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Fuzzy Switch Graphs (F SG) generalize the notion of Fuzzy Graphs by adding high-order 
arrows and aggregation functions which update the fuzzy values of arrows whenever a 
zero-order arrow is crossed. In this paper, we propose a more general structure called 
Reversal Fuzzy Switch Graph (R F SG), which promotes other actions in addition to updating 
the fuzzy values of the arrows, like activation and deactivation of the arrows. R F SGs are 
able to model dynamical aspects of some systems which generally appear in engineering, 
computer science and some other fields. The paper also provides the relationship between 
R F SGs and fuzzy graphs, a logic to verify properties of the modeled system and closes 
with an application.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Reactive graphs are structures whose the relations change when we move along the graph. This concept has been intro-
duced by Dov Gabbay in 2004 (see [12], [14]) and generalizes the static notion of a graph by incorporating high-order edges 
(called high-order arrows or switches). Graphs with these characteristics are called Switch Graphs.

In [22], Santiago et al. introduce the notion of Fuzzy Switchs Graphs (F SGs). These graphs are able to model reactive 
systems endowed with fuzziness and extend the notion of fuzzy graphs, in the sense that crossing an edge (zero-order 
arrow) induces an update of the system using high-order arrows and aggregation functions. For systems which require 
different aggregations for updating different arrows, Santiago et al. [22] introduced the Fuzzy Reactive Graphs (F RGs).

F SGs and F RGs, however, are not sufficient to model systems in which other edges of the system are activated or deacti-
vated when one edge is crossing. To incorporate this, in [7] Campos, et al. propose the notion of Reversal Fuzzy Switch Graphs
(R F SGs). Also in [7], the Cartesian product of R F SGs, a logic to verify properties of such structures and an application were 
presented. This paper complements reference [7] expanding its main contributions, presents an important relation between 
the R F SGs and fuzzy graphs and incorporates the logic notion of simulation and bisimulation.

The paper is organized as follows: Section 2 presents some basic concepts. Section 3 presents the notion of R F SGs, 
how they can be used to model the reactivity of some fuzzy systems and presents some algebraic operations. Section 4
provides a connection between the R F SGs and fuzzy graphs. Section 5 presents a logic and introduce the simulation and 
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Fig. 1. Fuzzy graphs.

bisimulation for R F SGs. Section 6 shows how R F SGs can be used to model a dynamic control system. Finally, section 7
provides some final remarks.

2. Preliminaries

In this section we recall some concepts and results found in the literature in order to make this paper self-contained. We 
assume that the reader has some basic knowledge in fuzzy set theory. In order to make it easier to read, we will identify 
the membership function with the fuzzy set.

Definition 2.1. A fuzzy set A, defined on a non-empty set X , is characterized by a membership function ϕA : X → [0, 1]. 
The value ϕA(x) ∈ [0, 1] measures the degree of membership of x in the set A [16] [19].

Definition 2.2 (Fuzzy Graphs [16] [20]). A fuzzy graph is a structure 〈V , R〉, such that V is a non-empty set called set of 
vertices and R is a fuzzy set R : V × V → [0, 1].

For simplicity, we assume the set of vertices is a crisp set, in contrast to what is defined as a fuzzy graph in [16]. Fig. 1(a) 
shows a fuzzy graph.

Dov Gabbay [4] provided graphs with high-order arrows in order to model reactive behaviors. This kind of graphs is 
defined as follows.

Definition 2.3 (Switch Graphs [4] [13]). A switch graph is a pair 〈W , R〉 s.t. W is a non-empty set (set of worlds) and 
R ⊆ A(W ) is a set of arrows, called switches or high-order arrows, where A(W ) = ⋃

i∈N
Ai(W ) with

{
A0(W ) = W × W
Ai+1(W ) = A0(W ) × Ai(W )

(1)

Fuzzy Switch Graphs were introduced by Santiago et al. in [22].

Definition 2.4 (Fuzzy Switch Graphs [22]). Let W be a non-empty finite set (set of states or worlds) and the family of sets 
S = ⋃

n∈N
Sn where S0 �= ∅ and

{
S0 ⊆ W × W
Sn+1 ⊆ S0 × Sn (2)

A fuzzy switch graph (FSG) is a pair M = 〈W , ϕ : S → [0, 1]〉, where ϕ is a fuzzy set on S . The elements a0
i ∈ S0 (i ∈ N)

are called zero-order arrows. The elements of Sn+1 are called high-order arrows.

Example 2.1. Fig. 1 shows a fuzzy graph and a fuzzy switch graph.

Fuzzy Logic provides many proposals for logical connectives. In what follows we review the notions of t-norms, t-
conorms, fuzzy implications and fuzzy negations. The first two cases are generalizations of the classic notion of disjunctions 
and conjunctions, respectively [15].
2
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Definition 2.5 (t-norms and t-conorms). A uninorm is a bivariate function U : [0, 1] × [0, 1] → [0, 1], that is isotonic, com-
mutative, associative with a neutral element e ∈ [0, 1]. If e = 1, then U is called t-norm and if e = 0, then U is called
t-conorm.

Example 2.2. The functions T G (x, y) = min(x, y) and T L(x, y) = max(x + y − 1, 0) (Łukasiewicz) are t-norms. The functions 
SG(x, y) = max(x, y) and SL(x, y) = min(x + y, 1) (Łukasiewicz) are t-conorms.

Notation 1: Let T be a t-norm, f : [0, 1] → [0, 1] and Jn a finite subset of [0, 1] with n elements ( J0 = ∅). We define T
a∈ Jn

,

T
a∈ Jn

f (a) =

⎧⎪⎨⎪⎩
1, case n = 0;
f (a), case n = 1;
T
(

f (x), T
a∈ Jm

f (a)
)
, case n > 1, x ∈ Jn and Jm = Jn\{x}. (3)

Similarly, for S t-conorm, we define S
a∈ Jn

s.t.

S
a∈ Jn

f (a) =

⎧⎪⎨⎪⎩
0, case n = 0;
f (a), case n = 1;
S
(

f (x), S
a∈ Jm

f (a)
)
, case n > 1, x ∈ Jn and Jm = Jn\{x}. (4)

Note that, since T and S are commutative and associative, T
a∈ Jm

and S
a∈ Jm

are well defined. That is, it does not depend on 

the way we choose x ∈ Jn to make Jn = {x} ∪ Jm .

Example 2.3. Given the t-norm T (x, y) = min(x, y), the identity function Id : [0, 1] → [0, 1] and the set J3 = {x1, x2, x3} ⊂
[0, 1], we have:

T
a∈ J3

Id(a) = min

(
x1, T

a∈ J2
Id(a)

)
= min

(
x1,min

(
x2, T

a∈ J1
Id(a)

))
= min

(
x1,min

(
x2, Id(x3)

))
= min

(
x1,min

(
x2, x3)

)
.

Definition 2.6 (Negations [3], [21]). A unary operation N : [0, 1] → [0, 1] is a fuzzy negation if N(0) = 1, N(1) = 0 and N is 
decreasing.

Example 2.4. Gödel Negation: NG : [0, 1] → [0, 1] s.t. NG(0) = 1 and NG (x) = 0, whenever x > 0.

Definition 2.7 (Implications [3]). A bivariate function I : [0, 1]2 → [0, 1] is a fuzzy implication if it is decreasing with respect 
to the first variable, increasing with respect to the second variable, I(0, 0) = I(0, 1) = I(1, 1) = 1 and I(1, 0) = 0 (boundary 
conditions).

Example 2.5. Gödel Implication: IG : [0, 1]2 → [0, 1] s.t. IG (x, y) = 1, whenever x ≤ y, and IG (x, y) = y otherwise.

Definition 2.8 (Bi-implications [6]). A bivariate function B : [0, 1]2 → [0, 1] is a fuzzy bi-implication if it is commutative, 
B(x, x) = 1, B(0, 1) = 0 and B(w, z) ≤ B(x, y), whenever w ≤ x ≤ y ≤ z.

Example 2.6. Gödel Bi-implication: BG(x, y) = TG(IG(x, y), IG(y, x)).

Definition 2.9 (Fuzzy Semantics [9]). A structure F = {[0, 1], T , S, N, I, B, 0, 1}, s.t. T is a t-norm, S is a t-conorm, N is a fuzzy 
negation, I is a fuzzy implication and B is a fuzzy bi-implication, is called a fuzzy semantics.

Example 2.7. Gödel Semantic: G = {[0, 1], T M , SM , NG , IG , BG , 0, 1}.

Aggregation functions [18], [8], [1], [2], [10] are functions with special properties which generalize the means, like 
arithmetic mean, weighted mean and geometric mean.
3
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Fig. 2. Reconfigurations of MR .

Definition 2.10 (Aggregation Function [5]). An aggregation function is a n-ary function A : [0, 1]n → [0, 1], with A(0, 0, ..., 0)

= 0, A(1, 1, ..., 1) = 1 and, for all x̄, ȳ ∈ [0, 1]n , x̄ ≤ ȳ implies A(x̄) ≤ A( ȳ).

Example 2.8. An(x̄) = 1

n
(x1 + ... + xn) (Arithmetic mean), An(x̄) = n

√
x1 · ... · xn (Geometric mean), t-norms, t-conorms and pro-

jection functions, � j : A1 × ... × A j × ... × An −→ A j , s.t. � j(x1, ..., x j, ..., xn) = x j , are aggregation functions.

Definition 2.11 ([5]). For every x̄ ∈ [0, 1]n , an aggregation function A is, average if min(x̄) ≤ A(x̄) ≤ max(x̄), conjunctive if 
A(x̄) ≤ min(x̄) and disjunctive if A(x̄) ≥ max(x̄).

Example 2.9. t-norms are conjunctive aggregations, t-conorms are disjunctive and means (arithmetic, geometric, weighted) are 
average aggregations. For example, given x, y ∈ [0, 1] we have:

xy ≤ min{x, y} ≤ x + y

2
≤ max{x, y}.

Definition 2.12. An aggregation A : [0, 1]n → [0, 1] is shift-invariant if, for all λ ∈ [−1, 1] and for all (x1, ..., xn) ∈ [0, 1]n ,

A(x1 + λ, ..., xn + λ) = A(x1, ..., xn) + λ

whenever (x1 + λ, ..., xn + λ) ∈ [0, 1]n and A(x1, ..., xn) + λ ∈ [0, 1].

In [22], Santiago et al. extend the notion of F SGs for Fuzzy Reactive Graphs. In what follows, given a F SG M = 〈W , ϕ :
S → [0, 1]〉, we define the set S→ = {a0

i ∈ S0; �a0
i , a� ∈ S, with a ∈ S}.

Definition 2.13 (Fuzzy Reactive Graphs). Let M = 〈W , ϕ : S → [0, 1]〉 be a F SG , AM = {A1, ..., Ak : [0, 1]3 → [0, 1]} a set of 
aggregation functions and a function AgM : S→ → AM . The pair MR = 〈M, AgM〉 is called a fuzzy reactive graph (FRG).

Notation 2: In order to make the presentation of the graphs and the movements on the graph more intuitive, we will estab-
lish: Arrows that are crossed over the graph will be drawn in red. High-order arrows that act on the graph configuration, 
after crossing the zero-order arrow, will be drawn in blue. The first arrow crossed will have a single point, the second arrow 
crossed will have a double point, the third arrow to be crossed will have a triple point and so on. If multiple movements 
are made repeatedly on the same arrow, the arrow pointer will show the order of the last movement. For example, if the 
movement is made three times on the same arrow, graphically, we will see only a red triple-headed arrow in the graph.

