, Lemma 1 provides some auxiliary properties used to prove next lemma.

Lemma 1. Let A be a complete I-action lattice. Then

(1.1) (w |=CGDL ρ→ ρ′) = ⊤ iff (w |=CGDL ρ) ≤ (w |=CGDL ρ
′)

(1.2) (w |=CGDL ρ↔ ρ′) = ⊤ iff (w |=CGDL ρ) = (w |=CGDL ρ
′)

Proof. Analogous to [14]. ✷

Lemma 2. Let A be a a complete I-action lattice. The following are valid for-
mulæ in any CGDL(A):

(2.1) 〈π0〉(ρ ∨ ρ
′) ↔ 〈π0〉ρ ∨ 〈π0〉ρ

′

(2.2) 〈π〉(ρ ∧ ρ′) → 〈π〉ρ ∧ 〈π〉ρ′

(2.3) 〈π + π′〉ρ ↔ 〈π〉ρ ∨ 〈π〉ρ
(2.4) 〈π〉⊥ ↔ ⊥
(2.5) 〈π ∩ π′〉ρ ↔ 〈π〉ρ ∧ 〈π′〉ρ
(2.6) [π + π′]ρ↔ [π]ρ ∧ [π′]ρ
(2.7) [π](ρ ∧ ρ′) → [π]ρ ∧ [π]ρ′

Proof. The proof uses the satisfaction function |=CGDL and some axioms and
properties of action lattices. The technical details are documented in Appendix
A. ✷

4 Conclusion

We took, in this paper, the first step in order to develop a rigorous and systematic
formalism for the verification of weighted concurrent systems, motivated by the
fuzzy case. The approach is based on the combination of some ideas from previous
research [15,18,8] to characterise both the computational and logical settings on
top of which a proper (axiomatic, denotational and operational) semantics for
fuzzy programs will be developed, in future work.

There are numerous research lines that were left open and are worth to pursue
in the near future. The most obvious is the study of a proper complete axioma-
tisation for the generated logics. In particular, the validity of the remaining
axioms of CPDL, namely the ones involving operators ; and ∗, will be analysed
in the new models. Another relevant path to be followed would be to study the
relations between PDL, CPDL and their graded variants. In one direction, we
propose to investigate whether CPDL can be obtained from CGDL(A) by taking
2 as lattice. Other would be to study if there is a way to obtain multi-valued
PDL as special case of CGDL(A), such that there is a correspondence between
the operations for fuzzy multirelations and operations on matrices. Additionally,



relevant results about decidability and complexity of the logics are naturally in
our agenda.

Although we base our definition of sequential composition for fuzzy multire-
lations in that of Peleg, there are other versions of the operator worth to be
analysed. One corresponds to the definition introduced for giving semantics to
Parikh’s game logic [17]

R · S =
{

(a,A) | ∃B.(a,B) ∈ R ∧ ∃f.(∀b ∈ B.(b, A) ∈ S)}

It is clearly stronger than Peleg’s, since it requires that every intermediate state
b must be related with the arriving set of states A. Another one, the Kleisli
composition, was later studied in [6]. It is our goal to introduce proper general-
isations of such operations, with possible applications in scenarios like a graded
variant of game logics, as well as the development of axiomatic systems for each
variation.

Finally, we propose to adapt the models of the generated logics in order
to allow the introduction of assignments of variables to values in a given data
domain. The goal is to develop (parametric) logics for the verification of programs
written in a fuzzy imperative programming language, such as [21] or [2].
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A Appendix

The proofs here presented resort to some axioms of action lattices, enumerated
below, and properties stated by Lemma 3.

a+ (b + c) = (a+ b) + c

a+ b = b+ a

a+ 0 = 0 + a = a

a; (b+ c) = (a; b) + (a; c)

a; 0 = 0; a = 0

Lemma 3. The following properties hold for any action lattice A:

a ≤ b & c ≤ d⇒ a+ c ≤ b+ d (1)

a; (b · c) ≤ (a; b) · (a; c) (2)

For I finite, we also have

∑

i∈I

(ai · bi) ≤
∑

i∈I

ai ·
∑

i∈I

bi (3)

