
Universidade de Aveiro Departamento de Matemática,
2019

Daniel
Oliveira Figueiredo

Fundações Lógicas e Ferramentas Computacionais
para a Biologia Sintética

Logic foundations and computational tools for
synthetic biology

Universidade de Aveiro Departamento de Matemática,
2019

Daniel
Oliveira Figueiredo

Fundações Lógicas e Ferramentas Computacionais
para a Biologia Sintética

Logical foundations and computational tools for
synthetic biology

Tese apresentada à Universidade de Aveiro para cumprimento dos reque-
sitos necessários à obtenção do grau de Doutor em Matemática Aplicada,
realizada sob a orientação cient́ıfica de Manuel António Gonçalves Martins,
Professor do Departamento de Matemática da Universidade de Aveiro e co-
orientação de Lúıs Soares Barbosa, Professor do Departamento de Ciências
da Computação da Universidade do Minho

The work in this thesis was supported by FCT via the PhD scholarship
PD/BD/114186/2016. It was also supported by ERDF - The European
Regional Development Fund through the Operational Programme for Com-
petitiveness and Internationalisation - COMPETE 2020 Programme and by
National Funds through the Portuguese funding agency, FCT - Fundação
para a Ciência e a Tecnologia, within project POCI-01-0145-FEDER-030947
(KLEE). Complementary support was provided by the France-Portugal
partnership PHC PESSOA 2018 between M. Chaves (Campus France
#40823SD) and M. A. Martins.

o júri / the jury

presidente / president ABC
Professor Catedrático da Universidade de Aveiro (por delegação da Reitora da

Universidade de Aveiro)

vogais / examiners committee

DEF
Professor catedrático da Universidade N

agradecimentos /
acknowledgements

Em primeiro lugar, agradeço a Deus por ter estado sempre comigo e me
proporcionar tantas exeriências fantásticas na vida. Agradeço também aos
meus pais, irmãos e, especialmente, à minha mulher por me terem sempre
ajudado e apoiado ao longo destes anos.

Agradeço à Associação Musical e Cultural São Bernardo por ter sido uma
segunda faḿılia que sempre me acolheu e que me proporcionou momentos de
descontração e emoção a fazer música, a minha segunda paixão. Também
uma palavra ao grupo do CLU de Aveiro, que nos primeiros anos foram uma
grande força na minha vida, à comunidade de Pokémon Go de Aveiro e a
todos os amigos e colegas do departamento de Matemática.

Um merecido agradecimento a todos os professores que acompanharam
o meu percurso ao longo destes anos e, em especial, ao meu orientador
Manual António Martins e co-orientador Lúıs Soares Barbosa que foram
sempre presentes e construtivamente cŕticos durante todo o peŕıodo do
doutoramento. Agradeço ainda à Diana Costa, minha “irmã académica”
por toda a ajuda que me deu.

Finalmente, agradeço à FCT o financiamento desta tese e à Universidade
de Aveiro por ter sido a minha casa ao longo destes anos.

Palavras-chave Redes regulatórias biológicas, Modelos lineares por partes, Redes Booleanas
reactivas, Grafo assimptótico extendido, Bissimulação, Reconfigurabilidade,
Reactividade, rPrism, Switch graphs com pesos.

Resumo O estudo e desenvolvimento de ferramentas para sistemas computacionais
é uma área onde facilmente podemos encontrar vários trabalhos, sendo
hoje em dia um dos tópicos dominantes na investigação em Ciências da
Computação, permitindo, a esta área, o acesso a uma vasta base teórica,
além de diversos algoritmos e ferramentas tais como model checkers.

Esta tese centra-se na ideia de que um sistema biológico pode ser visto,
em certa forma, como um sistema computacional, onde células e genes
substituem o papel dos tranśıstors. De facto, a noção de computação é,
muitas vezes, associada ao funcionamento do cérebo de seres vivos. Tendo
em conta este ponto de vista, o objetivo deste trabalho é revisitar alguns
conceitos básicos no estudo de dinâmicas intracelulares, comuns a todos os
seres vivos, de um ponto de vista computacional, de forma a averiguar como
podemos aplicar a estes sistemas os conceitos, algoritmos e ferramentas
computacionais usadas na área da Informática. Em particular, começamos
por revisitar vários tipos de modelos usados para descrever a dinâmica in-
tracelular de seres vivos – modelos lineares por partes e redes Booleanas.

De seguida, propomos uma nova perspetiva sobre os modelos lineares por
partes, considerando estes modelos como reconfiguráveis. Isto permite-nos o
uso de ferramentas computacionais como o KeYmaera e dReach. Por outro
lado, discretizando este modelos mas mantendo a noção de reconfigurabili-
dade, obtemos a noção de rede Booleana reactiva, baseada no formalismo
de switch graphs, e propomos uma linguagem lógica para expressar e ver-
ificar propriedades destes sistemas bem como uma noção de bissimulação.
No que diz respeito a modelos Booleanos, apresentamos uma nova visão
sobre a noção de “terminal” (ou atrator) de forma a relacioná-lo com a
noção de bisimulação, muito usada em computação. De seguida, focamos
a atenção no método de obtenção do gráfico assintótico e, após um estudo
profundo, propomos um método intermédio que, apesar de menos eficiente
a ńıvel computacional, se mostra mais adequado ao contexto. Finalmente,
consideramos um novo tipo de modelo estocástico ao incorporar pesos na
arestas dos switch graphs e desenvolvemos uma extensão do PRISM model
checker – rPrism – para estudar esta classe espećıfica de modelos.

Keywords Biological regulatory networks, Piecewise linear models, Reactive Boolean
networks, Extended asymptotic graph, Bisimulation, Reconfigurability, Re-
activity, rPrism, Weighted switch graphs.

Abstract The study and development of tools for computational systems is an area
where we can easily find diverse works and, nowadays, it is one of the
dominant topics when we think about the research on computer science.
As consequence, the field of computation has access to a solid theoretical
basis, as well as to a wide collection of algorithms and tools (such as model
checkers).

The focus of this thesis is to look at a biological system under a compu-
tational perspective, where cells and gens replace the role of transistors as
the fundamental elements of a computational system. Indeed, the notion of
computation is often compared to the functioning of a brain in an animal.
Taking into account this point of view, the goal of this work is to revisit
basic concepts present on the study of intracelular dynamics, which are
fundamentally the same for all living organisms, under a computer science
perpective. Thus, we intend to understand how we can apply concepts,
algorithms and computational tools, which are used the field of Computer
Science, to the mentioned biological systems. In particular, we start by
describing some kinds of models used to model the intracellular dynamics
of living organisms – Piecewise linear models and Boolean networks.

Hence, we propose a new perspective over Piecewise linear model, consid-
ering these models as reconfigurable. This allows one to use computational
tools like KeYmaera and dReach to reason about these models. Afterward,
discretizing this kind of model but maintaining the notion of reconfigurabil-
ity, we obtain the concept of reactive Boolean network, based on the switch
graph formalism, and propose a logical language to express and formally
check properties of these systems along with a notion of bisimulation. In
what relates to Boolean networks, we provide a new point of view over the
notion of “terminal”, by relating it to the notion of bisimulation, which is
widely known in the area of Computater Science. Then, we focus in the
asymptotic graph method and, after a fundamental study, we propose a gen-
eralized and intermediate method that is less efficient in a computational
perspective but more suitable to the intended context. Finally, we consider a
new kind of stochastic model which is obtaining embeding weights in edges
of switch graphs. We also develop an extension of PRISM model checker –
rPrism – to ease the study of this specific class of stochastic models.

Contents

Contents i

List of Figures iii

List of Tables v

1 Introduction 1

2 Background on quantitative and qualitative models 5

2.1 Quantitative models. 6

2.1.1 System of ordinary differential equations. 7

2.1.2 Piecewise Linear models. 10

2.2 Qualitative models. 15

2.2.1 Boolean networks. 16

Asynchronous vs synchronous approach 17

Multiple qualitative levels . 17

2.2.2 From PWL models to Boolean networks. 20

Boolean networks with probabilities 22

2.2.3 Asymptotic graph. 22

2.3 Stable states in biological context. 27

3 Logic and computational tools to study PWL models 29

3.1 Differential dynamic logic. 29

3.1.1 Syntax. 29

3.1.2 Semantics. 30

3.1.3 Proof calculus. 35

3.2 Application to PWL models: Biological systems with hybrid dynamics. 36

3.2.1 Relating hybrid and reconfigurable systems. 36

3.2.2 PWL models as hybrid models. 39

3.2.3 Limitations and alternatives. 44

dReach - A complement to KeYmaera. 44

3.3 Final remarks. 46

4 Reactive Boolean networks: An intermediary step between PWL and BN
models 49

4.1 Switch graphs. 49

4.1.1 Reactive frames, logic and bisimulation. 51

i

4.1.2 Weighted switch graphs. 61
Fuzzy switch graphs. 62

4.2 Reactive Boolean networks. 65
4.2.1 Switch graph as a discrete reconfigurable system. 66
4.2.2 Recovering attractors. 67

4.3 Reactive Boolean networks with probabilities. 71
4.4 Final remarks. 73

5 Studying asymptotic dynamics in Boolean networks 75
5.1 Bisimulation and attractors. 75

A related approach. 77
5.2 Extended asymptotic graphs. 78

5.2.1 Analyzing the AG method. 78
5.3 Final considerations. 83

6 A reactive approach to stochastic methods 85
6.1 Stochasticity and reactivity in biological context. 85
6.2 The tool: rPrism. 86

6.2.1 PRISM model checker. 87
6.2.2 Weighted graphs and PRISM models. 88
6.2.3 Biological regulatory networks as weighted switch graphs. 89
6.2.4 Language and examples. 92

6.3 Final remarks. 94

7 Conclusion and future research 97

Bibliography 101

ii

List of Figures

1.1 Levels of abstraction of a biological regulatory network model according to [10]. 2

1.2 Enriched schema with biological regulatory network models. 4

2.1 Graph diagram of a regulatory network for the circadian rhythm of a cyanobac-
teria. 6

2.2 Comparison between several Hill functions (n=2, left; n=4, middle, n=16, right). 7

2.3 Example of a flow crossing more than one domain in a PWL model. 12

2.4 Some examples of boundaries with special dynamics. 13

2.5 Some examples of resulting dynamics at boundaries. 14

2.6 Boolean network of (synchronous) Bistable switch. 16

2.7 Synchronous (left) vs. asynchronous (right) approach. 17

2.8 Graph of a Boolean network with a variable admitting three qualitative values. 19

2.9 Graph of the Boolean network described by Equation 2.5. 19

2.10 Graph of an unknown BN. 20

2.11 A toy PWL model (left) and the corresponding BN model (right). 21

2.12 BN model with probabilities on edges. 22

2.13 Graphs of the submodels for the admissible input values. 25

2.14 The full asymptotic graph of the system in Example 2.2.7. 25

2.15 Graphs of the submodels for the AG model of circadian rhythm. 26

2.16 The full asymptotic graph. 26

3.1 Illustration of the hybrid programs induced transitions. 33

3.2 Bouncing ball example. 34

3.3 Initial screen of the bouncing ball problem in KeYmaera. 39

3.4 Orbit of the system. 41

3.5 Solution for the reachability problem. 47

4.1 Example of a switch graph representing a counter. 51

4.2 Evolution of a switch graph representing a counter. 51

4.3 The reactive frame of two non bisimilar reactive models. 56

4.4 Two bisimilar switch graph models. 57

4.5 Example of a Fuzzy switch graph. 64

4.6 Obtaining higher-level edges for a RBN model. 67

4.7 Illustrating the stable steady states. 68

4.8 Simplified Boolean network. 68

4.9 A reactive Boolean network. 69

4.10 BN model for the PWL model in Example 2.1.3. 72

iii

4.11 Part of a BN model with probabilities. 72
4.12 Part of a RBN model with probabilities. 73

5.1 BN model of the circadian rhythm in a cyanobacteria. 77
5.2 Reduced model for the circadian rhythm in a cyanobacteria. 77
5.3 BN models for the subsystems A and B. 79
5.4 Asymptotic graph with a spurious attractor. 79
5.5 Performance of the extended asymptotic graph method for asynchronous net-

works and comparison with the AG original method. 82
5.6 Auxiliary graphs for the construction of an EAG. 82
5.7 An extended asymptotic graphs with no spurious attractors. 83

6.1 Model representing the cooperativity of hemoglobin. 86
6.2 Plain representation for a hemoglobin cooperativity reactive model. 88
6.3 A graph diagram of circadian rhythm with some weights representing rates

(left); and a complete weighted switch graph obtaining by removing inhibitor
edges and component A (right). 90

6.4 Results from a stochastic simulation. 91
6.5 PRISM output for the growth of E. coli with glucose and lactose. 92

iv

List of Tables

2.1 Truth table for x+ (left) and y+ (right). 20

3.1 Piecewise linear model with a discrete control variable µ. 41

v

vi

Chapter 1

Introduction

Synthetic biology is a broad field which comprehends diverse subareas and that can be
seen, in an informal context, as the “engineering of biology”. The concept of “synthetic
biology” was probably first mentioned in [48] by Poinat. This subject comprises diverse areas
such as, for instance, genetic design, the synthesis of biocomponents and molecular logic [64]
and has gained much attention during the last years due to the development of new and
improved techniques to manipulate DNA.

Developments within these areas are relevant since they can then be diversely applied.
Some examples of these applications are, for instance, the development of new medicines and
medical therapies (such as documented in [34]), nanocomponents, or even biocomponents for
biocomputers [67]. However, the microscopic dimension of the elements taking part on these
processes is not reflected in the complexity of their interactions. In this way, detailed and
specialized knowledge about genetic functionality, regulation and interconnection is required
because one must understand the elementary units used to build bio-synthetic systems in
order to obtain precise and sound models or designs for them.

The understanding of genetic networks is one of major concerns within the general subject
of synthetic biology. It is important to understand the role that each gene plays individually
in an organism, as well as its interconnection with other genes/components, the way they
occur and which biochemical processes are involved. In order to attain this goal, several
approaches are used. We can separate these approaches into two classes: (i) the ones that
study the functions of genes by analyzing the DNA by itself; and (ii) the ones that study
the functions of gene by observing its behavior and outputs in different environments or
when interconnected with other genes. On one hand, class (i) includes, for instance, methods
depending on the sequencing of DNA such as statistical analysis, the recognition of genetic
patterns and phylogenetics. On the other, the methods on class (ii) comprise the analysis of
genetic networks such as the modeling of biological regulatory networks where both theoretical
analysis and simulations are performed; and empirical studies with laboratory experiments.

The focus of this thesis is placed on the second class of methods and, in particular, on
the study of biological regulatory networks. Despite being embedded in a larger context,
the subject of biological regulatory networks is a complex and wide topic by itself, in such a
way that is possible to take several directions of study. This diversity begins with the large
number of models and procedures proposed in the literature and continues with the diverse
properties that can be studied. For example, we can consider a model for a regulatory network
and our interest be the estimation of parameters; the study of the interconnections between

1

two genes or a gene and a protein; or the study of steady states of a system and/or their
(asymptotic) stability or cyclic behavior(s). Moreover, for each of these topics, we can found
in literature diverse approaches and methods to apply. To begin with, we can consider either
a deterministic or stochastic approach. Because of this, and in order to follow a concise and
consistent direction in this work, we took the document [10] of Chaves as a guiding line for
this thesis.

In the referred document a deterministic methodology for the study of a biological reg-
ulatory network is presented. Instead of using a unique formal model to study biological
regulatory networks, the author proposes to combine several formalisms in order to obtain
the maximum benefit of each of them regarding their relative advantages and disadvantages.
In particular, an algorithmic procedure to obtain different kinds of models (going from contin-
uous to discrete) is proposed. This methodology consists of starting with a continuous model
and obtaining, step-by-step, gradually more abstract ones. In practice, given a classical model
composed by a system of ordinary differential equations (ODE model), it is explained how we
can obtain a corresponding Piecewise linear model (PWL model) (an hybrid model compris-
ing both continuous and discrete formalisms); from a Piecewise linear model, we can go more
abstract to obtain an Asynchronous Boolean network (asynchronous BN). The chain ends
with a formalism intended to reduce the size of the Boolean model is the Asymptotic graph
method (AG). These levels of abstraction, as illustrated by Figure 1.1, are powerful tools for
the study of the dynamics of biological regulatory networks, namely in what concerns the
study of steady states of the system.

Figure 1.1: Levels of abstraction of a biological regulatory network model according to [10].

The study of a biological system modeled by a system of ODEs can then be performed
in the following way: we start by constructing each one of the gradually more abstract
models. Then, starting with the simpler one, its main dynamics are studied. Afterward we
can gradually move to more complex models so that more detailed properties of the system
are recovered.

The main contribution of this thesis is to establish connections between concepts, algo-
rithms and tools which are already used in Computer Science and the study of biological
regulatory networks. In this way, biological concepts, methods and models are revisited un-
der a computational perspective, which turns possible to approach them under a new outlook
and to apply some methods and tools that come from the fields of Logic and Computer Sci-
ence. As mentioned above, in this thesis we take the work of Chaves as a guiding line and
enrich the diagram presented in Figure 1.1 with new levels and kinds of models. Moreover,
we provide additional insights and tools for the study of some already existing formalisms.
Therefore, our work and contributions can be summarized on the following points:

• In Chapter 3, PWL models are studied as hybrid and, even more generally, as recon-
figurable models. This allows one to use logical and computational formalisms which
were specifically designed to study hybrid systems. We propose the use of differential
dynamic logic [55] because the syntax of differential dynamic logic is particularly useful

2

for describing hybrid systems (which are sometimes known as cyber-physical). Also, this
logic has a proof calculus which can be used to prove some properties of these systems.
Moreover, a tool called KeYmaera was developed by A. Platzer to obtain the proof of
a formula in a semi-automatic way. We discuss the utility of this tool as it seems to be
specially useful to prove safety properties of PWL models and not particularly useful
to prove reachability properties. Finally, we compare it with other approaches and pro-
pose an alternative tool – dReach –, for some specific reachability problems. The work
presented in this topic is based in a paper published in [17].

• In Chapter 4, we propose reactive transition state models – Reactive Boolean networks
(RBN models) – as an intermediate model between PWL and BN model. When compar-
ing PWL and BN models, we lose a considerable amount of information. RBN models
can reduce this loss and their advantages and disadvantages when comparing to both
BN models and PWL models are studied. A RBN is based on the formal concept of
switch graphs introduced by Marcelino and Gabbay [26]. During this chapter we fur-
ther study this kind of structure and obtain some important notions and results like
a suitable notion of bisimulation and an Hennessy-Milner theorem. A modal logic is
also proposed for describing properties of this kind of structure and its semantics are
adapted to the reactive features of switch graphs. Afterward, this concept is general-
ized leading to the introduction of weighted switch graphs, along with some additional
study of the fuzzy case. Weighted and reactive structures allows us to propose weighted
reactive Boolean networks as a generalization of Reactive Boolean networks, in order to
include weights on edges. We discuss how they can be applied to the study of biological
regulatory networks. In particular, we think about the case where these weights are
probabilities. The work presented here can be found in [19, 20, 22, 59].

• In Chapter 5, we study logical concepts and properties in Boolean networks and, fur-
thermore, establish a connection between attractors (a main property of some set of
vertices in biological BN models) and bisimulation. This connection provides insights
about the notion of attractors in a theoretical and formal context and paves the way
for the development of new methodologies and algorithms to the study of these models.
We also study the disadvantages of the AG method when comparing to BN models and
propose an intermediate one – Extended asymptotic graph (EAG). Its performance is
analyzed by comparing it with both BN models and the usual AG method. Asymptotic
graphs are obtained by simplifying a Boolean network and comprise, for sufficiently
larger models, much less states than typical BN models. Even so, they preserve much
information about the original Boolean Network. We study which important informa-
tion is lost and the cause for that loss. The work presented in this chapter is published
in [18, 13].

In this way, we obtain a new classification schema extending the one shown in Figure 1.1.
This is depicted in Figure 1.2 where the contributions of this thesis are highlighted by dashed
boxes.

• Finally, and apart of this methodology, the pertinence of determinism is discussed and
models which are both reactive and stochastic are proposed in Chapter 6. We also
show how the software PRISM can be used to simulate and study such systems. This
is presented as a complementary work, since deterministic models are not suitable for

3

Figure 1.2: Enriched schema with biological regulatory network models.

general systems and can, themselves, be seen as simplifications of stochastic models.
For this, we consider weighted reactive models, already mentioned, and explain how
these models can be constructed and studied. In particular, a tool which was developed
in this thesis to specifically study this kind of models is presented. This software, called
rPrism, is able to recognize and deal with reactive models inside the PRISM framework.
This is published in [22].

In order to provide a guiding line along all these kinds of models and approaches, we
consider, whenever possible, a common biological system to exemplify the application of each
model or tool. This example is the circadian rhythm system of a cyanobacteria according to
a model documented in [14].

Outline. In Chapter 2, we describe the state-of-art: we introduce each one of the models
shown in Figure 1.1 as well as a complete analysis about the differences between them and how
to obtain a more abstract model from other. In a complementary way, it is also explained how
the study of these distinct formalisms can be combined to more efficiently study a biological
system. In Chapter 3, we start by presenting differential logic and how to apply it to the study
of hybrid systems as PWL models naturally are. In Chapter 4 presents some major results as
Reactive Boolean networks and their variants. A formal notion reactivity, as introduced by
Gabbay and his collaborators, is provided and we study how RBN models fit in the schema of
abstraction as presented in Figure 1.2. Chapter 5 presents a theoretical approach to Boolean
networks and establishes a correspondence between bisimulation and a major asymptotic
property of this kind of model. Then, a new methodology – extended asymptotic graph –
is proposed in order to improve the results obtained with the AG method. In this way, we
analyze AG models and, based on this study, EAG models are presented as an alternative.
In Chapter 6 we discuss which cases should not be studied with deterministic methodologies
and, as complement, we propose a reactive formalism along with the software PRISM as an
alternative to deterministic models and methodologies. Then, we also introduce the software
rPrism as a tool for the study of the reactive and stochastic models previously presented.
Finally, Chapter 7 closes the thesis with some conclusions and hints for future work.

4

Chapter 2

Background on quantitative and
qualitative models

When we think about a biological regulatory network, we must consider a set of biological
components which are present in a specific intracellular context. These components interact
and chemically react according to physical and chemical laws. The global processes occurring
within a cell are then responsible for guiding the cell according its functions and cycle. It
is important to mention that the physical and chemical laws which are applied to inanimate
matter are the same which drive the basic processes of life (see [8]).

Taking into account the large amount of components interacting within a cell – proteins,
mRNA, gens, molecules, etc... – one cannot study with detail the entire physic-chemical map
of a cell. Instead, researchers consider subsets of components according to the specific cell
function being studied ([52]). For instance, if the goal is to study the growth and replication
mechanisms of a cell, only the components which are believed to take part on the process
are considered – this subset of components is mentioned in literature as “module”. However,
usually these modules still comprise a large number of distinct components which interact
with each other. Then, instead of describing a biological model using physical and chemical
equations, the notion of regulation is considered. A component a is said to regulate a compo-
nent b whenever the presence of a significant concentration of a within the cell can influence
the concentration of b in the future. For instance, a specific mRNA is said to regulate the
protein produced when it is translated into the corresponding organelle. Furthermore when
we mention a positive (respectively, negative) regulation of a over b, we refer a regulation
where the production/activation of b is induced (respectively, inhibited) by the presence of a
or inhibited (respectively induced) by the absence of a. Models rather use this notion of “reg-
ulation” to describe interactions between components than the general physical and chemical
laws underlying the same regulations. It is important to mention that modules are chosen in
such a way that components within the module do not considerably react with components
out of it. Also, a module represents itself a biological regulatory network and, often, several
submodules are considered for specif biological regulatory networks.

Biological regulatory networks usually contain a large number of interconnections due
to regulations. Thus, it is usual to represent them graphically in order to proceed with a
preliminary and conceptual analysis. For this, we can use a special class of graphs (V,E) where
the set of vertices coincide with the set of components and the set of edges E ⊆ V ×V ×{+,−}
describe the regulation relations. Here, an edge (a, b, ∗) describes a positive regulation of a

5

over b if ∗ = + and a negative one otherwise. Graphically, positive regulations are usually
represented in literature by a line ending with either an usual arrow or a black circle; while
negative regulations are represented by a line ending with either an orthogonal line or a
white circle. As example, in Figure 2.1, we present a diagram for the regulatory network of
circadian rhythm of a cyanobacteria, which can be found in [14]. In this model two proteins
are considered – KaiA and KaiC. While the component KaiA is represented by A, KaiC
admits both an unphosphorilated form – represented by U – and three phosphorilated forms
– represented by T , TS, S. Therefore, the graph representation of this regulatory network,
shown in Figure 2.1, let us know how these components regulate each other. In particular,
we are able to understand that, for instance, T positively regulates TS and S negatively
regulates A.

Figure 2.1: Graph diagram of a regulatory network for the circadian rhythm of a cyanobac-
teria.

Biological regulatory networks as the one illustrated in Figure 2.1 are studied in order to
provide insights about how these biological modules operate. In particular, it is common to
seek for features like stable states and periodic behaviors.

We begin this document by revisiting the methods, ideas and models already applied to
this topic. Recalling the fact that this entire process is ruled by physical and chemical laws,
exact models should rather be stochastic than deterministic. However, and since in practical
cases, biological systems usually comprise a huge number of elements of each considered com-
ponent, deterministic models are a reasonable choice due to the law of large numbers. Because
of this, it is important to, when studying a biological regulatory network with a deterministic
approach, carefully specify the dynamics of the studied system using a suitable model. Hence,
in this chapter, several kinds of deterministic models are presented and compared. Moreover,
some connections between them are highlighted. Also, for more information about modeling
biological regulatory networks we recommend to see [40].

2.1 Quantitative models.

The term “quantitative model” is used to describe a class of models that represents a
biological system by assigning a continuous variable to each component considered. These
variables will then indicate the absolute concentration of each component within the envi-
ronment of the system under study. Deterministic models use these variables to describe
the evolution of a model over time. This is done by representing the regulation relations by
suitable numerical equations like, for instance, differential equations. Moreover, we note that
each state of such a system is completely described by the values of all its variables. During

6

the rest of this section we present two kinds of quantitative models.

2.1.1 System of ordinary differential equations.

As mentioned before, the variables considered for this kind of system take real values.
However, since we consider that each variable represents the concentration of a component
from a biological system, we must guarantee positivity constraints for all variables, since a
negative concentration has no meaning in real cases.

Generally, when one uses a system of differential equations to model a biological regulatory
network, it is common to follow the methodology described bellow.

Let us consider a biological regulatory network where a1, ..., an is the list of components
involved. Then we introduce real variables x1, ..., xn such that xi represents the concentration
of component ai within the cellular environment. At this point, we recall that deterministic
models describe the dynamics of a biologic regulatory networks using the concept of regulation.
Thus, the differential equation describing the evolution of some variable xi depends on the
concentration of each variable xj such that the component aj regulates the component ai.
These regulations must be described by a quantitative function s describing the level of
regulation in terms of the concentration of the regulative protein aj . In practice, this means
that an expression s+(xj) (respectively, s−(xj)) must be integrated in the differential equation
describing the evolution of xi whenever the component aj regulates positively (respectively,
negatively) the component aj .

Several authors make different choices for the expression of s+(x). In general, all they
agree to consider a sigmoid function such that s+(0) = 0 and lim

x→+∞
s+(x) = 1 (see [70]).

For instance, a natural choice is to use an expression with arctan(x) or a logistic function.
However, the expression for s+(x) which is most commonly found in literature is the so-called

Hill function which takes the form: s+(x; θ, n) =
xn

xn + θn
, where θ, n ∈ R are parame-

ters. Since this choice for the sigmoid function representing a positive regulation depends
on parameters, it has the advantage of being possible to adjust these parameters in order
to obtain a model that fits experimental data in a better way. In Figure 2.2 we can see an
example of some of these sigmoid functions. While the value of θ determines the point where
the sigmoid function takes the value 0.5, the value of n is responsible for the slope around

x = θ. Along this thesis we consider the latter definition of s+(x; θ, n) =
xn

xn + θn
along with

s−(x; θ, n) = 1− s+(x; θ, n) =
θn

xn + θn
.

Figure 2.2: Comparison between several Hill functions (n=2, left; n=4, middle, n=16, right).

Note that this kind of expression for s+ and s− can only take values between 0 and 1.
This is done in order to represent a “normalized” regulation and, in practice, an additional

7

constant kij > 0 is considered in such a way that a positive regulation of a component
j over a component i is described by the differential equation x′i = kijs

+(xj ; θ, n) and a
negative regulation between the same components is described by the differential equation
x′i = kijs

−(xj ; θ, n). Since s+ and s− solely takes values in between 0 and 1, kij can be
understood as the maximum effect of aj over ai. Sometimes, more than one component
can, cooperatively, regulate another one. If a1,...,am cooperatively regulate a0, then this

is represented by the expression k0,1...m

m∏
l=1

s∗l(xl; θa0,al , n), where ∗l can be either + or −,

according to the case.
Each equation of an ODE model uses sums and products of this kind of expressions to

describe all regulations. Furthermore, an additional constant is considered for each component
equation because, in a biological context, the effect of natural degradation along time must be
considered. Different components degrade at different rates and, therefore, we must consider
a degradation constant γi > 0 for each component i.

Putting all this together, we are now able to present an example of an ODE model.

Example 2.1.1 (Circadian rhythm of a cyanobacteria – ODE model).
Recalling the example of circadian rhythm in Figure 2.1, we can obtain a generic model for
it as follows. Since the system considers components A, U , T , TS and S, this model must
consider variables xa, xu, xt, xts and xs, for the respective concentrations. Following the
example as introduced in [14], we consider that the total concentration of KaiC (both its
unphosphorylated and phosphorylated forms) is constant, i.e. xu + xt + xts + xs = C, with
C being a constant value. This allows us to reduce one equation to the ODE model, which is
described by the following system:

x′a = ka,s
θna,s

xns + θna,s
− γaxa

x′t = kt,ua
xnu

xnu + θt,u
.

xna
xna + θt,a

− γtxt

x′ts = kts,ta
xnt

xnt + θts,t
.

xna
xna + θts,a

− γtsxts

x′s = ks,tsa
xnts

xnts + θts,s
.

θns,a
xna + θns,a

− γsxs

with xu + xt + xts + xs = C, a constant value.

As mentioned before, one advantage of this kind of model is to allow the estimation of
parameters. In particular, in [14], for this circadian rhythm model, parameters were estimated
for n = 4, resulting in the following model:

x′a = 10
54

x4
s + 54

− 0.45xa

x′t = 20.51
x4
u

x4
u + 29.954

x4
a

x4
a + 104

− 0.24xt

x′ts = 10.74
x4
t

x4
t + 11.424

x4
a

x4
a + 104

− 0.28xts

x′s = 6.61
x4
ts

x4
ts + 10.164

134

x4
a + 134

− 0.08xs

8

with xu + xt + xts + xs = C, a constant value.

With the model presented in this example, we are able to recover the dynamics of the
regulatory network of circadian rhythm. In particular, by studying this model, Chaves &
Preto, in [14], were able to recover the cyclic behavior, as observed in the real life system,
along with realistic values for the cycle period. It is important to mention that, in this context,
a state of a biological regulatory network is fully and unequivocally described by the values
for the concentration of their components. For instance, considering the ODE model for the
circadian rhythm which was presented above, (xa, xt, xts, xs) = (0, 0, 0, 0) describes a state of
the model.

Definition 2.1.1. Let x = (x1, ..., xn) and x′ = F (x) be a system of ordinary differential
equations, with x′i = Fi(x), for i ∈ {1, ..., n}. We say that a flow from a state x̄ ∈ Rn to a
state ȳ ∈ Rn is a continuously differentiable function f : R+

0 → Rn such that:

• f(0) = x̄

• ∃t′ ∈ R+ : f(t′) = ȳ

• f(x) verifies the differential equations, i.e. f ′i(t) = Fi(x) whenever f(t) = x.

