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The modal operators usually associated with the notions of possibility and necessity are 
classically duals. This paper aims to defy that duality in a paraconsistent environment, 
namely in a Belnapian Hybrid logic where both propositional variables and accessibility 
relations are four-valued. Hybrid logic, which is an extension of Modal logic, incorporates 
extra machinery such as nominals – for uniquely naming states – and a satisfaction 
operator – so that the formula under its scope is evaluated in the state whose name the 
satisfaction operator indicates.
In classical Hybrid logic the semantics of negation, when it appears before compound 
formulas, is carried towards subformulas, meaning that eventual inconsistencies can be 
found at the level of nominals or propositional variables but appear unrelated to the 
accessibility relations. In this paper we allow inconsistencies in propositional variables 
and, by breaking the duality between modal operators, inconsistencies at the level of 
accessibility relations arise. We introduce a sound and complete tableau system and a 
decision procedure to check if a formula is a consequence of a set of formulas. Tableaux 
will be used to extract syntactic models for databases, which will then be compared using 
different inconsistency measures. We conclude with a discussion about bisimulation.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

The introduction of a four-valued logic in the 70s by Nuel Belnap [3] considered an algebraic structure composed of, 
as the name indicates, four elements {t, f, b, n}. These elements intuitively represent the notions of “true”, “false”, “both 
true and false” (from a classical point of view, the same as inconsistent) and “neither true nor false” (or, in a classical 
interpretation, incomplete). Thus Belnap’s logic is not only paraconsistent, as it excludes the Principle of Explosion, but 
also paracomplete, as it drops also the Principle of the Excluded Middle. Moreover, these four values may be arranged 
according to two partial orders: the first one, ≤t , reflects the “quality” of the information, whereas the second, ≤k, reflects 
the “quantity” of information. The bilattice structure is represented in Fig. 1. Four-valued logics have been studied in the 
context of computer science and artificial intelligence and have been applied in areas such as symbolic model checking [8], 
semantics of logic programs [11] and inconsistency-tolerant systems.

In computer programs, relational structures provide a formalism to abstractly depict connections between states; a logic 
able to formalize these concepts is Modal logic. The notion of satisfiability in Modal logic is local, meaning that formulas 
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Fig. 1. Belnap’s bilattice.

are evaluated at a state in a structure. Unfortunately, there is no internal mechanism that allows us to focus on a specific 
state where we would like to evaluate a formula. It is possible to overcome this limitation if we add to Modal logic a new 
class of propositional variables, called nominals, which are true at exactly one state, and a satisfaction operator @, that acts 
as a jump operator. We are in the presence of a more powerful system in terms of expressivity, however still decidable and 
as complex as standard Modal logic K, called (Basic) Hybrid logic [5]. This extension allows us to refer to a specific state 
and describe what happens there: the formula @iϕ holds at a state if and only if ϕ holds at the state named by i – actually 
the state of evaluation of the @-formula is not relevant, it either holds everywhere or nowhere; in particular, we are also 
able to specify equalities and transitions between (named) states.

Inconsistencies are generally thought of as undesirable and many argue that databases should be inconsistency-free; as 
such, there are tools designed to eradicate contradictions in order to keep systems consistent. Nonetheless this approach 
fails to use the benefits of paraconsistency and sometimes precious information is lost, as is the case when contradictions 
are seen as mistakes and one fails to see that their root is a fraudulent operation. Therefore, since contradictory information 
is everywhere and is actually the norm rather than the exception in the real world, it should be embraced, formalized 
and used in our favour. One possible use of paraconsistency is that it allows us to compare between different sources and 
choose the most reliable one based on the information we have in our hands. Observe that this is something that we 
naturally do in our daily lives: there are situations where we even expect divergences, something as simple as a set of 
different opinions about a certain subject is an almost guaranteed source of contradictions. Paraconsistent logics are flexible 
logical systems able to handle heterogeneous and complex data; they accommodate inconsistency in a sensible manner that 
treats inconsistent information as informative. Four-valued logics are in this category.