Example 2.10. Let M be the F SG in Fig. 1(b). Consider S0 = {a0
1 = (u, v), a0

2 = (v, v), a0
3 = (v, w), a0

4 = (v, z), a0
5 = (w, u)}

and AM = {arith, max}. Defining the application AgM : S→ → AM s.t. Ag(a0
1) = Ag(a0

2) = arith and Ag(a0
3) = Ag(a0

4) =
Ag(a0

5) = max, we have the F RG MR = 〈M, Ag〉. Fig. 2(a) contains the reconfiguration of MR after crossing a0
1 = (u, v) and 

having applied Ag(a0
1) = arith to the fuzzy values: 0.2, 0.1, 0.7. We calculate arith(0.2, 0.1, 0.7) = (0.2 + 0.1 + 0.7)/3 = 1/3

and the arrow �[v w], [wu]� gets the new fuzzy value 1/3. Fig. 2(b) contains the reconfiguration of MR after crossing 
a0

3 = (v, w) and having applied Ag(a0
3) = max to the fuzzy values: 0.8, 0.7, 0.4. We calculate max(0.8, 0.7, 0.4) = 0.8 and 

the arrow [wu] gets the new fuzzy value 0.8.
4
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Fig. 3. Reversal fuzzy switch graph (R F SG).

3. Reversal fuzzy switch graph

In this section we introduce the notion of Reversal Fuzzy Switch Graph, a structure which generalizes the notion of 
Fuzzy Switch Graph introduced by Santiago et al. [22]. This new kind of graph has in its structure two new types of high 
order-arrows, called connecting arrows and disconnecting arrows. These arrows allow to model reactive systems in which 
the accessibility to the worlds may be activated or deactivated by the transitions.

In what follows W and V are non-empty finite sets.

Definition 3.1 (Reversal Fuzzy Switch Graphs [7]). Let W be a set whose elements are called states or worlds. Consider the 
following family of sets defined recursively,{

S0 ⊆ W × W
Sn+1 ⊆ S0 × Sn × {•,◦} (5)

s.t. S0 �= ∅ and for any n ≥ 1, (a0
i , a, ◦) /∈ Sn or (a0

i , a, •) /∈ Sn . Consider S = ⋃
n∈N

Sn , a reversal fuzzy switch graph (RFSG) is a 

pair M = 〈W , μ : S → [0, 1] ×{on, off}〉.1 Arrows with • in their third component are called connecting arrows and arrows 
with ◦ in their third component are called disconnecting arrows. When the context is clear we denote a R F SG simply by 
〈W , μ〉.

Active arrows are drawn with a normal line whereas inactive arrows are drawn with a dashed line. Moreover, connecting 
(disconnecting) arrows change the targeted arrow state for active (inactive) and are drawn with a black (white) arrowhead.

For readability, we introduce some notation and nomenclatures:

• Arrows in Sn will be denoted by an
i , for n ≥ 0 and i ∈N .

• In the following, we make an abuse of notation. When necessary and if the context is clear, we will denote in more 
detail the arrows in Sn in a more expanded way. For example, a0

i from x to y will be denoted by [xy], the disconnecting 
and connecting first-order arrows, from [xy] to [uv] will be denoted by �[xy], [uv], ◦� and �[xy], [uv], •�, respectively. 
When referring to any high-order arrow, we write σ ∈ {◦, •} instead of ◦ or •. For example, any first-order arrow from 
[uv] to [xy] will be written �[uv], [xy], σ �. Any second-order arrows from [zw] to �[xy], [uv], σ � will be denoted by 
�[zw], �[xy], [uv], σ �, σ ′�.

• When there is no need to specify the order of the arrow belonging to set S , we will denote a ∈ S .
• Given the projection functions �1 : [0, 1] × {on, off} → [0, 1] and �2 : [0, 1] × {on, off} → {on, off}, if a ∈ S we write 

μ1(a) = �1(μ(a)) and μ2(a) = �2(μ(a)) to indicate the first and second components of μ(a).
• Let R ⊆ S , the set of active arrows in R is denoted by

R∗
μ := {a ∈ R; μ2(a) = on}

and the set of arrows in R which is the origin of a high-order arrow in S is denoted by

R→ =
{

a0
i ∈ R; �a0

i ,b,σ � ∈ S with b ∈ S and σ ∈ {◦,•}
}

.

In the following, we will consider the R F SGs M = 〈W , μ〉 and M ′ = 〈W , μ′〉.

1 In this paper we assume that the membership function is valued in the complete lattice [0.1] × {on, off} using the product order where off ≤ on.
5
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Fig. 4. Reactivity of R F SG after crossing zero-order arrows [xu] and [xu][uy].

Definition 3.2. M is a subgraph of M ′ if μ1(a) ≤ μ′
1(a) and μ2(a) = μ′

2(a), for all a ∈ S . M is a supergraph of M ′ if 
μ1(a) ≥ μ′

1(a) and μ2(a) = μ′
2(a), for all a ∈ S .

Definition 3.3. M ′ is a translation of M by λ ∈ [−1, 1] if, for all a ∈ S s.t. μ1(a) > 0, μ′
1(a) = μ1(a) + λ ∈ [0, 1] and μ′

2(a) =
μ2(a).

3.1. Reactivity of R F SGs

Intuitively, a reactive graph is a graph that may change its configuration when a zero-order arrow is crossed. In order to 
model this global dependence in a R F SG , we consider the reactivity idea presented in [22] with the necessary adaptations: 
Whenever a zero-order arrow is crossed, the fuzzy value and the arrow state (active or inactive) of its target arrows are updated.

Definition 3.4. Given a R F SG M = 〈W , μ〉 with aggregation function A : [0, 1]3 → [0, 1], a R F SG based on A after crossing 
an active zero-order arrow a0

i , is the R F SG M A
a0

i
= 〈W , μA

a0
i
: S → [0, 1] × {on, off}〉 s.t.

μA
a0

i
(a) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
A
(
μ1(a0

i ),μ1(�a0
i ,a,•�),μ1(a)

)
,on

)
, i f �a0

i ,a,•� ∈ S∗
μ;(

A
(
μ1(a0

i ),μ1(�a0
i ,a,◦�),μ1(a)

)
,off

)
, i f �a0

i ,a,◦� ∈ S∗
μ;

μ(a), otherwise.

(6)

The R F SG M A
a0

i
is called reconfiguration of M , based on A, after crossing a0

i .

Let us see how this definition works in Fig. 4 using the arithmetic mean as aggregation function after crossing a sequence 
of zero-order arrows in Fig. 3. After the arrow a0

1 = [xu] has been crossed, Fig. 4(a), the arrow a0
2 = [xy] is updated due to 

a1
1 = �[xu], [xy], ◦� by the arithmetic mean between the fuzzy values μ1(a0

1), μ1(a0
2) and μ1(a1

1), and by replacing the marker 
on to off (the arrow a0

2 becomes inactive). In a second step and in the same manner, after the arrow a0
3 = [uy] has been 

crossed, the arrow a1
1 = �[xu], [xy], ◦� has its fuzzy value updated and becomes inactive, however, the arrow a0

5 = [v y] has 
only its fuzzy value updated since it is an active arrow targeted by a connecting arrow (Fig. 4(b)).

Remark 3.1. The edges contained in S can receive a null fuzzy value. However, graphically, these arrows will be displayed 
only if there is the possibility of modifying this value by some high-order arrow (Fig. 5).

From the action of an aggregation, after a reconfiguration, the value of an arrow with a non-null fuzzy value can be 
modified until this value is zero.

Proposition 3.1. If A is a conjunctive (disjunctive) aggregation and 
(
μA

a0
i

)
2(b) = μ2(b) for all b ∈ S, then M A

a0
i

is a subgraph (super-

graph) of M.

Proof. Given b ∈ S and denoting 
(
μ1(a0

i ), μ1(�a0
i , b, σ �), μ1(b)

)
= �a0

i ,b, σ �:
6
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Fig. 5. R F SG with a null fuzzy value.

• Case �a0
i , b, σ � ∈ S∗

μ:(
μA

a0
i

)
1(b) = A

(
�a0

i ,b,σ �
)

≤ min
(
�a0

i ,b,σ �
)

≤ μ1(b).

• Case �a0
i , b, σ � /∈ S∗

μ:(
μA

a0
i

)
1(b) = μ1(b).

Then M A
a0

i
is subgraph of M . The dual statement follows straightforwardly.

Proposition 3.2. Let M ′ be a translation of M by λ ∈ [−1, 1]. If A is shift-invariant, then M ′ A
a0

i
is a translation of M A

a0
i

by λ.

Proof. Let b ∈ S . Denoting 
(
μ′

1(a
0
i ), μ

′
1(�a0

i , b, σ �), μ′
1(b)

)
= �a0

i ,b, σ � and supposing that A
(
μ1(a0

i ), μ1(�a0
i , b, σ �),

μ1(b)
)

+ λ ∈ [0, 1]:

• Case �a0
i , b, σ � ∈ S∗

μ:(
μ′ A

a0
i

)
1(b) = A

(
�a0

i ,b,σ �
)

= A
(
μ1(a

0
i ) + λ,μ1(�a0

i ,b,σ �) + λ,μ1(b) + λ
)

= A
(
μ1(a

0
i ),μ1(�a0

i ,b,σ �),μ1(b)
)

+ λ

= (
μA

a0
i

)
1(b) + λ

• Case �a0
i , b, σ � /∈ S∗

μ:(
μ′ A

a0
i

)
1(b) = μ′

1(b) = μ1(b) + λ = (
μA

a0
i

)
1(b) + λ.

By hypotheses, μ2(b) = μ′
2(b), then 

(
μ′ A

a0
i

)
2(b) = (

μA
a0

i

)
2(b).

Next, we will provide an extension for the notion of reactivity presented in [22]. Just as it is done for the case of F RGs, 
each active zero-order arrow triggers an aggregation function.

Definition 3.5 (Reversal Fuzzy Reactive Graphs [7]). Consider M a R F SG , A = {A1, ..., Ak : [0, 1]3 → [0, 1]} a set of aggregation 
functions and a function Ag : S→ → A. The pair MR = 〈M, Ag〉 is called reversal fuzzy reactive graph (RFRG).

If a0
i ∈ Sμ

0∗
, the reconfiguration of MR after crossing a0

i is the R F RG M
a0

i
R = 〈Ma0

i , Ag〉, where Ma0
i = 〈W , μAg

a0
i
〉 is a 

R F SG s.t.
7
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Fig. 6. Reconfigurations of MR .

Table 1
Differences between fuzzy graphs.

zero-order 
arrows

high-order 
arrows

connection or discon-
nection high-order 
arrows

one aggregation asso-
ciated

more than one aggre-
gation associated

F G �
F SG � � �
F RG � � �
R F SG � � �
R F RG � � �

μ
Ag

a0
i
(b) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
Ag(a0

i )
(
μ1(a0

i ),μ1(�a0
i ,b,•�),μ1(b)

)
,on

)
, i f �a0

i ,b,•� ∈ S∗
μ;(

Ag(a0
i )

(
μ1(a0

i ),μ1(�a0
i ,b,◦�),μ1(b)

)
,off

)
, i f �a0

i ,b,◦� ∈ S∗
μ;

μ(b), otherwise.