For any of these ODE models we always obtain an invariant region, i.e. a subset of the
entire state space such that there is not any flow from a state inside the subset to a state
outside it. This is obtained for each variable xi as the quotient between the sum of maximum
effects over a component i, and γi, its degradation rate. This will be described further with
more detail but, in particular, for the ODE model presented in Example 2.1.1, we obtain that

if (xa, xt, xts, xs) ∈ [0,
ka,s
γa

]× [0,
kt,ua
γt

]× [0,
kts,ta
γts

]× [0,
ks,tsa
γs

], then (xa, xt, xts, xs) will always

be within that region. The existence of this invariant region is a useful feature since it implies
two useful properties:

• Positivity constraints for variables are assured if the initial value is within the invariant
region;

• An invariant region often admits a steady state or a closed orbit.

The existence of steady states and closed orbits are important as will be seen forward.
Also the positivity of variables is fundamental since it provides meaning and coherence to
these models. Actually, it is not difficult to prove that, for any of these ODE models for
biological regulatory networks, a flow whose initial state is outside the invariant domain will
eventually reach the interior of the invariant region (this can be proven by generalizing the
proof of Proposition 2.1.1). Thus, this implies that every steady state and closed orbit is
within the mentioned invariant region. This is important since one can restrict the entire
state space to a smaller domain.

Although this kind of model represents the dynamics of a biological regulatory network
in a realistic way, it is not easily studied and features like closed orbits are difficult to be
found. Indeed, these models are often used to perform simulations and give insights of how
a system evolve, rather than to study them analytically. This is due to the nonlinearity of
the equations and expression involved, and it presents an obstacle to the application of other
methodologies such as computational implementations.

9

2.1.2 Piecewise Linear models.

To overcome the presented drawback of models composed by nonlinear differential equa-
tions, some alternatives and simplifications have come out. One of them is a class of models
known as Piecewise linear or PWL, for short.

A method for obtaining a PWL model is to take an ODE model as a starting point and
to simplify it in order to make more amenable to be studied by analytic and computational
processes. The general idea of a PWL model is to consider an ODE model and divide its
invariant region into smaller and mutually exclusive domains in order to approximate the
nonlinear differential equations by specific linear differential equations within each smaller
domain.

It is important to note that PWL models are considered qualitative models by some
authors (see [30]). However, taking into account the approach proposed in this thesis, it
makes sense to consider it as a quantitative model.

Before entering into details, we introduce some notation in order to make the following
description clearer.

Note 1. Consider a ODE model, whose set of components is represented by A = {a1, ..., an}.
We introduce the following abbreviations:

• ki represents the sum of all parameters with form ki,j where j can be a single compo-
nent or several cooperative components. Informally, it represents the sum of all “k”
parameters of the differential equation relative to xi.

• γ1 abbreviates γa1 .

• For each component a ∈ A, we introduce θa1 , ..., θana
such that na ≥ 1 and θa1 < ... < θana

,
and for all b ∈ A, if θb,a occurs in the ODE model, then exists i ∈ {1, ..., na} satisfying
θb,a = θai .

Finally, for every ODE model, defined as described in previous section, we already men-
tioned that it was always possible to find an invariant region. Using the notation above,

we are able to define generically the invariant region as [0,
k1

γ1
] × ... × [0,

kn
γn

]. The region

generically presented here is mentioned simply as the invariant region of the corresponding
ODE or PWL model in the sequel.

Proposition 2.1.1. Consider an ODE model for a biological regulatory network using Hill

functions and with n components. Then [0,
k1

γ1
]× ... × [0,

kn
γn

] is an invariant region.

Proof. The proof proceeds by analyzing the vector (x′1, ..., x
′
n) at the boundaries of this region

and showing that it is either null or points to inside the region.

Let us now consider a state such that xi =
ki
γi

for arbitrary i ∈ {1, ..., n}. Then, since Hill

functions are never greater than 1, at this state x′i ≤ ki − γixi = ki − γi
ki
γi

= 0.

Let us consider a state such that xi = 0 for arbitrary i ∈ {1, ..., n}. Then, since Hill
function are never negative and ki ≥ 0, at that state γixi = 0⇒ x′i ≥ 0

Thus, since a flow is a continuous function, the region is invariant.

10

As mentioned before, in a ODE model, we must consider thresholds k, θ and n for Hill
functions – which are estimated – in order to approximate the reality. PWL models simplify
ODE models by taking the estimated values for thresholds k and θ but ignoring the value
of n. In order to eliminate nonlinearity in the differential equations, PWL models consider
that n→ +∞. Because of this, sigmoid functions s+ and s− become Heaviside functions as
illustrated by the following computation:

s+(x; θ, n) =
xn

xn + θn
n→ +∞−−−−−−→

0, if x < θ
1

2
, if x = θ

1, if x > θ

(2.1)

s−(x; θ, n) =
θn

xn + θn
n→ +∞−−−−−−→

1, if x < θ
1

2
, if x = θ

0, if x > θ

(2.2)

Thus, we are able to obtain, at each state, a system of linear differential equations. More-
over, given an n-dimensional state space, we can still find n-dimensional domains such that
the system of differential equations is the same for all states inside each one of these domains
and, as mentioned, linear.

In practice, for each variable x relative to a component a, we define the hyperplanes
x = θa1 , xj = θa2 , ..., xj = θana

as boundaries. Then, considering the invariant region, mentioned
before, and excluding all boundaries relative to each component, the remaining state space
is composed by disconnected domains. In this way, we ignore the cases where the values for

s+ and s− could take the value
1

2
, which are not considered in PWL model. Given a model

with components {a1, ..., an}, we denote the set of all these domains by V which can simply
be described as:{

[0, θa11 [,]θa11 , θ
a1
2 [, ...,]θa1na1

,
k1

γ1
]

}
× ... ×

{
[0, θan1 [,]θan1 , θan2 [, ...,]θannan

,
kn
γn

]

}
For a specific domain, we say that a state is in its boundary whenever it is not contained

in the domain itself but it is contained on its topological frontier, regarding the state space.
Also, two domains are said to be adjacent if the intersection of their topological frontier is a
(n− 1)-dimensional region of the state space. This region is said to be the shared or common
boundary between both domains.

The main advantage of this kind of model is that one is able to analytically solve the system
of differential equation and, thus, fully describe the flows and dynamics of these simplified
models. Moreover, the main dynamics of the original ODE model is preserved whenever the
process described before is followed. In particular, these models ease the process of finding
steady states and closed orbits since we are able to use exact procedures instead of numerical
simulations. The main concern about this is the possible loss of information and the relevance
of the results obtained. Nevertheless, studies with numerical simulation in [29, 30, 31], shows
that there is no difference in the qualitative properties of the solutions in most cases.

As mentioned, the system of differential equations within each domain V ∈ V is linear.
Moreover, it can be represented as follows:

11

x′1 = kV1 − γ1x1

...

x′n = kVn − γnxn

where the value of kVi , for each I ∈ {1, ..., n} is obtained according to the domain.

Given a domain V , it is easy to see that the unique steady state of the respective linear

ODE is stable and given by x̄V =
(kV1
γ1
, ...,

kVn
γn

)
. Moreover, the entire domain V is on its basin

of attraction. We denote the state x̄V by focus (or focal point) of the domain V , since all flows
whose initial state is on V asymptomatically converge to x̄V when following the respective
system of linear differential equations.

Given this, if the focus of a domain is contained on it, we can conclude that the domain is
invariant and the focus is a stable steady state. However, if the focus of a domain is outside
of it, in order to compute the evolution of the model starting at some initial state inside that
domain, we can think about the flows which start at that initial state. However, if the focus
of a domain D is outside D, then there is a flow between the initial state and a state on the
boundary of the considered domain D. In this case, in order to compute the further trajectory
of the flow, we can concatenate it with a new one starting on that point in the boundary of D
and that is directed by the differential equations of the reached adjacent domain. This allows
us to obtain flows crossing more than a single domain and, thus, one can retrieve the general
dynamics of the entire model. In order to illustrate this, an example is introduced.

Example 2.1.2. In this example, we consider a toy PWL model which is shown in Figure 2.3.
This model considers two variables – x and y – describing the concentration of two components
which positively regulates each other. The degradation rate is common for both components
and it is 1. In this model, two boundaries are considered: x = θ1 and y = θ2. In the figure,
the state space is represented as well as the invariant region and the boundaries of the model.
Furthermore, a system of differential equations is shown within each domain meaning that it
guides the flows inside the respective domain.

Figure 2.3: Example of a flow crossing more than one domain in a PWL model.

For this model, and given the systems of differential equations for every domain, we
are able to compute the focal points. For instance, in the domain where θ1 < x < 2 and

12

θ2 < y ≤ 2, the system of differential equations considered is x′ = 2 − x ∧ y′ = 2 − y,
thus the focus is (2, 2). Since (2, 2) is within this domain we can immediately conclude that
(x, y) = (2, 2) is a stable steady state of the model. This does not occur in the domain where
0 ≤ x < θ1 and θ2 < y ≤ 2 since the focus of this domain is (2, 0), which is not contained on it.
Hence, as mentioned before, the differential equations ruling the dynamics within this domain
will drive all states to some respective state on boundary. This mean that there will always
exist a flow between any state of this domain and a state in one of its boundaries. This is
exemplified in Figure 2.3 where a state within this domain is represented by an enlarged point.
On the same domain an arrow represents the flow from that point to the respective point at
the boundary. Thereafter, another arrow represents a flow from same point in the boundary
to (2, 2), which is the focus of the domain where θ1 < x ≤ 2 and θ2 < y ≤ 2. In practice, we
can concatenate both flows and simply say that there is a flow from the stated represented
by the enlarged point and the stable steady state of θ1 < x ≤ 2 and θ2 < y ≤ 2. Therefore,
this generalized notion of flow captures the dynamics resulting from the interconnection all
domains of the entire system.

About the previous example, some additional explanations are given:

• Although the flows are represented by straight lines in Figure 2.3, we note that, in
general, they are described by curves in the state space. However, when all considered
degradation rates are identical, these flows become straight, as can be observed by
solving the system of differential equations analytically.

• There is some linguistic liberty, so to speak, when saying that there exists a flow from
some state to (2, 2) since the convergence to this steady state is asymptotic. This is
done in this thesis for simplicity but, formally, we should say that there exists a flow
from some state to some other state as close as we want to (2, 2).

• In this example we considered an implicit dynamic at the boundaries in such a way that
it was possible to cross them even with no formal dynamics being introduced. In general,
these dynamics at boundaries cannot be though in such a simplistic way. Indeed, the
study of the dynamics at boundaries is not a simple issue and many degenerate cases
can occur (see [23]). During the rest of this subsection we present some of these cases.

Regarding PWL models as simplifications of ODE models, one can think about the dynam-
ics on boundaries as given by the piecewise linear equations obtained as shown in Equations 2.1
and 2.2. However, some inconsistencies can arise.

In Figure 2.4, some special cases are illustrated. All these cases must be carefully treated
to obtain coherent results. There, arrows represent flows, lines represent boundaries and
points represent focal points.

Figure 2.4: Some examples of boundaries with special dynamics.

13

Case (1) shows two adjacent domains where flows move away from the shared boundary.
In this case, if we want to consider a flow starting at that boundary, two cases can occur: i) it
will move into one of the domains; ii) it will slide along the boundary (this kind of dynamics
at boundaries are known as sliding modes). Thinking about Equations 2.1 and 2.2, we can
obtain a system of differential equations x′ = F (x) = (f1(x), ..., fn(x)). Thus, the resulting
vector will determine the domain in which the flow will enter. However, it is also possible
that the resulting vector is null or pushes the flow along the boundary. In these cases we
can have an unstable steady state or an evolution toward the boundary, respectively. Cases
of sliding modes are illustrated in Figure 2.5 where the vectors on a small neighborhood of
the boundary are represented by a black arrow and the vector at the boundary is represented
by a gray arrow. In a similar way, case (2) presents two domains whose flows move to the
boundary. In this case, the question is how will the flow evolve once it reaches the boundary.
Again, as in (1), one must think about the vector F (x) at the boundary. However, in this
case, and since both domains will force the respective flows into the boundary, the evolution
must always occur toward the boundary. Also, as before, it can be the case that the resulting
vector is null and we obtain a steady state which is, in this case, stable. This is also shown
in Figure 2.5. When a flow evolves toward a boundary, more complex dynamics can occur
but we will not present them here since we do not need them in the sequel. The case (3)
considers a domain whose focus is in its boundary. Thus, no flow starting at that domain
can cross the boundary since the convergence for the focus is asymptotic. Moreover, at the
boundary itself, the dynamics is described using a strategy similar to the one in cases (1), (2).
Finally, in (4), two adjacent domains admit focal points at the common boundary. In this
case, the shared boundary cannot be crossed and, moreover the system will asymptotically
approach each one of the focal points according to the dynamics of the respective domain.
Moreover, within the boundary, the dynamics is obtained as described for cases (1) and (2).
In particular, an additional unstable steady state may occur.

Figure 2.5: Some examples of resulting dynamics at boundaries.

To conclude this remark about dynamics of PWL models on boundaries, we point out
that many other cases which are not listed could occur. Some generalizations of PWL models
even consider each boundary shared by two domains as a domain with proper dynamics itself.
However, we note that all these problems about dynamics at boundaries are solved trying to
find the “most coherent” solution to flows (see [23]).

Here we note that the hybrid nature (both continuous and discrete) of this kind of model
comes from combining the continuous formalisms within each domain with the discrete tran-
sition between these domains.

Finally, we close this subsection about PWL models by revisiting our guiding example of
circadian rhythm presented in Figure 2.1.

Example 2.1.3 (Circadian rhythm of a cyanobacteria – PWL model).
For this example, we consider the ODE model introduced in Example 2.1.1. One must consider
the parameters presented there to obtain a simplified PWL model.

14

Thus, we are able to obtain all domains and the respective system of linear differential
equations. First, note that the invariant region for this model is given by (xa, xt, xts, xs) ∈
[0,

10

0.45
] × [0,

20.51

0.24
] × [0,

10.74

0.28
] × [0,

6.61

0.08
]. Also, the boundaries are hyperplanes described

by the equations: xa = 10, xa = 13, xt = 11.42, xts = 10.16, xs = 5 and xu = 29.95.
However, since we consider xu as a dependent variable, we must, instead, consider the equation
C − 29.95 = xt + xts + xs, where C is the total amount of KaiC (which is considered to be a
constant in the model) as an additional boundary.

Since the obtained model is 4-dimensional, it is not fully presented here. However, we
exemplify with one domain. Considering C = 60 and the domain where 10 < xa < 13,
0 ≤ xt < 11.42, 0 ≤ xts < 10.16 and 0 ≤ xs < 5, then 29.95 < xu ≤ 60 always holds. Within
this domain, the system of differential equations obtained is:

x′a = 10− 0.45xa

x′t = −0.24xt

x′ts = −0.28xts

x′s = −0.08xs

In this way, it is possible compute the focus of this domain to determine the state to which

all flows which start at this domain converge. Since it is
(200

9
, 0, 0, 0

)
≈ (22.22, 0, 0, 0) which

is out of this domain, all flows starting within this domain will eventually reach a boundary
and leave. Since the degradation rates for each component are distinct, the flows within all
domains of this model are not straight lines but curves.

PWL models, as simplified ODE models are more easily studied when compared to regular
ODE models. In particular, there are no problems caused by nonlinearity of differential
equation. However, this comes with the price of obtaining an hybrid model (both continuous
and discrete) and losing some quantitative informations, as can be seen by the emergence of
strange behaviors at boundaries.

2.2 Qualitative models.

Quantitative models describe a system using continuous variables to express, for instance,
the exact value of the concentration of a component. Contrarily, qualitative models do not
express variables like concentration by their absolute values but using qualitative terms like
“high”, “medium” and “low”, for example. This allows us to use discrete variables and obtain
much simpler models, when comparing with the quantitative ones, with continuous variables.
We note that, because of this level of abstraction, qualitative models are not the best ones to
design or analyze a system with great precision, however we have several advantages. Note
that, in order to describe a dynamic system, these models can be depicted as graphs. This
kind of representation is very useful since many algorithm and techniques can be used to
study them. In this section we present Boolean networks, an important kind of qualitative
model, and some variants, which will be used during the rest of the thesis. Finally, we also
present a methodology to study large BN models.

15

2.2.1 Boolean networks.

Boolean networks (BN) are models which consider a variable for the concentration of
each component, as before. This kind of model is called “Boolean” because each variable,
related to a component of the system, can take either the value “1” or “0”, meaning that
its concentration is respectively “high” or “low”. Thus, we do not obtain a precise model
but, instead, a simpler one which can be studied in order to obtain a general overview of the
dynamics of a system.

Given the nature of this kind of model, the dynamics is described using Boolean expres-
sions. For instance, if two component, whose corresponding variables are A and B, positively
regulate a component C, then we can express this by the equation C+ = A ∨ B. Also, if
instead C is negatively regulated by some component whose correspondent variable is D, we
can write C+ = ¬D. We note that we wrote “C+” instead of “C” because these equations
do not describe a specific state of the system but its general dynamics. In this way, and
regarding that variables represent quantitative values for concentration such as “high” and
“low”, “C+” can be understood as “the quantitative concentration of C in the future”.

Given the Boolean equations describing the dynamics of a model, we can introduce the
idea of time steps in order to establish a temporal notion of evolution. In a graph-like
representation, we can think that crossing an edge represents the evolution of the system in
a time step.

Example 2.2.1 (Bistable switch). Consider a module of a system where only two compo-
nents, whose corresponding variables are denoted by A and B, are considered. Also, let these
two components inhibit each other mutually. This system is known as a bistable switch and
is described by the following equations:{

A+ = ¬B
B+ = ¬A

(2.3)

Note that there are four possible states for this system, since (A,B) ∈ {0, 1}2. Thus, if we
introduce the notion of time steps, we can come up with a network which provides insights
about the dynamics of the system. Consider, for instance, the state (A,B) = (0, 0), which we
simply write as 00, for short. Then, using the Equation 2.3, we can say that the state 00 will
eventually evolve to become state 11 (here again, 11 is an abbreviation of (1, 1)). If we build
a graph taking into account these dynamics, we obtain the graph shown in Figure 2.6. Note
that in this figure also 10 and 01 are the respective abbreviations for states (1, 0) and (0, 1).

Figure 2.6: Boolean network of (synchronous) Bistable switch.

In this example we introduced the notion of graphs for a BN. The following remarks must
be taken into account:

• Abbreviating states like (1,0) by 10 is very common. Indeed, in the sequel we will
use this kind of notation freely even for a larger number of variables. Thus, at each

16

example an intrinsic order for variables must be considered in order to unambiguously
identify states (such as before, in ODE and PWL models). For instance, in the previous
example, state 01 is the state where the first variable – A – is 0/“low” and the second
one – B – is 1/“high”.

• Two paradigms can be considered in BN models: synchronous and asynchronous. In
Example 2.2.1 we considered a synchronous approach, however we will further discuss
the difference between these two paradigms.

• Often, one may want to use other qualitative qualifiers different from “high” and “low”.
Indeed, one can use other qualifiers such as “medium”, “very high” or “very low”
introducing additional Boolean variables. We will also discuss this further in this section.

Asynchronous vs synchronous approach

When studying a BN model and its dynamics, one must think if the formal methods and
models used are suitable to correctly describe what is observed in real life. Therefore, we note
that, although Boolean networks are a discrete model (with a finite set of states and a finite
set of transitions between states), reality is more complex. Indeed, recalling Example 2.2.1,
we note that state 00 (eventually) goes to state 11, i.e. the state where the concentration of
both components are “low” evolves to one where the concentration of the same components is
“high”. This is not realistic since if both components have a low concentration, then only one
at a time should become high. In fact, when we say that the concentration of a component
is “high” or “low” we intrinsically consider a threshold which marks the limit between these
quantitative values. It is not realistic that the concentration of both components cross such
limit at the same time. This is the basis for the asynchronous paradigm.

Contrarily to the synchronous case where the values of all variables are updated at the
same time, the asynchronous approach considers several possible transitions, corresponding
to update only one variable (whose value changes) at a time.

To illustrate this, recall the Example 2.2.1 where the state 00 transit to state 11. In an
asynchronous approach, 00 could transit to two different states: 10 (where solely the value
of the first variable changes) and 10 (where solely the value of the second variable changes).
The comparison is shown in Figure 2.7. Further in this section, a more complex example
considering asynchronous approach will be presented.

In this thesis we will always consider the asynchronous paradigm for every BN.

Figure 2.7: Synchronous (left) vs. asynchronous (right) approach.

Multiple qualitative levels

When studying a particular biological regulatory network, we may sometimes observe that
a component whose concentration is described by a variable x positively regulates two other
ones (let us call them a and b) in different ways: it is possible that there is some intermediate

17

values for x, between “low” and “high”, such that the corresponding component effectively
induces the production of a but its concentration is still too low to effectively induce the
production of b. In such cases, it is possible to consider a third qualitative state – “low”,
“medium” and “high” – in order to describe the system in a more accurate way.

In terms of Boolean equations, these three qualitative levels can be obtained by considering
a variable as a binary tuple (x, y) instead of a single binary value. Thus, (0,0) means “low”,
(0,1) means “medium” and (1,1) means “high”. Thus, a component with three qualitative
levels needs two Boolean equations to describe its dynamics and special care must be taken
in order to avoid non-sense states like (1,0).

Example 2.2.2. Consider a toy model with three components A, B and C with a, b and c
being the corresponding variables. When a is not low, it induces the production of B and if
a is very high, then it inhibits the production of C. Also, B positively regulates C which,
in its turn negatively regulates A. This induces a system which can be represented by the
following Boolean equations:

a+ = ¬c
b+ = a

c+ = ¬a ∧ b
However, three qualitative values for the concentration of A can be considered in order to

obtain a more precise model. Indeed, if we think that a = (a1, a2) ∈ {0, 1}2, we can come up
with the following Boolean equation to describe the dynamics of this toy model:

a+
1 = ¬c ∨ a2

a+
2 = ¬c ∧ a1

b+ = a1

c+ = ¬a2 ∧ b

(2.4)

Here, we note that nonsense states are avoided by introducing some additional constraints
in the equations corresponding to the evolution of a1 and a2. Also, the remaining equations
were updated accordingly.

At this point, we note that even more than three qualitative levels can be considered in
a straightforward way by adding more additional variables and equations. Moreover, when
constructing a graph representing the dynamics of a model where some variable admits more
than two qualitative levels, we can simplify the notation by introducing abbreviations. For
example, for three qualitative levels we can abbreviate in the following way: 0 = (0, 0),
1 = (0, 1) and 2 = (1, 1). This is illustrated in Figure 2.8 where the graph corresponding to
the BN model defined by Equation 2.4. More information about these multilevel approaches
can be found in [27, 35].

Taking these aspects into account, we end this subsection recalling our guiding example
of circadian rhythm.

Example 2.2.3 (Circadian rhythm of a cyanobacteria – Boolean network).
In [14], we can find a BN model for the circadian rhythm of a cyanobacteria. Again, in this
context the model admits variables a, t, ts and s, which now are endorsed with qualitative
meaning, described by their Boolean values. In the mentioned paper, the proposed BN model
is described by the following Boolean equations:

18

Figure 2.8: Graph of a Boolean network with a variable admitting three qualitative values.

a+ = ¬s
t+ = u ∧ a
ts+ = t ∧ a
s+ = ts

where u can be considered as an abbreviation, such that u ≡ ¬(t ∨ ts ∨ s). However, for
simplicity, in a environment where KaiC is abundant, we can identify u ≡ 1. This simplifies
the Boolean equation to the one presented in 2.5

a+ = ¬s
t+ = a

ts+ = t ∧ a
s+ = ts

(2.5)

For this equation, we can now build the corresponding graph showing the dynamics of the
system. It is shown in Figure 2.9.

Figure 2.9: Graph of the Boolean network described by Equation 2.5.

19

2.2.2 From PWL models to Boolean networks.

In the same way that PWL models can be understood as simplifications of ODE models,
BN models can be seen as simplifications of PWL models. This connection is not as direct
as before but it can be obtained using the graphs of BN models. First of all, we must note
that there is a bidirectional correspondence between the Boolean equations of a BN and its
graph. Indeed, we can build a graph from the Boolean equations but also recover each one of
the Boolean equations by considering the truth table for each variable of the form x+ (which
is implicitly described in the respective graph). This can be attained by using the method of
Karnaugh maps (see [41] for details) and is illustrated by the following example:

Example 2.2.4. In this example we consider a graph of a BN model and determine the
Boolean equation relative to each variable. Let us consider two variables x and y such that
the graph of the corresponding BN model is depicted in Figure 2.10.

Figure 2.10: Graph of an unknown BN.

From this graph we can now build the truth tables for x+ and y+. These are represented
in Table 2.1. Taking the left table (for x+) as example, when (x, y) = (0, 0) then x+ = 0
because there is not an arrow from 00 for 10. However, for (x, y) = (0, 1) the value of x+ is
now 1 because there is an arrow from 01 to 11. Using a similar reasoning we can obtain all
entries for the presented tables.

y

x

0 1

1 1 1

0 0 1

y

x

0 1

1 1 1

0 0 0

Table 2.1: Truth table for x+ (left) and y+ (right).

At this point we can use the method of Karnaugh maps to discover that the Boolean
network is described by the following equations:{

x+ = x ∨ y
y+ = x

Because of the connection between Boolean equations and graphs of BNs, we will often
refer to such graphs as BN models in the sequel.

The simplification from PWL models to BN models is thus obtained through the notion
of a graph for a BN model. Indeed, given a PWL model we are able to simplify it in order
to build a graph. In this way, the obtained graph is now a BN model. The general idea to
construct a graph from a PWL model is to consider each domain of a PWL as a vertex/state
of the graph. This abstraction results from a qualitative interpretation of the domain.

Recall PWL models where each variable xi define boundaries of the invariant region

[0,
k1

γ1
] × ... × [0,

kn
γn

], determined by some thresholds xi = θai1 , ..., xi = θaik with 0 < θai1 <

20

... < θainai
<
ki
γi

. In a qualitative way, we can think of a new Boolean variable x̄i with multiple

qualitative level such that x̄i = 0 whenever xi ∈ [0, θai1 [, x̄i = 1 whenever xi ∈]θai1 , θ
ai
2 [, ... and

x̄i = nai whenever xi ∈]θainai
,
ki
γi

] (remember the section about BN with multiple qualitative

level).

Doing this to each variable of a PWL model, we obtain discrete variables x̄1, ..., x̄n which
provide qualitative information about the concentration of the respective component of the
system. In this way, we can establish a direct connection between each domain of a PWL
model and each state of the BN model obtained via this simplification. To ease the notation,
we denote a domain of a PWL model by Va whenever a is the corresponding state in the
simplified BN model obtained.

Then, in order to obtain a graph of a BN model from a PWL model, we must also be
able to obtain the set of edges from the dynamics of the PWL model. This is done using
the notion of flow. We admit an edge from a state of the BN model a to another state b if
Va and Vb are adjacent and there is a flow starting at some state within a which reaches the
boundary shared by Va and Vb, without crossing any other domain. The adjacency between
Va and Vb guarantees that we follow an asynchronous approach.

Consider the following example:

Example 2.2.5. Let us consider a PWL model illustrated in the left side of Figure 2.11. In
this figure, we can observe that the invariant region in [0, 3] × [0, 2] and the boundaries are
defined by the hyperplanes x = 1, x = 2 and y = 1. This generates 6 domains which are
represented by 6 vertices in the simplified BN model. Furthermore, the vertices are named
according to the qualitative value of state variables, as mentioned before. For instance, the
domain [0, 1[×[0, 1[is named 00,]1, 2[×[0, 1[is named 10 and]2, 3[×[0, 1[is named 20.

Figure 2.11: A toy PWL model (left) and the corresponding BN model (right).

In order to obtain the edges for the simplified BN model, (shown at the right side of
Figure 2.11) one must think about the flow described by the system of linear differential

equations within each domain. For instance, there is a flow from the state (x, y) = (0,
3

2
)

(which belongs to [0, 1[×]1, 2]) to (x, y) = (
1

2
, 1) (which belongs to the boundary between

[0, 1[×]1, 2] and [0, 1[×[0, 1[). Thus, the corresponding simplified BN model admits an edge
from 01 to 00. Also, since all flows starting at some state in [0, 1[×[0, 1[asymptotically
converge to (0, 0) in a straight trajectory, then there is no edges leaving 00, in the simplified
BN model.

21

Boolean networks with probabilities

This class of simplified BN models includes a special class of graphs. Some author propose
the introduction of probabilities into a graph in order to provide some additional insights
about the dynamics of the modeled system since we are able to observe whose transitions
occur with greater probability into a graph (see [12]). Another (stochastic) approaches to
this kind of model are found in [43, 65].

The idea of this kind of graph is to assign a probability to each edge. This probability is
related with the probability of each transition to occur and is computed in the following way:

1. Consider a domain A of a PWL model which admits a flow leaving to some other
adjacent domain B.

2. Let IB(x) : A → {0, 1} be a function which assigns to each state of A the value 1
whenever there is a flow starting at x to a state in the boundary between A and B, and
assigns the value 0 otherwise.

3. In the simplified model, let a and b be the vertices corresponding to domains A and B,

respectively. The probability assigned to the edge (a, b) is

∫
A I(x)dx∫
A dx

Example 2.2.6. We present a simple 2-dimensional example. Consider the same PWL as
in Example 2.2.5. In Figure 2.12 (left) we can see the same PWL model but with the flow
illustrated by edges. On the right side, we can see the respective BN model with probabilities
assigned to each edge.

Figure 2.12: BN model with probabilities on edges.

In order to provide an example on how to obtain the probabilities values, we consider the
domain [0, 1[×]1, 2], shown in the Figure 2.12 (middle). With a blue background we illustrate
the states of this domain which leave it and enter the domain]1, 2[×]1, 2] and with a yellow
background we illustrate the states which leave it and enter the domain [0, 1[×[0, 1[. If we
compute the relative areas, we can note that 75% of the region is blue and 25% is yellow.
These are the values assigned to the respective edges.

We note that not every vertex has an outgoing edge (however we could include a loop
with probability 1) but for the remaining, the probabilities of the outgoing edges sum to 1.

2.2.3 Asymptotic graph.

In practice, asymptotic graphs (AG) are not a model but a method. Indeed, they were used
in several works [68, 11, 15] as a tool for analyzing Boolean models. However, we introduce this

22

kind of formalism here since it will be needed further. The basic idea for obtaining asymptotic
graphs is to divide the set of variables of a BN model in two disjoint sets and study them
separately. In practice, this corresponds to consider a biological system composed by two
submodules. After this, one can combine the results gathered from studying each submodule
separately in order to obtain information about the whole system. In practice, AG provides
insights about the asymptotic behavior of the original BN model.

Consider a BN model whose set of Boolean variables is {x1, x2, ..., xn} and is described
by the Boolean equation X+ = F (X) with X = (x1, ..., xn), X+ = (x+

1 , ..., x
+
n) and F (X) =(

f1(X), ..., fn(X)
)
, where each fi is a Boolean function. Now, separate the elements of X

into two disjoint sets A and B such that A ∪ B = X and A 6= ∅ 6= B. Thus, we can study
each one of the generated “submodels”.

Let us denote the variables of A by xa1 , ..., xak and the variables of B by xb1 , ..., xbp
(note that k + p = n). Thus, the Boolean model for the submodule induced by the com-
ponents whose variables are contained in A is defined by the Boolean equations A+ =
FA(fa1(A;B), ..., fak(A;B)). Variables from B must be considered as inputs since they are
not considered in this submodel. Similarly, the Boolean model for the other submodule, de-
termined by the set B is given by the Boolean equations B+ = FB(fb1(B;A), ..., fbp(B;A))
and the variables from A are the inputs of the submodel.