The present paper introduces a new four-valued, also known as Belnapian, Hybrid logic where the duality between 
modal operators is broken. We argue that this is the only way of capturing the real meaning of negation: just because it 
is not possible that ϕ , formally represented by ¬�ϕ , it does not mean that the negation of ϕ is mandatory, represented 
by �¬ϕ . We interpret “positive” modal formulas (where negation does not occur immediately before the modal operator) 
in an almost classical fashion – the subtle difference is the use of positive relations that capture the evidence about the 
presence of transitions; we interpret “negative” modal formulas (where negation appears directly before the modal operator) 
in a distinct way and by resorting to negative relations that capture the evidence about the absence of transitions. In 
particular, @i¬� j shall be interpreted as “there is no transition from state i to state j”, whereas @i�¬ j is interpreted 
as “all transitions from state i lead to states different from j”. Inconsistencies at the level of the accessibility relation are 
allowed and correspond to cases when @i� j and @i¬� j occur. The logic is called double-Belnapian since it assigns one of 
four (Belnapian) values to both propositional variables and pairs of states (the accessibility problem). We introduce a tableau 
system for the logic and a tableau-based procedure in order to check if a formula is a consequence of a set of formulas. The 
tableau construction algorithm terminates and the system is sound and complete. Another section introduces measures of 
inconsistency for models and databases. Finally, we talk about bisimulation and how a classical extension does not preserve 
satisfiability, however a slight change in the definition gives us the desired result.

1.1. On contradictions in propositional variables and accessibility relations

Paraconsistent versions of modal logic where both the accessibility relations and the propositional variables are allowed 
a four-valued behaviour are not a novelty. The works of Wansing and Odintsov with BKFS logic [17] and Rivieccio and Jung 
with Modal bilattice logic MBL [18] are some examples of such logics. For a version of many-valued Modal logic check 
Fitting’s work [12].

Even though proposals of paraconsistent Hybrid logics can be found in [6] and more recently in [9], the work on many-
valued Hybrid logic MVHL in [16] seems to be the only version where paraconsistency is present at the level of propositional 
variables and the accessibility relation. The double-Belnapian Hybrid logic DBHL∗ that we introduce in this paper is neither 
an extension of pre-existing paraconsistent Modal logics with Hybrid logic features, nor can it be captured by MVHL. The 
first distinguishing point is the fact that in the semantics for disjunction we resort to the classical notion of disjunctive 
syllogism. This will force a link between a disjunct and its negation since in case they both hold the other disjunct must 
2
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hold as well in order to make the whole disjunction hold. Notwithstanding, that is not the main characteristic of DBHL∗. 
The main novelty here is the fact that modal operators [π ] and 〈π〉 are not considered duals. We argue that this approach 
is the way to capture the meaning of negation when it appears directly before the modal operator and this is how we will 
obtain inconsistencies at the level of accessibility relations. If the duality was kept, the usual semantics for modal operators 
would make it so that saying that in a structure it is possible to make a π -transition between the state named by i and a 
state where p holds, i.e., the structure satisfies the formula @i〈π〉p, and that it is not possible to make such transition, i.e.
¬@i〈π〉p holds in the structure, results in an explosion created at the level of propositional variable since the latter would 
be equivalent to @i[π ]¬p. It is clear that the focus of negation is not the transition – we want it to be. At this point we 
would like to mention that DBHL∗ as appears in this paper differs from the also double-Belnapian version in [10] in the 
semantics for ¬[π ]ϕ . The subtle difference is that, as the reader will have the opportunity to check, in DBHL∗ we resort 
to the non-satisfiability of ϕ , whereas in the older version we resorted to the satisfiability of ¬ϕ . Satisfaction coincides for 
pure formulas, i.e. formulas not involving propositional variables, but has a clearly distinct behaviour in other cases.

We propose a paraconsistent and paracomplete version of Hybrid logic such that in a structure both @i〈π〉 j and @i¬〈π〉 j
may hold or not; they will be interpreted as “there is evidence of a π -transition from the state named by i to the state 
named by j” and “there is evidence of the lack of a π -transition from the state named by i to the state named by j”, 
respectively. The latter is not compatible with the interpretation of @i[π ]¬ j which is that “there is evidence that all π -
transitions from the state named by i terminate in a state which is not named by j”.

The structures underlying this system will incorporate two valuations in order to deal with contradictions at the level 
of propositional variables, V+ and V− , and will, analogously, consider two families of accessibility relations, (R+

π )π∈Mod and 
(R−

π )π∈Mod in order to deal with contradictions at the level of the accessibility relations. The semantics for nominals is the 
usual: each nominal holds at a unique state.