(7)

Example 3.1. Let M be the R F SG at Fig. 3, S0 = {[xy], [xu], [uy], [v y], [yv], [vu]}, A = {arith, max}, Ag
([xy]) = Ag

([xu]) =
Ag

([yv]) = arith and Ag
([v y]) = Ag

([uy]) = Ag
([vu]) = max. Fig. 6 contains M[xu]

R and M[xu][uy]
R , respectively.

At this point, in order to clearly expose the differences between the different fuzzy graphs presented here, we present 
the Table 1.

3.2. Product of R F SGs

In the following, we will consider the R F SGs M = 〈W , μ : S → [0, 1] × {on, off}〉 and N = 〈V , δ : T → [0, 1] × {on, off}〉
with W and V disjoint set; and the set W � V = ⋃

n∈N
(W � V )n s.t.,

{
(W � V )0 ⊆ (W × V ) × (W × V )

(W � V )n+1 ⊆ (W � V )0 × (W � V )n × {•,◦}.

Given a0
i ∈ (W � V )0, a ∈ (W � V )n and σ ∈ {◦, •}, we will consider the subsets

• (W � V )0
S = {[(wi, v)(w j, v)] ∈ (W � V )0 ; v ∈ V and [wi w j] ∈ S0

}
,

• (W � V )0
T = {[(w, vi)(w, v j)] ∈ (W � V )0 ; w ∈ W and [vi v j] ∈ T 0

}
,

• (W � V )n+1
S = {

�a0
i , a, σ � ∈ (W � V )n+1 ; a0

i ∈ (W � V )0
S and a ∈ (W � V )n

S

}
,

• (W � V )n+1 = {
�a0, a, σ � ∈ (W � V )n+1 ; a0 ∈ (W � V )0 and a ∈ (W � V )n

}
,
T i i T T

8
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Fig. 7. R F SGs M and N .

Fig. 8. Cartesian product M × N .

and the application ξ : (W � V )S∪T = ⋃
n∈N

[
(W � V )n

S ∪ (W � V )n
T

] → S ∪ T s.t.

ξ(b) =

⎧⎪⎪⎨⎪⎪⎩
[wi w j] ∈ S0, if b = [(wi, v)(w j, v)] ∈ (W � V )0

S ;[vi v j] ∈ T 0, if b = [(w, vi)(w, v j)] ∈ (W � V )0
T ;

�ξ(a0
i ), ξ(a),σ � ∈ Sn+1, if b = �a0

i ,a,σ � ∈ (W � V )n+1
S ;

�ξ(a0
i ), ξ(a),σ � ∈ T n+1, if b = �a0

i ,a,σ � ∈ (W � V )n+1
T .

Definition 3.6 (Product of R F SGs). The Cartesian Product of the R F SGs M and N is the R F SG: M × N = 〈W × V , ψ :
(W � V )S∪T → [0, 1] × {on, off}〉 s.t.

ψ(b) =
{

μ
(
ξ(b)

)
, if b ∈ (W � V )S

δ
(
ξ(b)

)
, if b ∈ (W � V )T

(8)

Example 3.2. Consider M and N shown in Fig. 7. The product M × N can be observed in Fig. 8.

In order to define the product of R F RGs, we consider:

• The R F RGs MR = 〈M, AgM〉 and NR = 〈N, AgN 〉;
• The functions AgM : S→ → AM and AgN : T→ → AN ;
• The sets of aggregations AM and AN ;
9



S. Campos, R. Santiago, M.A. Martins et al. Science of Computer Programming 216 (2022) 102776
The aggregations am ∈ AM and an ∈ AN will be denoted by (M, am) : [0, 1]3 → [0, 1] and (N, an) : [0, 1]3 → [0, 1].

Definition 3.7 (Product of R F RGs). Consider the R F RGs MR and NR , the set AM ⊕ AN = {(M, am) : am ∈ AM} ∪ {(N, an) : an ∈
AN } and the function AgM×N : [(W � V )0

S ∪ (W � V )0
T ]→ → AM ⊕ AN s.t.

AgM×N (a0
i ) =

⎧⎪⎪⎨⎪⎪⎩
(

N, AgN
(
ξ(a0

i )
))

, if a0
i ∈ (W � V )0

T(
M, AgM

(
ξ(a0

i )
))

, if a0
i ∈ (W � V )0

S

(9)

The structure MR × NR = 〈M × N, AgM×N〉 is the product of R F RGs MR and NR .

The next proposition ensures that the updated product is obtained from the updated factors.

Proposition 3.3. Consider the R F RGs MR , NR , the product MR × NR , a0
i ∈ (W � V )0

S ∪ (W � V )0
T and a ∈ (W � V )S ∪ (W � V )T s.t. (

ψ1
(
a0

i

)
, ψ1

(
�a0

i , a, ◦�), ψ1
(
a)

)
= �a0

i ,a,◦� and 
(
ψ1

(
a0

i

)
, ψ1

(
�a0

i , a, •�), ψ1
(
a
)) = �a0

i ,a,•�. Then,

ψ
AgM×N

a0
i

(a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ
(
ξ(a)

)
, if C1;

μ
(
ξ(a)

)
, if C2;(

AgN(ξ(a))
(
�a0

i ,a,◦�
)
,off

)
, if C3;(

AgN(ξ(a))
(
�a0

i ,a,•�
)
,on

)
, if C4;(

AgM(ξ(a))
(
�a0

i ,a,◦�
)
,off

)
, if C5;(

AgM(ξ(a))
(
�a0

i ,a,•�
)
,on

)
, if C6;

(10)

For:

• C1 : a ∈ (W � V )T and �a0
i , a, σ � /∈ [(W � V )S ∪ (W � V )T ]∗ψ ;

• C2 : a ∈ (W � V )S and �a0
i , a, σ � /∈ [(W � V )S ∪ (W � V )T ]∗ψ ;

• C3 : a0
i ∈ (W � V )0

T and �a0
i , a, ◦� ∈ [(W � V )S ∪ (W � V )T ]∗ψ ;

• C4 : a0
i ∈ (W � V )0

T and �a0
i , a, •� ∈ [(W � V )S ∪ (W � V )T ]∗ψ ;

• C5 : a0
i ∈ (W � V )0

S and �a0
i , a, ◦� ∈ [(W � V )S ∪ (W � V )T ]∗ψ ;

• C6 : a0
i ∈ (W � V )0

S and �a0
i , a, •� ∈ [(W � V )S ∪ (W � V )T ]∗ψ .

Proof. Indeed,

• Case �a0
i , a, σ � /∈ [(W � V )S ∪ (W � V )T ]∗ψ ,

Case a ∈ (W � V )T : ψ AgM×N

a0
i

(a) def= ψ(a) def= δ(ξ(a)).

Case a ∈ (W � V )S : ψ AgM×N

a0
i

(a) def= ψ(a) def= μ(ξ(a)).

• Case �a0
i , a, ◦� ∈ [(W � V )S ∪ (W � V )T ]∗ψ ,

Case a ∈ (W � V )T :

ψ
AgM×N

a0
i

(a)
def=

(
AgM×N (a0

i )
(
�a0

i ,a,◦�
)
,off

)
def=

(
(N, AgN)(ξ(a))

(
�a0

i ,a,◦�
)
,off

)
def=

(
AgN(ξ(a))

(
�a0

i ,a,◦�
)
,off

)
.

Case a ∈ (W � V )S :

ψ
AgM×N

a0
i

(a)
def=

(
AgM×N

(
a0

i )(�a0
i ,a,◦�

)
,off

)
def=

(
(M, AgM)(ξ(a))

(
�a0

i ,a,◦�
)
,off

)
def=

(
AgM(ξ(a))

(
�a0

i ,a,◦�
)
,off

)
.

10
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Fig. 9. R F SGs M and M A[xz] .

• Case �a0
i , a, •� ∈ [(W � V )S ∪ (W � V )T ]∗ψ ,

Case a ∈ (W � V )T :

ψ
AgM×N

a0
i

(a)
def=

(
AgM×N

(
a0

i )(�a0
i ,a,•�

)
,on

)
def=

(
(N, AgN)(ξ(a))

(
�a0

i ,a,•�
)
,on

)
def=

(
AgN(ξ(a))

(
�a0

i ,a,•�
)
,on

)
.

Case a ∈ (W � V )S :

ψ
AgM×N

a0
i

(a)
def=

(
AgM×N (a0

i )
(
�a0

i ,a,•�
)
,on

)
def=

(
(M, AgM)(ξ(a))

(
�a0

i ,a,•�
)
,on

)
def=

(
AgM(ξ(a))(�a0

i ,a,•�),on

)
.

4. R F S Gs and fuzzy graphs

In this section, given an R F SG M = 〈W , μ : S → [0, 1] × {on, off}〉 with a ternary aggregation A, we will present the 
process of constructing a fuzzy graph (with no high-order arrow) from M based on A. In addition, we will relate the 
generated fuzzy graph to a finite set of arrows associated to zero-order arrows in M .

4.1. Induced fuzzy graphs from R F SGs

Consider a R F SG M and an aggregation function A.

Definition 4.1. Given a R F SG M with a ternary aggregation function A, let be the family of admissible fuzzy subsets of S , 

, which is the least set s.t.,{

μ ∈ 


μA
a0

i
∈ 
, whenever μ ∈ 
 and a0

i ∈ S0
μ

∗

Consider W̃ = {(w,μ) ∈ W × 
} and R̃ : W̃ × W̃ → [0, 1] s.t.

R̃
(
(w,μ), (w ′,μ′)

)
=

{
μ1[w w ′], if μ′ = μA

[w w ′]
0, otherwise.

The fuzzy graph M̃ = 〈W̃ , R̃〉 is called the fuzzy graph induced based on A.

Arrows that have a zero fuzzy value are not represented in the induced graph since they represent paths over the R F SG
that cannot be traversed. In the next examples, this situation will be exposed.

Example 4.1. Consider the R F SG M in Fig. 9(a). We have W = {x, y, z} and considering the aggregation A(x, y, z) = y, we 
have 
 =

{
μ,μA[xy]

}
. Indeed, μA[xz] = μ and μA[xy][xz] = μA[xy][zy] = μA[xy][xy] = μA[xy] (see Fig. 9(b) and Fig. 10).

Denote μA[xy] = μ and define W̃ = {(x,μ), (y,μ), (z,μ), (x,μ), (y,μ), (z,μ)}. The fuzzy graph induced based on A is 
presented in Fig. 11.
11
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Fig. 10. M A[xy] , M A[xy][xz] , M A[xy][zy] and M A[xy][xy] .

Fig. 11. Fuzzy graph induced based on A.

Fig. 12. M A[xy], M A[xy][xz] and M A[xy][zy] .

Example 4.2. Consider the same R F SG M in Fig.8(a) with the aggregation A(x, y, z) = (x + y + z)/3. In this case, we have 

 =

{
μ,μA[xy],μA[xy][xy],μA[xy][xy][xy], ... ,μA[xy]n ; n ∈N

}
2 with μA[xz] = μ and μA[xy]n[xz] = μA[xy]n[zy] = μA[xy]n for n ∈N , as can 

be seen Fig. 9, Fig. 12 and Fig. 13.
Fig. 14 shows the fuzzy graph induced based on A. We will denote μ = μA[xy] , μ = μA[xy][xy] and so on.