Given this, we can now study the submodel induced by A by considering the variables of B
as inputs. In particular, this means that we must consider all possibilities for the value of the
variables in B. This would be a debatable move since it would increase the space complexity.
However, in practical cases, when we consider a biological system with two submodules, each
submodule has a small number of components interacting with components from the other
submodel. For instance, this means that a biological system with 30 components can be
divides into two submodules where only the concentration of around 3 components must be
considered as inputs for each submodule. Nevertheless, note that this is only possible if the
modules are previously and correctly identified in the biological system.

Thus, the AG method can be viewed as an analytical tool for reducing BN models. Note
that this is really important because a BN model with 20 variables describes a graph with,
at least 220 ≈ 1000000 states and, in practice, biological systems often present more than 20
components. The large size of BN models turns difficult its study; however the AG method
can reduce them, inducing much smaller models.

Therefore, we can rewrite the BN models for both A and B as A+ = FA(fa1(A;hA(B)),
..., fak(A;hA(B))) and B+ = FB(fb1(B;hB(A)), ..., fbp(B;hB(A))) where hA and hB are func-
tions which return the set of variables from B and A, respectively, whose value must be con-
sidered as input for the submodels induced by A and B, respectively. We say that hB(A) is
the output of A and hA(B) is the output of B.

Example 2.2.7. A simple example is provided to illustrate the partition of a BN into two
submodels. Consider a simple toy-model in order to make it clear. In this example four
variables, x1, x2, x3, x4, are considered to take a value in {0, 1}.

x+
1 = x2

x+
2 = x1

x+
3 = ¬x4

x+
4 = x3 ∧ ¬x1

23

We divide it into two submodels: one considering the variables in A = {x1, x2} and other
considering the variables in B = {x3, x4}. We can now obtain two BN submodels.

Submodel A{
x+

1 = x2

x+
2 = x1

Submodel B{
x+

3 = ¬x4

x+
4 = x3 ∧ ¬x1

Then, observe that hA(B) = ∅ and hB(A) = {x1} since the submodel induced by A has
no inputs and the submodel obtained by B takes only x1 as input.

We now introduce some concepts needed for the full construction of the asymptotic graph
and explain how to obtain it. Some connections between the introduced concepts and biolog-
ical problems still will not be explained at this point but further in this section.

Definition 2.2.1. Consider a directed graph (V,E). We say that a subset W ⊆ V is:

• a strongly connected component (SCC) if, for every x, y ∈ W , ∃v0, ..., vn ∈ X such that
x = v1, vn = y and (vi−1, vi) ∈ E, for i ∈ {1, ..., n}.

• a terminal, if W is a SCC and there is no edge e = (x, y) ∈ E such that x ∈ W and
y /∈W .

Using simpler words, a SCC is a set of vertices such that there is always a path between any
two vertices and a terminal is a set of vertices that is a SCC and admits no outgoing edges.
In the context of biological examples, we call a terminal as attractor.

The construction of the AG uses this concept. Consider a BN model and two submodels
whose sets of variables are A and B with |A| = k, |B| = p. Furthermore, we slightly change the
definition of functions hA and hB such that hA : {0, 1}p → {0, 1}p̄ and hB : {0, 1}k → {0, 1}k̄,
i.e. given a specific value for the Boolean variables in A (respectively, B), hA (respectively,
hB) only returns the value of the input variables for A (respectively, B). Thus, the submodel
A admits p̄ inputs and the submodel B admits k̄ inputs. The first step to obtain the AG is
to consider all possible combinations of values for the inputs of each submodel and construct
the respective BN model for each combination. This generates a collection of Boolean graphs
for each submodel, indexed by the respective input value. We denote each of these graphs by
GuX where X denotes the set of variables considered (in this case, either A or B) and u is the

input values considered (in this case, u belongs either to {0, 1}p̄ or {0, 1}k̄, according to the
submodel considered).

For each graph GuX we must compute all attractors Xu
i , where i is a natural number

used to enumerate different attractors with a random order. After doing this for all Boolean
graphs, we obtain a set Attr(A) and a set Attr(B) containing all attractors in the submodel
generated by A and B, respectively. Then, for each attractor Xu

i we must compute the semi-
attractors Xu

i,v. For each attractor Xu
i of a submodel A, x ∈ Xu

i,v if x ∈ Xu
i and hB(x) = v.

That is, semi-attractors split attractors according to the value of their outputs. We denote
by SAttr(A) the set of semi-attractors of a submodel A.

The AG is a directed graph such that the set of vertices is SAttr(A) × SAttr(B). The
rule to generate the set of edges is the following:

Consider a vertex Aui,v ×Bū
ī,v̄

:

24

• If u = v̄ for all b ∈ Bū
ī,v̄

and ū = v for all a ∈ Aui,v then there are no edges coming out

from Aui,v ×Bū
ī,v̄

.

• If u 6= v̄, one must consider the graph Gv̄A. Then, in that graph, for each admissible
m,n check if there is a path from Aui,v to the semi-attractor Av̄m,n. If so, then the AG
admits an edge from Aui,v ×Bū

ī,v̄
to Av̄m,n ×Bū

ī,v̄
.

• If ū 6= v for some a ∈ Aui,v, one must consider the graph GvB. Then, in that graph, for
each admissible m,n check if there is a path from Bū

ī,v̄
to the semi-attractor Bv

m,n. If

so, then the AG admits an edge from Aui,v ×Bū
ī,v̄

to Aui,v ×Bv
m,n.

Let us follow with an example.

Example 2.2.8. Consider the toy model presented in Example 2.2.7. To obtain the AG model
from it, we must build all graphs for the submodels induced by A and B by considering all
possible input values for each submodel. In particular, these graphs are G∅

A, G0
B and G1

B and
are illustrated in the Figure 2.13.

Figure 2.13: Graphs of the submodels for the admissible input values.

As mentioned before, hA(B) = ∅ and hB(A) = {x1}. Moreover, the attractors found on
each graph are highlighted by a black square: A∅

1 = {00} and A∅
2 = {11}, for the submodel

induced by A; B0
1 = {10} and B1

1 = {00, 01, 10, 11}, for the submodel induced by B. Observe
that all attractors coincide with semi-attractors, i.e. SAttr(A) = Attr(A) and SAttr(B) =
Attr(B).

Thus, we can obtain the asymptotic graph. Note that the set of vertices is given by
{A∅

1 , A
∅
2 } × {B0

1 , B
1
1} and the set of edges is obtained using the rule mentioned before. The

full asymptotic graph is shown in Figure 2.14.

Figure 2.14: The full asymptotic graph of the system in Example 2.2.7.

We close this section about AG with the guiding example of circadian rhythm.

Example 2.2.9 (Circadian rhythm of a cyanobacteria - Asynchronous graph).
In this example, we consider the BN model for the circadian rhythm of a cyanobacteria,

25

already presented in Example 2.2.3. This is still a simple example with just four variables
which take a value in {0, 1}.

a+ = ¬s
t+ = a

ts+ = t ∧ a
s+ = ts

We divide it into two submodels: one considering variables in A = {a, s} and other
considering variables in B = {t, ts}. We obtain two BN submodels.

Submodel A{
a+ = ¬s
s+ = ts

Submodel B{
t+ = a

ts+ = t ∧ a

Note that the only input of the submodel induced by A is ts and the input for the submodel
induced by B is a. To obtain the AG, we must build the graphs for the submodels G0

A, G1
A,

G0
B and G1

B, as illustrated in the Figure 2.15.

Figure 2.15: Graphs of the submodels for the AG model of circadian rhythm.

The attractors found on each graph are highlighted by a black square and, as in the
previous example, the set of semi-attractors coincide with the set of attractors. Thus, we can
obtain the asymptotic graph by the process mentioned above. The resulting AG is shown in
Figure 2.16.

Figure 2.16: The full asymptotic graph.

The utility of AG method and how much information is preserved when compared with
BN model was not discussed yet. Although we can note that the cyclic behavior of circadian
rhythm system is somehow preserved by the AG in Figure 2.16, we need to introduce some
biological concepts in order to have a clear idea of the utility of these models. This is done
in the next section of this chapter. However, we can already note that each vertex of a AG
represent a specific set of states of the original BN. Given a graph (V,E) of a BN whose

26

corresponding AG is (V̄ , Ē), we define the embedding function π : V̄ → 2V in the trivial way.
For instance π({{11, 10}, {00}}) = {1100, 1000}. Moreover, given an attractor A of a BN,
it is possible to find a corresponding attractor in the obtained AG and this corresponding
attractor Ā is such that π(Ā) := {x : x ∈ π(a), for some a ∈ Ā}. In particular, we say that
each attractor of a BN model is signaled by an attractor of the corresponding AG because it
is possible to prove that π(Ā) ⊆ A always hold.

2.3 Stable states in biological context.

As mentioned in the introduction, our goal is to study biological regulatory networks. In
this context, an important notion is that of stable state. When one studies a ODE model of
a biological regulatory network whose differential equation is X ′ = F (X), the term steady
state is not so strange as it refers to states x such that F (x) = 0, meaning that the system
is at equilibrium. Moreover, these steady states can also be stable or unstable, depending on
the asymptotic dynamics of the system in a neighborhood of the equilibrium state.

In a biological context, the existence of equilibria is thought to be related with the ways
of working of cells. Indeed, most of the cells of an organism have the same genetic code.
However, different cells operate in a different way. One can think, for instance, about a blood
cell and a bone cell, which perform distinct functions. Thus, when studying a biological
system, the identification of stable steady states or closed orbits is an important task due
to its connection with differentiated cells. Depending on the kind of model, these states can
take several forms, from quantitative to qualitative values. Thus, we use the term attractor
to mention these states in different kinds of models.

ODE models are those where this connection is more intuitive. An attractor is identified
as a stable equilibrium point or a stable limit cycle. However, ODE models for biological
regulatory network consider systems of non linear differential equations, usually a large num-
ber of variables. This is a major drawback for its study in a symbolic way and, usually, only
numerical simulations are performed. Although these simulations can provide an idea of the
dynamics of the biological system, they do not guarantee a global overview of it.

Because of this, PWL models are very useful to simplify the complex dynamic of ODE
models. The linearity of the differential equations within each domain allows us to obtain
exact solutions. Thus, we can concatenate the flows between distinct domains in order to
retrieve the general dynamics of the system. As mentioned before, it is known that not
much information is lost with this simplification, however, this abstraction step may lead
to some potential problems and inconsistencies as the possibility of contrary flows meeting
at boundaries. The reason for these special dynamics at boundaries is, often, the existence
of steady states from the initial ODE model (either stable and unstable) being located at
the boundaries. This is the reason why such cases must be treated individually and with
care. Anyway, it is still possible to look for attractors which are, in this context, represented
by stable equilibrium points or stable limit cycles, crossing several domain. Even so, these
models can still be large due to the number of components of the system.

Boolean networks are a step further into this simplification process. These models, follow-
ing the asynchronous paradigm, ignore the dynamics inside each domain and only represent
all possible transition between domains. Because of this, the attractors of a modeled system
are represented by terminals of the BN model. It is important to highlight that some attrac-
tors can be lost when going from a PWL model to its simplified BN model, nevertheless, all

27

attractors obtained for a BN model signal an attractor in the corresponding domains of the
PWL model, as discussed later. Moreover, considering BN models with probabilities in the
edges we can check questions like: “Which attractor is more likely to be reached from some
other domain in the model?”

Finally, a word on the AG method. As mentioned above, this method was developed to
decrease the size and difficulty of studying large BN models. Indeed, although the computa-
tional power of computers have increased during last years, the complexity of the biological
system is still too large. We note that humans are estimated to have more than 20000 genes
(see [60]) and the size of a BN model grows exponentially with the number of variables. Thus,
the AG method is an important analytical tool to analyze large biological models. The at-
tractors of a AG are terminals, such as in BN models case. Moreover, the process to obtain
a AG from a BN model guarantees that all attractors of a BN model are preserved in the
corresponding AG model. However, “artificial” attractors can possibly appear, i.e. attractors
that found no correspondent in the original BN model – they are called spurious attractors,
in literature. While it is a good new that all attractors can be retrieved, one must check each
attractor in order to verify that it is not a spurious attractor. These results about attractors
are proved in [68].

28

Chapter 3

Logic and computational tools to
study PWL models

In this chapter we present some theoretical foundations and propose computational tools
for the study of PWL models. The basis for this approach relies on the hybrid nature of
this kind of model. Note that the concept “hybrid” is used to designate dynamics which can
be both continuous and discrete. PWL models are naturally hybrid since they combine the
continuous dynamics within each domain with the discrete jump between domains. In this
chapter we propose differential dynamic logic (see [55]) for studying these systems and show
how it can be used to prove some meaningful properties. Most of the work presented in here
is published in [21]. Also, some preliminary work can be found in [17].

3.1 Differential dynamic logic.

Differential dynamic logic (dL, for short) is a dynamic logic embedding a first order logic
structure and whose set of atomic programs comprises both continuous and discrete behavior.
In this chapter we begin by introducing the syntax and semantics of dL and afterward show
how to apply it to biological system. Latter, we compare related works and evaluate their
interconnection. For this chapter we assume that the reader has background in dynamic logic
(see e.g. [6, 36]) and first-order logic (see e.g. [63]).

3.1.1 Syntax.

The syntax of dL admits a set V of logical variables and a signature Σ. This set Σ
contains:

• Function symbols like +, –, ·, / and constants (functions with arity 0);

• Predicate symbols like >, ≤, =;

• State variables, which are themselves constants, but whose semantical interpretation is
not fixed. We denote by Σfl the set of state variables.

Since this is a dynamic logic, modalities are induced by programs, built from a set of
atomic programs and some structure over them. It is important to point out that the hybrid

29

dynamics of a systems can be described by this language due to the two kinds of atomic
programs:

• Discrete Jump sets – (a1 := t1, ..., an := tn) – which correspond to discrete time assign-
ments.

• Continuous evolutions – (a′1 = t1, . . . , a
′
n = tn & χ) – where the value of state variables

is continuous, evolving according to a system of differential equations, constrained by
an invariant condition, which is a first-order formula χ. One can omit “&χ” whenever
χ ≡ >.

Using both kinds of atomic programs we can describe both discrete and continuous events.
We now follow with the definition of formulas for dL where this structure is implicitly and
formally introduced.

Definition 3.1.1. We define the set of terms Trm(V,Σ) as the least set such that V ⊆
Trm(V,Σ) and f(t1, ..., tn) ∈ Trm(V,Σ) whenever f ∈ Σ is a function with arity n and
t1, ..., tn ∈ Trm(V,Σ).

We define the set of first order formulas FmlFOL(V,Σ) recursively as the least set that
contains p(t1, ..., tn), ⊥, >, ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ, ϕ → ψ, ϕ ↔ ψ, ∀xϕ and ∃xϕ for every
proposition symbol p ∈ Σ with arity n, every x ∈ V , every t1, ..., tn ∈ Trm(V,Σ) and every
ϕ, ψ ∈ FmlFOL.

We define the set of hybrid programs HP (V Σ) recursively as the least set which contains
(a1 := t1, ..., an := tn), (a′1 = t1, . . . , a

′
n = tn &χ), ?χ, α;β, α∪β and α∗ for every t1, . . . , tn ∈

Trm(V,Σ), every χ ∈ FmlFOL(V,Σ), every distinct a1, . . . , an ∈ Σfl and every α, β ∈
HP (V,Σ).

Finally we define the set Fml(V,Σ) of formulas of dL as the least set that contains
p(t1, ..., tn), ⊥, >, ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ, ϕ → ψ, ϕ ↔ ψ, ∀xϕ, ∃xϕ, [α]ϕ and 〈α〉ϕ for every
proposition symbol p ∈ Σ with arity n, every x ∈ V , every t1, ..., tn ∈ Trm(V,Σ), every
α ∈ HP (V,Σ) and every ϕ, ψ ∈ Fml(V,Σ).

3.1.2 Semantics.

The definition of the semantics of dL states that it may only be interpreted over the set of
reals. Thus, all functions and propositions must be interpreted as real functions and propo-
sitions over reals. Moreover, this interpretation is rigid, i.e. symbols like + and propositions
like ≤ must always be interpreted as the “sum” and “less or equal”, respectively.

Given this, to evaluate a formula of dL we have to consider:

• An interpretation I, which is a (rigid) function, whose domain is Σ\Σfl, and that
interprets the predicate and function symbols as a predicate or real function.

• A state v, that is a map v : Σfl → R. We denote the set of all states by Sta(Σ).

• An assignment η, that is a map η : V → R.

Also, let x, d ∈ R and let f : R→ R be a function. We define f [x 7→ d] as:

f [x 7→ d](y) =

{
d, if y = x

f(y), otherwise.

30

We firstly define a valuation function for first-order formulas because their valuation is
needed to interpret the accessibility relation induced by modalities with hybrid programs. In
order to simplify the notation, we also denote the function used to valuate terms with the
same symbol.

Definition 3.1.2. Given an interpretation I, an assignment η and a state v, we now define
the valuation function valI,η(v, ·) : Fml(V,Σ) → {true, false} for all first-order formulas of
dL recursively as:

• valI,η(v, x) = η(x), for x ∈ V ;

• valI,η(v, u) = v(u), for u ∈ Σfl;

• valI,η(v, f(t1, . . . , tn)) = I(f)(valI,η(v, t1), . . . , valI,η(v, tn)), for any function symbol f
with arity n and any terms ti, i = 1, . . . , n;

• valI,η(v, p(t1, . . . , tn)) = true iff I(p)(valI,η(v, t1), . . . , valI,η(v, tn)) = true, for any pred-
icate symbol p with arity n and any terms ti;

• valI,η(v,⊥) = false;

• valI,η(v,>) = true;

• valI,η(v,¬ϕ) = true⇔ valI,η(v, ϕ) = false, for every ϕ ∈ FmlFOL(V,Σ);

• valI,η(v, ϕ ∨ ψ) = true iff valI,η(v, ϕ) = true or valI,η(v, ψ) = true, for every
ϕ,ψ ∈ FmlFOL(V,Σ);

• valI,η(v, ϕ ∧ ψ) = true iff valI,η(v, ϕ) = true and valI,η(v, ψ) = true, for every
ϕ,ψ ∈ FmlFOL(V,Σ);

• valI,η(v, ϕ → ψ) = true iff valI,η(v, ψ) = true whenever valI,η(v, ϕ) = true, for every
ϕ,ψ ∈ FmlFOL(V,Σ);

• valI,η(v, ϕ↔ ψ) = true iff valI,η(v, ψ) = valI,η(v, ϕ), for every ϕ,ψ ∈ FmlFOL(V,Σ);

• For every ϕ ∈ FmlFOL(V,Σ), valI,η(v,∃xϕ) = true iff valI,η[x 7→d](v, ϕ) = true for some
d ∈ R;

• For every ϕ ∈ FmlFOL(V,Σ), valI,η(v,∀xϕ) = true iff valI,η[x 7→d](v, ϕ) = true for every
d ∈ R.

Before providing the definition of valuation for the full set of formulas of dL, we must
define the semantical interpretation for hybrid programs as a relation which introduces the
notion of transition between states.

Definition 3.1.3. Given a hybrid program α, the induced transition relation ρI,η(α) ⊆
Sta(Σ)×Sta(Σ) is defined recursively as:

• (v, w) ∈ ρI,η(x1 := θ1,. . . , xn := θn) iff
w = v[x1 7→ valI,η(v, θ1)] . . . [xn 7→ valI,η(v, θn)];

31

• (v, w) ∈ ρI,η(x′1 = θ1,. . . , x′n = θn & χ) iff ∃ r ∈ R+
0 and there is a flow f : [0, r]→Sta(Σ),

such that:

– f(0) = v and f(r) = w;

– f respects the differential equations, i.e. for each variable xi, the valuation of xi
at the state f(t), valI,η(f(t), xi) = f(t)(xi) is continuous and has a derivative of
value valI,η(f(t), θi) in the interval]0, r[;

– The value of the variables z ∈ Σfl\{x1, . . . , xn} remains the same during the
continuous evolution, i.e. f(t)(z) = v(z) for any t ∈ [0, r]

– Every state f(t) verifies χ, i.e. valI,η(f(t), χ) = true for any t ∈ [0, r];

• ρI,η(?χ) = {(v, v) ∈ Sta(Σ)×Sta(Σ) : valI,η(v, χ) = true};

• ρI,η(α ∪ β) = ρI,η(α) ∪ ρI,η(β);

• ρI,η(α ; β) = {(u,w) : ∃v ∈ Sta(Σ) such that (u, v) ∈ ρI,η(α) and (v, w) ∈ ρI,η(β)};

• ρI,η(α∗) = {(u,w) : ∃n ≥ 0 integer, ∃v0, . . . , vn ∈ Sta(Σ) such that u = v0, w = vn and
(vk−1, vk) ∈ ρI,η(α) for any k ∈ {1, . . . , n}}.

Note that the notion of “flow” introduced in this definition coincides with the one intro-
duced before for ODE and PWL models, in a biological context. However, in this context,
the flow is constrained by a first order condition χ. Figure 3.1 illustrates these transitions by
identifying states as circles and transitions induced by a hybrid program as edges.

In a discrete jump set all assignments are instantaneous and simultaneous. It is important
to note that all state variables a1, ..., an must be distinct in order to the definition of these
program be coherent. The same occurs for continuous evolution because one state variable
cannot evolve following two distinct differential equations.

Definition 3.1.4. We introduce the valuation for all set of formulas recursively as:

• For every formula ϕ ∈ FmlFOL, the valuation is as defined in Definition 3.1.2;

• valI,η(v,¬ϕ) = true⇔ valI,η(v, ϕ) = false, for every ϕ ∈ Fml(V,Σ);

• valI,η(v, ϕ ∨ ψ) = true iff valI,η(v, ϕ) = true or valI,η(v, ψ) = true, for every
ϕ,ψ ∈ Fml(V,Σ);

• valI,η(v, ϕ ∧ ψ) = true iff valI,η(v, ϕ) = true and valI,η(v, ψ) = true, for every
ϕ,ψ ∈ Fml(V,Σ);

• valI,η(v, ϕ → ψ) = true iff valI,η(v, ψ) = true whenever valI,η(v, ϕ) = true, for every
ϕ,ψ ∈ Fml(V,Σ);

• valI,η(v, ϕ↔ ψ) = true iff valI,η(v, ψ) = valI,η(v, ϕ), for every ϕ,ψ ∈ Fml(V,Σ);

• For every ϕ ∈ Fml(V,Σ), valI,η(v,∃xϕ) = true iff valI,η[x 7→d](v, ϕ) = true for some
d ∈ R;

• For every ϕ ∈ Fml(V,Σ), valI,η(v,∀xϕ) = true iff valI,η[x 7→d](v, ϕ) = true for every
d ∈ R;

32

Figure 3.1: Illustration of the hybrid programs induced transitions.

• valI,η(v, 〈α〉ϕ) = true iff valI,η(w,ϕ) = true for some state w such that (v, w) ∈ ρI,η(α);

• valI,η(v, [α]ϕ) = true iff valI,η(w,ϕ) = true for any state w such that (v, w) ∈ ρI,η(α).

If valI,η(v, ϕ) = true, we say that a formula ϕ is satisfied in I, η, v. Moreover, ϕ is said
to be valid if it is satisfied in any triple I, η, v

We follow with an example on how to evaluate a formula.

Example 3.1.1. Let us consider the following formula ([x2 := 1]x1 = 1)→ 〈x′1 = x1〉x1 = e.
We present a step by step evaluation of this formula for an arbitrary triple I, η, v. For this,
we firstly note that, in this case, (u, v) ∈ ρI,η(x′1 = x1) whenever v = u[x1 7→ u(x1)et], for
some t ∈ R+. This is obtained by solving the differential equation.

valI,η
(
v, ([x2 := 1]x1 = 1)→ 〈x′1 = x1〉x1 = e

)
= true

⇔ valI,η
(
v, 〈x′1 = x1〉x1 = e

)
= true whenever valI,η

(
v, [x2 := 1]x1 = 1) = true

⇔ valI,η
(
v[x1 7→ v(x1)et]x1 = e

)
= true for some t ∈ R+ whenever

33

valI,η
(
v[x2 7→ 1], x1 = 1) = true

⇔ v[x1 7→ v(x1)et](x1) = e for some t ∈ R+ whenever v[x2 7→ 1](x1) = 1

⇔ v(x1)et = e for some t ∈ R+ whenever v(x1) = 1

⇔ et = e for some t ∈ R+, which is true for t = 1.

In particular, we note that, since this evaluation was for an arbitrary tripe I, η and v,
then this formula is valid.

It is important to note that the syntax of dL can be applied to describe usual properties
of systems such as reachability. For instance, we can express that a specific state is reachable
from another specific state. Actually, this can even be generalized to regions. In fact, we can
express the property “regarding a system of differential equations such that x′ = 1 − y and
y′ = x, we can reach a state where x = y starting at (x, y) = (0, 0.1) without crossing any
state where x < 0 or y < 0” by the formula:

〈x := 0, y := 0.1; (x′ = 1− y, y′ = x& x ≥ 0 ∧ y ≥ 0)〉x = y

One of the main novelties of dL is the capacity of being able to describe hybrid dynamics.
Thus, one of the most important things when trying to describe a property of a system is to
describe its dynamics by an hybrid program. Afterward, this hybrid program can be used to
index modalities. We follow with an example in order to illustrate how such hybrid programs
can be obtained.

Example 3.1.2 (Bouncing Ball from [55]). In Figure 3.2 we can see that the dynamics of the
ball in the air follows the laws of physics where the acceleration of the ball (derivative of the
velocity v) is −g, the gravitational acceleration. The variable h is the height, which depends
on the velocity of the ball, and t is the running time. In the instant the ball hits the ground,
the velocity is instantaneously updated. At this point, the velocity becomes −cv where the
parameter c is an elasticity constant depending on the ball.

Figure 3.2: Bouncing ball example.

Neither ODEs nor discrete models are able to fully describe the dynamics of such a system
but the syntax of dL is able to do so. In order to do this, we must describe the behavior of
the bouncing ball by an hybrid program of dL.

The continuous evolution of the ball in the air is described by the ODE v′ = −g and
h′ = v. Thus, we must describe it by the program (v′ = −g, h′ = v & h ≥ 0). We note that
the continuous evolution is constrained by the condition h ≥ 0 in order to assure that the
ball does not go “below” the ground. Also, when the ball hits the ground we must describe
its behavior by a discrete assignment v := −cv. Here, we can either consider that c has a
fixed value or that it is a free logical variable. In order to be more general, in this example,

34

we consider c a free logical variable. Then, we can describe the dynamics of bouncing ball by
the following hybrid program:

((v′ = −g, h′ = v & h ≥ 0); ((?(h = 0); (v = −cv)) ∪ (?(h 6= 0)))∗

This program admits a continuous evolution while h ≥ 0 and, after that, the execution checks
if h = 0. If so, it executes the discrete assignment to the velocity v. This procedure is repeated
finitely many times in order to allow the ball to bounce arbitrary finitely many times. We
note that, in this case we do not really need the constrain into the ODE. Indeed, we can
sometimes find an equivalent hybrid program to describe the dynamics of the system:

((v′ = −g, h′ = v); ((?(h = 0); (v = −cv)) ∪ (?(h > 0)))∗

Actually, this is possible because anytime h < 0 after the execution of the continuous evolu-
tion, the program will not be able to successfully terminate because it will fail either the test
?(h = 0) or ?(h > 0) and the execution will fail.

3.1.3 Proof calculus.

Aexpected, dL admits a proof calculus. This calculus uses sequents which are expressions
with the form Φ ` Ψ. In this representation we call to the formulas in Φ the antecedents and
to the formulas in Ψ the consequents. We have the following useful equivalence:

Φ ` Ψ ≡ `
∧
ϕi∈Φ

ϕi →
∨
ψi∈Ψ

ψi

We do not present the rules of this proof calculus in this thesis because they are not
fundamental for the work developed. They can be found in [55], as well as its basic properties.
The proof calculus of dL is sound but incomplete, i.e. although all provable formulas are valid,
there are valid formulas which are not provable. This fact is a drawback, however, we can
work around this problem. Indeed, in [55] a weaker result about completeness is proven. It
states that the proof calculus of dL is complete if all valid formulas of the form [α]ϕ, with
α ∈ HP (V,Σ) being a continuous evolution and ϕ ∈ FmlFOL(V,Σ), are known.

The process for verifying the validity of a formula is algorithmic. At each step, the
algorithm considers a formula ϕ and obtains one or more simpler formulas which would be
enough to derivate ϕ using the proof calculus of dL. Then, one tries to prove each one of
these simpler formulas. Thus, this is a recursive process which finishes when we eventually
reach an axiom or some simpler formula which we are not able to prove. Since this process is
long and costly, it is useful to have a tool to help us in this process. This tool, which was also
developed by A. Platzer is a software called KeYmaera. It helps to verify the validity of a dL
formula by producing its proof in a semi-automatic way. In practice, the software performs
all algorithmic steps and asks for human help whenever it is not able to algorithmically check
the validity of some simpler formula. More details about KeYmaera software can be found
in [55].

Since this proof calculus is incomplete, it can be the case that we are not able to prove
some valid formulas of dL even using KeYmaera software. Thus, when a proof is incomplete
and KeYmaera asks for human help, the user can check which formula is causing the problem.
This is very useful because the formula returned by KeYmaera is, in fact, a condition for the
validity of the input formula for KeYmaera. This means that, if we provide a formula ϕ to

35

Keymaera and it returns some formulas ϕ1, ..., ϕn that it is unable to prove, then it means
that, anyway, we have a proof for the formula (ϕ1 ∧ ... ∧ ϕn)→ ϕ.

This fact provides some interesting strategies for obtaining sufficient conditions. If one is
studying a system and wants to obtain sufficient conditions for some event to happen, one
can describe the desired event by a dL formula and use it as input of KeYmaera. Thus,
KeYmaera will check whether the desired property is valid (always hold) or provide some
sufficient condition for it to happen. For example, this is very useful when studying safety
conditions for safety-critical systems (see [45, 56, 57]).

3.2 Application to PWL models: Biological systems with hy-
brid dynamics.

The occurrence of hybrid dynamics in biochemical systems is common. In fact, we can
consider several scenarios where it is reasonable to study biological systems under a hybrid
perspective. In a medical context, this is observed in cases like the use of an insulin pump
or a pacemaker, where the continuous1 dynamics of the organism is, almost instantaneously,
affected by an external input. Indeed, several approach in a therapeutic already consider a
discrete controller (for example in the case of some electric stimulations or drug administra-
tion). Also at a smaller scale, this can be done in a cellular context with microorganism or
even cells (for instance, manipulating the environment). Combining these discrete controllers
with the natural continuous dynamics originates hybrid dynamics.

A related concept that cannot be ignored is reconfigurability (see [50]). This notion refers
the capacity of some systems to change the way they operate while running. Although it can
be used at a wider context, we note that hybrid systems can be seen as reconfigurable systems
where discrete jumps are seen as reconfigurations. Thus, the change in their behavior is caused
by some discrete input to the system. There are references to several biological reconfigurable
systems. De Silva presents in his book [64] many examples of reconfigurable biological systems.
Also, in [51] an insulin infusion pump motivates the study of a reconfigurable design.