2. Double-Belnapian Hybrid Logic, DBHL∗

Let Lπ = 〈Prop, Nom, Mod〉 be a hybrid (multimodal) similarity type where Prop is a countable set of propositional variables, 
Nom is a countable set disjoint from Prop and Mod is a countable set of modality labels. We use p, q, r, etc. to refer to the 
elements in Prop. The elements in Nom are called nominals and we typically write them as i, j, k, etc. Modalities are usually 
represented by π, π ′ , etc.

Definition 1. The well-formed formulas over Lπ , Form(Lπ ), are defined by the following recursive definition:

ϕ, ψ := i | p | ⊥ | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ϕ ⊃ ψ | 〈π〉ϕ | [π ]ϕ | @iϕ

where i ∈ Nom, p ∈ Prop, π ∈ Mod.
For any nominal i and any formula ϕ , @iϕ is called a satisfaction statement. Both @ and @i , where i ∈ Nom, will be 

referred to as satisfaction operators. Literals are formulas of the form @i p, @i¬p, @i〈π〉 j, @i¬〈π〉 j, @i j or @i¬ j for i, j ∈ Nom, 
p ∈ Prop, π ∈ Mod.

A hybrid multistructure is defined as a Kripke frame. Explosion at the level of propositional variables and accessibility 
relations is avoided and contradictions are allowed by considering two valuations and two families of accessibility relations. 
By doing so, the interpretation of propositional variables and the interpretation of the negation of propositional variables 
is independent, as well as the interpretation of positive modal formulas (formulas of the form 〈π〉ϕ or [π ]ϕ) and the 
interpretation of negative modal formulas (where negation appears directly before the modal operator).

Definition 2. A multistructure G is a tuple (W, (R+
π )π∈Mod, (R−

π )π∈Mod, N, V+, V−), where:

– W �= ∅ is the domain whose elements are called states or worlds;
– each R+

π and R−
π is a binary relation, called respectively the positive and the negative π -accessibility relation, such that 

R+
π ,R−

π ⊆ W × W;
– N : Nom → W is a function called hybrid nomination that assigns nominals to elements in W such that for any nominal 

i, N(i) is the element of W named by i;
– V+ and V− are hybrid valuations, both with domain Prop and range P(W), such that V+(p) is the set of states where 

the propositional variable p holds, and V−(p) is the set of states where ¬p holds.

Observe that N is not necessarily a bijection. It is possible that some states are not named and that others have multiple 
names.

Intuitively, each set V+(p) consists of evidence that p holds and V−(p) consists of evidence that ¬p holds. Analogously, 
R+

π relates states between which there is evidence of a π -transition while R−
π relates states between which there is evidence 

that the π -transition is missing.
Semantics is formalized as follows:
3
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(i) G, w � p iff w ∈ V+(p); G, w � ¬p iff w ∈ V−(p);

(ii) G, w � i iff w = N(i); G, w � ¬i iff w �= N(i);

(iii) G, w � ⊥ never; G, w � ¬⊥ always;

(iv) G, w � ¬¬ϕ iff G, w � ϕ;

(v) G, w � ϕ ∨ ψ iff (G, w � ϕ or G, w � ψ)

and (G, w � ¬ϕ implies G, w � ψ)

and (G, w � ¬ψ implies G, w � ϕ);

G, w � ¬(ϕ ∨ ψ) iff G, w � ¬ϕ and G, w � ¬ψ;

(vi) G, w � ϕ ∧ ψ iff G, w � ϕ and G, w � ψ;

G, w � ¬(ϕ ∧ ψ) iff G, w � ¬ϕ or G, w � ¬ψ;
(vii) G, w � ϕ ⊃ ψ iff G, w � ϕ implies G, w � ψ;

G, w � ¬(ϕ ⊃ ψ) iff G, w � ϕ and G, w � ¬ψ;

(viii) G, w � 〈π 〉ϕ iff ∃w ′(wR+
π w ′ and G, w ′ � ϕ);

G, w � ¬〈π 〉ϕ iff ∀w ′(w(R−
π )c w ′ implies G, w ′

� ϕ);

(ix) G, w � [π ]ϕ iff ∀w ′(wR+
π w ′ implies G, w ′ � ϕ);

G, w � ¬[π ]ϕ iff ∃w ′(w(R−
π )c w ′ and G, w ′

� ϕ);

(x) G, w � @iϕ iff G,N(i) � ϕ;

G, w � ¬@iϕ iff G,N(i) � ¬ϕ.