From the examples above, we can see that the induced fuzzy graph remains finite for the second projection whereas 
becomes infinite for the arithmetic mean. This fact illustrates that, the aggregation properties influence the type of induced 

2 If the arrow [xy] is crossed n times, repeatedly, we denote [xy]n .
12
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Fig. 13. M A[xy][xy], M A[xy][xy][xz] and M A[xy][xy][zy] .

Fig. 14. M̃ .

graph resulting and, for some cases, infinite fuzzy graphs can be represented by finite R F SG . The process of reducing infinite 
fuzzy graph to a finite reactive fuzzy graph (R F SG or F SG) is expected to be studied in future works.

4.2. Induced fuzzy graph like a generated algebra

The next theorem presents the process of setting up an induced fuzzy graph from a finite set X . This process is important 
since it points to a recursive process for building fuzzy graphs (finite or infinite) from a finite set of arrows.
13
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Theorem 4.1. Given a R F SG M = 〈W , μ〉, a ternary aggregation A and the fuzzy induced graph based on A, M̃ = 〈W̃ , R̃〉. Consider 
the set X ⊆ W̃ × W̃ × [0, 1] s.t.

X =
{(

(w,μ), (w ′,μ), R̃
(
(w,μ), (w ′,μ)

))
; [w w ′] ∈ S0

}
.

and the building rule X0 = X and

X j+1 = X j ∪
⎧⎨⎩

{ ⋃
a∈S→

fa
(

X j
)} −

{(
(w, s), (w ′, s′),d

)
∈

{⋃
a∈S→

fa
(

X j
)} ; (

s′)
2[w w ′] = off

}⎫⎬⎭
for fa : W̃ × W̃ × [0, 1] → W̃ × W̃ × [0, 1] with a ∈ S→ s.t.

fa

(
(w, φ), (w ′, φ′),d

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
(w, φ′), (w ′, φ′ A

a ),
(
φ′ A

a

)
1[w w ′]

)
, if φ′ A

a ∈ 
 and [w w ′] = a(
(w, φ′ A

a ), (w ′, φ′ A
a ),

(
φ′ A

a

)
1[w w ′]

)
, if φ′ A

a ∈ 
 and [w w ′] �= a.(
(w, φ), (w ′, φ′),d

)
, if φ′ A

a /∈ 
.

Then M̃ = 〈X〉 = ⋃
j∈N X j .

Proof. Indeed,

i) 〈X〉 ⊆ M̃: We prove this result by induction.

Note that, by definition, X ∈ M̃ . Consider fα ∈ F =
{

fα : W̃ × W̃ × [0,1] → W̃ × W̃ × [0,1]; α ∈ S→
}

and(
(w, s), (w ′, s′), R̃

(
(w, s), (w ′, s′)

)) ∈ M̃ , then:

If α = [w w ′] and s′ A
α ∈ 
:

fα
(
(w, s), (w ′, s′), R̃

(
(w, s), (w ′, s′)

)) =
(
(w, s′), (w ′, s′ A

α),
(
s′ A

α

)
1[w w ′]

)
=

(
(w, s′), (w ′, s′ A

α), R̃
(
(w, s′ A

α), (w ′, s′ A
α[w w ′])

)) ∈ M̃

If α �= [w w ′] and s′ A
α ∈ 
:

fα
(
(w, s), (w ′, s′), R̃

(
(w, s), (w ′, s′)

)) =
(
(w, s′ A

α), (w ′, s′ A
α),

(
s′ A

α

)
1[w w ′]

)
=

(
(w, s′ A

α), (w ′, s′ A
α), R̃

(
(w, s′ A

α), (w ′, s′ A
α[w w ′])

)) ∈ M̃

If s′ A
α /∈ 
:

fα
(
(w, s), (w ′, s′), R̃

(
(w, s), (w ′, s′)

)) =
(
(w, s), (w ′, s′), R̃

(
(w, s), (w ′, s′)

)) ∈ M̃

Therefore, M̃ is closed in relation to the functions in F . Supposing X j ⊆ M̃ , for j ∈ N . Then, X j+1 = X j ∪{{⋃
a∈S→ fa

(
X j

)} −
{(

(w, s), (w ′, s′),d
)

∈
{⋃

a∈S→ fa
(

X j
)} ; (

s′)
2[w w ′] = off

}}
⊆ M̃ . Therefore, 〈X〉 ⊆ M̃ .

ii) M̃ ⊆ 〈X〉:

Indeed, consider α, β ∈ S∗ s.t. α ∈ S→ and 
(
(w, μA

α), (w ′, μA
β ), 

(
μA

β

)
1[w w ′]

)
∈ M̃ .

If μA
β = μA

α[w w ′] �= μA
α , there are j ∈N and 

(
(w, μ), (w ′, μA

α), 
(
μA

α

)
1[w w ′]

)
∈ X j−1 s.t.

fα
(
(w,μ), (w ′,μA

α),
(
μA

α

)
1[w w ′]

)
=

(
(w,μA

α), (w ′,μA
α[w w ′]),

(
μA

α[w w ′]
)

1[w w ′]
)

∈ X j

=
(
(w,μA

α), (w ′,μA
β ),

(
μA

β

)
1[w w ′]

)
∈ X j

If μA
β = μA

α[w w ′] = μA
α , there are j ∈N and 

(
(w, μA

α), (w ′, μA
α), 

(
μA

α

)
1[w w ′]

)
∈ X j−1 s.t.

fα
(
(w,μA

α), (w ′,μA
α),

(
μA

α

)
1[w w ′]

)
=

(
(w,μA

α[w w ′]), (w ′,μA
α[w w ′]),

(
μA

α[w w ′]
)

1[w w ′]
)

∈ X j

=
(
(w,μA

α), (w ′,μA
β ),

(
μA

β

) [w w ′]
)

∈ X j
1

14
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Therefore, if 
(
(w, μA

α), (w ′, μA
β ), 

(
μA

β

)
1[w w ′]

)
∈ M̃ , there is j ∈N s.t. 

(
(w, μA

α), (w ′, μA
β ), 

(
μA

β

)
1[w w ′]

)
∈ X j ⊆ 〈X〉.

Due the items (i) and (ii), M̃ = 〈X〉.

In the following, we will present two examples of how a fuzzy induced graph (finite and infinite) can be written as 
algebra generated by a finite set of arrows.

Example 4.3. Given the R F SG in Fig. 18(a) and its induced fuzzy graph in Fig. 11 (Example 4.1). In this case, we have 
S→ = {[xy]} and

X =
{(

(x,μ), (y,μ), R̃
(
(x,μ), (y,μ)

))
,
(
(x,μ), (z,μ), R̃

(
(x,μ), (z,μ)

))
,
(
(z,μ), (y,μ), R̃

(
(z,μ), (y,μ)

))}
=

{(
(x,μ), (y,μ),0

)
,
(
(x,μ), (z,μ),0.1

)
,
(
(z,μ), (y,μ),0

)}
.

Let be

f[xy]
(
(w, φ), (w ′, φ′),d

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
(w, φ′), (w ′, φ′ A

[xy]),
(
φ′ A

[xy]
)

1
[w w ′]

)
, if φ′ A

[xy] ∈ 
 and [w w ′] = [xy](
(w, φ′ A

[xy]), (w ′, φ′ A
[xy]),

(
φ′ A

[xy]
)

1[w w ′]
)
, if φ′ A

[xy] ∈ 
 and [w w ′] �= [xy].(
(w, φ), (w ′, φ′),d

)
, if φ′ A

[xy] /∈ 
.

and X0 = X , we calculate:

- f[xy]
(
(x, μ), (y, μ), 0

)
=

(
(x, μ), (y, μA[xy]), 0.2

)
due μA[xy] ∈ 
 and [xy] = [xy];

- f[xy]
(
(x, μ), (z, μ), 0.1

)
=

(
(x, μA[xy]), (z, μA[xy]), 0.1

)
due μA[xy] ∈ 
 and [xz] �= [xy];

- f[xy]
(
(z, μ), (y, μ), 0

)
=

(
(z, μA[xy]), (y, μA[xy]), 0.8

)
due μA[xy] ∈ 
 and [zy] �= [xy].

Observe that f[xy]
(

X0

)
=

{(
(x, μ), (y, μA[xy]), 0.2

)
, 
(
(x, μA[xy]), (z, μA[xy]), 0.1

)
, 
(
(z, μA[xy]), (y, μA[xy]), 0.8

)}
and{(

(w, s), (w ′, s′), d
)

∈ f[xy]
(

X0

)
; (s′)

2[w w ′] = off

}
= ∅. Then,

X1 = X0 ∪ f[xy]
(

X0

)
=

{(
(x,μ), (y,μ),0

)
,
(
(x,μ), (z,μ),0.1

)
,
(
(z,μ), (y,μ),0

)
,(

(x,μ), (y,μA[xy]),0.2
)
,
(
(x,μA[xy]), (z,μA[xy]),0.1

)
,
(
(z,μA[xy]), (y,μA[xy]),0.8

)}
Fig. 15(a) and Fig. 15(b) show the sets X0 and X1. Continuing the process, we will calculate X2 showing the images of 

the arrows in f[xy](X0):

- f[xy]
(
(x, μ), (y, μA[xy]), 0.2

)
=

(
(x, μA[xy]), (y, μA[xy][xy]), 0.2

)
=

(
(x, μA[xy]), (y, μA[xy]), 0.2

)
due μA[xy][xy] = μA[xy] ∈ 
 and 

[xy] = [xy];
- f[xy]

(
(x, μ), (z, μ), 0.1

)
=

(
(x, μA[xy][xy]), (z, μA[xy][xy]), 0.1

)
=

(
(x, μA[xy]), (z, μA[xy]), 0.1

)
due μA[xy][xy] = μA[xy] ∈ 
 and 

[xz] �= [xy];
- f[xy]

(
(z, μ), (y, μ), 0

)
=

(
(z, μA[xy][xy]), (y, μA[xy][xy]), 0.8

)
=

(
(z, μA[xy]), (y, μA[xy]), 0.8

)
due μA[xy][xy] = μA[xy] ∈ 
 and 

[zy] �= [xy].

Then, f[xy]
(

X1

)
= f[xy]

(
X0

)
∪

{(
(x, μA[xy]), (y, μA[xy]), 0.2

)
, 
(
(x, μA[xy]), (z, μA[xy]), 0.1

)
, 
(
(z, μA[xy]), (y, μA[xy]),0.8

)}
and {(

(w, s), (w ′, s′), d
)

∈ f[xy]
(

X1

)
; (s′)

2[w w ′] = off

}
= ∅.

Follow that,

X2 = X1 ∪ f[xy]
(

X1

)
=

{(
(x,μ), (y,μ),0

)
,
(
(x,μ), (z,μ),0.1

)
,
(
(z,μ), (y,μ),0

)
,(

(x,μ), (y,μA[xy]),0.2
)
,
(
(x,μA[xy]), (z,μA[xy]),0.1

)
,
(
(z,μA[xy]), (y,μA[xy]),0.8

)
,
(
(x,μA[xy]), (y,μA[xy]),0.2

)}
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Fig. 15. Sets of arrows that make up the induced fuzzy graph M̃ .