3.2.1 Relating hybrid and reconfigurable systems.

In the literature, several approaches can be found to the study of reconfigurable systems.
Regarding reconfigurations as transitions, we may propose some sort of modal logic as the
language to express them. However the methods must be prepared to deal with whatever
mathematical structures (and corresponding logics and languages) are used to formally de-
scribe local configurations of a system. Madeira in [50] presents the mathematical foundations
of a (family of) logic(s) to reason about reconfigurable systems, modeled as generalized tran-
sition systems. In these structures, transitions represent the changes between configurations
and each world of the structure is a model of a specific configuration. It is important to refer
that a logic common to every state of the transition system must exist. This is precisely
the approach we follow in this document. Hence, our approach can be described in a rather
straightforward way: models for reconfigurable systems software are structured transition

1We note that, in fact, the number of each kind of component is a natural number and the interactions
between components follow stochastic laws. However, as mentioned before, due to their large number, it is
reasonable to treat them as continuous variables.

36

systems specified by an appropriate logical system. Their states are the individual configu-
rations with whatever structure they need to have to model concrete applications. On the
other hand, transitions correspond to the admissible reconfigurations that can be performed
in the real world.

There are several ways in which a system can be reconfigurable: discrete jumps imposed
by physical constraints, external stimuli, or discontinuities in vector fields are some common
occurrences. To identify reconfigurability in biological models, we thus propose a definition
that uses the notion of discrete event [9]. A discrete event triggers a change in the current
continuous system: it can be caused by a variable constraint (h = 0 in Example 3.1.2) or by a
discrete input with possible values. Each discrete event induces a transition from the current
configuration to another one: in general, there may be more than one transition allowed for
each event. Formally, a reconfigurable system is defined as follows.

Definition 3.2.1 (Reconfigurable System). A reconfigurable system is a tuple (X,V,M,Q)
of nonempty sets such that:

• X is a nonempty set of state variables;

• V is a nonempty evaluation set ;

• M is the set of configurations M : DM × T→ Sta(X), where

- T is an additive monoid such as R+
0 (continuous case) or Z+

0 (discrete case).

- Sta(X) is the set of all states v : X → V. In case X = {x1, . . . , xn}, we can
identify a state v with the tuple (v(x1), . . . , v(xn));

- DM ⊆ Sta(X) is the invariant of the configuration M ;

- M(v, 0) = v, for any state v ∈ DM ;

- M(M(v, t0), t1) = M(v; t0 + t1) for any state v and every t0, t1 ∈ T;

• Q is a set of discrete events or reconfiguration (relations) Q ⊆ (M× Sta(X))2, where:

- if
(
(M1, v1), (M2, v2)

)
∈ Q, then v1 ∈ DM1 and v2 ∈ DM2 ;

- no reflexive pair is contained in Q, i.e. with the form ((M,v), (M,v)).

We say that (v0, v1) is an admissible M -evolution from v0 to v1 within the configuration
M if ∃ t̄,M(v0, t̄) = v1 and such that M(v0, t) ∈ D for all t ∈ [0, t̄].

Each configuration M is such that M(v, t) represents the state reached from v after t
units of time, according to the respective configuration. The condition M(M(v, t0), t1) =
M(v; t0 + t1) guarantees the coherence of each configuration. In the examples discussed here,
the configurations will be given using ODEs and discrete updating functions. Thus, when the
dynamics within M is ruled by differential equations, admissible M -evolutions coincide with
flows. Moreover, (i) reconfigurations which are not triggered at the same configurations are
distinct and (ii) reconfigurations which do not lead to the same configuration must be also
distinct.

A discrete event Q =
(
(A, v), (B, v′)

)
∈ Q expresses that it is possible to jump from the

state v evolving according to the configuration A to the state v′ evolving according to the
configuration B by the discrete event Q. Note that no pair with the form ((M,v), (M, v))
is contained in any discrete event because, since these states changes occur instantaneously,

37

this kind of pair does not represents any reconfiguration at all. The most tricky part is
to identify the appropriate set Q and the corresponding discrete events Q. The following
examples illustrate this.

As mentioned, we can consider a hybrid system as a particular reconfigurable system.
This is because the continuous system admits an instantaneous (discrete time) reconfigura-
tion. Bearing this in mind, we can also apply dL to the study of such systems. In [38],
hybrid systems are formalized using the concept of hybrid automaton. Therefore, we use that
definition of hybrid automata and explain why they can be considered as a particular case of
reconfigurable systems.

Definition 3.2.2 (Hybrid Automata). A hybrid automaton is a tuple (M, E,Σ, X, init, inv,
dyn, asg, grd) where:

– X is a finite set of real-valued variables.
– M is a finite set of discrete states, E is a transition relation E ⊆M×Σ×M and Σ a

set of labels.
– init and inv are functions which associate to each state a predicate over the variables

in X. Letter D denotes the set {(M, v) ∈ M × R|X|) : v � inv(M)} where the expression
v � inv(M) means that the predicate inv(M) is satisfied in v.

– dyn is a function that associates to each state a predicate over the variables in X and
their first derivatives. It is used to define the set of continuous evolutions which occur at each
state (system of ODEs).

– asg is a function that, given an edge (e = (M1, l,M2) ∈ E), returns a predicate over
v0, v1, states of M0 and M1, respectively, after a discrete jump. This provides an assignment
to each edge. Finally, the function grd associates each edge with a guard, i.e. a predicate
over X.

We can see that this family of hybrid automata is a reconfigurable system where:
– The set X is the set of state variables.
– The set V is R.
– Each state M ∈ M represents a configuration given by the solution of the system of

ODEs obtained with dyn(m) and its invariant DM is the set {v : (M, v) ∈ D} and, therefore,
T = R+

0 . In this way M(v0, t) is the state which assigns to each state variable the value of
the respective solution for the Cauchy problem with the ODEs obtained from dyn(M) and
initial state v0, after t units of time.

– The set Q of discrete events is given by the set containing all discrete events Q defined
for each l ∈ Σ and each pair (M0,M1) ∈M×M as:

- {((M0, v0), (M1, v1)) : e = (M0, l,M1) ∈ E, the predicate asg(e) is valid over v0, v1

and the predicate grd(e) is true over v0}.

Finally, we note that the hybrid automaton consider init as the possible initial states and
values for the state variables. Although possible, we did not consider such set in our definition
of reconfigurable systems since we will not use it.

The bouncing ball is a classical example of a hybrid system and we present it to illustrate
how to consider it as a reconfigurable system.

Example 3.2.1 (Bouncing Ball). A bouncing ball can be seen as a reconfigurable system
and, as explained above, as a system with hybrid dynamics. Anytime the ball hits the ground
and bounces back there is a change in the differential equations which drives the evolution
of the position of the ball along time. Since this change occurs at discrete time instants we

38

observe a reconfiguration at those instants. We recall the Figure 3.2 in order to describe the
bouncing ball as a reconfigurable system (X,V,M,Q) where:

– X = {v, h}
– V = R
– M = {M} is a singleton and T = R+

0 . For each t, M((v0, h0), t) is the solution for
the Cauchy problem: v′ = −g ∧ h′ = v, with initial values (v0, h0) at t. The invariant
DM = {(v, h)| h ≥ 0}.

– Q = {Q} is a singleton such that Q = {((M, (v̄, 0)), (M, (−cv̄, 0)))| v̄ < 0}.
Now we focus on how to use dL proof calculus to study and prove properties of hybrid

systems. In order to do this, we recall the hybrid program obtained in Example 3.1.2 for the
bouncing ball using the syntax of dL. Considering H as the initial height and assuming the
law relating kinetic and potential energy – v2 ≤ 2g(H − h) – we can prove that the height
h of the ball will always be between 0 and the initial height H. Figure 3.3 shows the initial
screen of KeYmaera for the proof of this property. Indeed, we only need to assume that the
gravitational acceleration g is positive, the initial height H is positive, and that the value of
c, an elasticity constant, is between 0 and 1.

Figure 3.3: Initial screen of the bouncing ball problem in KeYmaera.

We note that, in this example, the exact values of g (gravitational acceleration) and c
(elasticity constant) were not specified. In fact, dL proof calculus is able to prove properties
and formulas containing variables (unlike, for example, model checking). References [49, 55,
56, 57] collect many other examples essentially from mechanics.

3.2.2 PWL models as hybrid models.

In this document, we focus our attention in PWL models for biological systems as hybrid
systems. As illustrated next, PWL models appear naturally as reconfigurable structures.

Example 3.2.2. Consider a PWL model where

D =

{
[0, θa11 [,]θa11 , θ

a1
2 [, ...,]θa1na1

,
k1

γ1
]

}
× ... ×

{
[0, θan1 [,]θan1 , θan2 [, ...,]θannan

,
kn
γn

]

}
39

is the set of all domains. Also, let FD(x1, ..., xn) be system of differential equations associated
with the domain D ∈ D.

This general class of systems can be interpreted as a class of reconfigurable systems with
X = {x1, ..., xn} being the set of state variables, V = R and the setM containing the config-
urations MD, relative to each domain D. MD : D̄×R→ Sta(X) is such that MD(x0, 0) = x0

and dMD(x,t)
dt = fD(x). The set of discrete events Q is defined with respect to boundaries

between adjacent domains. When the flows of two adjacent domains can be concatenated
– i.e. they do not move away nor to the boundary simultaneously – then a discrete event
Q =

(
(D, v), (D′, v)

)
is in Q whenever D and D′ are adjacent and v is in the boundary

between D and D′.

As mentioned above, there may be some special cases (such as sliding dynamics or fixed
points along the boundaries) where a transition is not so straightforward to compute. How-
ever, this does not affect reconfigurability: depending on the case, a new configuration corre-
sponding to the sliding mode or fixed point might be added to M.

Following this idea, we can use the syntax of dL to specify the dynamics of PWL models.
This is done using the hybrid language of dL: the differential equations specify the dynamics
within each domain and the discrete jump sets along with the remaining operators of dynamic
logic are used to specify the changes between domains described by the discrete events. A
given system may exhibit several reconfigurability agents. For instance, a discrete controller
can be also considered in a PWL model, generating a new class of discrete events.

In this case, given a set X of state variables, the PWL model obtained is similar but
each fD depends on external parameters, µ = (µ1, . . . , µr), taking values in a discrete set:
µ ∈ U ⊆ Rr and fD : D̄×U → Sta(X). Thus, a broader set of configurations and additional
discrete events must be considered. Let ` be the number of domains and note that, at each
domain of a PWL model, we have a system of linear equations with inputs:

X ′ = fD(X;µ), for X ∈ D,µ ∈ U

If we consider u = |U |, then there are `× u configurations MD,µ associated to the system
of linear differential equations fD(X;µ).

The set of discrete events contains all elements for transitions between boundaries, as for
usual PWL models, and some additional elements for each change in the input value. Thus,
the set Q of discrete event contains the elements of type:

(1)
(
(MD,µ, v), (MD′,µ, v)

)
where D and D′ are adjacent and v belong to the boundary

between D and D’;

(2)
(
(MD,µ, v), (MD,µ′ , v)

)
for every state u, i.e. whenever the value of any input variable

changes.

Here, we note that: in (1), we still must be careful with sliding modes and; in (2), discrete
controllers may be constrained by some rule or strategy – for instance, a pacemaker should
only be triggered at specific points. This is indeed intrinsically described in the structure of
reconfigurable system by the definitions of discrete events and invariants. In this way, the
dynamics of a PWL model with inputs is a reconfigurable system and can also be described
by hybrid programs in the syntax of dL. This is illustrated in the next example.

40

Example 3.2.3 (PWL model with inputs).
Let us consider a theoretical regulatory network composed of two components which regulates
each other as well as themselves. Also, consider an external discrete controller µ to regulate
the expression of y. In a practical case µ can be, for instace, mRNA:

x′ = 5
ym

2m + ym
+

xm

3m + xm
− x

y′ = 5
3m

3m + xm
+

ym

ym + 2m
+ µ− y.

To simplify, we consider, in the sequel, that the degradation rate of the substance repre-
sented by µ is extremely high and is reduced to zero quickly if the control fades.

The corresponding piecewise linear model is the one presented in Table 3.1, according to
its four domains labeled Bi, i = 1, . . . , 4 with B1 = {0 ≤ x < 3, 0 ≤ y < 2}, B2 = {0 ≤ x <
3, 2 < y ≤ 6}, B3 = {3 < x ≤ 6, 2 < y ≤ 6}, and B4 = {3 < x ≤ 6, 0 ≤ y < 2}.

{
x′ = 5− x
y′ = 6 + µ− y

{
x′ = 6− x
y′ = 1 + µ− y

0 ≤ x < 3 ∧ 2 < y ≤ 6 3 < x ≤ 6 ∧ 2 < y ≤ 6{
x′ = −x
y′ = 5 + µ− y

{
x′ = 1− x
y′ = µ− y

0 ≤ x < 3 ∧ 0 ≤ y < 2 3 < x ≤ 6 ∧ 0 ≤ y < 2

Table 3.1: Piecewise linear model with a discrete control variable µ.

This model presents two forms of reconfigurable behavior. Reconfigurations occur when-
ever the system transits between domains or whenever the discrete input µ changes its value.
In this example we define the possible discrete values for the input µ ∈ {0, 2}.

A careful analysis of the model in Table 3.1 shows that, in the case inputs have no effect
– i.e. µ ≡ 0 –, the system asymptotically converges to an orbit centered at (x, y) = (3, 2) as
shown in Figure 3.4.

Figure 3.4: Orbit of the system.

However, suppose that the objective is to drive the system toward a state where both
proteins are highly expressed, that is, the system remains in a state which is at domain B3.

41

This can be done if we set the control as µ = 2 whenever x ≥ 3 and y ≥ 2, and µ = 0
otherwise. Indeed, we can use dL to prove that the resulting system has a stable steady state
at (x, y) = (6, 3). In order to be able to do this, we need to describe this property by a formula
of dL syntax. Firstly, we must obtain the hybrid program that describes the dynamics of this
system in the semantics of dL. Since there are four domains, we describe the evolution on
each, as different configurations. Note that in this case, no complex dynamics appears at the
boundaries. We also introduce a time counter τ whose purpose will be shown further:

ctrl1 ≡ (?x ≤ 3 ∧ y ≤ 2;µ := 0; (x′ = −x, y′ = 5− y + µ, τ ′ = 1 & x ≤ 3 ∧ y ≤ 2))

ctrl2 ≡ (?x ≤ 3 ∧ y ≥ 2;µ := 0; (x′ = 5− x, y′ = 6− y + µ, τ ′ = 1 & x ≤ 3 ∧ y ≥ 2))

ctrl3 ≡ (?x ≥ 3 ∧ y ≤ 2;µ := 0; (x′ = 1− x, y′ = −y + µ, τ ′ = 1 & x ≥ 3 ∧ y ≤ 2))

ctrl4 ≡ (?x ≥ 3 ∧ y ≥ 2;µ := 2; (x′ = 6− x, y′ = 1− y + µ, τ ′ = 1 & x ≥ 3 ∧ y ≥ 2))

For instance, the execution of program ctrl1 first verifies if the actual state is in the
respective domain B1, defined by x ≤ 3 ∧ y ≤ 2; if so, then it executes µ := 0 and proceeds
with the continuous evolution defined by the respective system of differential equations. In the
system of differential equations, we add a differential equation capturing to the time counter
τ . Also, this evolution can only be executed while the system is still in the same domain (this
constraint is represented by “& x ≤ 3 ∧ y ≤ 2”). The executions of ctrl2, ctrl3 and ctrl4 are
analogous.

Then, the evolution of the complete system is described by:

bioctrl ≡ (ctrl1 ∪ ctrl2 ∪ ctrl3 ∪ ctrl4)∗

The execution of bioctrl can determine which subprogram must be executed. In order to
consider behaviors that come from one domain to another, the Kleene operator is added, for
(finite) iteration.

If a state is a steady state, then there exists a neighborhood such that any other state
inside that neighborhood converges asymptotically to the steady state. In particular, we can
conclude that some state is a steady state if there is a disk centered in that state such that if
we choose another state x inside it, the distance of this state to the center will decrease along
the trajectory obtained by the evolution of the system. We can describe this property by the
following formula of dL:

ϕ ≡ ∃c > 0(∀ 0 < k < c((x− 6)2 + (y − 3)2 = k ∧ τ = 0
→ [bioctrl](τ = 0 ∨ (x− 6)2 + (y − 3)2 < k)))

where c and k are logical variables and τ, x, y and u are state variables.
We point out that the time counter τ is important here because, by definition, the hybrid

program bioctrl can terminate without executing the continuous evolution. In this case, the
state would not vary and the distance to the stable steady state (x, y) = (2, 3) would not
decrease. Therefore, after the execution of bioctrl, either no continuous evolution occurred
(and, thus, τ = 0) or the distance to the state (x, y) = (2, 3) decreased.

We must note that, in general, there are asymptotic stable steady states which do not
verify the property above. Indeed, in a general case, the distance can increase during some
periods of time along the trajectory to an attractor. However, since we are considering a
piecewise linear models, we know that these phenomena do not occur.

42

In fact, we can construct a proof of ϕ within the dL proof calculus to show that the
property above holds, as reported in [17].

Next example presents the ODE model for circadian rhythm of a cyanobacteria with a
discrete input variable and use dL syntax to describe some properties.

Example 3.2.4 (Cyanobacteria circadian rhythm with discrete controller).

Recover the ODE model introduced in Example 2.1.1 for the circadian rhythm of a
cyanobacteria:

x′a = 10
54

x4
s + 54

− 0.45xa

x′t = 20.51
(205.43− xt − xts − xs)4

(205.43− xt − xts − xs)4 + 29.954
.

x4
a

x4
a + 104

− 0.24xt

x′ts = 10.74
x4
t

x4
t + 11.424

.
x4
a

x4
a + 104

− 0.28xts

x′s = 6.61
x4
ts

x4
ts + 10.164

.
134

x4
a + 134

− 0.081xs

As it is this model does not describe a reconfigurable system since it can be described by a
single configuration. Nevertheless, it is possible to obtain hybrid dynamics when considering
a discrete control variable u. Let u be a control which induces the production of the protein
KaiA whose concentration is represented by xa (for instance, mRNA). In order to include this

variable we change the differential equation associated to xa to x′a = 10
54

x4
s + 54

+u− 0.45xa.

Moreover, we consider an additional differential equation with the following control strategy:

u′ =

{
1− u, if xa ≤ 15

−u, otherwise.

Here, the term “−u” describes the degradation rate for the control substance (which can be
mRNA, for instance).

Let X = (xa, xt, sts, xs, u) and F : R5 → R5 such that F (X) = (F1, F2, F3, F4, F5), where
Fi corresponds to the ith equation of the ODE model with the control u, i ∈ {1, 2, 3, 4, 5}.
We can represent our model by the expression X ′ = F (X). Additionally, if we introduce an
additional state variable a such that F5 = a − u, where a can be either 0 or 1, according to
the control strategy, we can describe the dynamics of this model by a hybrid program of dL.
To be realistic, a discrete controller would check the value of xa at regular intervals in order
to decide which action to take. Let us consider that the discrete controller checks the state
of the model every 0.1 units of time. We can describe the dynamics of this model by the
following hybrid program, which we denote by hybdpgrm:

subpgrm ≡
(
τ := 0;

(
(?xa < 15); a := 1 ∪ (?xa ≥ 15); a := 0

)
;(
τ ′ = 1, X ′ = F (X) & τ ≤ 0.1

))
hybdpgrm ≡ subpgrm;

(
(?τ = 0.1); subpgrm

)∗
43

The hybrid program denoted by subpgrm starts by considering a time counter state vari-
able τ which will be needed further. Then it verifies if either xa < 15 or xa ≥ 15 and
adjusts the value of a, accordingly. Thereafter, it runs the continuous evolution constrained
by τ ≤ 0.1 in order to guarantee that the continuous evolution will not run longer than what
is allowed between two successive verifications by the discrete controller.

Hence, the program hybdpgrm executes the program subpgrm successively. It begins by
executing it once. Afterward, it verifies if the discrete controller must alter the value of a (this
is known by performing the test ?τ = 0.1). If so, it runs subpgrm again. We introduce the
operator ∗ to obtain a hybrid program which successfully terminates on all reachable states
of the original model.

Now that we have a hybrid program describing the evolution of the hybrid model (ODE
with discrete controller), we can test formulas expressing properties we want to prove. For
instance, we can ask if, for the initial point X = (17, 10, 10, 10, 0), it is true that xa is always
greater than 13. This property is expressed by the formula:

?(xa = 17 ∧ xt = 10 ∧ xts = 10 ∧ xs = 10 ∧ u = 0)→ [hybdpgrm]xa > 13

3.2.3 Limitations and alternatives.

As mentioned, the main advantage of dL is to have a sound proof calculus. However,
when one is proving a formula containing a modality with continuous evolutions – given as
systems of ODEs –, the proof calculus of dL requires the analytical solution of those systems
of ODEs in order to formally prove the formula.

This can be problematic since some differential equations do not admit an analytical
solution or are very hard to solve. In particular, one can think about systems of nonlinear
differential equations. Although dL is able to specify properties of a system by a formula,
sometimes that formula cannot be formally proven. In fact, even KeYmaera is not able to
deal with most of these problematic cases. KeYmaera calls (Wolfram) Mathematica in order
to obtain a symbolic solution for the system of ODE, which is not always possible.

Consider, for example, the final formula in Example 3.2.4. Although there is no problem
specifying the system, KeYmaera would not be able to prove that formula since it cannot
handle the system of nonlinear differential equations which guide the dynamics of the ODE
model for circadian rhythm.

Furthermore, KeYmaera is particularly designed for proving safety-properties but does
not perform so well when proving reachability properties. This is explained by the fact that
safety properties are expressed by “Box” modalities ([π]), while reachability properties are
expressed by “Diamond” modalities (〈π〉) and KeYmaera permorms better when proving
formulas solely with “Boxes” (we note that since ¬[π]¬ is semantically equivalent to 〈π〉, we
mean formulas with “Boxes” which are not in the scope of a negation).

dReach - A complement to KeYmaera.

The conception of dReach is related to dReal, whose theoretical foundations are based in
the notion of δ-satisfiability. dReal checks the satisfiability of formulas like ϕδ, where ϕ is a
first order formula and δ is a real. Thus, ϕδ is a syntactic variant of ϕ that encodes a notion
of numerical perturbation on logic formulas. Essentially, the notion of satisfiability is relaxed

44

to admit δ-bounded errors. With this relaxation, δ-complete decision procedures can fully
exploit the power of numerical approximations without losing formal correctness guarantees.

Thus, dReach [44] is a tool based on δ-reachability, i.e. reachability under some error or
perturbation δ, which works over dReal [28]. This tool is designed to study hybrid systems.
However, we can even present it as a tool to study reconfigurable system, described by tu-
ples (X,Q, flow, jump, inv, init) such that X is a set of real state variables, Q is a set of
configurations and flow, jump, inv, init are functions that assign SMT formulas that dReal
can handle (first-order formulas over the reals including polynomials, trigonometric functions,
exponential functions, Lipschitz-continuous ODEs, etc.) to each configuration in Q. In this
case flow determines the differential equations guiding the continuous evolution in each con-
figuration, jump provides conditions to jump between configurations, inv states an invariant
for the configuration and init determines the initial states.

Thus, this tool is able to deal with systems whose dynamics is described using many
nonlinear differential equations if they are Lipschitz-continuous ODEs. Moreover, under a
bounded error δ, it can solve reachability problems, which are not easy to study with dL and
Keymaera.

However, dReach also presents some practical limitations when comparing to dL and
KeYmaera. The fact that we are dealing with hybrid systems is an issue since we can have a
jump condition which is too general. In this way, it is possible that we obtain a system which
can jump almost anytime and to anywhere. This generates an infinite number of trajectories
which are, in practice, impossible to follow. Anyway, usually in reachability problems we are
only interested in finding a witness rather than all possible solutions, which is more important
for safety.

Example 3.2.5. Consider again the ODE model for circadian rhythm which is presented
in Example 2.1.1 and, therefore, to study it using dL is difficult. Moreover, we can obtain
a hybrid model if we introduce a control variable such as in Example 3.2.4. Indeed, till
now we considered that the total concentration of KaiC was constant but we can add the
unphosphorylated form of KaiC using a control variable u. This variable determines the rate
with which KaiC is introduced in the system. In order to keep the model simple, we note that
this increment in xu can be represent by the respective increase in C, the total amount of the
protein KaiC. Therefore, in the model presented in [14], we note that xu = C − xt − xs − xts
and we add the ODE C ′ = u where u, the control variable, can take the values 0 (no control),
1 (small increment), or 4 (strong increment). We consider that the value of u can be changed
at each time unit, thus, obtaining a hybrid model.

x′a = 10 54

x4s+54
− 0.45xa

x′t = 20.51 (C−xt−xs−xts)4

(C−xt−xs−xts)4+29.954
x4a

x4a+104
− 0.24xt

x′ts = 10.74
x4t

x4t+11.424
x4a

x4a+104
− 0.28xts

x′s = 6.61
x4ts

x4ts+10.164
134

x4a+134
− 0.081xs

C ′ = u

As a reconfigurable model, we consider three configurations corresponding to the three
control values. In each case, we consider a different value for the control variable u. Further-
more, we consider a terminal configuration which is reached whenever the goal is attained. In
the context of dReach, tuple (X,Q, flow, jump, inv, init) is such that X = {xa, xs, xts, xt, C}

45

and Q consider the four configurations. Moreover flow assigns to each configuration the
corresponding ODE with the corresponding value for u along with a time counter τ whose
corresponding differential equation is τ ′ = 1. For the final configuration, we consider a ODE
with null equations, in such a way that there is no evolution along time. The jump condition
must be chosen carefully in order to obtain a treatable model. We consider that the system
can change its configuration at 5, 10 and 15 units of time. This will be explained further. In
[14], the condition used to guarantee the positivity of xu is C ≥ 20.51

0.24 + 10.74
0.28 + 6.61

0.081 . However,
in this case we allow smaller values for the initial value of C and establish the inv condition
as xs + xt + xts ≤ C on each configuration to guarantee the positivity of xu.

Simulating numerically the system without controls during 20 units of time, the value of
xt will never go over 26. We check if it is possible to obtain a trajectory where xt reaches
the value of 30 during the same interval of time for the initial conditions C0 = 80, x0

a = 10,
x0
s = 10, x0

t = 10 and x0
ts = 10 using our discrete control u. Thus, for init we consider the

configuration with no control and C0 = 80, x0
a = 10, x0

s = 10, x0
t = 10 and x0

ts = 10 as initial
condition.

In order to use dReach, we must design a control strategy. Therefore, we let our system
start at the state with no control and we allow the system to change its state at 5, 10, and
15 units of time. We also add the jump condition “xt = 30” in such a way that, when it is
satisfied, the system is allowed to change to the terminal configuration.

Running dReach, we conclude that our control strategy assures that the system is control-
lable from the initial state C0 = 80, x0

a = 10, x0
s = 10, x0

t = 10 and x0
ts = 10 to a state where

xt = 30 within 20 units of time. Moreover, a numerical solution (witness) for this problem
is generated and the graphics of it can be seen in Figure 3.5. The solution given by dReach
corresponds to letting the system evolve during 15 units of time with no control (u = 0) and
then change to a strong control (with u = 4).

Note that, in fact we do not have reachability but δ-reachability. However, we can think
about a very small value for δ in such way that it is not significant.

The purpose of this example is to illustrate how reachability problems for reconfigurable
and, in particular, hybrid systems can be studied using dReach, as an alternative to KeY-
maera. Indeed, combining these two tools we can have a solid methodology to study properties
of hybrid systems.

3.3 Final remarks.

Hybrid and, more generally, reconfigurable behaviors are common in many areas includ-
ing in biological contexts after the explicit introduction of discrete controllers. This kind of
behavior also finds a natural correspondence with PWL models where the continuous dy-
namics inside each domain is mixed with discrete time reconfigurations at the boundaries.
Our contribution is the application of dL and the tool KeYmaera to the study of biological
models which embed hybrid feature – such as PWL models. dL is a language whose syntax is
naturally able to specify properties of this kind of system. Moreover, the proof calculus of dL
can be used to obtain safety conditions for a system operation mode or controlled procedure.
This can be attained using the KeYmaera computational tool which algorithmically obtains
a large part of a proof.

Moreover, we observe that KeYmaera presents some limitations when dealing with reach-
ability problems. In this case, we propose dReach as an alternative since it was specifically

46

Figure 3.5: Solution for the reachability problem.

developed to work with δ-reachability. Therefore, our work proposes that one can use these
two approaches according to the appropriated context in order to obtain a powerful tool to
the study of hybrid systems.

47

48

Chapter 4

Reactive Boolean networks: An
intermediary step between PWL
and BN models

In this chapter we introduce a new kind of model for biological regulatory networks which
we call reactive Boolean networks (RBN). The model is based on switch graphs [26], which
are reactive structures, i.e., discrete structures whose configuration can change whenever a
discrete event occur. Thus, these models are still reconfigurable structures and can be seen
as a discretization of hybrid models. Indeed, this will be highlighted when establishing a
connection between PWL models and BN models, in the context of biological regulatory
network models. In this chapter we introduce new structures/models as generalization of
switch graphs; concepts such as bisimulation for these newly introduced structures/models;
and prove some important results about them. Thus, we introduce RBN models and compare
their utility to the already existing kinds of models. Finally, we generalize the concept of
switch graphs to include weights and discuss their utility. During the rest of this chapter, we
assume that the reader is familiarized with the concepts of modal logic and bisimulation [6].
The work presented here was published in [19, 20, 22]. Some of the work can be found in
another submitted paper [59].

4.1 Switch graphs.

The term reactive models is applied to graph-like models whose set of edges may be altered
whenever an edge is crossed. This notion was introduced by Gabbay but some examples of
this kind of structure had already been presented earlier. For instance by van Benthem [5]
and Areces [1, 2] introduced the notions of sabotage and swap logic, respectively. Particularly,
in [2], the authors propose to enrich modal logics with relation-changing operators. In this
way, these operators describe how the frame would change, i.e. if we conceive a frame as a
graph, the introduced operators describe which edges should be removed or added at each
step. Switch graphs were introduced by Marcelino and Gabbay in [26] as a model to reactive
systems. Contrarily to what was proposed by Areces, a switch graph contains in its definition
every possible future configurations, instead of having a language with specific operators to
act over its structure. In this way, the cause for the reactivity is moved from the language to
the model itself. Thus, our work is model-oriented and we introduce a usual modal language

49

and reactivity is occurs naturally due to the structure of a switch graphs.

Definition 4.1.1. A switch graph is defined as a pair (W,S) where W is a set of states or
worlds and S is a set of generalized edges such that:

• S0 ⊆W ×W ;

• Sn+1 ⊆ S0 × Sn × {◦, •}.

• S =
⋃
i≥0

Si

An edge s ∈ Sn is said to be a n-level edge. Moreover, if n ≥ 1, then s is said to be an
higher-level edge.

Switch graphs are generalizations of graphs in such a way that usual graphs only contain
0-level edges. Moreover, in switch graphs have multiple edges but only 0-level edges can
be crossed. Higher-level edges are uniquely included in order to describe reactive dynamics.
Higher-level edges can either inhibit (i.e. temporarily remove) an edge from the model or
activate (i.e. restore) an edge into the model. In this way, an higher-level edge (s0, sn, ∗) can
be either an activator or an inhibitor according to the value of ∗ : it is an activator if ∗ = •
and an inhibitor if ∗ = ◦. Semantically, if an higher-level edge (s0, sn, ∗) is present in a switch
graph, then the edge sn is activated (respectively, inhibited) whenever s0 is crossed and ∗ = •
(respectively, ∗ = ◦). In order to formally describe these change on a switch graph (W,S), we
introduce the notion of instantiation as a function I : S → {0, 1} in such a way that I(s) = 1
means that the edge s ∈ S is present in the model and I(s) = 0 means that s is temporarily
removed. Whenever an edge of a switch graph is crossed, the instantiation I must be updated
in order to reflect all possible activations/inhibitions caused by the higher-level edges. In this
thesis, in graphical representations, we illustrate worlds and 0-level edges as usual vertices
and arrows of an oriented graph. An higher-level edge (s0, sn, ∗) is illustrated as an arrow
going from the edge s0 to the edge sn whose head is black whenever ∗ = • and white whenever
∗ = ◦. Finally, an instantiation I is illustrated by representing an edge s with a dashed line
whenever I(s) = 0 (i.e. s is temporarily removed) and with a solid line otherwise.