Fig. 2. Definition of the satisfaction relation G, w � ϕ for DBHL∗.

Definition 3. A satisfaction relation G, w � ϕ between a multistructure G, a state w in the multistructure and a formula ϕ
is defined by structural induction on ϕ in Fig. 2.

We say that ϕ is globally satisfied if G � ϕ , i.e., G, w � ϕ for all w ∈ W.

Notation-wise, (R±
π )c denotes the complement of R±

π , respectively.
We define models as follows:

Definition 4. Let � be a set of formulas in Form(Lπ ). A multistructure G is a model of � if and only if G � δ for all δ ∈ �.

Let us take a closer look at the definition of satisfiability for the disjunction of formulas: for a disjunction to hold, not 
only at least one of the disjuncts must hold, but also if the negation of one of the disjuncts holds, then the other disjunct 
must hold as well. A discussion about disjunctive syllogism can be found in [2]. We advocate in its favour by using the same 
argument as in [4] for Quasi-classical logic; the idea is that this definition links a disjunct and its classical complement and 
preserves the meaning of the resolution principle.

2.1. Remarks on the non-duality of modal operators

We will explore the semantics of modal formulas in detail now. The use of pure formulas, i.e., those which do not 
contain propositional variables, will play an important role later as a means to represent syntactically the positive and 
negative transitions in a multistructure.

• 〈π〉ϕ holds in a multistructure G at a state w if and only if there is evidence of a π -transition from the state w to a 
state w ′ where ϕ holds. Intuitively, it is possible ϕ .
↪→ Thus the formula @i〈π〉 j holds if and only if there exists evidence of a π -transition from the state named by the 

nominal i to the state named by the nominal j, i.e., N(i)R+
π N( j).

• [π ]ϕ holds in a multistructure G at a state w if and only if whenever there is evidence of a π -transition from the state 
w to a state w ′ then ϕ holds at w ′ . Intuitively, it is necessary ϕ .
↪→ Thus the formula @i[π ]¬ j holds if and only if every time there is evidence of a π -transition from the state named 

by the nominal i to a state w ′ , the state w ′ is not named by j, which is the same as saying that there is not evidence 
of a π -transition from the state named by the nominal i to the state named by the nominal j, i.e., N(i)(R+

π )cN( j).

This is when things get interesting: the negated versions.

• ¬〈π〉ϕ should then be intuitively thought of as a way of expressing it is not possible ϕ . This is not the same as saying 
that ¬ϕ is necessary, i.e., that every time there is evidence of a transition, ¬ϕ holds in the accessed state, but rather 
that there is evidence that the transition is missing for all states where ϕ holds. The formula holds in a multistructure 
G at a state w if and only if whenever ϕ holds at a state w ′ , there is evidence of the lack of a π -transition from the 
state w to the state w ′ .
4
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Rπ (w, w ′) ∈ {t,b} iff (w, w ′) ∈ R+
π

Rπ (w, w ′) ∈ {f,b} iff (w, w ′) ∈ R−
π

V(p, w) ∈ {t,b} iff w ∈ V+(p)

V(p, w) ∈ {f,b} iff w ∈ V−(p)

V(i, w) = t iff w = N(i)
V(i, w) = f iff w �= N(i)

Fig. 3. Equivalences between multistructures and Belnapian structures.

↪→ Thus the formula @i¬〈π〉 j holds if and only if there is evidence of the lack of a π -transition from the state named 
by the nominal i to the state named by the nominal j, i.e., N(i)R−

π N( j).
• ¬[π ]ϕ should, by analogy, be intuitively read as it is not necessary ϕ , meaning that there is a state where ϕ does not 

hold, and still there is no evidence that a transition to that state is missing. The formula holds in a multistructure G at 
a state w if and only if there is a state w ′ such that there is not a negative π -transition from w to w ′ and where ϕ
does not hold.
↪→ Thus the formula @i¬[π ]¬ j holds if and only if there is no evidence of the lack of a π -transition from the state 

named by the nominal i to the state named by the nominal j, i.e., N(i)(R−
π )cN( j).

Our proposed logic does not only allow local propositional contradictions such as @i p, @i¬p, as it also accepts accessi-
bility contradictions such as @i〈π〉 j, @i¬〈π〉 j. In addition to being paraconsistent, the logic is also paracomplete.