Fig. 16. R F SG M .

Due to the aggregation used, when crossing n times (n ∈N) the arrow [xy], the update application μA[xy]n will be overlaid 
on the set 
 by the application μA[xy] . Thus, the sets X3, X4, ..., Xn = X2 and the induced fuzzy graph based on A from M
will be generated, like an algebra, by the finite set X . Fig. 11 shows the set X2.

Example 4.4. Given the R F SG M in Fig. 16. The induced fuzzy graph based in product can be viewed in Fig. 17.

Consider the base set X =
{(

(x,μ), (y,μ),0
)
,
(
(x,μ), (z,μ),0

)
,
(
(z,μ), (y,μ),0

)}
and the set S→ =

{
[xy], [xz]

}
. We 

get X0 = X (see Fig. 18 (a)) and calculating:

- f[xy]
(
(x, μ), (y, μ), 0

)
=

(
(x, μ), (y, μA[xy]), 0.2

)
;

- f[xy]
(
(x, μ), (z, μ), 0

)
=

(
(x, μA[xy]), (z, μA[xy]), 0.1

)
;

- f[xy]
(
(z, μ), (y, μ), 0

)
=

(
(z, μA[xy]), (y, μA[xy]), 0.048

)
;

- f[xz]
(
(x, μ), (y, μ), 0

)
=

(
(x, μA[xz]), (y, μA[xz]), 0.016

)
;

- f[xz]
(
(x, μ), (z, μ), 0

)
=

(
(x, μ), (z, μA[xz]), 0.1

)
;

- f[xz]
(
(z, μ), (y, μ), 0

)
=

(
(z, μA[xz]), (y, μA[xz]), 0.3

)
.
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Fig. 17. Fuzzy induced graph M̃ .

We get{
f[xy]

(
X0

)
, f[xz]

(
X0

)} =
{(

(x,μ), (y,μA[xy]),0.2
)
,
(
(x,μA[xy]), (z,μA[xy]),0.1

)
,
(
(z,μA[xy]), (y,μA[xy]),0.048

)
,(

(x,μA[xz]), (y,μA[xz]),0.016
)
,
(
(x,μ), (z,μA[xz]),0.1

)
,
(
(z,μA[xz]), (y,μA[xz]),0.3

)
,
}

and {(
(w, s), (w ′, s′),d

)
∈ {

f[xy]
(

X0
)
, f[xz]

(
X0

)} ; (s′)
2[w w ′] = off

}
=

{(
(x,μA[xz]), (y,μA[xz]),0.016

)
,
(
(z,μA[xz]), (y,μA[xz]),0.3

)}
.

Therefore, as can be seen in Fig. 18 (b),

X1 = X0 ∪
{{

f[xy](X0), f[xz](X0)
} −

{(
(x,μA[xz]), (y,μA[xz]),0.016

)}}
= X0 ∪

{(
(x,μ), (y,μA[xy]),0.2

)
,
(
(x,μA[xy]), (z,μA[xy]),0.1

)
,
(
(z,μA[xy]), (y,μA[xy]),0.048

)
,(

(x,μ), (z,μA[xz]),0.1
)}

To calculate X2, we have:

- f[xy]
(
(x, μ), (y, μA[xy]), 0.2

)
=

(
(x, μA[xy]), (y, μA[xy][xy]), 0.2

)
;

17
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Fig. 18. Sets of arrows that make up the induced fuzzy graph M̃ .

- f[xy]
(
(x, μA[xy]), (z, μA[xy]), 0.1

)
=

(
(x, μA[xy][xy]), (z, μA[xy][xy]), 0.1

)
;

- f[xy]
(
(z, μA[xy]), (y, μA[xy]), 0.048

)
=

(
(z, μA[xy][xy]), (y, μA[xy][xy]), 0, 00768

)
;

- f[xy]
(
(x, μ), (z, μA[xz]), 0.1

)
=

(
(x, μ), (z, μA[xz]), 0.1

)
due μA[xz][xy] /∈ 
.

and

- f[xz]
(
(x, μ), (y, μA[xy]), 0.2

)
=

(
(x, μA[xy][xz]), (y, μA[xy][xz]), 0.016

)
;

- f[xz]
(
(x, μA[xy]), (z, μA[xy]), 0.1

)
=

(
(x, μA[xy][xz]), (z, μA[xy][xz]), 0.1

)
;

- f[xz]
(
(z, μA[xy]), (y, μA[xy]), 0.048

)
=

(
(z, μA[xy][xz]), (y, μA[xy][xz]), 0.048

)
;

- f[xz]
(
(x, μ), (z, μA[xz]), 0.1

)
=

(
(x, μA[xz][xz]), (z, μA[xz][xz]), 0.1

)
.

We get{
f[xy]

(
X1

)
, f[xz]

(
X1

)} =
{(

(x,μA[xy]), (y,μA[xy][xy]),0.2
)
,
(
(x,μA[xy][xy]), (z,μA[xy][xy]),0.1

)
,(

(z,μA[xy][xy]), (y,μA[xy][xy]),0,00768
)
,
(
(x,μA[xy][xz]), (y,μA[xy][xz]),0.016

)
,(

(x,μA[xy][xz]), (z,μA[xy][xz]),0.1
)
,
(
(z,μA[xy][xz]), (y,μA[xy][xz]),0.048

)
,(

(x,μA[xz][xz]), (z,μA[xz][xz]),0.1
)}

and 
{(

(w, s), (w ′, s′), d
)

∈ {
f[xy]

(
X1

)
, f[xz]

(
X1

)} ; (s′)
2[w w ′] = off

}
=

{(
(x,μA[xy][xz]), (y,μA[xy][xz]),0.016

)}
.

Therefore, as can be seen in Fig. 16,

X2 =X1 ∪
{(

(x,μA[xy]), (y,μA[xy][xy]),0.2
)
,
(
(x,μA[xy][xy]), (z,μA[xy][xy]),0.1

)
,(

(z,μA[xy][xy]), (y,μA[xy][xy]),0,00768
)
,
(
(x,μA[xy][xz]), (z,μA[xy][xz]),0.1

)
,(

(z,μA[xy][xz]), (y,μA[xy][xz]),0.048
)
,
(
(x,μA[xz][xz]), (z,μA[xz][xz]),0.1

)}
.

The process goes on to determine Xn, n ≥ 3. The graph M̃ is built from these sets and is an infinite graph.
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5. A logic for R F S Gs

In order to verify a system described by a R F SG , we provide a formal language and a fuzzy semantics. Also in this 
section, we will present the definition of simulation and bisimulation for R F SGs. In what follows, for any w ∈ W , we use 
the set S0∗[w] = {w ′ ∈ W ; [w w ′] ∈ S0}.

5.1. Syntax and semantics

In [7] was present a formal logic for R F SGs which enables the verification of properties. This section expose this logic 
with more details and introduce new concepts.

Definition 5.1 (Syntax [7]). Consider AtomProp a set of symbols (called atomic propositions) and p ∈ AtomProp. The set of 
formulas is generated by the following grammar: ϕ ::= p | true | f alse | (¬ϕ) | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ → ϕ) | (ϕ ↔
ϕ) | (SNext(ϕ)) | (ANext(ϕ)).

Given the formulas ϕ and ψ , we classically interpret:

(¬ϕ): ϕ is not true;
(ϕ ∧ ψ): ϕ and ψ are true;
(ϕ ∨ ψ): ϕ or ψ is true;
(ϕ → ψ): If ϕ is true, then ψ is true;
(ϕ ↔ ψ): ϕ is true if and only if ψ is true;
(SNext(ϕ)): ϕ is true in some next state;
(ANext(ϕ)): ϕ is true in all next states.

A formula that only contains the operators ∧, ∨ and SNext(ϕ) is called positive formula.

Definition 5.2. A model [7] over the set AtomProp is a pair M = (M, V M), s.t. M = 〈W , μ〉 is a R F SG and V M : W ×
AtomProp → [0, 1] is a function called fuzzy valuation.

Definition 5.3. Given a model M = (M, V M) and N a subgraph of M , the structure N = (N, V N) is a submodel of M
whenever V N(w, p) ≤ V M(w, p) for all w ∈ W and p ∈ AtomProp.

Definition 5.4 (Semantics [7]). Consider M = (M, V M) a model, A the aggregation function associated with M , F =
〈[0, 1], T , S, N, I, B, 0, 1〉 a fuzzy semantics and w ∈ W a state. The notation, �M , w |=A

F ϕ� represents the grade of un-
certainty of a given formula ϕ, at state w , taking into account M , F and A. The grade of uncertainty of �M , w |=A

F ϕ� is 
defined in the following way:

• �M , w |=A
F p� = V M(w, p), for p ∈ AtomProp.

• �M , w |=A
F true� = 1.

• �M , w |=A
F false� = 0.

• �M , w |=A
F (ϕ ∧ ψ)� = T(�M , w |=A

F ϕ�, �M , w |=A
F ψ�).

• �M , w |=A
F (ϕ ∨ ψ)� = S(�M , w |=A

F ϕ�, �M , w |=A
F ψ�).

• �M , w |=A
F (ϕ → ψ)� = I(�M , w |=A

F ϕ�, �M , w |=A
F ψ�).

• �M , w |=A
F (ϕ ↔ ψ)� = B(�M , w |=A

F ϕ�, �M , w |=A
F ψ�).

• �M , w |=A
F ¬ϕ)� = N(�M , w |=A

F ϕ�).

• �M , w |=A
F ANext(ϕ)� = T

w ′∈S0∗[w]

(
I
(
μ([w w ′]), �M A

[w w ′], w ′ |=A
F ϕ�

))
since M A

[w w ′] means 
(

M A
[w w ′], V M

)
.

• �M , w |=A
F SNext(ϕ)� = S

w ′∈S0∗[w]

(
T
(
μ([w w ′]), �M A

[w w ′], w ′ |=A
F ϕ�

))
.

The uncertainty degree that “SNext(ϕ)” is true at the state w is computed by using the uncertainty degree that ϕ is true 
at some state with active relationship to w . On the other hand, the uncertainty degree that “ANext(ϕ)” is true at state w
is computed by using the uncertainty degree that ϕ is true at every state with active relationship to w . The expression: 
�M A

[w,w ′], w
′ |= ϕ�, in this case, represents the uncertainty degree of the statement: “ϕ is true” at state w ′ after the active 

zero-order arrow a0
i = [w, w ′] has been crossed and the R F SG M has been updated to M A

a0
i
.

Remark 5.1. According to Notation 1, the application f in the definition of ANext(ϕ) is a fuzzy implication I. Similarly, in the 
definition of SNext(ϕ), the application f is a t-norm T.
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Table 2
Truth values of propositions on each state.

x y u v

H 0.2 0.8 0.3 0.01
L 0.1 0.9 0.15 0.2

Example 5.1. Consider Fig. 1(b) and take the atomic propositions: High risk of contagion and Low risk of contagion, according 
to the Table 2.

What is the uncertainty degree at state x for the proposition: “In some next state we have a low risk of contagion with a next 
state which has a higher risk of contagion?” The assertion can be expressed as: S Next(L ∧ SNext(H)).