The update of the instantiation function must be coherent with the changes induced by
higher-level edges. Thus, given an instantiation I and a 0-level edge s0 we denote by Is0 the
updated instantiation function after crossing s0 and define it as:

Is0(s) =

1, if (s0, s, •) ∈ S and I((s0, s, •)) = 1

0, if (s0, s, ◦) ∈ S and I((s0, s, ◦)) = 1

I(s), otherwise

We note that some inconsistencies could arise if two parallel higher-edges exist. For
instance we could have an activator and an inhibitor edge acting over the same edge at the
same time. We will not consider these cases here but they could be solved by providing a
rule like “inhibitor edges prevail over activator edges”. We also note that, given a particular
switch graph, if there is an integer N such that there is at least one N -level edge and no
(N + 1)-level edges are considered, then N -level edges are either active or can be ignored,
since there is not any (N + 1)-level edge to activate them.

We follow with a simple example.

50

Example 4.1.1. Consider the switch graph illustrated in Figure 4.1, with the following abbre-

viations: e2 =
(
(w,w), (w,w), ◦

)
and e1 =

(
(w,w),

(
(w,w), (w,w), ◦

)
, •
)

. This corresponds

to a switch graph (W,S) such that W = {w} and S = {(w,w), e1, e2}.

Figure 4.1: Example of a switch graph representing a counter.

In this figure, the world w and the 0-level edge (w,w) are depicted as usual. For each
higher-level edge (s, s′, ∗), they are graphically represented as going from s to s′ and with
either a white head (whenever ∗ = ◦) or a black head (whenever ∗ = •). Every edge s
is represented as dashed arrow whenever I(s) = 0 and as solid one otherwise, implicitly
describing the considered instantiation. Putting all together, higher-level edges with white
head are inhibitors and edges with black head are activators. On other hand, dashed arrows
should not be considered or crossed because they are temporarily removed.

Finally, we describe how a graph can be altered whenever an edge is crossed. The switch
graph above, only admits an edge that can be crossed: (w,w). Thus, we can successively cross
it until it is no more possible, we obtaining the sequence of graphs depicted in Figure 4.2.

Figure 4.2: Evolution of a switch graph representing a counter.

Note that when crossing (w,w) for the first time, there is an inhibitor edge e2 that would
be triggered. However, this time, it is temporarily removed. Nevertheless, e1, which is an
activator edge, will be triggered and restore e2. Because of this, when (w,w) is crossed for
the second time, e2 is already active and acts over (w,w), temporarily removing it. Thus,
we cannot make any move more since (w,w), which is now removed from the graph, is the
only crossable edge. Since this switch graph presents an edge that can be crossed exactly two
times, it is called a counter, in the literature.

4.1.1 Reactive frames, logic and bisimulation.

In this section we propose modal logic for switch graph models and discuss its suitability.
Moreover, we introduce a notion of bisimulation for switch graphs resorting to an auxiliary

51

structure called reactive frame, introduced by Gabbay & Marcelino in [25].

Definition 4.1.2. A pair (W,∆) is said to be a reactive frame where W is the set of worlds
(or states) and ∆ is the set of paths if and only if:

• W ⊆ ∆

• ∆ ⊆
⋃

0<n<∞
Wn

• ∆ is closed for subpaths, i.e. (w1, ..., wn) ∈ ∆ whenever (w1, ..., wn, wn+1) ∈ ∆, for every
w1, ..., wn+1 ∈W .

In this context, we define a function t : ∆ → W such that t(w1, ..., wn) = wn, i.e. t returns
the last world of a path. We introduce some simplifications to notation: given a path λ =
(w1, ..., wn), we can represent it by w1...wn and λw represents the path w1...wnw. A path γ
extends or is an extension of a path λ if there exist w0, ..., wn ∈ W such that γ = λw0...wn.
Moreover, every path is an extension of itself. Finally, the length of a path is the number of
worlds it contains (non necessarily distinct). For instance, the length of (w1, ..., wn) is n and
(w1, ..., wn, w1) is n+ 1.

Reactive frames represent reactive transition systems in an implicit way, by describing all
possible generated paths. This allows us to explicitly describe all admissible evolutions of a
system even if it is not easy to obtain a switch graph that generates it. In a dual way, switch
graphs provide a structure with implicit reactive rules which generates the corresponding set
of paths. These two approaches are equivalent since, as proven by Marcelino & Gabbay in
[26], every reactive behavior can be described by each approach. This implies that, for each
reactive frame, we can obtain an equivalent switch graph and vice versa.

Reactive frames can be seen as Kripke frames where paths represent worlds and the
accessibility relation is obtained for paths. In particular, Gabbay & Marcelino introduce the
notion of reactive model and propose a bimodal logic to study these models. This is called
the logic of reactive models.

Definition 4.1.3. Let Ω be a set of atomic propositions. Define the set of formulas for the
logic of reactive models, RFml(Ω), as the least set such that:

• Ω ⊆ RFml(Ω)

• ¬ϕ ∈ RFml(Ω) whenever ϕ ∈ RFml(Ω)

• ϕ ∧ ψ ∈ RFml(Ω) whenever ϕ,ψ ∈ RFml(Ω)

• ♦Rϕ ∈ RFml(Ω) whenever ϕ ∈ RFml(Ω) and a ∈ A

• ♦Pϕ ∈ RFml(Ω) whenever ϕ ∈ RFml(Ω)

Other operators like ⊥, >, ∨, →, �R and �P are introduced as abbreviations, as usual.

Informally, the modality R represents the usual accessibility relation and P is an equiva-
lence relation which relates paths ending at the same world.

Definition 4.1.4. Let Ω be a set of atomic propositions. Then a tuple (W,∆, V) is a reactive
model when (W,∆) is a reactive frame and V : Ω→ 2∆ is a function assigning to each atomic
proposition the set of paths satisfying it.

52

We note that, in this context, the evaluation of formulas is done with respect to a path
rather than a state/world. The satisfiability of a formula ϕ at a path λ of a reactive model
M = (W,∆, V) is denoted by M, λ � ϕ and defined it recursively as:

• M, λ � ϕ⇔ λ ∈ V (ϕ), whenever ϕ ∈ Ω.

• M, λ � ¬ϕ⇔M, λ 2 ϕ

• M, λ � ϕ ∧ ψ ⇔M, λ � ϕ and M, λ � ψ

• M, λ � ♦Rϕ⇔M, λw � ϕ for some w ∈W such that λw ∈ ∆

• M, λ � ♦Pϕ⇔M, γ � ϕ for some γ ∈ ∆ such that t(γ) = t(λ)

This definition can be extended to the remaining operators introduced by abbreviation.
We now introduce a definition of bisimulation for reactive models. Indeed, as would be

expected, this coincides with the usual definition of bisimulation for bimodal logic.

Definition 4.1.5. Let (W,∆, V) and (W ′,∆′, V ′) be two reactive models. A relation
S ⊆ ∆×∆′ is a bisimulation if and only if, for all λ ∈ ∆, λ′ ∈ ∆′, such that (λ, λ′) ∈ S,

(R-zig) ∀w ∈W (λw ∈ ∆⇒ ∃w′ ∈W ′, λ′w′ ∈ ∆′ such that (λw, λ′w′) ∈ S)

(R-zag) ∀w′ ∈W ′(λ′w′ ∈ ∆′ ⇒ ∃w ∈W,λw ∈ ∆ such that (λw, λ′w′) ∈ S)

(P -zig) ∀γ ∈ ∆(t(λ) = t(γ)⇒ ∃γ′ ∈ ∆′
(
t(λ′) = t(γ′) and (γ, γ′) ∈ S)

)
(P -zag) ∀γ′ ∈ ∆′(t(λ′) = t(γ′)⇒ ∃γ ∈ ∆

(
t(λ) = t(γ) and (γ, γ′) ∈ S)

)
(atom) For each p ∈ Ω, λ ∈ V (p)⇔ λ′ ∈ V (p)

Example 4.1.2. Consider a set of atomic propositions Ω = {p} and two reactive models
M1 = (W1,∆1, V1) and M2 = (W2,∆2, V2) where: W1 = {w1, w2, w3}, ∆1 = {w1, w2, w3,
w1w2, w1w2w1, w1w3, w1w3w1} and V1(p) = {w2, w3, w1w2, w1, w3}; and W2 = {v1, v2},
∆2 = {v1, v2, v1v2, v1v2v1} and V2(p) = {v2, v1v2}. Then S = {(w1, v1), (w2, v2), (w3, v2),
(w1w2, v1v2), (w1w2w1, v1v2v1), (w1w3, v1v2), (w1w3w1, v1v2v1)} is a bisimulation.

We point out the importance of the modality indexed by P for the coherence of the notion
of bisimulation in reactive models. Otherwise, note that if Ω ≡ ∅, then {(w1, v1), (w1w2, v1v1),
(w1w2w2, v1v1v2)} would be a bisimulation between ({w1, w2}, {w1, w1w2, w1w2w2}, V) and
({v1, v2}, {v1, v1v1, v1v1v2}, V). This makes no sense since it would relate two paths whose
terminal state is distinct.

We now present a proof of the complete Hennessy-Milner theorem under some conditions.
We start by proving modal equivalence.

Lemma 4.1.1. Let (W,∆, V) and (W ′,∆′, V ′) be reactive models, let λ ∈ ∆, λ′ ∈ ∆′ and
let S ⊆ ∆ × ∆′ be a bisimulation of reactive models. Then (λ, λ′) ∈ S implies M,λ � ϕ ⇔
M ′, λ′ � ϕ for every formula ϕ ∈ RFml(Ω).

Proof. The proof is by induction over the structure of formulas. If ϕ ∈ Ω, then M,λ � ϕ ⇔
M ′, λ′ � ϕ by definition of bisimulation. The non-atomic cases are presented below, under
the hypothesis that (λ, λ′) ∈ S.

53

− M,λ � ¬ϕ
⇔M,λ 2 ϕ definition
⇔M ′, λ′ 2 ϕ inductive hypothesis
⇔M ′, λ′ � ¬ϕ definition

− M,λ � ϕ ∧ ψ
⇔M,λ � ϕ and M,λ � ψ definition
⇔M ′, λ′ � ϕ and M ′, λ′ � ψ inductive hypothesis
⇔M ′, λ′ � ϕ ∧ ψ definition

− M,λ � ♦Rϕ
⇒ ∃w ∈W, λw ∈ ∆ and M,λw � ϕ definition
⇒ ∃w′ ∈W ′, λ′w′ ∈ ∆′ such that λw and λ′w′ are bisimilar bisimulation definition
⇒ ∃w′ ∈W ′, λ′w′ ∈ ∆′ and M ′, λ′w′ � ϕ inductive hypothesis
⇒M ′, λ′ � ♦Rϕ defintion

The reciprocal condition is proved analogously.

− M,λ � ♦Pϕ
⇒ ∃γ ∈ ∆, t(γ) = t(λ) and M,γ � ϕ definition
⇒ ∃γ′ ∈ ∆′ with t(γ′) = t(λ′) such that γ′ and γ are bisimilar bisimulation definition
⇒ ∃γ′ ∈ ∆′ with t(γ′) = t(λ′) and M ′, γ′ � ϕ inductive hypothesis
⇒M ′, λ′ � ♦Pϕ definition

The reciprocal condition is proved analogously

The reciprocal of the Lemma 4.1.1 is only valid for a restricted class of models. In classical
modal logic, image-finiteness is usually imposed. We resort to a slightly more relaxed notion,
that is the one of saturated model, based in a similar notion presented in [2]. With this
restriction, Theorem 4.1.2 below explains how a bisimulation relating paths indistinguishable
by formulas of RFml(Ω) could be built. In the sequel, for a relation Z ⊆ ∆ ×∆ on paths,
notation Z[λ] abbreviates the set {γ ∈ ∆ : λZγ}.

Definition 4.1.6. Let Σ be a set of formulas and M = (W,∆, V) a reactive model.

• Σ is satisfiable over a set of paths Λ ⊆ ∆ if there is a path λ ∈ Λ such that M,λ � ϕ
for every ϕ ∈ Σ.

• Σ is finitely satisfiable over a set of paths Λ ⊆ ∆ if, for every finite subset Σ̄ ⊆ Σ, there
is a path λ ∈ Λ such that λ � ϕ for every ϕ ∈ Σ̄.

• A model is Z-saturated over a relation Z ⊆ ∆×∆, if, for all λ, every set Σ is satisfiable
over Z[λ] whenever Σ is finitely satisfiable over Z[λ].

Before presenting the next theorem, we introduce some more concepts. Given a reactive
frame (W,∆), the relation R ⊆ ∆×∆ is defined by the condition: (λ, γ) ∈ R iff ∃w ∈W,γ =
λw. Similarly, we define the relation P ⊆ ∆×∆ by the condition: (λ, γ) ∈ P iff t(γ) = t(λ).

We state and prove the next theorem in order to complete the Hennessy-Milner theorem
for the presented logic. It is not proved for all reactive models but comprise an embracing
class of them.

54

Theorem 4.1.2. Let M and M ′ be two P -saturated and R-saturated reactive models. A non-
empty relation S ⊆ ∆×∆′ such that (λ, λ′) ∈ S iff for any formula ϕ, M,λ � ϕ⇔M ′, λ′ � ϕ,
is a bisimulation.

Proof. Consider (λ, λ′) ∈ S. Suppose that (λ, γ) ∈ R, for some γ ∈ ∆ and let Sat(γ) = {ϕ :

M,γ � ϕ}. Then, for each finite subset Σ′ ⊆ Sat(γ), M,λ � ♦R
∧
ϕ∈Σ′

ϕ holds and, therefore,

M ′, λ′ � ♦R
∧
ϕ∈Σ′

ϕ. This means that Sat(γ) is finitely satisfiable over R[λ′], and since M ′ is

R-saturated, Sat(γ) is satisfied over R[λ′]. Thus, there exists a state γ′ such that (λ′, γ′) ∈ R
and (γ, γ′) ∈ S. The reciprocal is proven analogously: if (λ, λ′) ∈ S and (λ′, γ′) ∈ R, then
there exists some w ∈W such that (λw, γ′) ∈ S.

Suppose now that (λ, γ) ∈ P , for some γ ∈ ∆ and consider Sat(γ) = {ϕ : M,γ � ϕ}.
Then, for each finite subset Σ′ ⊆ Sat(γ), M,λ � ♦P

∧
ϕ∈Σ′

ϕ and, therefore, M ′, λ′ � ♦P
∧
ϕ∈Σ′

ϕ.

This means that Sat(γ) is finitely satisfiable over Pλ′ , and since M ′ is P -saturated, Sat(γ) is
satisfied over Pλ′ . Again, there exists a state γ′ such that (λ′, γ′) ∈ P and (γ, γ′) ∈ S. The
reciprocal is proven analogously: if (λ, λ′) ∈ S and (λ′, γ′) ∈ P , then there exists some γ ∈ ∆
such that (λ, γ) ∈ P and (γ, γ′) ∈ S.

The theorem would fail for non R-saturated models. The following proposition gives a
sufficient condition for a model to be R-saturated.

Proposition 4.1.3. Let M = (W,∆, V) be a reactive model and R[λ] as defined above. If
|R[λ]| <∞, for every λ ∈ ∆, then M is R-saturated.

Proof. Suppose that for every λ ∈ ∆, |R[λ]| < ∞ holds for M but the model is not R-
saturated. This means that there exists λ ∈ ∆ and a set Σ of formulas such that Σ is finitely
satisfiable over R[λ] but not satisfiable over R[λ].

Clearly, any formula ϕ ∈ Σ, {ϕ} is satisfiable over R[λ] which means that ♦RΣ = {♦Rϕ :
ϕ ∈ Σ} is satisfied in λ. Since |R[λ]| <∞, every path in R[λ] can be enumerated as γ1, . . . , γn.
Since Σ is not satisfiable over Ra(λ), there is a formula ϕi ∈ Σ for each γi, i ∈ {1, ..., n}, such
that ϕi is not satisfied in γi. However, for any i ∈ {1, ..., n}, ♦Rϕi is satisfied in λ. Thus,
the set Φ = {ϕ1, . . . , ϕn} ⊆ Σ is finite and, therefore, satisfiable over R[λ]. This leads to a
contradiction since each path γi ∈ R[λ] does not verify ϕi ∈ Φ.

An analogous result for relation P is obtained along similar lines, however, if it holds,
then it implies the absence of cycles in the reactive model.

Example 4.1.3. We present an example of a model which is not R-saturated and, therefore,
does not verify the Theorem 4.1.2. This example is based in a similar one presented in [7] for
non finite Kripke models.

We consider two Kripke frames as depicted in Figure 4.3. Note that these Kripke frames
are particular cases of reactive structures and, therefore, we can also obtain a reactive frame
from them. Both of them have a “root” (v0 and w0) and an infinite number of paths starting at
that root (such as v0v

1
1, v0v

2
1v

2
2 and w0w

3
1w

3
2w

3
3) can be obtained. All these paths start at the

respective root and have a finite and increasing length. However, the reactive frame obtained
from the Kripke frame on the right-side admits an additional path with an infinite number of
successors (w0w

0
1w

0
2w

0
3...). Considering the corresponding reactive models V (on the left) and

55

W (on the right) with a single proposition p which is valid along all paths of both models,
we can verify that the paths v0 and w0 satisfy the same formulas of RFml(Ω). However, for
these models, the relation S that relates worlds which admit the same valid formulas is not a
bisimulation. In order to demonstrate this, we note that v0Sw0. Moreover, W, (w0w

1
0) � ♦nRp

for all n, where ♦nR denotes the sequence of n symbols ♦R. Now, if we consider a world vk1 ,
for arbitrary k ∈ N, we note that V, v0v

k
1 2 ♦kRp since the respective length of that path is

exactly k (including the world vk0). This means that none of the successors of v0 verifies the
same formulas as w0w

0
1. Therefore, does not exist a path λ such that λ = v0v and λSw0w

0
1.

Figure 4.3: The reactive frame of two non bisimilar reactive models.

Indeed, the reactive model on the left side is not R-saturated. Note that the set of
formulas Σ = {♦nRp : n ≥ 0} ⊆ RFml(Ω) is finitely satisfiable over V because, for each finite
set Σ̄, we can find N ∈ Z+ such that, for each formula ♦nRp ∈ Σ̄, we have N > n. Thus,
V, v0 � ♦nRp ⇔ V, v0v

N
1 ...v

N
n � p, which is true for each formula ♦nRp ∈ Σ̄. However, the full

set Σ is not satisfiable over V because each path has finite length.

We were able to establish a notion of bisimulation for reactive systems. However, one
can find some “lack of information” about the definition of bisimulation for reactive models.
Although this definition is based on the usual one for bimodal logic, it is not intuitive when
one thinks about the global structure of a reactive system. The reason is that we are defining
bisimulation as a relation over paths instead of worlds. One example of this is the bisimulation
presented in Example 4.1.2. Note that makes sense to relate the state w1 with v1 and states
w2, w3 with v2. Although this connection can be retrieved, it is not intuitively obtained and
an overview about the structure of the reactive system itself is not provided. Therefore, we
conceive a notion of bisimulation for switch graphs by connecting them with reactive frames
and proving its coherence with the one introduced for usual graphs.

Definition 4.1.7. Given a set of atomic propositions Ω. We say that M = (W,S, I, V) is
a switch graph model whenever (W,S) is a switch graph, I is an (initial) instantiation and
V : Ω→W is a satisfiability function.

With this, we generalize the notion of switch graph to include propositions. The notion of
instantiation in switch graph models is the same as before, since it was introduced for switch
graphs and a switch graph model is itself a switch graph with an additional function. We
now introduce the notion of bisimulation for switch graph model.

Definition 4.1.8. Consider a switch graph model (W,S, I, V). We say that a reactive model
(W ′,∆, V ′) is induced by (W,S, V) when the following holds:

56

• W = W ′

• ∆ is the set of all possible paths generated by the generalized set of edges S, i.e.:

- (w) ∈ ∆ for any w ∈W
- (w0, w1, ..., wn) ∈ ∆ if and only if, for every n ≥ 2, ∀i ∈ {1, ..., n− 1},

(wi, wi+1) ∈ S and ((I(w0,w1))...)(wi−1wi)(wi, wi+1) = 1.

• V ′ is defined in order to be coherent with the notion of valuation for swicth graph
models: ∀p ∈ Ω, λ ∈ V (p) iff t(λ) ∈ V ′(p)

Since W and W ′ coincide in this definition, we do not distinguish them in the rest of this
thesis.

Definition 4.1.9. Given two switch graphs models (W,S, I, V), (W ′, S′, I ′, V ′) whose induced
reactive models are (W,∆, V̄) and (W ′,∆′, V̄ ′), and a relation R ⊆ W ×W ′, we say that a
relation B ⊆ ∆ × ∆′ is induced by R when B can be obtained recursively by the following
rules:

• (w,w′) ∈ R ⇔ ((w), (w′)) ∈ B for every w ∈W , w′ ∈W ′.

• Let λ ∈ ∆ and λ′ ∈ ∆′ be such that (λ, λ′) ∈ B. For every w ∈ W and w′ ∈ W ′ such
that λw ∈ ∆ and λ′w′ ∈ ∆′, we have (λw, λ′w′) ∈ B iff (w,w′) ∈ R.

Moreover, we say that R is a bisimulation for switch graph models if the induced relation B is
a bisimulation for reactive models. Two switch graph models are said to be bisimilar if there
is a bisimulation relating them.

Example 4.1.4. In the first example, we consider two switch graph models, as illustrated
in Figure 4.4. For these two model we can find a relation B = {(w1, v1), (w2, v2), (w3, v3),
(w4, v3)} which is a bisimulation. This can be observed by considering the corresponding
reactive models. Since one can note that the relation induced by B is {(w1, v1), (w2, v2),
(w3, v3), (w4, v3), (w1w3, v1v3), (w2w4, v2v3), (w3w4, v3v3), (w4w3, v3v3)}. It is easy to check
that this relation is, indeed, a bisimulation for reactive models.

Figure 4.4: Two bisimilar switch graph models.

Indeed, the notion of bisimulation provides an intrinsic notion on how to reduce large
models. This can be seen in this example, since we have two bisimilar models with a distinct
number of states and edges.

57

Although the definition of bisimulation for switch graph models resorts to the notion of
bisimulation for reactive models, it is coherent with the expected one. Indeed, next results
show that this definition of bisimulation for switch graph models generalizes the usual one
for Kripke models. Note that, in the following propositions, a Kripke model (W,R, V) can
be seen as a switch graph model where the set of edges is R and the instantiation I is the
constant function I ≡ 1, since no edge can be temporarily removed.

Proposition 4.1.4. Let (WK , R, VK), (W ′K , R
′, V ′K) be Kripke models and B ⊆ W ×W ′ a

bisimulation. Let (W,∆, V) (respectively, (W ′,∆′, V ′)) be the induced reactive model with
respect to (W,R, V) (respectively, (W ′, R′, V ′)). Let the relation S ⊆ ∆ ×∆′ be the relation
induced by B. Then S is a bisimulation of reactive models.

Proof.

(R− zig) Let us consider λ ∈ ∆, λ′ ∈ ∆′ and w ∈ W such that (λ, λ′) ∈ S and λw ∈ ∆. By
definition of S, we conclude that (t(λ), t(λ′)) ∈ B and (t(λ), w) ∈ R. Therefore, since B
is a bisimulation, there exists w′ ∈W ′ such that (t(λ′), w′) ∈ R′ and (w,w′) ∈ B. Thus,
∃w′ ∈W ′, (t(λw), t(λ′w′)) ∈ B which implies ∃w′ ∈W ′, (λw, λ′w′) ∈ S.

(R− zag) Analogous to R− zig.

(P − zig) Let us consider λ, γ ∈ ∆ and λ′ ∈ ∆′ such that t(λ) = t(γ) and (λ, λ′) ∈ S.
Therefore (t(λ), t(λ′)) ∈ B implies (t(γ), t(λ′)) ∈ B and, thus, (γ, λ′) ∈ S. The result
follows because, trivially, t(λ′) = t(λ′).

(P − zag) Analogous to P − zag.

(atom) M,λ �X p ⇔ M, t(λ) � p for any p ∈ Π. Thus, if (λ, λ′) ∈ S, then M,λ �X p ⇔
M, t(λ) � p⇔M ′, t(λ′) � p⇔M ′, λ′ �X p

In the opposite direction a similar result comes out:

Proposition 4.1.5. Let (WK , R, VK), (W ′K , R
′, V ′K) be Kripke models and S ⊆ ∆ × ∆′ a

bisimulation between paths of the corresponding induced reactive models. Define relation
B ⊆W ×W ′ by the condition: (w,w′) ∈ B iff there exists (λ, λ′) ∈ S such that t(λ) = w and
t(λ′) = w′. Then B is a bisimulation between the original Kripke models.

Proof. We prove the zig and zag conditions, as well as the equivalence between atomic propo-
sitions.

(zig) Let us suppose (w,w′) ∈ B and that there exists v ∈ W such that (w, v) ∈ R. Then,
there exists (λ, λ′) ∈ S such that t(λ) = w and t(λ′) = w′. Furthermore, λw ∈ ∆. Since
S is a bisimulation, there exists v′ ∈W ′ such that λ′w′ ∈ ∆′ and (λw, λ′v′) ∈ S. Hence,
t(λv) = v, t(λ′v′) = v′ and, therefore, vBv′.

(zag) Analogous to zig.

(atom) Finally, we note that M,λ �X p ⇔ M, t(λ) � p for any p ∈ Π because X = Π. If
(w,w′) ∈ B, then there exists (λλ′) ∈ S such that t(λ) = w and t(λ′) = w′. Because
M,λ �X p ⇔ M ′, λ′ �X p, we conclude that M, t(λ) � p ⇔ M ′, t(λ′) � p, i.e. M,v �
p⇔M ′, v′ � p.

58

We now introduce a language to describe properties of switch graph models. Although
the proposed structure is more complex than usual Kripke models, it is pure modal logic.
The reason for this is based on two main factors. Firstly, as mentioned before, we are focused
in a model-based approach. Secondly, because we can, in some sense, obtain an equivalent
state transition model with no higher-level edges. To do this, we follow an approach based in
[2]. Let (W,S, I, V) be a switch graph model. Then we obtain an equivalent state transition
model (W, R,V) with no higher-level edges such that:

• W = W × I, where I is the set of all attainable instantiations of the switch graph
model.

•
(
(w1, I2), (w2, I2)

)
∈ R if I1(w,w′) = 1 and I2 = I

(w,w′)
1 .

• V : Ω→ 2W is such that (w1, I1) ∈ V(p)⇔ w1 ∈ V (p).

Nevertheless, in this representation we must consider a set of initial states or, equivalently,
an initial instantiation to determine which was the initial instantiation of the corresponding
switch graph model. We say that this is the plain representation of a switch graph model.

Note that both a plain representation of a switch graph model and its induced reactive
model are unfolded models. However, a plain representation is not necessarily a tree-like
model. Moreover, given a switch graph model (W,S, I, V) with |W |, |S| < ∞, we know that
the respective plain representation (W, R,V) is necessarily finite because there are at most
2|S| different instantiations. Thus |W| < |W |.2|S| < ∞ and |R| ≤ |W|2 < ∞. This often is
not the case with reactive models, since a loop automatically generates an infinite path.

We introduce the syntax of modal logic:

Definition 4.1.10. Given a set Ω of atomic proposition, we define the set Fml(Ω) of formulas
for modal logic as the least set such that Ω ⊆ Fml(Ω) and ¬ϕ, ϕ∨ψ, �ϕ ∈ Fml(Ω) whenever
ϕ,ψ ∈ Fml(Ω).

We introduce the notion of satisfiability for a formula at a state of a model. Given a
switch graph modelM = (W,S, I, V) and a formula ϕ ∈ Fml(Ω), we writeM, w � ϕ to state
that a formula is true at a state w ∈ W . Also, for every (w,w′) ∈ S such that I(w,w′) = 1,
M(w,w′) = (W,S, I(w,w′), V), i.e. M(w,w′) denotes the updated model after crossing the edge
(w,w′).

Definition 4.1.11. The satisfiability relation is defined recursively as follows:

• M, w � ϕ⇔ w ∈ V (ϕ), whenever ϕ ∈ Ω.

• M, w � ¬ϕ⇔M, w 2 ϕ

• M, w � ϕ ∨ ψ ⇔M, w � ϕ or M, w � ψ

• M, w � �ϕ⇔M(w,w′), w′ � ϕ for every w′ ∈W such that (w,w′) ∈ S and I(w,w′) = 1

Note that this is pure modal logic but the effects of reactivity are reflected when we
evaluate formulas with the operator “�”. Indeed, contrarily to what happens in [2], the
changes in the structure of the model are not caused by the operators but are already encoded
on the model itself, due to the higher-level edges. We now prove the satisfiability theorem for
these models.

59

Definition 4.1.12. Let tr : Fml(Ω)→ RFml(Ω) be a translator function defined recursively
as:

• tr(p) = p, for any p ∈ Ω

• tr(¬ϕ) = ¬tr(ϕ) for ϕ ∈ Fml(Ω)

• tr(ϕ ∨ ψ) = tr(ϕ) ∨ tr(ψ) for ϕ,ψ ∈ Fml(Ω)

• tr(�ϕ) = �Rtr(ϕ), for ϕ ∈ Fml(Ω)

To simplify the notation, we use the same symbol (�) to represent satisfaction for both
reactive models and switch graphs models. However, it should be clear by the context which
is the case.

Lemma 4.1.6. Let M = (W,S, I, V) be a switch graph model and M̄ = (W̄ ,∆, V̄) be the
corresponding induced reactive model. Then M, w � ϕ ⇔ M̄, (w) � tr(ϕ), for any formula
ϕ ∈ Fml(Ω)

Proof. We prove this lemma by induction over formulas:
− If p ∈ Ω, then M, w � p
⇔ M̄, (w) � p (def. of induced reactive model)

− M, w � ¬ϕ
⇔M, w 2 ϕ (definition)
⇔ M̄, (w) 2 ϕ (inductive hypothesis)
⇔ M̄, (w) � ¬ϕ (definition)

− M, w � ϕ ∨ ψ
⇔M, w � ϕ or M, w � ψ (definition)
⇔ M̄, (w) � ϕ or M̄, (w) � ψ (inductive hypothesis)
⇔ M̄, (w) � ϕ ∨ ψ (definition)

− M, w � �ϕ
⇔M(w,w′), w′ � ϕ for every w′ ∈W such that (definition)
(w,w′) ∈ S and I(w,w′) = 1
⇔ M̄, (w,w′) � ϕ for every w′ ∈W such that (inductive hypothesis and ∗)
(w,w′) ∈ ∆
⇔ M̄, (w) � �Rϕ (definition)

∗ observing thatM(w,w′) is itself a switch graph model, one can use the inductive hypoth-
esis. This step is valid because, if ∆̃ is the set of paths for the reactive model induced by
M(w,w′), then (w,w′, v0, ..., vn) ∈ ∆⇔ (w′, v0, ..., vn) ∈ ∆̃

Theorem 4.1.7. LetM = (W,S, I, V) andM′ = (W ′, S′, I ′, V ′) be two switch graph models,
w ∈ W , w′ ∈ W ′, ϕ ∈ Fml(Ω) and R ⊆ W ×W ′ be a bisimulation. Then, M, w � ϕ ⇔
M′, w′ � ϕ whenever (w,w′) ∈ R.

Proof. Consider M̄ = (W,∆, V̄) and M̄′ = (W ′,∆′, V̄ ′), the reactive models induced by M
and M′, respectively.