Proof of Lemma 2

(2.1):

w |=CGDL 〈π〉(ρ ∨ ρ′))

= { definition of |=CGDL}
∑

φ|(w,φ)∈JπK

(

∏

u∈U

(

φ(u); (u |=CGDL ρ ∨ ρ
′)
)

)

= { definition of |=CGDL}
∑

φ|(w,φ)∈JπK

(

∏

u∈W

(

(φ(u);

(

(u |=CGDL ρ) + (u |=CGDL ρ
′)
))

)

= { (1)}
∑

φ|(w,φ)∈JπK

(

∏

w′∈W

(

φ(w′); (w′ |=CGDL ρ)+

φ(w′); (w′ |=CGDL ρ
′)
)

)

= { π0 is atomic hence

w is related with a singleton {u}}
∑

φ|(w,φ)∈JπK

(

φ(w′); (w′ |=CGDL ρ)+

φ(w′); (w′ |=CGDL ρ
′)
)

= { by (1) and (1)}

∑

φ|(w,φ)∈JπK

(

∑

w′∈W

(

φ(w′);(w′|=CGDLρ)
)

)

+
∑

φ|(w,φ)∈JπK

(

∑
w′∈W

(

φ(w′);(w′|=CGDLρ′)
)

)

= { definition of |=CGDL}

(w |=CGDL 〈π〉ρ) + (w |=CGDL 〈π〉ρ′)

= { definition of |=CGDL}

(w |=CGDL 〈π〉ρ ∨ 〈π〉ρ′)

Therefore, by Lemma 1, 〈π〉(ρ ∨ ρ′) ↔ 〈π〉ρ ∨ 〈π〉ρ is valid.



(2.2):

(w |=CGDL 〈π〉(ρ ∧ ρ′))

= { definition of |=CGDL}
∑

φ|(w,φ)∈JπK

(

∑

w′∈W

(

φ(w′); (w′ |=CGDL ρ ∧ ρ
′)
)

)

= { definition of |=CGDL}
∑

φ|(w,φ)∈JπK

(

∑

w′∈W

(

φ(w′);

(

(w′ |=CGDL ρ) · (w
′ |=CGDL ρ

′)
))

)

≤ { by (2) and (1)}
∑

φ|(w,φ)∈JπK

(

∑

w′∈W

(

(φ(w′); (w′ |=CGDL ρ))·

(φ(w′); (w′ |=CGDL ρ
′))

)

)

≤ { by (3) }

∑

φ|(w,φ)∈JπK

(

∑

w′∈W

(

φ(w′);(w′|=CGDLρ)
)

)

·
∑

φ|(w,φ)∈JπK

(

∑
w′∈W

(

φ(w′);(w′|=CGDLρ′))
)

)

= { definition of |=CGDL}

(w |=CGDL 〈π〉ρ) · (w |=CGDL 〈π〉ρ′)

= { definition of |=CGDL}

(w |=CGDL 〈π〉ρ ∧ 〈π〉ρ′)

Therefore, by Lemma 1, 〈π〉(ρ ∧ ρ′) → 〈π〉ρ ∧ 〈π〉ρ′ is valid.

(2.3):

(w |=CGDL 〈π + π′〉ρ)

= { definition of |=CGDL}
∑

φ|(w,φ)∈Jπ+π′K

(

∑

w′∈W

(

φ(w′); (w′ |=CGDL ρ)
)

)

= { definition of Jπ + π′K}
∑

φ|(w,φ)∈JπK
∨φ|(w,φ)∈Jπ′K

(

∑

w′∈W

(

φ(w′); (w′ |=CGDL ρ)
)

)

= { definition of Jπ + π′K}
∑

φ|(w,φ)∈JπK

(

∑

w′∈W

(

φ(w′); (w′ |= ρ)
)

)

+
∑

φ|(w,φ)∈Jπ′K

(

∑

w′∈W

(

φ(w′); (w′ |= ρ)
)

)

= { definition of |=CGDL}

(w |= 〈π〉ρ) + (w |= 〈π′〉ρ)

= { definition of |=CGDL}

(w |= 〈π〉ρ ∨ 〈π′〉ρ)

Therefore, by Lemma 1, 〈π + π′〉ρ↔ 〈π〉ρ ∨ 〈π′〉ρ is valid.