Assuming the arithmetic mean as the unique aggregation function, the Gödel Semantic FG and ϕ = L ∧ SNext(H),

�M , x |=A
FG

SNext(ϕ)�
def= SM

(
TM

(
0.3, �M A[xu], u |=A

FG
ϕ�

)
,TM

(
0.4, �M A[xy], y |=A

FG
ϕ�

))
def= SM

(
TM(0.3,0.15),TM(0.4,0.01)

)
= 0.15

Since,

a) �M A[xu], u |=A
FG

ϕ� def= TM

(
�M A[xu], u |=A

FG
SNext(H)�, �M A[xu], u |=A

FG
L�

)
= TM(0.6, 0.15) = 0.15 due to �M A[xu], u |=A

FG

SNext(H)� def= SM

(
TM

(
μA[xu]([uy]), �M A[xu][uy], y |=A

FG
H�

)) = SM

(
TM

(
0.6, 0.8

)) = 0.6;

b) �M A[xy], y |=A
FG

ϕ� def= TM

(
�M A[xy], y |=A

FG
SNext(H)�, �M A[xy], y |=A

FG
L�

)
= TM(0.01, 0.9) = 0.01. due to �M A[xy], y |=A

FG

SNext(H)� def= SM

(
TM

(
μ

[xy]
A ([yv]), �M A[xy][yv], v |=A

FG
H�

)) = SM

(
TM

(
0.02, 0.01

)) = 0.01

In this case, in order to calculate the uncertainty degree at state v for the same proposition, we should note that the 
state v has only one next state y (the inactive arrow [vu] is not considered). Therefore,

�M , v |=A
FG

SNext(ϕ)�
def= SM

(
TM

(
0.03, �M A[v y], y |=A

FG
ϕ�

)) = 0.01.

Since �M A[v y], y |=A
FG

ϕ� def= TM

(
�M A[v y], y |=A

FG
SNext(H)�, �M A[v y], y |=A

FG
L�

)
= TM(0.01, 0.9) = 0.01 due to �M A[v y], y |=A

FG

SNext(H)� def= SM

(
TM

(
μA[v y]([yv]), �M A[v y][yv], v |=A

FG
H�

)) = SM

(
TM

(
0.02, 0.01

)) = 0.01.

Proposition 5.1. Consider N = (N, V N) a submodel of M = (M, V M), then

�N , w |=A
F ψ� ≤ �M , w |=A

F ψ�

for all positive formula ψ .

Proof. We prove this result by induction over the structure of formulas.

- It holds for atomic propositions by definition and trivially for true and false.
- �M , w |=A

F (ϕ ∨ ψ)� = T(�M , w |=A
F ϕ�, �M , w |=A

F ψ�) ≥ T(�N , w |=A
F ϕ�, �N , w |=A

F ψ�) = �N , w |=A
F (ϕ ∨ ψ)�.

- �M , w |=A
F (ϕ ∧ ψ)� = S(�M , w |=A

F ϕ�, �M , w |=A
F ψ�) ≥ S(�N , w |=A

F ϕ�, �N , w |=A
F ψ�) = �N , w |=A

F (ϕ ∧ ψ)�.
- �M , w |=A

F SNext(ϕ)� = S
w ′∈S0∗[w]

(
T
(
μM 1([w w ′]), �M A

[w w ′], w
′ |=A

F ϕ�
)) ≥ S

w ′∈S0∗[w]
(
T
(
μN 1([w w ′]), �N A

[w w ′], w
′ |=A

F

ϕ�
))

= �N , w |=A
F SNext(ϕ)�

Definition 5.5. Given a R F SG M = 〈W , μ : S → [0, 1] × {on, off}〉 with an aggregation A and a model M = (M, V M), the 
structure

M̃ = (〈W̃ , R̃〉, Ṽ = V ˜ ˜
)

〈W ,R〉
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F

s.t.

Ṽ : W̃ × AtomProp → [0,1]
Ṽ

(
(w,μ), p

) = V M(w, p)

is called the induced fuzzy model of M for A.

Theorem 5.1. Given a R F SG M = 〈W , μ : S → [0, 1] × {on, off}〉 with an aggregation A and a model M = (M, V M), then

�M , w |=A
F ϕ� = �M̃ , (w,μ) |=F ϕ�

Proof. We prove this result by induction over the structure of formulas.

- It holds for atomic propositions by definition and trivially for true and false.
- �M , w |=A

F (ϕ∨ψ)� = T(�M , w |=A
F ϕ�, �M , w |=A

F ψ�) = T(�M̃ , (w, μ) |=F ϕ�, �M̃ , (w, μ) |=F ψ�) = �M̃ , (w, μ) |=F
(ϕ ∨ ψ)�.

- �M , w |=A
F (ϕ∧ψ)� = S(�M , w |=A

F ϕ�, �M , w |=A
F ψ�) = S(�M̃ , (w, μ) |=F ϕ�, �M̃ , (w, μ) |=F ψ�) = �M̃ , (w, μ) |=F

(ϕ ∧ ψ)�.
- �M , w |=A

F (ϕ → ψ)� = I(�M , w |=A
F ϕ�, �M , w |=A

F ψ�) = I(�M̃ , (w, μ) |=F ϕ�, �M̃ , (w, μ) |=F ψ�) = �M̃ , (w, μ) |=F
(ϕ → ψ)�

- �M , w |=A
F (ϕ ↔ ψ)� = B(�M , w |=A

F ϕ�, �M , w |=A
F ψ�) = B(�M̃ , (w, μ) |=F ϕ�, �M̃ , (w, μ) |=F ψ�) = �M̃ , (w, μ) |=

(ϕ ↔ ψ)�
- �M , w |=A

F (¬ϕ)� = N(�M , w |=A
F ϕ�) = N(�M̃ , (w, μ) |=F ϕ�) = �M̃ , (w, μ) |=F (¬ϕ)�

- �M , w |=A
F SNext(ϕ)� = S

w ′∈S0∗[w]

(
T
(
μ1([w w ′]), �M A

[w w ′], w
′ |=A

F ϕ�
))

= S
w ′∈S0∗[w]

(
T
(
μ1([w w ′]), �M̃ A

[w w ′], (w ′,

μA
[w w ′]) |=F ϕ�

))
= S

w ′∈S0∗[w]

(
T
(
μ1([w w ′]), �M̃ , (w ′, μA

[w w ′]) |=F ϕ�
))

= �M̃ , (w, μ) |=F SNext(ϕ)�

- �M , w |=A
F ANext(ϕ)� = T

w ′∈S0∗[w]

(
I
(
μ1([w w ′]), �M A

[w w ′], w
′ |=A

F ϕ�
))

= T
w ′∈S0∗[w]

(
I
(
μ1([w w ′]), �M̃ A

[w w ′], (w ′,

μA
[w w ′]) |=F ϕ�

))
= T

w ′∈S0∗[w]

(
I
(
μ1([w w ′]), �M̃ , (w ′, μA

[w w ′]) |=F ϕ�
))

= �M̃ , (w, μ) |=F ANext(ϕ)�.

5.2. Simulation and bisimulation

Based on the notion of bisimulation for F SGs present in [22], we introduce the notion of simulation and bisimulation 
for R F SGs.

Definition 5.6. [17] A fuzzy model over the set AtomProp is a pair MF = (〈W , R〉, V 〈W ,R〉
)

s.t. 〈W , R〉 is a fuzzy graph and 
V 〈W ,R〉 : W × AtomProp → [0, 1] is a fuzzy valuation function.

Consider MF a fuzzy model, F = 〈[0, 1], T , S, N, I, B, 0, 1〉 a fuzzy semantics and w ∈ W a state. The notation, 
�MF , w |=F ϕ� represents the grade of uncertainty of a given formula ϕ, at state w , taking into account MF and F . The 
grade of uncertainty of �MF , w |=F ϕ� is defined similarly in the way for a model.

Notation 3: Given a relation E ⊂ W × W ′ and w ∈ W , we define:

a) E[w] = {w ′ ∈ W ′; (w, w ′) ∈ E};
b) E−1[w ′] = {w ∈ W ; (w, w ′) ∈ E}.

Definition 5.7 (Simulation [17]). Let MF = (〈W , R〉, V 〈W ,R〉
)

and MF ′ = (〈W ′, R ′〉, V 〈W ′,R ′〉〉 be two fuzzy models. A rela-
tion E ⊂ W × W ′ is said to be a simulation from MF to MF ′ if, for every (w, w ′) ∈ E:

1. V 〈W ,R〉(w, p) ≤ V 〈W ′,R ′〉(w ′, p), for all p ∈ AtomProp.
2. For all u ∈ W ; R(w, u) ≤ sup

u′∈E[u]
R ′(w ′, u′).

Example 5.2. Consider the fuzzy models (MF )1 = (〈W1, R1〉, V 1 = V 〈W1,R1〉
)

and (MF )2 = (〈W2, R2〉, V 2 = V 〈W2,R2〉
)

in Fig. 19 s.t. W1 = {w1, w2}, W2 = {
w ′

1, w ′
2, w ′

3, w ′
4, w ′

5

}
and E = {

(w1, w ′
1), (w1, w ′

5), (w2, w ′
2), (w2, w ′

3), (w2, w ′
4)

}
. 

For all p ∈ AtomProp, consider V 1(w1, p) ≤ V 2(w ′
1, p), V 1(w1, p) ≤ V 2(w ′

5, p), V 1(w2, p) ≤ V 2(w ′
2, p), V 1(w2, p) ≤

V 2(w ′ , p), V 1(w2, p) ≤ V 2(w ′ , p).
3 4
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Fig. 19. (MF )2 simulates (MF )1.

The relation E ⊂ W1 × W2 is represented by the color of the nodes. If (w, w ′) ∈ E , then w and w ′ have the same color 
in the graph.

E is a simulation from (MF )1 to (MF )2. In fact, the condition 1 hold by assumption. To check the condition 2, we 
have to check for each pair in E .

Consider w = w1 ∈ W1. Therefore u = w2 and E[w2] = {w ′
2, w

′
3, w

′
4}. We calculate,

• R1([w1 w1]) = 0 ≤ sup
u′∈E[w1]

R2[w ′
1u′] = sup

{
R2[w ′

1 w ′
1], R2[w ′

1 w ′
5]

} = 0,

• R1([w1 w1]) = 0 ≤ sup
u′∈E[w1]

R2[w ′
5u′] = sup

{
R2[w ′

5 w ′
1], R2[w ′

5 w ′
5]

} = 0,

• R1([w1 w2]) = 0 ≤ sup
u′∈E[w2]

R2[w ′
1u′] = sup

{
R2[w ′

1 w ′
2], R2[w ′

1 w ′
3], R2[w ′

1 w ′
4]

} = 0,

• R1([w1 w2]) = 0 ≤ sup
u′∈E[w2]

R2[w ′
5u′] = sup

{
R2[w ′

5 w ′
2], R2[w ′

5 w ′
3], R2[w ′

5 w ′
4]

} = 0.