Consider (w,w′) ∈ R. We prove this theorem by induction over formulas:

60

− If p ∈ Ω, then M, w � p
⇔ M̄, (w) � p (Lemma 4.1.6)
⇔ M̄′, (w′) � p (∗1)
⇔M′, w′ � p (Lemma 4.1.6)

− M, w � ¬ϕ
⇔M, w 2 ϕ (definition)
⇔M′, w′ 2 ϕ (inductive hypothesis)
⇔M′, w′ � ¬ϕ (definition)

− M, w � ϕ ∨ ψ
⇔M, w � ϕ or M, w � ψ (definition)
⇔M′, w′ � ϕ or M′, w′ � ψ (inductive hypothesis)
⇔M′, w′ � ϕ ∨ ψ (definition)

− M, w � �ϕ
⇔ M̄, (w) � �Rϕ (Lemma 4.1.6)
⇔ M̄, (w, v) � ϕ, for every v such that (w, v) ∈ ∆ (definition of induced model)
⇔ M̄′, (w′, v′) � ϕ, for every v′ such that ∗1 and Lemma 4.1.1
(w′, v′) ∈ ∆′

M̄′, (w′) � �Rϕ (definition)
M′, w′ � �ϕ (Lemma 4.1.6)

∗1 Definition of bisimulation for reactive models

4.1.2 Weighted switch graphs.

We now proceed further our generalization effort by introducing weighted switch graphs.
Not much theoretical study is done in this topic since our interest is to provide an alternative
representation for reactive system which comprise weights. In the literature weights can
be assigned to edges of regular graphs in order to describe quantitative features like costs,
probabilities, levels of existence, among others. Since our aim is to apply these techniques to
biochemical systems such as biological regulatory networks, it makes sense to consider this
approach.

Definition 4.1.13. A weighted switch graph is a pair (W,S) together with an instantiation
I : S →W ∪{}} where W is the set of weights, and can be chosen according to the context.

In weighted switch graphs, instead of simply considering that an edge is active or inhibited,
each edge has a weight. In order to express this, we generalize the notion of instantiation by
considering an instantiation to be a function whose codomain is a set of weights W which
contains an additional element }. Thus, if s is an edge of the model and I an instantiation,
I(s) = }means that the edge s is inhibited (temporarily removed from the model). Otherwise,
we say that the edge s is active and has weight I(s).

Given this definition, we can describe the evolution of a weighted switch graph when some
edge s ∈W ×W is crossed in the following way:

61

Is(t) =

I
(
(s, t, •)

)
, if (s, t, •) ∈ S and I

(
(s, t, •)

)
6= }

}, if (s, t, ◦) ∈ S and I
(
(s, t, ◦)

)
6= }

I(t), otherwise.

This means that an activator edge assigns its value to the edge it activates. Also, note
that, in general, } is semantically different from 0 (for example in the context of costs).
However, in some cases like probabilistic or fuzzy they coincide, i.e. } ≡ 0.

Weighted switch graphs also admit a plain representation, obtained through a process
similar to the usual one. Moreover they are finite when both the set of states and the set of
generalized edges are finite. Note that this does not depend on |W|. Indeed, even with W
containing a non finite number of elements (for instance, if W = Z+

0) this still holds. Note
that each activator edge assigns its own weight to the activated edge. Thus, if I is the initial
instantiation and S is the set of edges of the model, and W̄ = {I(s) : s ∈ S}, then |W̄| <∞
and there are, at maximum, |W̄||S| <∞ attainable instantiations.

Fuzzy switch graphs.

Fuzzy switch graphs are weighted switch graphs whose set of weights W is the interval
[0, 1]. In this context, a weight is understood as the level of certainty about the existence of
the respective edge. Thus, semantically we have } ≡ 0.

In a fuzzy context, one must consider adapted semantical interpretations of conjunction,
disjunction, implication and negation. The first two are generalized by T-norms and T-
conorms, respectively [42], whereas fuzzy implication and negation have been also widely
studied [3].

Definition 4.1.14. A function U : [0, 1]×[0, 1]→ [0, 1], is called isotonic if U(x, y) ≤ U(x′, y′)
whenever x ≤ x′ and y ≤ y′. Moreover, it is called uninorm if it is isotonic, commutative,
associative and admits a neutral element e ∈ [0, 1]. If e = 1, then U is called a T-norm, and
if e = 0, then U is called a T-conorm or a S-norm.

For instance, min(x, y) is a T-norm and max(x, y) an S-norm . For details see [42].

Definition 4.1.15. A unary operation N : [0, 1]→ [0, 1] is called antitonic if N(x) ≥ N(x′)
whenever x ≤ x′. Moreover it is called fuzzy negation, if it is antitonic, N(0) = 1 and
N(1) = 0. N is strong, whenever N(N(x)) = x.

An example of a fuzzy negation is the Gödel Negation defined in such a way that:

NG(x) =

{
1, if x = 0
0, otherwise.

Definition 4.1.16. A function, I : [0, 1]×[0, 1]→ [0, 1], is called a fuzzy implication, whenever
it satisfies the following properties:

1. I(1, 0) = 0 and I(0, 0) = I(0, 1) = I(1, 1) = 1;

2. if x ≤ z, then I(x, y) ≥ I(z, y);

3. if y ≤ z then I(x, y) ≤ I(x, z).

62

Moreover, it satisfies the order property, whenever x ≤ y implies I(x, y) = 1.

One example is the Gödel implication defined in such a way that:

IG(x, y) =

{
1, if x ≤ y
y, otherwise.

With respect to bi-implication there is no universal agreement on a fuzzy counterpart.
The most well-known class of fuzzy bi-implications was investigated by Fodor & Roubens [24]
who suggested the following definition:

Definition 4.1.17. A function B : [0, 1] × [0, 1] → [0, 1], is called a fuzzy bi-implication,
whenever it satisfies the following properties:

1. B(x, y) = B(y, x);

2. B(x, x) = 1;

3. B(0, 1) = 0;

4. If w ≤ x ≤ y ≤ z, then B(w, z) ≤ B(x, y).

Proposition 4.1.8. Given a T-norm, T and an implication I satisfying the order property,
then B(x, y) = T (I(x, y), I(y, x)) is a fuzzy bi-implication.

Proof.

1. B(x, y) = T (I(x, y), I(y, x)) = B(y, x).

2. B(0, 1) = T (I(0, 1), I(1, 0)) = T (1, 0) = 0.

3. B(x, x) = T (I(x, x), I(x, x)) = T (1, 1) = 1.

4. Suppose w ≤ x ≤ y ≤ z, then B(w, z) = T (I(w, z), I(z, w)) = T (1, I(z, w)) = I(z, w)
≤ I(z, x) ≤ I(y, x) = T (1, I(y, x)) = T (I(x, y), I(y, x)) = B(x, y).

BG(x, y) = TG(IG(x, y), IG(y, x)) is a bi-implication because the Gödel implication satis-
fies the order property.

Given these notions, we can introduce a logical language to reason about fuzzy switch
graphs. It should be based in what was introduced previously for usual switch graphs but
generalize it in order to admit a fuzzy formalism.

First of all, one must note that, in a fuzzy context, syntactical abbreviations like p→ q ≡
¬p ∨ q make no sense, since fuzzy semantics may consider proper functions for disjunction,
conjunction, negation, implication and bi-implication.

Definition 4.1.18. Given a set of atomic propositions Ω, the set of formulas FFml(Ω) is
recursively defined as the least set such that Ω ⊆ FFml(Ω), and ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ, ϕ ∨ ψ,
ϕ→ ψ, ϕ↔ ψ, �ϕ, ♦ϕ ∈ FFml(Ω) whenever ϕ,ψ ∈ FFml(Ω).

63

The notion of satisfiability is also different in a fuzzy context. Instead of a valuation
function whose codomain is {0, 1} we must consider a generalized one whose codomain is
[0, 1]. Moreover, one must consider a fuzzy semantics F = (T, S,N,U,B) consisting of a
T-norm T , an S-norm S, a negation N , an implication U and a bi-implication B. This is
described in the next definition. In this context, given a model M = (W,S, I, V), we also
write M(w,w′) to represent (W,S, I(w,w′), V).

Definition 4.1.19. Given a set of atomic propositions Ω, a fuzzy switch graph model M is
a tuple (W,S, I, V) where V : W × Ω → [0, 1] is a fuzzy valuation function and (W,S) is a
fuzzy switch graph together with an instantiation I : S → [0, 1].

Moreover, for such model and given a fuzzy semantics F = (T, S,N,U,B), satisfiability
over the set of formulas FFml(Ω) is defined recursively as:

• M, w �F p = V (w, p), for p ∈ AtomProp.

• M, w �F ϕ ∧ ψ = T
(
M, w �F ϕ,M, w �F ψ

)
.

• M, w �F ϕ ∨ ψ = S
(
M, w �F ϕ,M, w �F ψ

)
.

• M, w �F ϕ→ ψ = U
(
M, w �F ϕ,M, w �F ψ

)
.

• M, w �F ϕ↔ ψ = B
(
M, w �F ϕ,M, w �F ψ

)
.

• M, w �F ¬ϕ = N
(
M, w �F ϕ

)
.

• M, w �F �ϕ = T
(w,w′)∈S0

(
U
(
I(w,w′),M(w,w′), w′ �F ϕ

))
.

• M, w �F ♦ϕ = S
(w,w′)∈S0

(
T
(
I(w,w′),M(w,w′), w′ �F ϕ

))
.

Figure 4.5: Example of a Fuzzy switch graph.

Example 4.1.5. Let M = (W,S, I, V) be a fuzzy switch graph model obtained from the
fuzzy switch graph depicted in Figure 4.5 and V : {p} → [0, 1] be such that V (w2, p) =
1 and V (w3, p) = 0.1. Consider the Gödel fuzzy semantics, G = (min,max, NG, IG, BG)
where NG, IG and BG are Gödel’s negation, implication and bi-implication, respectively. We
illustrate how to evaluate a formula from FFml({p}).

M, w1 �G ♦♦p = max
(

min
(
0.5,M(w1,w2), w2 �G ♦p

)
,min

(
0.1,M(w1,w3), w3 �G ♦p

))
= max

(
min

(
0.5,M(w1,w2), w2 �G ♦p

)
,min

(
0.1, 0

))
= max

(
min

(
0.5,M(w1,w2), w2 �G ♦p

)
, 0
)
64

= min
(
0.5,M(w1,w2), w2 �G ♦p

)
= min

(
0.5,max(min(0.1, (M(w1,w2))(w2,w3), w3 �G p))

)
= min

(
0.5,min(0.1, 0.1)

)
= min(0.5, 0.1) = 0.1

During the evaluation above,M(w1,w3), w3 �G ♦p = 0 because the maximum of an empty
set is 0 and the weight of the edge (w2, w3) is 0.1 after (w1, w2) being crossed.

We point out that our definition of fuzzy switch graph could be even more general. In [59],
where this concept is presented, aggregation functions (or simply aggregations) are consid-
ered. These are, generally, used to produce a representative data of its inputs. For example,
arithmetic, weighted and geometric means, are canonical examples of aggregation functions;
so are T-norms and S-norms [4]. In the context of fuzzy switch graph, its use can be justified
to adjust the effect of one edge over another according to their fuzzy value (level of existence).

Definition 4.1.20. An n-ary function A : [0, 1]n → [0, 1] is called an aggregation function, if
it is isotonic, A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1.

This notion is only considered when an edge is crossed and one needs to update a model.
In particular, aggregations are used to come up with a more general procedure for obtaining
an updated fuzzy weight for each edge. Given an aggregation A and an instantiation I, when
the edge s is crossed, I is updated to:

Is(t) =

A
(
I(s), I(t), I((s, t, •))

)
, if (s, t, •) ∈ S and I

(
(s, t, •)

)
6= }

}, if (s, t, ◦) ∈ S and I
(
(s, t, ◦)

)
6= }

I(t), otherwise.

.

Note that the approach which has been used in this section is a particular case since
projection functions: πj : A1× . . .×Aj× . . .×An → Aj , such that πj(x1, . . . , xj , . . . , xn) = xj
are aggregation functions.

Finally, note that, structurally, probabilistic switch graphs can be seen as particular cases
of fuzzy switch graphs because in a probabilistic approach, the set of weights is still [0, 1].
However, in these cases one additional condition must be imposed stating that, for each vertex,
the weights of all outgoing edges sum 1. Nevertheless, probabilistic and fuzzy approaches are
conceptually different. While a fuzzy weight can be understood as the degree of existence
of an edge, a probabilistic one represents how likely it is to cross the respective edge. This
conceptual difference will be taken into account in further sections where a probabilistic
reactive structure is introduced and used.

4.2 Reactive Boolean networks.

In this section, a new qualitative model is introduced – reactive Boolean networks – which
is particularly interesting to help in the quest for steady states. We start by presenting them,
detailing how they can be obtained as a simplification of PWL models and then we prove
that they preserve more information from the PWL model than the BN model obtained from
the same model. For simplicity and to avoid inconsistencies, we only consider PWL models
whose dynamics do not cause flows from two adjacent domains to converge to their common
boundary.

65

4.2.1 Switch graph as a discrete reconfigurable system.

In Chapter 3, PWL models are presented as a reconfigurable and, in particular, hybrid
models. When we consider a simplified BN model, we forgot both the reconfigurability and
continuous dynamics. Thus, switch graphs are an intermediary step because they lose the
continuous dynamics of a hybrid system but maintain the reconfigurability. Note that switch
graphs can be seen as discrete transition systems (i.e. usual graphs) whose set of edges
reconfigures after the discrete event of crossing an edge.

This kind of dynamics occurs frequently in real-life systems and even in games. For
instance, castling is a chess special move involving the King and a Rook which can only be
performed if none of the pieces taking part has been moved before. Therefore, in identical
board configurations (which are states, in this context), different moves may be possible.

Next we describe the process to obtain a RBN from a PWL. In the following definition,
consider a PWL model and the corresponding Boolean network obtained from it. There,
for simplicity, when we mention a vertex x of the Boolean network we also mention the
corresponding domain of the PWL model and vice-versa.

Definition 4.2.1. Given a PWL model M whose corresponding Boolean network is N , a
reactive Boolean network is a switch graph (W,S) where (W,S0) = N , Sn = ∅ for n < 1 and
S1 is obtained according to the following rules:

1. For any domain k of M such that u = (j, k) ∈ S0, then (v, u, ◦) ∈ S1 with v = (i, j) if a
flow which enters in region j via the boundary between regions i and j never leaves it
via the boundary between regions j and k.

2. For each (v, u, ◦) ∈ S1 with u = (j, k) and v = (i, j), then (w, u, •) ∈ S1 if there exists
w = (l, j) ∈ S0 for some region l of M such that there is a flow entering in region j via
the boundary between regions l and j and leaving it via the boundary between j and
k.

In practice, this new kind of models can temporarily delete edges that would represent
non-realistic behaviors from the state transition graph. In practice, since we can compute
the flow given by a linear differential equation and an initial state, the inclusion of an edge
of the type ((i, j), (j, k), ◦) ∈ S1 means that is not possible to obtain, in the PWL model, a
flow with initial state in the region i that enters in the region j and leads us to region k.

Example 4.2.1. In this example we illustrate how higher level edges are obtained. Consider
the Figure 4.6 where three domains of a theoretical PWL model are found on the left side. In
the figure, arrows represent flows. On the right side we can see the three corresponding vertices
represented by black dots and usual edges representing the transitions between domains.
Furthermore, two additional 1-level edges are considered, following the rules described in
Definition 4.2.1.

In this case, we note that the flows in the domain C always leave this domain by the lower
boundary whenever their initial state is in the boundary between A and C. This is the reason
why the inhibitor higher-level edge is introduced. However, a flow within C whose initial state
is in the boundary between the domains B and C can leave this domain by either the lower or
right boundary. Thus, we introduce an activator higher-level edge to restore the temporarily
removed edge. Clearly, if the edge is already active/present, the activator edge has no effect.

We only define reactive Boolean networks with switch graphs such that Sn = ∅ for n > 1.
In fact, this definition could be generalized to embed higher-level edges.

66

Figure 4.6: Obtaining higher-level edges for a RBN model.

4.2.2 Recovering attractors.

For the rest of this chapter, we only consider finite RBN models. Indeed, note that the
biological systems we consider admit a finite number of components. Moreover, given the
rules in Definition 4.2.1, the set of edges of every resulting RBN model is finite.

As mentioned before, it is known that all attractors found in simplified BN models signal
steady states in the corresponding PWL models. In fact, this statement can be also obtained
as corollary of Propositions 4.2.2 and 4.2.3 bellow. However, the opposite does not hold.
Indeed, there are some steady states in PWL models that are not present in the respective
simplified BN model. This is illustrated in the next example.

Example 4.2.2. Consider the following system of differential equations:
x′ = 5

x2

x2 + 22
.

22

y2 + 22
− x

y′ = 3
x2

x2 + 42
− y

Making n→ +∞ leads to{
x′ = −x
y′ = −y

{
x′ = −x
y′ = −y

{
x′ = −x
y′ = 3− y

x < 2 2 < x < 4 4 < x
2 < y 2 < y 2 < y{

x′ = −x
y′ = −y

{
x′ = 5− x
y′ = −y

{
x′ = 5− x
y′ = 3− y

x < 2 2 < x < 4 4 < x
y < 2 y < 2 y < 2

Analytically, two stable steady states can be identified at point (0, 0) and an orbit which
asymptotically converges to (4, 2), as illustrated in Figure 4.7.

Figure 4.8 shows the simplified BN model corresponding to the PWL model described.
We use the notation introduced before in such a way that, for example, the state 00 of the
BN model represents the PWL model domain described by condition 0 ≤ x < 2 ∧ 0 ≤ y < 2.

Steady states are signaled by attractors – strongly connected components with no out-
going edges. The BN depicted on this example admits two strongly connected components
– {00} and {11, 21, 20, 10} – but only one of them is an attractor and, thus, signals a single
steady state, because {11, 21, 20, 10} admits an outgoing edge from 11 to 01. Thus, we lose

67

Figure 4.7: Illustrating the stable steady states.

Figure 4.8: Simplified Boolean network.

information about the initial system since we are only able to retrieve a steady state of the
corresponding PWL model.

RBN models are an intermediary step. Since RBN are also switch graphs, we can use some
terms such as “induced reactive frame” and “plain representation” when discussing them. In
this context, steady states are also identified by attractors, whose definition is generalized as
follows.

Definition 4.2.2. Given a reactive Boolean network (W,S) whose set of paths of the induced
reactive frame is ∆, we say that a set V ⊆W forms a strongly connected component relatively
to a path λ ∈ ∆ (SCCλ) if, for every v ∈ V and every path ρ ∈ ∆ which extends λ, there
exists γ ∈ ∆ such that t(γ) = v and γ extends ρ.

Proposition 4.2.1. If V is a SCCλ, it is always possible to find a path between two states
u, v ∈ V after the reconfiguration on edges induced by the path λ.

Proof. From the definition, for all extensions ρ of λ, one can find γu an extension of ρ such
that t(γu) = u. Again, by definition, and since γu itself extends λ, it is possible to find γv
which extends γu and such that t(γv) = v.

Definition 4.2.3. Given a reactive Boolean network (W,S) whose set of paths of the induced
reactive frame is ∆, a set V ⊆ W is an attractor if it is a SCCλ, for some path λ, and every
path γ extending λ verifies t(γ) ∈ V .

These definitions extend the notions of SCC and attractor, which are defined for regular
graphs (and BNs), to switch graphs (and RBNs). Informally, this means that a set V is an
attractor if there is a path γ such that, after walking along it, we can always find a path
between any two states of V and there is not any path guiding us to a final state outside the
set V (i.e. the usual definition of an attractor in a graph).

68

Example 4.2.3. Recall Example 4.2.2 and the simplified RBN model for the PWL model
introduced on that example. Firstly take the Boolean network introduced there and consider
it as (W,S0), for our reactive Boolean network. From the PWL model we can follow the rules
introduced in Definition 4.2.1 and obtain the set S1 of higher-level edges, which contains
a single element: {

(
(21, 11), (11, 01), ◦

)
}. Thus, the resulting RBN model is depicted in

Figure 4.9.

Figure 4.9: A reactive Boolean network.

For this reactive network, given 21 as the initial state, we obtain the following set of
paths: {(21), (21, 11), (21, 11, 10), (21, 11, 10, 20), (21, 11, 10, 20, 21), ...}. Therefore, according
to Definition 4.2.3, {11, 10, 20, 21} is an SCC(21) and, moreover, an attractor for this reactive
Boolean network. Similarly, taking 00 as the initial state, {00} emerges as an attractor as
well.

Thus, we note that, from the RBN model, we are able to retrieve two attractors, as in the
original PWL model

Our next results relate attractors from BN models with attractors of RBN models, in order
to shown that RBN models, in general, preserve more attractors than BN models. Consider
a BN or RBN model (V,E) and a RBN model (V ′, E′). In this context, given an attractor
A ⊆ V of the model (V,E), we say that it is signaled by the model (V ′, E′) if there is an
algorithm that allows to obtain a set B ⊆ V ′ from A in an unambiguous way and such that
B is an attractor of (V ′, E′). Using simpler words, if a model “A” signals the attractors of
another model “B”, we can recover all attractors of the model “B” from the attractors of the
model “A”.

Proposition 4.2.2. Given a PWL model, the corresponding reactive Boolean network iden-
tifies, in general, a larger set of attractors than the simpler Boolean network. Moreover, all
attractors of a BN are signaled in the corresponding RBN.

Proof. The fact that, in general, a RBN admits a larger set of attractors than a BN was
already shown in Example 4.2.3. Note that we were able to recover both attractors of the
original PWL model, while the BN model was able to only recover one.

Now, consider a BN with an attractor V . If |V | = 1, then, trivially, V is also an attractor
of the corresponding RBN . Otherwise, let λ = (v) be a path with v ∈ V . Since V is an
attractor in a BN, all extensions γ of λ are such that t(γ) ∈ V . Consider the following
algorithmic procedure: Choose, if possible, v ∈ V for which it is possible to consider an
extension γ of λ such that it is no more possible to extend it to path ρ where t(ρ) = v. If
such a path exists, update λ to γ and V to V \{v}. Repeat this process while it is possible
to choose such a v. Note that, since V and S are finite (i.e. there is a finite number of
configurations for the S0 edges), this algorithm terminates. Note that, after this process, for

69

any v ∈ V such that there is an extension γv of λ such that t(γv) = v, and for every w ∈ V ,
there is an extension ρw of γv such that t(ρw) = w. This proves that V is a SCCλ and, since
each extension γ of λ is such that t(γ) ∈ V , the RBN signals an attractor.

Proposition 4.2.3. All attractors in a RBN are steady states of the corresponding piecewise
linear model.

Proof. A steady state of a PWL can be found as either an invariant region or a cyclic behavior
which asymptoticly converges to a point or orbit. Let V be an attractor in a RBN, and
consider a region T resulting from the union of every domain represented by i ∈ V . Since V
is a SCCλ for some path λ, this means that there is a flow in the piecewise linear model which
makes impossible to leave region T . Thus, there exists an invariant subregion T ′ of T and,
therefore, since the differential equations considered are linear, it contains a steady state.

Finally, we recover the notion of bisimulation and present it as a method to coherently
reduce large models. Indeed, we prove that bisimulation preserves attractors. Bisimulation
between RBN model is defined for switch graph models by considering an empty set of atomic
propositions. We prove the following results over switch graphs in order to keep them general
(we recall that RBN models do not admit n-level edges with n > 1).

From a model (W,S), we can soundly obtain a reduced model (W ′, S′) if there exists a
bisimulation R verifying ∀w ∈W∃w′, wRw′. In this case, we say R is total.

Lemma 4.2.4. Let (W,S) and (W ′, S′) be two switch graphs, (W,∆) and (W ′,∆′) the cor-
responding reactive frames. Let R be a total bisimulation between (W,S) and (W ′, S′) and B
the induced relation from R. Then B is total whenever R is total.

Proof. We prove this lemma by induction over paths.

Let λ ∈ ∆ be a path. If λ = (w), for some w ∈W , then, since R is total, there is w′ ∈W ′
such that (w,w′) ∈ R and, therefore (w)B(w′).

Let us now consider a path γ = λw for some w ∈ W and λ ∈ ∆. Then, by induction
hypothesis, there is λ′ ∈ ∆′ such that λBλ′. Then, since B is a bisimulation and by definition,
∃w′ ∈W ′ such that λwBλ′w′.

Proposition 4.2.5. Let (W,S) and (W ′, S′) be two bisimilar switch graphs. Each attractor
of (W,S) is signaled by some attractor of (W ′, S′).

Proof. Let (W,S) and (W ′, S′) be two switch graphs whose corresponding reactive frames are
(W,∆) and (W ′,∆′), respectively. Let also R ⊆ W ×W ′ be a total bisimulation and T the
corresponding bisimulation for reactive frames.

Consider A, an attractor of (W,S). Thus, there is some path λ ∈ ∆ such that A is a SCCλ.
According to the previous lemma and sinceR is total, then B is also total. Then, by definition,
there is λ′ ∈ ∆ such that (λ, λ′) ∈ T . Let B̄ = {t(γ′) : γ′ ∈ ∆′ be an extension of λ′}. By the
definition of B̄, and using a process analogous to the one presented in the proof of Proposition
4.2.2, we obtain an attractor B ⊆ B̄. We will show that the states of B are related with the
states of A.

If b ∈ B, then it means that there is an extension γ′ of λ′ such that (γ′) = b, i.e. ∃w′0, ..., w′n
such that γ′ = λ′w0...wn. Since R is a bisimulation, we know that t(λ)Rt(λ′), t(λw0)Rt(λ′w′0),
..., t(λw0...wn)Rt(λ′w0...w

′
n), where w0, ..., wn ∈ W are such that w0Rw

′
0, ..., wnRw

′
n. Since

A is an attractor w0, ..., wn ∈ A.

70

Finally, we note that, computationally, RBN is still a discrete model. Thus, many already
developed approaches can be use on its study. We can think about their plain representation
which is, in particular, a discrete automata with initial states. Following this line of thought,
note that the size of these automata grows exponentially along with the number of higher-
level edges considered. However, this is an expected drawback of increasing the recovered
information from PWL models when comparing to the usual BN models.

4.3 Reactive Boolean networks with probabilities.

In this section we generalize the notion of Boolean networks with probabilities to in-
clude reactive dynamics. While RBN models are based on switch graphs, RBN models with
probabilities are based on weighted switch graphs.

Definition 4.3.1. A RBN model with probabilities is a switch graph (W,S) with an instan-
tiation I : S → [0, 1] such that:

• No inhibitor edges are considered.

• There are no n-level edges for n > 1.

• For each w ∈W , either
∑

(w,w′)∈S

I(w,w′) = 1 or w admits no outgoing edges.

• For each w ∈ W , if (v, (w,w′), •) ∈ S for some v ∈ S,w′ ∈ W , then, for each fixed

v ∈ S,
∑

(v,(w,w′),•)∈S)

I((v, (w,w′), •)) = 1.

This guarantees that the sum of the weights assigned to all edges leaving the same state
is 1, as required in probabilistic contexts. Moreover we note that, in this context, } ≡ 0 and
this is the reason why we do not need to consider inhibitor edges. As in RBN models, we do
not consider edges whose level is higher than 1. This is, in fact possible, but a more careful
definition would be needed to guarantee the coherence of a probabilistic model.

RBN models with probabilities can also be conceived as simplifications of PWL models
and, in their turn, as generalization of BNs with probabilities. This is done by the process
described next. We recall that when we mention a vertex X of the Boolean network we also
mention the corresponding domain of the PWL model and vice-versa. Moreover, we denote
by B(X,Y) the boundary between the domains X and Y .

1. Obtain the usual BN model with probabilities as described in Section 2.2.2.

2. Consider a domain Y admitting more than one outgoing edge. For each state X such
that (X,Y) is present in the model:

- Consider flows starting at some state in B(X,Y), then, for each edge (Y, Z) of

the simplified RBN model, we define a function I(X,Y)
Z : B(X,Y) → {0, 1} such that,

for each x ∈ B(x, y), I(X,Y)
Z (x) = 1 if and only if there is a flow from x to a state in

B(Y,Z) that does not cross other boundaries.

- Introduce an edge ((X,Y), (Y,Z), •) whose weight is

∫
x∈B(X,Y) I

(X,Y)
Z (x)dx∫

x∈B(X,Y) dx

71

This provides a more accurate model when compared to the usual BN model with proba-
bilities since we consider an additional layer of edges representing reactive behaviors obtained
from a PWL model. This model can then be studied using its plain representation and some
suitable methods, concepts and tools like Markov-chains.

Example 4.3.1. Consider the full PWL model from Example 2.1.3. When simplifying into
a discrete BN model one must consider 3 qualitative levels for the variable xa (contrarily
to what is done in Example 2.2.3. The simplified BN model (without weights is shown in
Figure 4.10.

Figure 4.10: BN model for the PWL model in Example 2.1.3.

Let us consider a small part of this network. In Figure 4.11 we see a small part of
the full BN model with probabilities. These probabilities were obtained as described in
Section 2.2.2. Formally, the probabilities shown near each edge represent the value that
the considered instantiation assigns to it. These probabilities are approximations and were
obtained computationally.

Figure 4.11: Part of a BN model with probabilities.

We note that, in the full model, there are three edges targeting state 1001 – (1011,1001),
(1101,1001) and (2001,1001). Thus, we can follow the process described before to find the
1-level weighted edges and their weight. Again, the probabilities shown near each higher-level
edge represent the value assigned to it by the considered instantiation. On the other hand,
this is also the value it can assign to the target 0-level edge. The resulting partial RBN model
with probabilities is shown in Figure 4.12. We note that when we enter in the PWL domain
1001 coming from either 1011 or 1101, we almost surely leave this domain to domain 0001.
Nevertheless, when entering in 1001 by the adjacent domain 2001, the probability of leaving
to 1000 doubles, despite still being small.

72

Figure 4.12: Part of a RBN model with probabilities.

4.4 Final remarks.

Reactivity is found in a wide number of contexts. Indeed, reactive system are discrete
reconfigurable systems in such a way that they can be seen as discretization of some classes
of hybrid models. Thus, reactive models can describe a large number of systems in a natural
way.

We focused our attention in switch graphs and switch graph models and we introduced a
concept of bisimulation for these structures. Moreover, we compared it to the already existing
notions of bisimulation for classical models, in order to show its coherence. Finally, we applied
these concepts to develop a new kind of model for biological regulatory networks – reactive
Boolean networks. We showed how to obtain this kind of model as a simplification of a PWL
model and proved that more features can be preserved when compared to usual BN model.
Although reconfiguration adds some complexity to the model, they are still discrete models
and many tools used to study discrete models can be applied, because reactive models admit
a plain representation, which consists of a regular automaton.

73

74

Chapter 5

Studying asymptotic dynamics in
Boolean networks

In this chapter we focus our attention on the study of BN models and, in particular, on
the process of looking for attractors. When dealing with large models, the asymptotic graph
(AG) method is very useful. However, some problems can arise since false attractors (also
called spurious) can appear in the asymptotic graph. In this chapter we study why this
spurious attractors occur and improve this method in order to reduce their occurrence. The
resulting method, called extended asymptotic graph (EAG) is then compared to the usual
AG one. The work presented in this chapter was published in [13, 18].

5.1 Bisimulation and attractors.

In the previous chapter we proved that a bisimulation of BN models (in the particular
case of RBN models) preserves attractors. We now will present a result which directly relates
attractors with bisimulation.

In this chapter we consider only finite graphs. We also consider a bisimulation as a
relation between states of the same graph. Therefore, we can impose an extra condition –
a bisimulation must be an equivalence relation. This will be needed when introducing the
concept of quotient graph.