(2.4):

(w |=CGDL 〈π〉⊥)

= { definition of |=CGDL}
∑

φ|(w,φ)∈JπK

(

∑

w′∈W

(

φ(w′); (w′ |=CGDL ⊥)
)

)

= { definition of satisfaction}
∑

φ|(w,φ)∈JπK

(

∑

w′∈W

(

φ(w′);⊥
)

)

= { by (1)}
∑

φ|(w,φ)∈JπK

(

∑

w′∈W

⊥
)

= { by (1)}

⊥

Therefore, by Lemma 1, 〈π〉⊥ ↔ ⊥ is valid.



(2.5):

w |=CGDL 〈π ∩ π′〉ρ

= { definition of |=CGDL}
∑

φ|(w,φ)∈Jπ∩π′K

(

∑

w′∈W

(

φ(w′);w′ |=CGDL ρ
)

)

= { definition of Jπ ∩ π′K}
∑

φ1|(w,φ1)∈JπK

(

∑

w′∈W

(

φ1(w
′);w′ |=CGDL ρ

)

)

·
∑

φ2|(w,φ2)∈Jπ′K

(

∑

w′∈W

(

φ2(w
′);w′ |=CGDL ρ

)

)

= { definition of |=CGDL}

(w |=CGDL 〈π〉ρ) · (w |=CGDL 〈π′〉ρ)

= { definition of |=CGDL}

(w |=CGDL 〈π〉ρ ∧ 〈π′〉ρ)

Therefore, by Lemma 1, 〈π ∩ π′〉ρ↔ 〈π〉ρ ∧ 〈π′〉ρ is valid.

(2.6):

w |=CGDL [π + π′]ρ

= { definition of |=CGDL}
∏

φ|(w,φ)∈Jπ+π′K

(

∏

w′∈W

(

φ(w′) → w′ |=CGDL ρ
)

)

= { definition of Jπ + π′K}
∏

φ|(w,φ)∈JπK
∨φ|(w,φ)∈Jπ′K

(

∏

w′∈W

(

φ(w′) → w′ |=CGDL ρ
)

)

= {
∏

iterates over all φ such that

(w, φ) ∈ JπK ∨ (w, φ) ∈ Jπ′K}
∏

φ|(w,φ)∈JπK

(

∏

w′∈W

(

φ(u) → w′ |=CGDL ρ
)

)

·
∏

φ|(w,φ)∈Jπ′K

(

∏

w′∈W

(

φ(u) → w′ |=CGDL ρ
)

)

= { definition of |=CGDL}

(w |=CGDL [π]ρ) · (w |=CGDL [π′]ρ)

= { definition of |=CGDL}

(w |=CGDL [π]ρ ∧ [π′]ρ)

(2.7):



[π](ρ ∧ ρ′)

= { definition of |=CGDL}
∏

φ|(w,φ)∈JπK

(

∏

w′∈W

(

φ(w′) → w′ |=CGDL ρ ∧ ρ
′
)

)

= { definition of |=CGDL}
∏

φ|(w,φ)∈JπK

(

∏

w′∈W

(

φ(w′) → (w′ |=CGDL ρ · w |=CGDL ρ
′)
)

)

≤ { definition of |=CGDL}
∏

φ|(w,φ)∈JπK

(

∏

w′∈W

(

(φ(w′) → w′ |=CGDL ρ) · (φ(w
′) → w′ |=CGDL ρ

′)
)

)

= { (1)}
∏

φ|(w,φ)∈JπK

(

∏

w′∈W

(

φ(w′) → w′ |=CGDL ρ
)

)

·
∏

φ|(w,φ)∈JπK

(

∏

w′∈W

(

φ(w′) → w′ |=CGDL ρ
′
)

)

= { definition of |=CGDL}

(w |=CGDL [π]ρ) · (w |=CGDL [π]ρ′)

= { definition of |=CGDL}

(w |=CGDL [π]ρ ∧ [π]ρ′)