Consider w = w2 ∈ W1. Therefore u = w1 and E[w2] = {w ′
1, w

′
5}. We calculate,

• R1([w2 w2]) = 0 ≤ sup
u′∈E[w2]

R2[w ′
2u′] = sup

{
R2[w ′

2 w ′
2], {R2[w ′

2 w ′
3], R2[w ′

2 w ′
4]

} = 0,

• R1([w2 w2]) = 0 ≤ sup
u′∈E[w2]

R2[w ′
3u′] = sup

{
R2[w ′

3 w ′
2], {R2[w ′

3 w ′
3], R2[w ′

3 w ′
4]

} = 0,

• R1([w2 w2]) = 0 ≤ sup
u′∈E[w2]

R2[w ′
4u′] = sup

{
R2[w ′

4 w ′
2], {R2[w ′

4 w ′
3], R2[w ′

4 w ′
4]

} = 0,

• R1([w2 w1]) = 0.5 ≤ sup
u′∈E[w1]

R2[w ′
2u′] = sup

{
R2[w ′

2 w ′
1], R2[w ′

2 w ′
5]

} = 0.6,

• R1([w2 w1]) = 0.5 ≤ sup
u′∈E[w1]

R2[w ′
3u′] = sup

{
R2[w ′

3 w ′
1], R2[w ′

3 w ′
5]

} = 0.8,

• R1([w2 w1]) = 0.5 ≤ sup
u′∈E[w1]

R2[w ′
4u′] = sup

{
R2[w ′

4 w ′
1], R2[w ′

4 w ′
5]

} = 0.7.

(MF )2 simulates (MF )1.

Definition 5.8 (Bisimulation [17]). Let MF = (〈W , R〉, V 〈W ,R〉
)

and MF ′ = (〈W ′, R ′〉, V 〈W ′,R ′〉
)

be two fuzzy models. A 
relation E ⊂ W × W ′ is said to be a bisimulation from MF and MF ′ if, for every (w, w ′) ∈ E:

1. V 〈W ,R〉(w, p) = V 〈W ′,R ′〉(w ′, p), for all p ∈ AtomProp.
2. For all u ∈ W ; R(w, u) ≤ sup

u′∈E[u]
R ′(w ′, u′).

3. For all u′ ∈ W ′; R ′(w ′, u′) ≤ sup
u∈E−1[u′]

R(w, u).

Example 5.3. Consider the fuzzy models (MF )1 = (〈W1, R1〉, V 1 = V 〈W1,R1〉
)

and (MF )2 = (〈W2, R2〉, V 2 = V 〈W2,R2〉
)

in Fig. 20 s.t. W1 = {w0, w1, w2}, W2 = {w ′
1, w

′
2, w

′
3, w

′
4, w

′
5} and E = {(w0, w ′

1), (w0, w ′
5), (w1, w ′

1), (w1, w ′
5), (w2, w ′

2),

(w2, w ′ ), (w2, w ′ )}.
3 4
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For all p ∈ AtomProp, consider V 1(w0, p) = V 2(w ′
1, p); V 1(w0, p) = V 2(w ′

5, p); V 1(w1, p) = V 2(w ′
1, p); V 1(w1, p) =

V 2(w ′
5, p); V 1(w2, p) = V 2(w ′

2, p); V 1(w2, p) = V 2(w ′
3, p); V 1(w2, p) = V 2(w ′

4, p).
As was done in the Example 5.2, the relation E ⊂ W1 × W2 is represented by the color of the nodes. If (w, w ′) ∈ E , then 

w and w ′ have the same color in the graph.
In fact, the condition 1 hold by assumption.
To check the condition 2, once E[w0] = E[w1] = {w ′

1, w
′
5} and E[w2] = {w ′

2, w
′
3, w

′
4}:

• R1([w0 w0]) = 0 ≤ sup
u′∈E[w0]

R2[w ′
1u′] = sup

{
R2[w ′

1 w ′
1], R2[w ′

1 w ′
5]

} = 0,

• R1([w0 w0]) = 0 ≤ sup
u′∈E[w0]

R2[w ′
5u′] = sup

{
R2[w ′

5 w ′
1], R2[w ′

5 w ′
5]

} = 0,

• R1([w0 w1]) = 0 ≤ sup
u′∈E[w1]

R2[w ′
1u′] = sup

{
R2[w ′

1 w ′
1], R2[w ′

1 w ′
5]

} = 0,

• R1([w0 w1]) = 0 ≤ sup
u′∈E[w1]

R2[w ′
5u′] = sup

{
R2[w ′

5 w ′
1], R2[w ′

5 w ′
5]

} = 0,

• R1([w0 w2]) = 0 ≤ sup
u′∈E[w2]

R2[w ′
1u′] = sup

{
R2[w ′

1 w ′
2], R2[w ′

1 w ′
3], R2[w ′

1 w ′
4]

} = 0,

• R1([w0 w2]) = 0 ≤ sup
u′∈E[w2]

R2[w ′
5u′] = sup

{
R2[w ′

5 w ′
2], R2[w ′

5 w ′
3], R2[w ′

5 w ′
4]

} = 0,

• R1([w1 w0]) = 0 ≤ sup
u′∈E[w0]

R2[w ′
1u′] = sup

{
R2[w ′

1 w ′
1], R2[w ′

1 w ′
5]

} = 0,

• R1([w1 w0]) = 0 ≤ sup
u′∈E[w0]

R2[w ′
5u′] = sup

{
R2[w ′

5 w ′
1], R2[w ′

5 w ′
5]

} = 0,

• R1([w1 w1]) = 0 ≤ sup
u′∈E[w1]

R2[w ′
1u′] = sup

{
R2[w ′

1 w ′
1], R2[w ′

1 w ′
5]

} = 0,

• R1([w1 w1]) = 0 ≤ sup
u′∈E[w1]

R2[w ′
5u′] = sup

{
R2[w ′

5 w ′
1], R2[w ′

5 w ′
5]

} = 0,

• R1([w1 w2]) = 0 ≤ sup
u′∈E[w2]

R2[w ′
1u′] = sup

{
R2[w ′

1 w ′
2], R2[w ′

1 w ′
3], R2[w ′

1 w ′
4]

} = 0,

• R1([w1 w2]) = 0 ≤ sup
u′∈E[w2]

R2[w ′
5u′] = sup

{
R2[w ′

5 w ′
2], R2[w ′

5 w ′
3], R2[w ′

5 w ′
4]

} = 0,

• R1([w2 w0]) = 0.8 ≤ sup
u′∈E[w0]

R2[w ′
2u′] = sup

{
R2[w ′

2 w ′
1], R2[w ′

2 w ′
5]

} = 0.8,

• R1([w2 w0]) = 0.8 ≤ sup
u′∈E[w0]

R2[w ′
3u′] = sup

{
R2[w ′

3 w ′
1], R2[w ′

3 w ′
5]

} = 0.8,

• R1([w2 w0]) = 0.8 ≤ sup
u′∈E[w0]

R2[w ′
4u′] = sup

{
R2[w ′

4 w ′
1], R2[w ′

4 w ′
5]

} = 0.8,

• R1([w2 w1]) = 0.5 ≤ sup
u′∈E[w1]

R2[w ′
4u′] = sup

{
R2[w ′

4 w ′
1], R2[w ′

4 w ′
5]

} = 0.8,

• R1([w2 w1]) = 0.5 ≤ sup
u′∈E[w1]

R2[w ′
2u′] = sup

{
R2[w ′

2 w ′
1], R2[w ′

2 w ′
5]

} = 0.8,

• R1([w2 w1]) = 0.5 ≤ sup
u′∈E[w1]

R2[w ′
3u′] = sup

{
R2[w ′

3 w ′
1], R2[w ′

3 w ′
5]

} = 0.8,

• R1([w2 w2]) = 0 ≤ sup
u′∈E[w2]

R2[w ′
2u′] = sup

{
R2[w ′

2 w ′
2], R2[w ′

2 w ′
3], R2[w ′

2 w ′
4]

} = 0,

• R1([w2 w2]) = 0 ≤ sup
u′∈E[w2]

R2[w ′
3u′] = sup

{
R2[w ′

3 w ′
2], R2[w ′

3 w ′
3], R2[w ′

3 w ′
4]

} = 0,

• R1([w2 w2]) = 0 ≤ sup
u′∈E[w2]

R2[w ′
4u′] = sup

{
R2[w ′

4 w ′
2], R2[w ′

4 w ′
3], R2[w ′

4 w ′
4]

} = 0.

In order to check the condition 3, once E−1[w ′
1] = E−1[w ′

5] = {w1, w0} and E−1[w ′
2] = E−1[w ′

3] = E−1[w ′
4] = {w2}:

• R2([w ′
1 w ′

1]) = 0 ≤ sup
u′∈E−1[w ′

1]
R1[w1u′] = sup {R1[w1 w1], R1[w1 w0]} = 0,

• R2([w ′
1 w ′

1]) = 0 ≤ sup
u′∈E−1[w ′

1]
R1[w0u′] = sup {R1[w0 w1], R1[w0 w0]} = 0,

• R2([w ′
1 w ′

2]) = 0 ≤ sup
u′∈E−1[w ′

2]
R1[w0u′] = sup {R1[w0 w2]} = 0,

• R2([w ′
1 w ′

2]) = 0 ≤ sup
u′∈E−1[w ′

2]
R1[w1u′] = sup {R1[w1 w2]} = 0,

• R2([w ′
1 w ′

3]) = 0 ≤ sup
u′∈E−1[w ′

3]
R1[w0u′] = sup {R1[w0 w2]} = 0,

• R2([w ′
1 w ′

3]) = 0 ≤ sup
u′∈E−1[w ′

3]
R1[w1u′] = sup {R1[w1 w2]} = 0,

• R2([w ′
1 w ′

4]) = 0 ≤ sup
u′∈E−1[w ′ ]