Definition 5.1.1. Let (V,E) be a graph. We say that B ⊆ V ×V is a complete bisimulation
if it is a bisimulation and there exists B ⊆ V such that B = B × B (any two elements of B
are related).

A complete bisimulation B is minimal if there is not any other complete bisimulation B′
such that B′ (B.

Lemma 5.1.1. Let (V,E) be a directed graph, B ⊆ V and B = B × B a minimal complete
bisimulation. For any A (B, ∃a ∈ A, v ∈ B\A such that (a, v) ∈ E.

Proof. Let us assume that there exists A (B such that, for any a ∈ A, v ∈ B\A, (a, v) /∈ E.
In this case, we can easily verify that A×A is an equivalence relation since all states of A are
related. By hypothesis, for any (a, a′) ∈ A × A ⊆ B such that (a, b) ∈ E, there exists some
b′ which verifies (a′, b′) ∈ E and (b, b′) ∈ B. Since for any a ∈ A, v ∈ B\A, (a, v) /∈ E, we
conclude that b, b′ ∈ A and, therefore, (b, b′) ∈ A×A. Thus, A×A is a complete bisimulation
and this contradicts the minimality of B.

75

Theorem 5.1.2. Let (V,E) be a graph. B = B × B ⊆ V × V is a minimal complete
bisimulation ⇔ B is a terminal of V .

Proof. “⇒ ”
We start by proving that if B is a minimal complete bisimulation, then there exists a path

between any two elements of B. We prove that B is a terminal afterward.
We consider u, v ∈ B. By Lemma 5.1.1, we know that there is an edge (u, u1) from the

vertex u to a vertex u1 ∈ B\{u}. If u1 = v, we are done. Otherwise, because of Lemma 5.1.1,
we know that there is an edge from a vertex in {u, u1} to some u2 ∈ B\{u, u1}. Here, either
(u, u2) or (u1, u2). In any case, there is a path from u to u2. Again, if u2 = v we are done.
Otherwise, we can continue to apply this procedure until finding a path between u and v (this
procedure will end in finite time since we are only considering finite graphs). As u and v were
arbitrary, we can conclude that B is a SCC.

Finally, if u ∈ B and (u, v), then (u, u) ∈ B and, by definition of complete bisimulation,
(v, v) ∈ B. Then v ∈ B and, thus, B is a terminal.

“⇐ ”
We now assume that B is a terminal of V . If B only contains an element, the result holds

trivially. Otherwise, we can easily see that B = B×B is a equivalence relation since all states
are related. Consider (u, v) ∈ B and (u, u′) ∈ E. Since B is a terminal, u′ ∈ B and ∃v′ ∈ B
such that (v, v′) ∈ E. Furthermore, (v, v′) ∈ B, by definition and, therefore, B is a complete
bisimulation.

Let us assume that B is not minimal, i.e. there is a complete bisimulation A := A×A (B.
Since B is terminal, it is possible to find a path from any a ∈ A for any b ∈ B\A. Thus,
∃a′ ∈ A, b′ ∈ B\A such that (a′, b′) ∈ E. But this contradicts the fact of A being bisimulation
because b′ /∈ A.

This theorem helps one to understand some properties of attractors which will be used
further. It also provides a model reduction method which preserves attractors individually by
clustering the states of an attractor into a single state. Given a graph (V,E) and a equivalence
relation R, the quotient graph (V̄ , Ē) is such that V̄ = V/R, i.e. V̄ is the set of equivalence
classes and ([v], [w]) ∈ Ē if ∃x ∈ [v], y ∈ [w] such that (x, y) ∈ E.

If we find a bisimulation B such that any complete bisimulation contained in B is minimal,
we can compute the quotient directed graph in order to obtain a minimized model in which
the states of the attractors may be clustered. Nevertheless, these attractors are individually
preserved.

Example 5.1.1 (Reducing a BN model for circadian rhythm). We recover the BN model
in Example 2.2.3, relative to a model for circadian rhythm which is given by the following
Boolean equations:

a := ¬s
s := ts

t := a

ts := t ∧ a

With these equations we can construct the corresponding directed graph and, then, look
for their attractors. The resulting asynchronous Boolean network, whose only attractor is
highlighted by an orange box, is shown in Figure 5.1.

76

Figure 5.1: BN model of the circadian rhythm in a cyanobacteria.

With this, we can find a bisimulation such that all complete bisimulations contained on
it are minimal and compute the quotient directed graph. Hence, if we consider the following
bisimulation B = {(a, b) : a, b ∈ {0110, 0010, 1010, 1111, 0111, 1011, 0101, 0100, 0000, 1000}}
∪ {(a, a) : a ∈ {1110, 1101, 1100, 0011, 0001, 1001}}, the resultant quotient directed graph is
the one which is presented in Figure 5.2.

Figure 5.2: Reduced model for the circadian rhythm in a cyanobacteria.

A related approach.

A method to minimize Boolean networks which is widely used when searching for at-
tractors is clustering the SCCs. This allows us to minimize a model and still preserve the
attractors (which are SCCs). This is a well-known idea and several other methods to find
attractors where developed after it. However, the vertices contained at an SCC are not neces-
sarily bisimilar. Furthermore, when we reduce a BN model using bisimulations by obtaining
a quotient graph, we can cluster states which would not be clustered by the SCCs clustering.
On the other hand, when constructing the quotient graph, it may happen that we do not
cluster all SCCs. We can see this because, for any SCC which is not a terminal, there exists
some state in the SCC admitting a transition for a state out of that SCC. Therefore, it may
be impossible to find a complete bisimulation to cluster all their states.

Finally, we point out an important feature of bisimulations. Since we are dealing with
discrete state transition models (automata), it can be useful to use modal logic to reason about
such models. Hence, it could be useful to obtain minimization processes which guarantee
that all states in a cluster verify the same modal formulas. Indeed, due to their definition,
bisimulations are suitable to be used for this purpose.

77

5.2 Extended asymptotic graphs.

The method of asymptotic graphs, as presented in Section 2.2.3, reduces a model and
signals all attractors of the original model. The problem with this method is that spurious
attractors can occur in the reduced model and to verify if they are, in fact, attractors of the
original model is, in general, computationally costly. Thus, our goal would be to obtain a
method which could reduce a model without creating spurious attractor and preserving all
existing ones.

This was, in fact, already achieved in [68] where the concept of cross graph is introduced.
Indeed, it is proven that all attractors of a BN model are preserved by its cross graph and
no spurious attractors are created. However, the spatial and time complexity of building and
analyzing a cross graph is usually even higher than the complexity of analyzing a usual BN
model. This is because the method for obtaining a cross graph is similar to the one for obtain
a asymptotic graph but, instead of only considering the attractors of the submodels, every
SCCs must be considered. This is an issue because sets with a single state are themselves
SCCs.

Thus, in this section we obtain an intermediary method – Extended asymptotic graph.
This method considers all attractors – such as in AG – and some more vertices – as in cross
graphs – in order to reduce the number of spurious attractors obtained but still maintains a
small number of states.

5.2.1 Analyzing the AG method.

When we build an asymptotic graph, we consider the attractors of each submodel –
which we call A and B – and operate a conceptual Cartesian product between the set of semi-
attractor of each submodel SAttr(A) and SAttr(B). Then we obtain a new graph (SAttr(A)×
SAttr(B), E) where the set of edges E is obtaining according to the rules described above.
The proof of Theorem 5.1.2 and the connection between bisimulation and attractors provides
some insights about the reason why some spurious attractors are created in asymptotic graphs.
Fundamentally, this occurs because some paths between states of the original BN are lost
when we consider the corresponding states of AGs. In this way, some SCC of a AG become
terminals. We present an example to make this clearer.

Note that, even so, we can guarantee some attractors of an AG to signal real attractors of
the original BN. In fact, some sufficient conditions are presented in some papers [11, 68, 15].
For instance, if an attractor of a AG is composed of a single element, then it signals a real
attractor of the original BN model.

Example 5.2.1 (from [11]). Consider the toy model given by the following Boolean equations:
a+

1 = b2 ∧ a1 ∧ ¬a2

a+
2 = (a1 ∧ a2) ∨ (a1 ∧ b2) ∨ (¬a1 ∧ ¬b2)

b+1 = (b1 ∧ ¬b2) ∨ (¬a2 ∧ ¬b2) ∨ (a2 ∧ ¬b1 ∧ b2)

b+2 = (b1 ∧ b2) ∨ (a2 ∧ b1) ∨ (a2 ∧ b2)

The method for obtaining the AG consists of considering two subsystems A and B com-
posed of the sets of variables {a1, a2} and {b1, b2}, respectively. Then, we note that, in this

78

Figure 5.3: BN models for the subsystems A and B.

context, hA(B) = {b2} and hB(A) = {a2}. The resulting graphs for these subsystems are
represented in Figure 5.3

Thus, the sets of semi-attractors are SAttr(A) = {A0
1,1, A

1
1,0} and SAttr(B) = {B0

1,0, B
1
1,1,

B1
2,0}. With these sets we can obtain the asymptotic graph which is shown in Figure 5.4

Figure 5.4: Asymptotic graph with a spurious attractor.

Analyzing this AG we find two attractors: A1 = {A0
1,1×B1

2,0} andA2 = {A1
1,0×B0

1,0, A
1
1,0×

B1
1,1, A

0
1,1 ×B0

1,0, A
0
1,1 ×B1

1,1}. At this point, we can already be sure that, even not knowing
the original BN, A1 is an attractor because it only contains one vertex, which is a sufficient
condition for signaling a real attractor, as mentioned before. However, while A1 corresponds
to the attractor {0100} which is also present in the original BN models, A2 finds no cor-
respondence in the original BN. Thus, A2 is a spurious attractor of the AG represented in
Figure 5.4.

Let us explore the reason for this spurious attractor occur in this model. Due to Theo-
rem 5.1.2, one already knows that this is due to some paths from the original model being
ignored. Indeed, consider the vertex A1

1,0×B1
1,1 of the asymptotic graph. Bellow we illustrate

how it is possible to find a “hidden” path between this vertex and A0
1,1 ×B1

2,0.

Consider the corresponding states on the graphs of the
respective subsystems, given the considered input. Here
we note that output of A1

1,0 does not agree with the

input of G1
B. Therefore, we consider the same states of

B1
1,1 but in the graph G0

B.

In G0
B, {01, 11} is no more a (semi-)attractor, then we

can move along the graph till the vertex 00.

79

Following the usual method to obtain a AG method, we
would directly move to the reachable semi-attractor(s)
of G0

B and not consider this scenario. However, we note
that, at this point, the output of 00 in the graph G0

B

does not agree with the input of G1
A. Thus we consider

00 in G0
A.

Now, both 00 in G0
A and 00 at G0

B are not steady states,
thus we could move in either one or another. For the
purpose of this example, we move 00 to 01 in G1

A.

Moving 00 to 01 in G1
A, we reach a state whose output

does not agree with the input of G0
B. Thus, we consider

00 in the graph G1
B.

Here, both 01 and 00 are semi-attractors of the corre-
sponding graphs. Thus, we found a lost edge on the
graph of the asymptotic graph. Moreover, the inclusion
of this edge removes the spurious attractor, since A2 is
no more an attractor of the asymptotic graph.

Thus, as hinted by the proof of Theorem 5.1.2, in order to preserve all attractors and
avoid the creation of new ones, all paths between two related vertices should be somehow
preserved on the resulting graphs of the different approaches. In Example 5.2.1, this was not
the case for the AG since a path between the states 0001 and 0100, present in the original
BN model, is not described in the corresponding asymptotic graph.

In order to obtain an extended method as an alternative to AG that does not create
spurious attractors, one must ensure that all possible paths are somehow represented in the
graph obtained by an extended method. One hypothesis would be to compute all paths which
were possible to be obtained, using a process similar to the one described before. However, this
would be computationally unreasonable, since one would obtain a combinatorial problem, thus
with exponential complexity. Therefore, our extended approach considers additional vertices
to the AG instead. In this way, we are in an intermediary step between asymptotic graphs
and cross graphs.

Before presenting the extended algorithm, we discuss some preliminary considerations.
Note that spurious attractors may appear due to output changes along the pathways followed
by the states of a semi-attractor Aui,v in a state transition graph GūA with ū 6= u. These
pathways and the corresponding sequence of outputs are “forgotten” in the construction of
the AG (which keeps only the final semi-attractor of the pathway, by definition). This is
exactly what happened in Example 5.3, as illustrated before. Thus, our extended method
considers some additional vertices for or AG, thus obtaining a extended asymptotic graph
(EAG), and these added vertices correspond to those whose value of the output changes.

We now formally describe the improved algorithm. The idea is to analyze the pathways
of each state of each semi-attractor Xu

i,v along the same subsystem graphs GūA with ū 6= u,
until a change in the output is detected. This is described in the following way:

80

1. Divide the set of components of a BN into two disjoint subsets in order to obtain two
subsystems. For each subsystem A and B consider all possible values for the inputs and
build the graphs GuA and GuB.

2. Compute the SCCs of each graph GuA and their attractors. Collect its semi-attractors
in SAttr(A).

3. Pick an attractor Aui,v, suppose it contains the states {x1, . . . , xk}, and look for all the
possible forward pathways for each x` in the other graphs GūA with ū 6= u. For instance,
consider a path (x`, y1, y2, ..., yn) where yn belongs to an attractor in GūA. Along each
path, each state has its own output hA(yi).

4. For each pathway of each state x`, pick the first state yī that has a different output
from r`, i.e. hA(yī) = ū 6= u = hA(x`).

5. State yī belongs to some SCC Sūi of the graph GūA. Divide this SCC according to
the outputs of their elements and add these sets Sūi,v to the set of semi-attractors:
SAttr(A) = SAttr(A) ∪ {Sūi,v}.

6. Repeat steps 2-5 for the subsystem B. The set of vertices of the EAG is the Cartesian
product between the set of semi-attractors of each subsystem.

7. To obtain the set of edges, apply the method for usual AGs, as described in Section 2.2.3,
to every state of the EAG.

8. Consider a state Ā × B̄ with Ā ∈ SAttr(A) and B̄ ∈ SAttr(B). If Ā = Sui,v is an
SCC but not a semi-attractor then look on graph GuA for every other X ∈ SAttr(A)
reachable from Sui,v and consider an edge between Ā × B̄ and X × B̄. Thereafter, we

proceed analogously for B̄.

To test this method, it was applied to 750 randomly generated pairs of modules. The
modules comprise 2, 3, 4, 5 or 6 and up to 3 inputs/outputs. Each module was obtained
by randomly generating the Boolean truth tables for GuX , u ∈ {1, . . . , 2pX}, where pX is the
number of inputs of the subsystem X. The results obtained with this extended method can
be seen in Figure 5.5) and indicate that the spurious attractor problem is solved in about
99.8% of the cases, resulting in an extremely low occurrence rate. Nevertheless, the extended
asymptotic graphs are still not exact and they are harder to calculate when comparing to
usual asymptotic graphs. The test propose that extended asymptotic graphs become efficient
only for systems whose subsystems admit, at least 6 components. In Figure 5.5, we compare
the AG method with the EAG one. On the left, the percentage of failure (i.e. the generation
of spurious attractors) is shown. On the right, we can see the sizes of both asymptotic graphs
relative to the size of the full BN. To simplify the notation we denote by NA and NB the
number of components of each subsystem, Gas denotes the graph for the AG method, Gext

denotes the graph of the EAG method and Ni denotes the number of inputs.

These results also suggest that the addition of other SCCs to the sets SAttr(A) and
SAttr(B) will further improve the asymptotic graph. For instance, by successively adding
the SCCs corresponding to a second or third change of output along the pathways within
each graph GuA. This would make our algorithm more precise but computational complexity
would increase, only becoming efficient at even higher dimensions. Indeed, this agrees with

81

the result shown for cross-graphs, which recovers exactly the same attractors of the original
BN model. The cross graph is at least as costly to compute as the BN model itself, not being
an efficient method for large networks. Nevertheless, the successive constructions AG, EAG,
..., cross graph provide a clear illustration of the organization of asynchronous dynamical
behavior.

Figure 5.5: Performance of the extended asymptotic graph method for asynchronous networks
and comparison with the AG original method.

Example 5.2.2. Consider the system in Example 5.2.1 where a spurious attractor occurred.
In this example we obtain the extended asymptotic graph in order to show that the spurious
attractor obtained in the AG of Example 5.2.1 does not occur in the respective EAG.

In order to obtain the EAG we consider the graphs for the subsystems presented in
Figure 5.6. There, a dashed line divides the states of each graph according to their output.
Then, following the method described before for obtaining an EAG, we look on each graph of
the same subsystem but with different output for SCCs which occur in the pathways of the
states of each semi-attractor, until a change in the output is detected. For these graphs, the
only SCC which fulfills these requisites is 00 in G0

B, which we denote by S0
2,0. This SCC is

obtained by considering B1
1,1 in the graph G0

B. For both elements – 01 and 11 – of B1
1,1, 00 is

the first state in their pathways with a different output.

Figure 5.6: Auxiliary graphs for the construction of an EAG.

We thus obtain the extended sets SAttr(A) = {A0
1,1, A

1
1,0} and SAttr(B) = {B0

1,0, B
1
2,0,

B1
1,1, S

0
2,0}. The set of edges is obtained as before. Thus, the resulting EAG is shown in

Figure 5.7. While most of the construction follows the rules presented before, the novelty is
the presence of vertices A1

1,0 × S0
2,0 and A1

1,0 × S0
2,0. Some edges like (A1

1,0 × S0
2,0,A1

1,0 ×B0
1,0)

82

are also obtained using a specific rule for EAGs. Note that the input for the graph G0
B, where

S0
2,0 is found is 0, just like the output of A1

1,0. However, since S0
2,0 is an SCC but not an

attractor, we must also consider the pathways from this vertex in G0
B.

Figure 5.7: An extended asymptotic graphs with no spurious attractors.

For the obtained EAG, we can find a single attractor {A0
1,1×B1

2,0}, marked in Figure 5.7 by
a rectangle. This is, indeed, a real attractor of the original system, as explained in [11]. This
also means that this extended method was able to remove the spurious attractor obtained
by the AG in Example 5.2.1. Moreover, in this example we are sure that, even not knowing
the original BN, {A0

1,1×B1
2,0} signals a real attractor of the full BN, because we still can use

the sufficient conditions mentioned before for asymptotic graphs and {A0
1,1 × B1

2,0} contains
a single vertex of the EAG.

5.3 Final considerations.

In this chapter we presented an analysis of BN models and a method to find their attrac-
tors. With this we highlighted some connections between bisimulation and attractors, and
proposed an extension to the AG method.

The concept of complete bisimulation provides a theoretical notion for this concept. More-
over, it shows that methods for reducing BN models which “preserve” complete bisimulations
make possible to identify all attractors of the original one. One example of a reduced BN
model is the one obtained by quotient graphs.

A method which is also used to find attractors of BN models is to construct the corre-
sponding asymptotic graph, which generally generates a graph with a reduced size preserving
all attractors of the original BN individually. However, some spurious attractors can occur on
these structures. Although some specific properties can be used to check that some attractors
of an asymptotic graph are indeed attractors of the original system, many others are not easy
to verify. Thus, we proposed an extended version of this method which we called extended
asymptotic graph. This method generates a larger graph but the generation of spurious at-
tractors is clearly reduced. Moreover, just like in AGs, we still can use the same properties
to check that attractors of an EAG are, in fact attractors in the real model.

Unfortunately, this method is still not perfect because the occurrence of spurious attrac-
tors, despite being highly reduced, is still possible. This could be fixed by gradually aug-
menting the size of the EAG, through the inclusion of new vertices (i.e. SCC of the original
model) until we obtain the full cross graph, as introduced in [68]. This cross graph preserves
all attractors of the original model and does not generated spurious attractors. However, it
is not useful since it is, in general, larger than the original BN. Because of this, we believe
that our EAG method is a good option for large BN, since it becomes efficient for systems
accommodating more than 13 components.

83

84

Chapter 6

A reactive approach to stochastic
methods

We end the thesis with a chapter about a stochastic approach. Stochasticity is not a topic
approached by M. Chaves in [10] but with the development of reactive formalisms, some new
possibilities become attractive to be considered in a stochastic way. Hence, in this chapter
we consider weighted switch graphs, as introduced in Chapter 4, as structures which make
possible to introduce reactivity in stochastic models. Summarizing, in this chapter we start
by illustrating how these models can be used in diverse biological contexts (apart from solely
biological regulatory networks), we recall the notion of RBNs with probabilities and, finally,
introduce rPrism, which is an extension to the tool PRISM model checker (check [46] for more
details), and allows one to perform simulations for these reactive and stochastic models. The
work presented in this Chapter was published in [22].

6.1 Stochasticity and reactivity in biological context.

As explained in previous chapter, all cellular processes occurring in biological organisms
follow stochastic rules, since they obey to chemical and physical laws. Nevertheless, deter-
ministic models like those presented in Chapter 2 which are, in general, simpler and easier to
apply, can be used because of the law of large numbers, since cells admit a large number of
elements for each component. Nevertheless, one must note that this is not always the case,
i.e. there exist some biological processes which are guided by a fewer number of elements.
These processes must be studied carefully using stochastic methods.

On other hand, reactivity is itself very common in biochemical examples. Apart from the
cases presented before, in biological regulatory networks, we can find many other examples
of reactivity at a larger physical scale. A simple example is the vaccination process. Upon
vaccination, which can be considered a discrete event, a susceptible individual acquires a
lower probability of becoming infected if he eventually contacts with a virus. A sightly more
complex example is the Rhesus incompatibility between the fetus and the mother (see [39]).
This incompatibility may occur when the mother is Rhesus negative and the fetus is Rhesus
positive. If the mother’s blood already contacted with Rhesus positive blood, the immune
system of the mother has already developed antibodies against it and her blood will not be
compatible with the fetus, and the immune system of the mother will attack the baby. If no
contact happened before, the pregnancy may expect no complications since no antibodies were

85

created and the blood of the mother is not expected to contact with the blood of the fetus until
his birth. In other words, the contact with Rhesus positive blood alters (or “reconfigures”)
the mother’s immune system, creating the reactive behavior mentioned above.

In this chapter we consider a tool to be applied when studying systems where both stochas-
ticity and reactivity are presented. We model this kind of system with a weighted switch
graph. However, in this context, the weights assigned to edges of the considered reactive
model describe rates. This will become clearer with the presentation of some examples. It is
common to relate this approach with Markov chains but we note that reactivity introduces, in
some sense, a notion of “memory” and reconfigurability in the system, which is not the case
for Markov chains. Nevertheless, a connection is established further when the tool – rPrism
– is introduced.

Example 6.1.1. A biological system which could be described by reactive and stochastic
formalisms is the cooperativity of a hemoglobin protein and it is described in [16]. A single
hemoglobin protein can bind up to 4 oxygen molecules. Thus, although this seems a simple
system, it needs to be described by a model which accommodates features such as counters.
Weighted switch graphs are perfect for the case. Indeed, the cooperativity of hemoglobin is
characterized by the fact that, when this protein binds one oxygen molecule, the likelihood of
the protein to bind to another one increases (up to a maximum of four). These changes in the
rate of the oxygen binding can be described using the reactive properties of weighted switch
graphs. Also, we note that this system can not be described by a deterministic method since
we are considering a single hemoglobin protein.

The example of a weighted switch graph describing a hemoglobin protein is shown in
Figure 6.1. There, each loop represents the binding of one oxygen molecule and the weight
of the loop represents the corresponding rate: note that the weight increases for the binding
of successive oxygen molecules, but a fifth molecule can no longer bind.

Figure 6.1: Model representing the cooperativity of hemoglobin.

6.2 The tool: rPrism.

The tool presented in this section – rPrism – is an extension of the PRISM model checker
to include reactivity. This is done by translating a weighted switch graph into a usual weighted
automaton and, then, use the tool PRISM. Before introducing it with more detail, we provide
some insights about the PRISM model checker itself.

86

6.2.1 PRISM model checker.

PRISM is a free computational tool which is able to formally model and analyze systems
which exhibit random or probabilistic behavior. It can be used to perform simulation but
also admits temporal logics that allows to check several quantitative properties of modeled
systems. It can deal with either discrete or continuous time Markov chains as well other
probabilistic approaches. In order to model a probabilistic system, PRISM offers a proper
language which is state oriented. This language considers several variables which can take
values within a range of natural numbers, specified for each variable. Each state of the model
is obtained as a specific admissible combination of values for the variables. The transition
between states is directed by some rules. These transitions are described in a different way
according to the type of probabilistic model considered. In this chapter we consider only
continuous-time Markov chains. Each transition can have a label and is composed of:

• A “guard”, i.e. a condition over the values of the variables involving Boolean expressions
and comparisons between integers. If a guard is not satisfied, then the transition cannot
be triggered;

• A “rate” (in continuous scenarios), which is a positive real number determining the
average time between two occurrences of the transition. If no value is specified, the
default value for this field is 1;

• An “assignment” describing how the values of the variables change whenever the tran-
sition triggers.

Finally, we must also define the set of variables and the initial state/configuration of the
system, i.e. the initial values of the variables.

An example of how to define a variable in PRISM language is:

VariableName : [0..10] init 5;

where 0 and 10 are the lowest and greatest values that the variable can take, respectively,
and 5 is its initial value.

An example of how to define a transition in PRISM language is:

[TransitionLabel1] (VariableName>0) & (VariableName<7) -> 5 : true;

where (VariableName>0) & (VariableName<7) is a guard, 5 is the rate (which must always
be a value in Q+) and true is an empty assignment. Another example is:

[TransitionLabel1] true -> VariableName’=3;

Here, true is a guard which is always satisfied, the rate is 1 by defaut, and VariableName’=3

is an assignment which assigns 3 to the value of variable VariableName.
We can only define variables and transition inside modules. A variable can only occur

within the module where it is defined. Thus, every transition (unambiguously identified by
its label) must specify on each module how it depends and affects the variables defined on the
module. This gives rise to many parallel guards and assignments. If that is the case, all guards
must be satisfied in order to trigger the transition and all assignments occur simultaneously

87

for every module when the respective transition is triggered. The rate of a transition does not
need to be presented on every module but may not exist any incoherence, i.e. it should be
presented exactly once or none (being considered 1 by default). Finally, the PRISM language
allows us to define constants (variables with fixed values) and rewards. Rewards are real
values associated to certain states or transitions of the model.

This tool has already been applied to biochemical contexts and problems (see [37] for
some examples). In the PRISM model checker website1 an example of a stochastic model for
a circadian rhythm model can be found, which is based in a ODE model which documented in
[69]. More information about modeling biochemical processes using continuous-time Markov
chains can be found in [47].

6.2.2 Weighted graphs and PRISM models.

When we compare weighted switch graphs to PRISM models, we can find some connec-
tions. On the one hand, each state of a PRISM model represents a combination of values
for some variables. On their turn, a notion of transition between these states is considered,
which provides a graph-like structure that considers vertices as states and edges as transi-
tions. Moreover, the PRISM language also considers other features for transitions: guards,
rates and assignments. Indeed, guards and assignments are implicitly represented in the graph
structure, since they are responsible for deciding whether an edge is present in the graph or
not. However, the inclusion of rates is only attained when we consider weighted edges, where
weights represent rates. In this way, we note that a PRISM model can be translated into a
weighted graph.

Example 6.2.1. Recall the hemoglobin protein example from Example 6.1.1. The resulting
plain representation is illustrated in Figure 6.2. This model is, in this representation, a simple
weighted graph which fully describes the dynamics of a single hemoglobin protein.

Figure 6.2: Plain representation for a hemoglobin cooperativity reactive model.

In order to use PRISM to study a weighted switch graph, we can translate this reactive
structure into a weighted graph. Indeed, as mentioned before, a weighted switch graph admits
a plain representation, thus becoming a weighted graph. Moreover, the method for obtaining
this plain representation considers each vertex of the graph as a pair (x, I) where x is a vertex
of the weighted switch graph and I is an instantiation. Thus, in order to accommodate this
plain representation in the PRISM language, we must add a new variable I to the system
in order to determine the relevant instantiation. Thus, two different instantiation always
generate different states independently of the value of all other components and we can assign
different rates to the transition from states which only differ in the instantiation. Hence, both
higher-level edges and an initial instantiation can be encoded in the PRISM language using
an additional variable I for instantiation and an initial state, respectively.

1https://www.prismmodelchecker.org/tutorial/circadian.php (lastly accessed in August 29, 2019)

88

Note that it becomes possible to translate and use PRISM to study RBNs with proba-
bilities, as introduced in Chapter 4. Nevertheless, this tool is not adequate for dealing with
this kind of model. Indeed, we must take two things into consideration: Firstly, we note that
RBN variables are Boolean and, therefore, only consider two values (unless more qualitative
levels are considered). Moreover, transitions between vertices of a RBN do not represent
activation and inhibition between components. The problem of this is that it seems not easy
to understand, for each particular system, how edges from a RBN with probabilities can be
encoded in the PRISM language because one must define transitions in the PRISM language
which describe the same set edges of the corresponding RBN plain representation.

6.2.3 Biological regulatory networks as weighted switch graphs.

Consider the graph diagram formalism presented in the beginning of Chapter 2. In this
section, we generalize it to a weighted graph and, thereafter, to a stochastic model. In order
to do this, we start by analyzing these graph diagrams. Remember that a graph diagram is
a graph (V,E) where the set of vertices coincide with the set of components and the set of
edges E ⊆ V × V × {+,−} describes the regulation relations. Although we can assign a rate
to a positive regulation, illustrated as an usual edge, the same cannot be done when working
with edges describing negative regulations, since no rate can be assigned. However, we can
think about what a negative regulation implies: the presence of a component inhibit the
production of another one. I.e. if some specific component is being produced and it inhibits
other components, the second one is produced at a lower rate. This näıve approach is the basic
idea for obtaining a reactive weighted graph from a graph diagram, representing a biological
regulatory network. In this case it makes no sense to consider the plain representation for
these models because we may consider several elements for each component, which means
that the PRISM model would admit many values for each component variable and its graph
representing state transitions would not coincide with plain representation.

Example 6.2.2. Consider the graph diagram in Figure 2.1 representing the regulatory net-
work of circadian rhythm. We can assign weights to edges representing positive regulations,
as illustrated in Figure 6.3 (left). The edges with weights represent phosphorylation reactions
and weights denote rates. We note that the edges (T,U,−), (TS,U,−) and (S,U,−) repre-
sent natural dynamics. Note that T , TS and S are phosphorylated for of unphosphorilated
KaiC (U) because, if the total amount of KaiC is constant, then the presence of T , TS and
S negatively regulates U . This is because the value of U decreases when values of T , S and
TS increase. Nevertheless, the edge (S,A,−), which is also present in the model does not
describes any of this phenomena but a real inhibition in the transcription of the protein KaiA.
Thus, since KaiA, in its turn, induces the production of T and TS without being consumed
during the process, we replace both A and the edges representing inhibitions by higher-level
edges. In this way, we obtain a weighted switch graph and the weights in the edges represent
rates, as shown in Figure 6.3 (right).

We must note that, in this example, these rates where not estimated and were only
introduced to provide an example. Nevertheless, more accurate values could be obtained
with estimation.

This kind of representation, where each state represents a components and admits a num-
ber of elements, along with edges representing biochemical reactions and processes resembles
to Petri nets [66] which can also be studied as stochastic models for biological processes [32].

89

Figure 6.3: A graph diagram of circadian rhythm with some weights representing rates (left);
and a complete weighted switch graph obtaining by removing inhibitor edges and component
A (right).

Indeed, we note that, apart from what concerns to specification, there not much difference be-
tween Petri nets and PRISM models. However, the main difference between these structures
and weighted switch graphs is the inclusion of higher-level edges, allowing rates to change.

Finally, we consider two examples of a biological models and show how a weighted switch
graph model can be analyzed in PRISM.