R1[w0u′] = sup {R1[w0 w2]} = 0,

4
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• R2([w ′
1 w ′

4]) = 0 ≤ sup
u′∈E−1[w ′

4]
R1[w1u′] = sup {R1[w1 w2]} = 0,

• R2([w ′
1 w ′

5]) = 0 ≤ sup
u′∈E−1[w ′

5]
R1[w1u′] = sup {R1[w1 w1], R1[w1 w0]} = 0,

• R2([w ′
1 w ′

5]) = 0 ≤ sup
u′∈E−1[w ′

5]
R1[w0u′] = sup {R1[w0 w1], R1[w0 w0]} = 0,

• R2([w ′
2 w ′

1]) = 0.8 ≤ sup
u′∈E−1[w ′

1]
R1[w2u′] = sup {R1[w2 w1], R1[w2 w0]} = 0.8,

• R2([w ′
2 w ′

2]) = 0 ≤ sup
u′∈E−1[w ′

2]
R1[w2u′] = sup {R1[w2 w2]} = 0,

• R2([w ′
2 w ′

3]) = 0 ≤ sup
u′∈E−1[w ′

3]
R1[w2u′] = sup {R1[w2 w2]} = 0,

• R2([w ′
2 w ′

4]) = 0 ≤ sup
u′∈E−1[w ′

4]
R1[w2u′] = sup {R1[w2 w2]} = 0,

• R2([w ′
2 w ′

5]) = 0 ≤ sup
u′∈E−1[w ′

5]
R1[w2u′] = sup {R1[w2 w1], R1[w2 w0]} = 0.8,

• R2([w ′
3 w ′

1]) = 0.8 ≤ sup
u′∈E−1[w ′

1]
R1[w2u′] = sup {R1[w2 w1], R1[w2 w0]} = 0.8,

• R2([w ′
3 w ′

2]) = 0 ≤ sup
u′∈E−1[w ′

2]
R1[w2u′] = sup {R1[w2 w2]} = 0,

• R2([w ′
3 w ′

3]) = 0 ≤ sup
u′∈E−1[w ′

3]
R1[w2u′] = sup {R1[w2 w2]} = 0,

• R2([w ′
3 w ′

4]) = 0 ≤ sup
u′∈E−1[w ′

4]
R1[w2u′] = sup {R1[w2 w2]} = 0,

• R2([w ′
3 w ′

5]) = 0.7 ≤ sup
u′∈E−1[w ′

5]
R1[w2u′] = sup {R1[w2 w1], R1[w2 w0]} = 0.8,

• R2([w ′
4 w ′

1]) = 0.8 ≤ sup
u′∈E−1[w ′

1]
R1[w2u′] = sup {R1[w2 w1], R1[w2 w0]} = 0.8,

• R2([w ′
4 w ′

2]) = 0 ≤ sup
u′∈E−1[w ′

2]
R1[w2u′] = sup {R1[w2 w2]} = 0,

• R2([w ′
4 w ′

3]) = 0 ≤ sup
u′∈E−1[w ′

3]
R1[w2u′] = sup {R1[w2 w2]} = 0,

• R2([w ′
4 w ′

4]) = 0 ≤ sup
u′∈E−1[w ′

4]
R1[w2u′] = sup {R1[w2 w2]} = 0,

• R2([w ′
4 w ′

5]) = 0 ≤ sup
u′∈E−1[w ′

5]
R1[w2u′] = sup {R1[w2 w1], R1[w2 w0]} = 0.8,

• R2([w ′
5 w ′

1]) = 0 ≤ sup
u′∈E−1[w ′

1]
R1[w1u′] = sup {R1[w1 w1], R1[w1 w0]} = 0,

• R2([w ′
5 w ′

1]) = 0 ≤ sup
u′∈E−1[w ′

1]
R1[w0u′] = sup {R1[w0 w1], R1[w0 w0]} = 0,

• R2([w ′
5 w ′

2]) = 0 ≤ sup
u′∈E−1[w ′

2]
R1[w0u′] = sup {R1[w0 w2]} = 0,

• R2([w ′
5 w ′

2]) = 0 ≤ sup
u′∈E−1[w ′

2]
R1[w1u′] = sup {R1[w1 w2]} = 0,

• R2([w ′
5 w ′

3]) = 0 ≤ sup
u′∈E−1[w ′

3]
R1[w0u′] = sup {R1[w0 w2]} = 0,

• R2([w ′
5 w ′

3]) = 0 ≤ sup
u′∈E−1[w ′

3]
R1[w1u′] = sup {R1[w1 w2]} = 0,

• R2([w ′
5 w ′

4]) = 0 ≤ sup
u′∈E−1[w ′

4]
R1[w0u′] = sup {R1[w0 w2]} = 0,

• R2([w ′
5 w ′

4]) = 0 ≤ sup
u′∈E−1[w ′

4]
R1[w1u′] = sup {R1[w1 w2]} = 0,

• R2([w ′
5 w ′

5]) = 0 ≤ sup
u′∈E−1[w ′

5]
R1[w1u′] = sup {R1[w1 w1], R1[w1 w0]} = 0,

• R2([w ′
5 w ′

5]) = 0 ≤ sup
u′∈E−1[w ′

5]
R1[w0u′] = sup {R1[w0 w1], R1[w0 w0]} = 0.

There is a bisimulation between (MF )1 and (MF )2.

In order to define the bisimulation for R F SGs, we will present a sequence of results presented in [22].

Lema 5.1. [17] Given fuzzy models MF = (〈W , R〉, V 〈W ,R〉
)

and MF ′ = (〈W ′, R ′〉, V 〈W ′,R ′〉
)

with the Gödel semantics and a 
bisimulation E ⊂ W × W ′ s.t. (w, w ′) ∈ E. Then
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Fig. 20. There is a bisimulate between (MF )1 and (MF )2.

�MF , w |=G ϕ� = �MF ′, w ′ |=G ϕ�

for every formula.

Definition 5.9. Let us consider the models M = (M, V M) and M ′ = (M ′, V M′) (M = 〈W , μ〉 and M ′ = 〈W ′, μ′〉 are R F SGs) 
and the relation E ⊂ W × W ′ . Given the induced fuzzy models M̃ = (〈W̃ , R̃〉, V 〈W̃ ,R̃〉

)
and M̃ ′ = (〈W̃ ′, R̃ ′〉, V 〈W̃ ′,R̃ ′〉

)
, the 

relation Ẽ ⊂ W̃ × W̃ ′ is an extension of E if 
(
(w, μ), (w ′, μ′)

) ∈ Ẽ whenever (w, w ′) ∈ E .

Definition 5.10. Given two R F SGs M = 〈W , μ〉 and M ′ = 〈W ′, μ′〉, a relation E ⊆ W × W ′ is a bisimulation between the 
models M = (M, V M) and M ′ = (M ′, V M′), if there is an extension Ẽ which is a bisimulation between the induced fuzzy 
models ˜MF and ˜MF ′ .

Theorem 5.2. Given the R F SGs M = 〈W , μ〉 and M ′ = 〈W , μ〉 with the aggregation A and a bisimulation E ⊂ W × W ′ . If (w, w ′) ∈
E, considering the models M = (M, V M), M ′ = (M ′, V M′ ) and the Gödel Semantic G , then

�M , w |=A
G ϕ� = �M ′, w ′ |=A

G ϕ�

for every formula ϕ ∈ AtomProp.

Proof. By Definition 5.10, there is a bisimulation Ẽ between the induced fuzzy models ˜MF = (〈W , R〉, V 〈W ,R〉
)

and 
˜MF ′ = (〈W ′, R ′〉, V 〈W ′,R ′〉

)
. By the Lema 5.1 and the Theorem 5.1,

�M , w |=A
G ϕ� = � ˜MF , (w,μ) |=G ϕ� = � ˜MF ′, (w ′,μ′) |=G ϕ� = �M ′, w ′ |=A

G ϕ�

6. Modeling a tank level control system

In industrial processes that use tanks, the control of the fluid level is a common practice. Even with a relatively simple 
structure, logic controllers are often used. The study and the modeling of tank plants and logic controllers are important 
because they provide the understanding of the current scenario of the system, causing benefits such as: the increase of 
productivity and the prevention of accidents [11].

Fig. 21 (a) shows a scheme where a tank control system is built with three signal transmitters {ST1, ST2, ST3}, two 
pumps {P1, P2} and a channel for fluid inlet called ST ART . The dynamics of the system works as follows:

• Fluid level rising: At ST ART the fluid starts to be inserted into the tank while pumps P1 and P2 are on standby 
receiving a minimum electric current. When the fluid level triggers ST2, P1 receives an increment of electric current 
and is activated. If the fluid level continues to rise and trigger ST3, the pump P2 receives an increment of electric 
current and is also activated.

• Fluid level decreasing: When the fluid level is maximum, the pumps P1 and P2 are active. When the fluid level 
decreases, the ST3 is triggered and P2 goes to standby with a decrease in its electric current. If the fluid level continues 
to decrease, ST2 is triggered and P1 goes to standby with a decreasing in its electric current.

The signal transmitter receives the difference pressure of two points with different weights and converts it into a pro-
portional electrical signal. This electric signal is sent to pumps [11].

Consider in Fig. 21(b):
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Fig. 21. Model of tank control system.

• The set of arrows S;
• The set of worlds W = {ST1, ST2, ST3, P1, P2, ST ART };
• The membership function μ : S → [0, 1] ×{on, off} which assign to each arrow in S , the electric signal generated when 

they are crossing;
• The function Ag : S→ → A, where A = {T L, SL}.

The R F RG MR = 〈M, Ag〉 models the system of tank control above. These systems could also be model by using a F SG
in which all arrows are active and all high-order arrows are connecting. However, in this case, there would be no possibility 
of working on deactivation of the pumps.

The reconfiguration of MR , after crossing the arrows sequence [ST1 ST2], [ST1 ST2][ST2 ST3] and [ST1 ST2][ST2 ST3]
[ST3 ST2], can be observed in Fig. 22. Assuming:

• μ(a0
i ) = 1, for all a0

i ∈ S0 − {[ST1 P1], [ST2 P2]};
• Ag([ST1 ST2]) = Ag([ST2 ST3]) = SL ;
• Ag([ST2 ST1]) = Ag([ST3 ST2]) = T L .

The fuzzy value and the status of the arrow [ST1 P1] after the arrow [ST1 ST2] has been crossed is calculate in the 
follow way:

μ
Ag
[ST1 ST2]([ST1 P1]) =

(
SL

(
1,0.5,0.5

)
,on

)
=

(
SL

(
1, SL

(
0.5,0.5

))
,on

)
=

(
SL(1,1),on

)
=

(
1,on

)
Consider the propositions

p:“P1 is active” and q:“P2 is active”

for the model MR = 〈MR , V 〉, with V (ST1, p) = 0.05, V (ST2, p) = 0.08, V (ST3, p) = 0.6, V (ST1, q) = 0.01, V (ST2, q) = 0.5
and V (ST3, q) = 0.7. Using the Gödel semantics, we are able to compute the grade of uncertainty of the formula S Next(p ∧ q)

to the states ST2 and ST3:

�MR , ST2 |=Ag

FG
SNext(p ∧q)� = SM

(
TM

(
1, �M [S T2 S T1]

R , ST1 |=Ag

FG
(p ∧q)�

)
, TM

(
1, �M [S T2 S T3]

R , ST3 |=Ag

FG
(p ∧q)�

))
= 0.6

and �MR , ST3 |=Ag

FG
SNext(p ∧ q)� = SM

(
TM

(
1, �M [S T3 S T2]

R , ST2 |=Ag

FG
(p ∧ q)�

))
= 0.08.
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Fig. 22. MR configuration after: (a) [ST1 ST2], (b) [ST1 ST2][ST2 ST3] and (c) [ST1 ST2][ST2 ST3][ST3 ST2].

So, the degree of the sentence,

“There is a next state in which the pumps P1 and P2 are working”

at the state ST2 is 0.6 and at the state ST3 is 0.08.

7. Final remarks

Reversal Fuzzy Switch Graphs (R F SG) are structures designed to model reactive systems which provide the activation 
and deactivation of resources. This paper presents, with more details, the R F SGs as well as the operations presented in [7].

The valuation of the membership function can occur on any lattice, however, depending on this choice, the resulting for-
mal logic must be adjusted. For example, if we consider the lattice of intervals with the Kulish-Miranker order, considering 
correctness, then the modal logic associated with the graph will have a non-residual implication [23].

As a first new contribution in relation to [7], we present the concept of fuzzy induced graph from a R F SG . It is a 
connection between R F SGs and fuzzy graphs which allows a finite representation for infinite fuzzy graphs. The attribution 
of aggregations in this relationship, however, has not been explored and will be the subject of further studies. Still on this 
topic, it was presented a recursive method for constructing, from a finite base set, an induced graph. In future works, we 
intend to relate the base set of a induced fuzzy graph to this original R F SG .

Another new concept presented in this paper was the simulation and bisimulation of R F SGs. These notions, however, 
were established from the concept of model. Other types of logics and other notions of certainty that allow to define the 
bisimulation between R F SGs more directly will be subject of future works.
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