Example 6.2.3. Consider the weighted switch graph model introduced in Example 6.2.2. In
order to obtain a model which can be specified by PRISM language we start by noting that it
admits two instantiations: I1, the initial one which is represented in Figure 6.3; and I2, which
is equal to I1 except that I2((U, T)) = 0.2, I2((T, TS)) = 0.2 and I2((TS, S)) = 0.6. Thus,
in order to specify this model using the PRISM language, we must consider an additional
variable which indicates us the instantiation that should be considered.

Since we are studying a stochastic model, we only consider 100 KaiC proteins in this
model (both phosphorylated or unphosphorylated). Given this, we present the PRISM code
for this model and explain it afterward:

ctmc

module components

u : [0..100] init 50;

t : [0..100] init 24;

s : [0..100] init 26;

ts : [0..100] init 0;

inst : [0..1] init 0;

[ts_s0] (ts>0) & (inst=0) -> 0.4 : (inst’=1) & (ts’=ts-1) & (s’=s+1);

[ts_s1] (ts>0) & (inst=1) -> 0.6 : (ts’=ts-1) & (s’=s+1);

[s_u] (s>0) -> 0.3 : (inst’=0) & (s’=s-1) & (u’=u+1);

[u_t0] (u>0) & (inst=0) -> 0.4 : (u’=u-1) & (t’=t+1);

[u_t1] (u>0) & (inst=1) -> 0.2 : (u’=u-1) & (t’=t+1);

[t_ts0] (t>0) & (inst=0) -> 0.4 : (t’=t-1) & (ts’=ts+1);

[t_ts1] (t>0) & (inst=1) -> 0.2 : (t’=t-1) & (ts’=ts+1);

endmodule

90

First of all, we begin by specifying which kind of approach we want. By writing cmtc,
we choose “continuous-time Markov chain”. Thereafter, we must specify a module in order
to define variables. This is done using the text module components, where “components”
is the name of the module. Within this module we define all variable and transitions, as
explained before. We note that the initial valued for variables u, t, ts and s sums to 100 and
that the amount of KaiC is constant, as mentioned before. Additionally, a variable called
inst is included to distinguish both instantiation which may be considered. Afterward we
define transitions which describe the general phosphorylation/unphosphorylation reactions
and assign them a rate according to the instantiation being considered. Finally, we close the
module with the command endmodule.

With this, we were able to perform a stochastic simulation. The output of this simulation
is shown in Figure 6.4. Even without a precise estimation of the parameters, it is interesting
to notice that a cyclic behavior can already be observed since we have several peaks for each
component value. This is interesting because it fits what would be expected for a circadian
rhythm model.

Figure 6.4: Results from a stochastic simulation.

Example 6.2.4. In this example we consider a Lac operon biological system for E. coli
(see [33] for a more detailed description). This system considers a bacteria of E. coli in an
environment with two types of sugar – glucose and lactose – and analyses how this bacteria
metabolizes them in order to grow.

For short, the bacteria shows preference for glucose and it grows at a great rate while
consuming it, consequently increasing the mass of the cell. Also, while the cell is consuming
glucose, the lactose permease is shot down, meaning that no lactose is transported into the
cell. Moreover, when glucose is fully consumed, the bacteria is able to consume lactose.
However, there is some delay in this process, i.e. there is a time interval between the growth
caused by the consumption of glucose until it runs out, and the cell to grow again due to the
consumption of lactose. A cause for this is the lac repressor, lacI, which halts the production
of enzymes encoded by the lac operon while lactose is not present. However, when lactose
enters in the cell, lacI starts being inhibited and the cell grows again, at a lower rate than
with glucose.

We built a PRISM model for this system using reactive formalisms. Our interest was to
replicate the behavior of the bacteria and analyze how would the mass of the cell increase along
time. Thus, a stochastic simulation was performed and it was checked if the obtained output
matches the results predicted. For this, we consider an E. coli bacteria on an environment

91

with both glucose and lactose and specify its metabolism using a weighted switch graph,
which was translated into PRISM language. The output for our model is shown in Figure 6.5.

Figure 6.5: PRISM output for the growth of E. coli with glucose and lactose.

As expected, the mass of E. coli grows quickly while glucose is being consumed and, during
this period, lactose is, generally, not consumed. When the bacteria runs out of glucose, the
cell starts to consume lactose and its growth stops for a small amount of time before to resume
at a slower rate.

The aim of these two examples is not to obtain some new results (as these are well studied
models) but to validate and evaluate the consistency of this model and process. Indeed,
coherent results where obtained for both cases, using stochastic models based on reactive
formalisms such as weighted switch graphs.

6.2.4 Language and examples.

Regarding the last section, we find a way to specify weighted switch graphs in the PRISM
language: this was done in Example 6.2.3. However, this process can be long and costly. Note
that the inclusion of higher-level edges in a weighted graph exponentially increase the size
of the PRISM model. Its inclusion also exponentially increases the size of the code needed
because one must, for each instantiation, define the right rates and updates to instantiations.
Moreover, this process can be costly because we must treat each instantiation individually.
The reason for this is that PRISM is not ready to directly work with weighted and reactive
structures. Because of this, we developed an extension to PRISM – which we called rPrism –
whose language is specially designed in order to make easier the use of PRISM when working
with a weighted switch graph. This tool admits a specific language where one specifies the
switch graph along with the initial state and instantiation, and allows the user to run PRISM
for that model, after specifying the kind of desired output. It is important to mention that
this software is still under development and new features and options are to be integrated.
Nevertheless, a Demo version, implemented as a sDL package, is already available2. The
actual version only supports weighted switch graphs with edges whose level is not higher than
1. This is expected to be extended in future versions.

2http://sdl-vm2.mathdir.org/demos/sDL-pck-run?pck=rPrism/1.0&sdoc=Example A (lastly acessed in
August 29, 2019)

92

Given a weighted switch graph with edges whose level is not higher than 1, the user of
rPrism must specify the model in a simple text format, with the following structure:

NS {

N "definition of node 1" {

"definition of edge 1";

"definition of edge 2";

...

}

N "definition of node 2" {

}

...

}

H1 {

"definition of one-level edge 1";

"definition of one-level edge 2";

...

}

options "command1";

output "command2";

sim cmtc;

The “definition of a node” has the following format:

“node label” “bound” “ubound” “initvalue”

where “node label” is a valid string with the name/identifier for a vertex of the weighted switch
graph; “lbound” (respectively, “ubound”) is an integer determining the lower (respectively,
upper) bound with respect to the number of elements of type “node” on the system; and
“initvalue” is a integer with the initial value of elements of type “node” on the system.

The “definition of an edge” is done in the following way:

“target node” “initial weight”

where “target node” is a valid string with the name/identifier of the target node; and “initial
weight” is a float with the initial weight of the edge.

Finally, to define a one-level edge, we must use the following code:

“source edge” “target edge” “weight”

where both “source edge” and “target edge” are strings and have the format
“source node”:“target node”; and “weight” is a float with the weight of the one-level edge.

The entry “command1” determines the output of the program and must be filled according
to the goal of the user, for example, can be “simpath 10” (meaning the simulation will make
at least 10 steps) or “simtime 5.7” (the simulation will run at least until the time reaches the
value 5.7). The entry “command2” can be replaced as “all” in order to obtain the entire set
of outputs or restricted to any combination of the commands: “odel”, “simulation results”,
“simulation plot”, “reachable sets”, “transition matrix”, “labels”, separated by a space.

93

Given a weighted switch graph with no 2-level edges, rPrism translates the model into the
PRISM language in order to use it to study reactive models.

Example 6.2.5. Recall the weighted switch graph model presented in Example 6.2.2. The
rPrism code to implement it is presented bellow.

NS {

N s 0 100 25 {

u 0.3;

}

N ts 0 100 25 {

s 0.4;

}

N t 0 100 25 {

ts 0.4;

}

N u 0 100 25 {

t 0.4;

}

}

H1 {

s:u u:t 0.4;

s:u ts:s 0.4;

s:u t:ts 0.4;

ts:s u:t 0.2;

ts:s t:ts 0.2;

ts:s ts:s 0.6;

}

options simtime 100000;

output all;

sim cmtc;

6.3 Final remarks.

When compared with previous chapters, the latter one studies biological regulatory net-
works on a complete different angle, since it considers a stochastic approach. Nevertheless,
the common point is the application of reactive formalisms, which are a particular case of
reconfigurable dynamics.

A new kind of stochastic representation, based on weighted switch graphs is proposed for
biological regulatory networks and the software PRISM model checker is shown to be able to
handle this kind of model. However, since its language is not optimized for these structures, a
user-friendly extension to PRISM (called rPRISM) was developed to allow a user to directly
specify the structure of a weighted switch graph. This software only accepts weighted switch
graphs with no 2-level edges but it is expected to be extended to the entire class of weighted
switch graphs soon.

94

This kind of approach was shown to be suitable to model biological regulatory networks
and obtain satisfactory and coherent results. A performance analysis was not formally done,
however, we expect this method to be computationally costly, since the number of states
grows exponentially along with the number of higher-level edges considered. Nevertheless,
note that, in these models, higher-level edges replace some other elements like states and
transitions (see Example 6.2.2). Furthermore, in this thesis we considered systems whose
dynamics and the expected simulation outputs where already known because we wanted to
validate our models and methods. However, we believe that the main applicability of reactive
formalisms is to describe phenomena whose cause is still not fully understood. Using weighted
switch graphs we are able to describe some known phenomena without including the unknown
component responsible for that behavior. This can be seen, for example, in Example 6.2.2
where the component A – representing the KaiA protein – was not consider.

Finally, the choice for PRISM as base software for the study of these models is justified by
its capacity of study a probabilistic model in a symbolic way. However, one can note that this
is not done in this work since only simulations were performed. Indeed, although PRISM is
able to do simulations, it is not optimized for it. However, it can also be used to study several
features of a probabilistic model such as steady state probabilities (which can be interesting
in biological context). Moreover, PRISM admits a temporal logic to discuss properties of the
system. Nevertheless, since these features of PRISM still were not implemented in rPrism, we
decided not to present them yet, but expect to integrate them in future versions of rPrism.
For now, simulations are used to validate our models and justify the use weighted reactive
switch graphs.

95

96

Chapter 7

Conclusion and future research

Which models, methods, tools can synthetic biology inherit from Computer Science? More
precisely, what may core concepts in computing – e.g. automata, bisimulation, modalities,
reconfigurability, hybrid systems, ... – bring to our understanding of biological or bio-synthetic
systems and our ability to both design and analyze them? This thesis contributes to establish
a roadmap to address these questions and goes a few steps in it. We have proceeded with
a specific focus on the study biological regulatory networks, and took as a starting point
the methodology proposed by M. Chaves [10] where a methodology to study a biological
regulatory network, relating discrete and continuous models, was proposed.

Several contributions to this roadmap, suitably documented in the previous chapters, were
developed along this doctoral research.

Starting with PWL models and ODEs with discrete controllers, we discussed the adoption
of hybrid formalisms and tools like KeYmaera and dReach. Actually, biological networks are
suitably abstracted as hybrid systems, which on their turn can be regarded as a particular
case of the reconfigurable systems. We showed how the syntax of dL can be used to specify
properties of their dynamics. This opened the possibility to use KeYmaera, which is a semi-
automatic theorem prover developed in the context of cyber-physical programming, as a
verifier in the bio-synthetic domain. Similarly, we have investigated the potentialities of
dReach to complement KeYmaera since the former is able to deal with systems of differential
equations numerically.

On a second stage, we studied the connection between PWL models and BN, and intro-
duced a new intermediary model – reactive Boolean networks. Some steady states from PWL
models are lost when one considers the corresponding simplified BN model. This problem can
be partially solved considering generalized BN models based on the concept of switch graphs.
We showed that, in general, RBN can preserve an increased number of attractors from a
PWL than a BN model. Unfortunately these generalized models are computationally harder
than the usual BN models. Therefore, their introduction in this thesis was accompanied by
an investment on the corresponding theory, concerning, namely, bisimulation and a plain
representation for switch graphs, as well as an adapted semantical interpretation for modal
logic. We have also proposed another generalization dealing with the introduction of weights
in the underlying switch graphs. This class of generalized models can be applied in diverse
contexts, namely of a fuzzy or probabilistic character. In particular, we proposed a variant
of RBN which includes probabilities, as a generalization of BN models with probabilities.

We also developed a theoretical analysis to BN models, linking some of their features to

97

the concept of bisimulation, leading to possibly new application areas for these models. Ac-
tually, the relevant literature reports on several alternative representations of these models,
e.g. hierarchical, SCC clustering, etc... (see [18]). Bisimulation provides a different char-
acterization of systems and may be used along with a modal logic. In a different biological
context, a similar idea was applied in [58]. Finally, the method of asymptotic graph was im-
proved to capture more asymptotic dynamics of the original graph. When comparing to the
usual AG method, EAG was shown to be very efficient in detecting and eliminating spurious
attractors. Note that the EAG method is also computationally hard, only becoming efficient
for biological models containing more than 13 components.

Finally, we developed a reactive and stochastic approach to biological models whose dy-
namics and components are not completely known. The proposed model is based in weighted
switch graphs and considers weights as rates. This work was complemented by studying the
application of the PRISM probabilistic model checker to the relevant models. Since PRISM
is not able to deal directly with reactive models, a tool called rPrism, specifically designed
for reactive models, was developed in this doctoral research. From an engineering point of
view, PRISM functionality became available to work with weighted reactive models, through
a user-friendly interface.

In a more fundamental perspective, the work presented in this thesis aims at clarifying the
relationships between different kinds of models as well as highlighting their interconnections
and common points. This was accomplished by presenting an exhaustive description of such
models, a theoretical analysis, and by proposing new models and methods for the emerging
problem. As mentioned above, for the success of this research contributed the revisit of basic
software concepts – namely, bisimulation, reconfiguration, and reactivity, These concepts,
which are already broadly applied in computational fields, often have shown appropriated to
describe the dynamics of biological systems, and to develop new tools and methods.

Concluding this thesis, it is important to note that some of the results obtained not only
solve a specific problems, but also pave the way for many other challenging developments. In
particular we propose to pursue along the research lines described in the sequel.

• The idea of considering a PWL model or an ODE model with discrete controllers as an
hybrid system leads to the adoption of many other tools and concepts. For instance,
some other possible approaches for these models are found in [50, 54]. Nevertheless,
we believe that further considerable improvements could be attained with KeYmaera in
what concerns PWL models. Note that KeYmaera calls Mathematica to solve systems
of differential equations. However, since the differential equations in PWL models are
linear, a different (open-source) software could be used. In a distinct direction, the
robustness of dL and KeYmaera can be questioned, since the logic admits no uncertainty
in state variables values. Contrarily to what is done in dReach with δ-reachability, dL
cannot deal with errors nor perturbations, which are quite common in real life. This
problem could be addressed by considering the development of an intervalar or multi-
valued version of dL. In particular, the intervalar version of this logic would take dL
as well as some basic results documented in [53, 62, 61] as starting point and targeting
the developed of both a sound proof calculus and an automatic prover.

• Many directions can be followed to continue the work initiated in this thesis on RBN
model. A concrete example would be the introduction of edges with level higher than 1
in order to check if more asymptotic behaviors could be recovered from a PWL model

98

when compared to usual RBN and BN models. In a theoretical perspective, we would
like to study and develop more expressive logic languages to capture generalizations of
the switch graphs introduced in this thesis. Some possibilities are hybrid [20] but also
fuzzy and probabilistic versions. These logics should be able to capture the reactive
properties of the system, offer a sound proof calculus, and studied for completeness,
decidability and expressive power. Among the several options suggested by our work, we
believe that the probabilistic version would be the most demanding and useful because
it could be applied to the study of RBN models with probabilities.

• Finally, the idea of using reactivity in stochastic models builds, as far as we know, a
completely new approach. The idea is quite promising and may lead to the development
of new approaches and results in diverse fields. The further development of rPrism
emerges as a main task since PRISM is not optimized for simulation and rPrism does
not yet integrate several options available in the mother tool. Our goal is to extend it
in future and use the multiple analytical tools of PRISM as well as its temporal logic,
directly from rPrism, taking advantage of PRISM being open source.

99

100

Bibliography

[1] Carlos Areces, Raul Fervari, and Guillaume Hoffmann. Swap logic. Logic Journal of the
IGPL, 22(2):309–332, 2014.

[2] Carlos Areces, Raul Fervari, and Guillaume Hoffmann. Relation-changing modal opera-
tors. Logic Journal of IGPL, 23(4):601–627, 2015.

[3] Michal Baczyński and Balasubramaniam Jayaram. Fuzzy Implications, volume 231 of
Studies in Fuzziness and Soft Computing. Springer, 2008.

[4] Gleb Beliakov, Ana Pradera, and Tomasa Calvo. Aggregation Functions: A Guide for
Practitioners, volume 221 of Studies in Fuzziness and Soft Computing. Springer, 2007.

[5] Johan van Benthem. An essay on sabotage and obstruction. In Dieter Hutter and
Werner Stephan, editors, Mechanizing Mathematical Reasoning, volume 2605 of LNCS,
pages 268–276. Springer, 2005.

[6] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic: Graph. Darst,
volume 53. Cambridge University Press, 2002.

[7] Patrick Blackburn and Johan van Benthem. 1 Modal logic: a semantic perspective. In
Patrick Blackburn, Johan van Benthem, and Frank Wolter, editors, Handbook of Modal
Logic, volume 3 of Studies in Logic and Practical Reasoning, pages 1 – 84. Elsevier, 2007.

[8] Claudio Fuentes Bravo and Patricio Fuentes Bravo. Molecular logic: Brief introduction
and some philosophical considerations. In Madalena Chaves and Manuel A. Martins,
editors, Molecular Logic and Computational Synthetic Biology, volume 11415 of LNCS,
pages 1 – 17. Springer, 2019.

[9] Christos G. Cassandras and Stephane Lafortune. Introduction to discrete event systems.
Springer, 2009.

[10] Madalena Chaves. Predictive analysis of dynamical systems: combining discrete and
continuous formalisms. Habilitation thesis, Gipsa-lab, 2013.

[11] Madalena Chaves and Alfonso Carta. Attractor computation using interconnected
boolean networks: testing growth rate models in E. coli. Theoretical Computer Science,
599:47–63, 2015.

[12] Madalena Chaves, Etienne Farcot, and Jean-Luc Gouzé. Probabilistic approach for pre-
dicting periodic orbits in piecewise affine differential models. Bulletin of mathematical
biology, 75(6):967–987, 2013.

101

[13] Madalena Chaves, Daniel Figueiredo, and Manuel A. Martins. Boolean dynamics revis-
ited through feedback interconnections. Natural Computing, 2018.

[14] Madalena Chaves and Miguel Preto. Hierarchy of models: From qualitative to quantita-
tive analysis of circadian rhythms in cyanobacteria. Chaos: An Interdisciplinary Journal
of Nonlinear Science, 23(2):025113, 2013.

[15] Madalena Chaves and Laurent Tournier. Predicting the asymptotic dynamics of large
biological networks by interconnections of boolean modules. In 50th IEEE Conference on
Decision and Control and European Control Conference, pages 3026–3031. IEEE, 2011.

[16] Kuo-Chen Chou. Low-frequency resonance and cooperativity of hemoglobin. Trends in
Biochemical Sciences, 14(6):212, 1989.

[17] Daniel Figueiredo. Differential dynamic logic and applications. Master’s thesis, Univer-
sity of Aveiro, 2015.

[18] Daniel Figueiredo. Relating bisimulations with attractors in boolean network models. In
Maŕıa Botón-Fernández, Carlos Mart́ın-Vide, Sergio Santander-Jiménez, and Miguel A.
Vega-Rodŕıguez, editors, Algorithms for Computational Biology, volume 9702 of LNBI,
pages 17–25. Springer, 2016.

[19] Daniel Figueiredo and Lúıs S. Barbosa. Reactive models for biological regulatory net-
works. In Madalena Chaves and Manuel A. Martins, editors, Molecular Logic and Com-
putational Synthetic Biology, volume 11415 of LNCS, pages 74–88. Springer, 2018.

[20] Daniel Figueiredo, Manuel A Martins, and Lúıs S Barbosa. A note on reactive transitions
and Reo connectors. In Frank de Boer, Marcello Bonsangue, and Jan Rutten, editors,
It’s All About Coordination, volume 10865 of LNCS, pages 57–67. Springer, 2018.

[21] Daniel Figueiredo, Manuel A. Martins, and Madalena Chaves. Applying differential
dynamic logic to reconfigurable biological networks. Mathematical Biosciences, 291:10 –
20, 2017.

[22] Daniel Figueiredo, Eugénio Rocha, Manuel A. Martins, and Madalena Chaves. rPrism
– a software for reactive weighted state transition models. In Milan Češka and Nicola
Paoletti, editors, Hybrid Systems and Biology, volume 11705 of LNCS, pages 165–174.
Springer, 2019.

[23] Aleksei F. Filippov. Differential equations with discontinuous righthand sides: control
systems, volume 18 of Mathematics and its Applications. Springer, 1988.

[24] János C. Fodor and Marc R. Roubens. Fuzzy Preference Modelling and Multicriteria
Decision Support. Theory and Decision Library D:. Springer, 1994.

[25] Dov M. Gabbay and Sérgio Marcelino. Modal logics of reactive frames. Studia Logica,
93(2):405–446, 2009.

[26] Dov M. Gabbay and Sérgio Marcelino. Global view on reactivity: switch graphs and
their logics. Annals of Mathematics and Artificial Intelligence, 66(1-4):131–162, 2012.

102

[27] Julien Gagneur and Georg Casari. From molecular networks to qualitative cell behavior.
FEBS letters, 579(8):1867–1871, 2005.

[28] Sicun Gao, Soonho Kong, and Edmund M. Clarke. dReal: An SMT solver for nonlinear
theories over the reals. In Maria Paola Bonacina, editor, Automated Deduction CADE-
24, volume 7898 of LNCS, pages 208–214. Springer, 2013.

[29] Leon Glass and Stuart A. Kauffman. Co-operative components, spatial localization and
oscillatory cellular dynamics. Journal of theoretical biology, 34(2):219–237, 1972.

[30] Leon Glass and Stuart A. Kauffman. The logical analysis of continuous, non-linear
biochemical control networks. Journal of theoretical Biology, 39(1):103–129, 1973.

[31] Leon Glass and Rafael Pérez. Limit cycle oscillations in compartmental chemical systems.
The Journal of Chemical Physics, 61(12):5242–5249, 1974.

[32] Peter J. E. Goss and Jean Peccoud. Quantitative modeling of stochastic systems in
molecular biology by using stochastic petri nets. 95(12):6750–6755, 1998.

[33] Anthony J. F. Griffiths, William M. Gelbart, Jeffrey H. Miller, and Richard C. Lewontin.
Regulation of the lactose system. In Modern Genetic Analysis. WH Freeman, 1999.

[34] Katrin P. Guillen, Carla Kurkjian, and Roger G. Harrison. Targeted enzyme prodrug
therapy for metastatic prostate cancer–a comparative study of l-methioninase, purine nu-
cleoside phosphorylase, and cytosine deaminase. Journal of biomedical science, 21(1):65,
2014.

[35] Philippe van Ham. How to deal with variables with more than two levels. In Ren Thomas,
editor, Kinetic Logic a Boolean Approach to the Analysis of Complex Regulatory Systems,
volume 29 of LNBM, pages 326–343. Springer, 1979.

[36] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic logic. MIT press, 2000.

[37] John Heath, Marta Kwiatkowska, Gethin Norman, David Parker, and Oksana Tym-
chyshyn. Probabilistic model checking of complex biological pathways. Theoretical Com-
puter Science, 391(3):239–257, 2008.

[38] Thomas A. Henzinger. The theory of hybrid automata. In M. Kemal Inan and Robert P.
Kurshan, editors, Verification of Digital and Hybrid Systems, volume 170 of NATO ASI
Series, pages 265–292. Springer, 2000.

[39] J. Megginson Hollister, Peter Laing, and Sarnoff A. Mednick. Rhesus incompatibility as
a risk factor for schizophrenia in male adults. Archives of general psychiatry, 53(1):19–24,
1996.

[40] Hidde de Jong. Modeling and simulation of genetic regulatory systems: a literature
review. Journal of computational biology, 9(1):67–103, 2002.

[41] Maurice Karnaugh. The map method for synthesis of combinational logic circuits. Trans-
actions of the American Institute of Electrical Engineers, Part I: Communication and
Electronics, 72(5):593–599, 1953.

103

[42] Erich P. Klement, Radko Mesiar, and Endre Pap. Triangular Norms, volume 8 of Trends
in Logic. Springer, 2000.

[43] Koichi Kobayashi and Kunihiko Hiraishi. Design of probabilistic boolean networks based
on network structure and steady-state probabilities. IEEE transactions on neural net-
works and learning systems, 28(8):1966–1971, 2016.

[44] Soonho Kong, Sicun Gao, Wei Chen, and Edmund Clarke. dReach: δ-reachability analy-
sis for hybrid systems. In Christel Baier and Cesare Tinelli, editors, Tools and Algorithms
for the Construction and Analysis of Systems, volume 9035 of LNCS, pages 200–205.
Springer, 2015.

[45] Yanni Kouskoulas, David Renshaw, André Platzer, and Peter Kazanzides. Certifying
the safe design of a virtual fixture control algorithm for a surgical robot. In Proceedings
of the 16th international conference on Hybrid systems: computation and control, pages
263–272. ACM, 2013.

[46] Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification of
probabilistic real-time systems. In Ganesh Gopalakrishnan and Shaz Qadeer, editors,
Computer aided verification, volume 6806 of LNCS, pages 585–591. Springer, 2011.

[47] Marta Kwiatkowska, Gethin Norman, David Parker, Oksana Tymchyshyn, John Heath,
and Eamonn Gaffney. Simulation and verification for computational modelling of sig-
nalling pathways. In Jason Liu Frederick P. Wieland L. Felipe Perrone, Barry Lawson,
editor, Proceedings of the Winter Simulation Conference, pages 1666–1675. Omnipress,
2006.

[48] Stéphane Leduc. La biologie synthétique, volume 2. A. Poinat, 1912.

[49] Sarah M. Loos, André Platzer, and Ligia Nistor. Adaptive cruise control: Hybrid, dis-
tributed, and now formally verified. In Michael Butler and Wolfram Schulte, editors,
Formal Methods, volume 6664 of LNCS, pages 42–56. Springer, 2011.

[50] Alexandre Madeira. Foundations and techniques for software recongurability. PhD thesis,
Universities of Aveiro, Minho and Porto, 2013.

[51] Alexandre Madeira, Renato Neves, Luis S. Barbosa, and Manuel A. Martins. A method
for rigorous design of reconfigurable systems. Science of Computer Programming, 132:50–
76, 2016.

[52] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii, and
Uri Alon. Network motifs: simple building blocks of complex networks. Science,
298(5594):824–827, 2002.

[53] Ramon E. Moore. Interval Arithmetic and Automatic Error Analysis in Digital Com-
puting. PhD thesis, Stanford University, 1962.

[54] Renato Neves and Luis S. Barbosa. Hybrid automata as coalgebras. In Augusto Sampaio
and Farn Wang, editors, Theoretical Aspects of Computing - ICTAC 2016, volume 9965
of LNCS, pages 385–402. Springer, 2016.

104

[55] André Platzer. Logical analysis of hybrid systems: proving theorems for complex dynam-
ics. Springer, 2010.

[56] André Platzer and Edmund M. Clarke. Formal verification of curved flight collision
avoidance maneuvers: A case study. In Ana Cavalcanti and Dennis Dams, editors,
Formal Methods, volume 5850 of LNCS, pages 547–562. Springer, 2009.

[57] André Platzer and Jan-David Quesel. European train control system: A case study in
formal verification. In Karin Breitman and Ana Cavalcanti, editors, Formal Methods and
Software Engineering, volume 5885 of LNCS, pages 246–265. Springer, 2009.

[58] Giordano Pola, Maria D. Di Benedetto, and Elena de Santis. Arenas of finite state
machines. arXiv preprint arXiv:1106.0342, 2011.

[59] Manuel A. Martins Regivan H. N. Santiago and Daniel Figueredo. Introducing fuzzy
reactive graphs. (submitted).

[60] Steven L. Salzberg. Open questions: How many genes do we have? BMC biology,
16(1):94, 2018.

[61] Regivan H. N. Santiago, Benjamı́n Bedregal, Alexandre Madeira, and Manuel A. Martins.
On interval dynamic logic. In Leila Ribeiro and Thierry Lecomte, editors, Formal Meth-
ods: Foundations and Applications, volume 10090 of LNCS, pages 129–144. Springer,
2016.

[62] Regivan H. N. Santiago, Benjamı́n R. C. Bedregal, Alexandre Madeira, and Manuel A.
Martins. On interval dynamic logic: Introducing quasi-action lattices. Science of Com-
puter Programming, 175:1–16, 2019.

[63] Joseph R. Shoenfield. Mathematical logic. AK Peters/CRC Press, 2018.

[64] Amilra P. de Silva. Molecular logic-based computation. 12. Royal Society of Chemistry,
2012.

[65] Gautier Stoll, Eric Viara, Emmanuel Barillot, and Laurence Calzone. Continuous time
boolean modeling for biological signaling: application of gillespie algorithm. BMC sys-
tems biology, 6(1):116, 2012.

[66] Murata Tadao. Petri nets: properties, analysis and applications. Proceedings of the
IEEE, 77(4), 1990.

[67] Alvin Tamsir, Jeffrey J. Tabor, and Christopher A. Voigt. Robust multicellular comput-
ing using genetically encoded nor gates and chemical “wires”. Nature, 469(7329):212–215,
2011.

[68] Laurent Tournier and Madalena Chaves. Interconnection of asynchronous boolean net-
works, asymptotic and transient dynamics. Automatica, 49(4):884–893, 2013.

[69] José M. G. Vilar, Hao Yuan Kueh, Naama Barkai, and Stanislas Leibler. Mechanisms of
noise-resistance in genetic oscillators. Proceedings of the National Academy of Sciences,
99(9):5988–5992, 2002.

105

[70] Gad Yagil. Quantitative aspects of protein induction. In Current topics in cellular
regulation, volume 9, pages 183–236. Elsevier, 1975.

106

	Contents
	List of Figures
	List of Tables
	Introduction
	Background on quantitative and qualitative models
	Quantitative models.
	System of ordinary differential equations.
	Piecewise Linear models.

	Qualitative models.
	Boolean networks.
	Asynchronous vs synchronous approach
	Multiple qualitative levels

	From PWL models to Boolean networks.
	Boolean networks with probabilities

	Asymptotic graph.

	Stable states in biological context.

	Logic and computational tools to study PWL models
	Differential dynamic logic.
	Syntax.
	Semantics.
	Proof calculus.

	Application to PWL models: Biological systems with hybrid dynamics.
	Relating hybrid and reconfigurable systems.
	PWL models as hybrid models.
	Limitations and alternatives.
	dReach - A complement to KeYmaera.

	Final remarks.

	Reactive Boolean networks: An intermediary step between PWL and BN models
	Switch graphs.
	Reactive frames, logic and bisimulation.
	Weighted switch graphs.
	Fuzzy switch graphs.

	Reactive Boolean networks.
	Switch graph as a discrete reconfigurable system.
	Recovering attractors.

	Reactive Boolean networks with probabilities.
	Final remarks.

	Studying asymptotic dynamics in Boolean networks
	Bisimulation and attractors.
	A related approach.

	Extended asymptotic graphs.
	Analyzing the AG method.

	Final considerations.

	A reactive approach to stochastic methods
	Stochasticity and reactivity in biological context.
	The tool: rPrism.
	PRISM model checker.
	Weighted graphs and PRISM models.
	Biological regulatory networks as weighted switch graphs.
	Language and examples.

	Final remarks.

	Conclusion and future research
	Bibliography