Recall that nominals still behave classically and observe that the pairs @i 〈π〉 j, @i[π ]¬ j, and @i¬〈π〉 j, @i¬[π ]¬ j lead to 
explosion. For the first pair, by assuming that from i it is possible j and that it is necessary ¬ j we reach an inconsistency at 
the level of nominals.

2.2. A direct four-valued semantics of DBHL∗ and a comparison with other logics

In order to provide a semantics of DBHL∗ aesthetically closer to MBL so that a comparison between the two is clearer, 
we will use an alternative version of the definition of multistructure where, instead of positive and negative accessibility 
relations and valuations, we consider four-valued accessibility functions and valuations as follows. Recall the four truth-
values we are dealing with: true (t), false (f), both true and false (b), neither true nor false (n).

Definition 5. A Belnapian structure B is a tuple (W, (Rπ )π∈Mod , V), where:

– W �= ∅ is the domain;
– each Rπ is an accessibility function such that Rπ : W × W → 4, where 4 is the usual set of Belnapian truth values: 

{t, f, b, n}; and
– V is a Belnapian valuation, i.e., a function with domain (Prop ∪Nom) ×W and range 4 such that V(i, w) = t for a unique 

w ∈ W and V(i, w ′) = f for every other state w ′ .

Multistructures and Belnapian structures are equivalent when their domains coincide and for all w, w ′ ∈ W, π ∈ Mod, 
p ∈ Prop, i ∈ Nom, the equivalences in Fig. 3 hold.

The definition of semantics is simply put as:

Definition 6. A satisfaction relation B, w �d ϕ between a Belnapian structure B, a state w in the structure and a formula ϕ
is defined as follows:

B, w �d ϕ ⇔ V(ϕ, w) ∈ {t,b}
where the valuation V is extended to all formulas according to Fig. 4.

The implication ⊃ corresponds to the weak implication connective used, for example, in [18]. Observe also that

V(ϕ ∨ ψ, w) = inf≤t

{
sup
≤t

{V(ϕ, w),V(ψ, w)},V(¬ϕ ⊃ ψ, w),V(¬ψ ⊃ ϕ, w)

}
.

Note that for nominals i and j such that V(i, w ′) = V( j, w ′′) = t and for an arbitrary state w , it is the case that:

V(@i〈π〉 j, w) = Rπ (w ′, w ′′).

The following result is immediate:
5
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– V(⊥, w) = f
– V(¬ϕ, w) = �V(ϕ, w), where �t = f, �f = t, �b = b and 

�n = n
– V(ϕ ∨ ψ, w) = V(ϕ, w) � V(ψ, w)

– V(ϕ ∧ ψ, w) = inf≤t
{V(ϕ, w), V(ψ, w)}

– V(ϕ ⊃ ψ, w) =
{

V(ψ, w) if V(ϕ, w) ∈ {t,b}
t otherwise

– V(〈π 〉ψ, w) = sup
≤t

{Rπ (w, w ′) � V(ψ, w ′), w ′ ∈ W}
– V([π ]ψ, w) = inf≤t

{Rπ (w, w ′) � V(ψ, w ′), w ′ ∈ W}
– V(@iϕ, w) = V(ϕ, w ′), where w ′ is such that V(i, w ′) = t

�, � and � are defined by the following matrices:
� t f b n
t t t t t
f t f f n
b t f b n
n t n n n

� t f b n
t t f t f
f f f f f
b b f b f
n n f n f

� t f b n
t t f t f
f t t t t
b t n t n
n t b t b

Fig. 4. Extension of 4-valued V to all formulas.

Lemma 1. Let G be a multistructure and B a Belnapian structure such that G and B are equivalent. Then:

G, w � ϕ ⇔ B, w �d ϕ, for all ϕ ∈ Form(Lπ ).

In what follows we will simply omit the subscript in �.
Let us make a quick comparison between DBHL∗ and MBL [18] in what concerns the semantics of modal formulas. We 

will consider the case with a single modality in what follows; an extension to the multimodal case is straightforward. In 
MBL a structure is defined as a tuple K = (

W,R, V
)

such that W �= ∅, R : W × W → 4, V : Fm × W → 4, where Fm is the 
usual set of formulas in modal logic. The satisfaction relation is defined between a structure K, a state w and a formula ϕ
such that:

K, w � ϕ ⇔ V(ϕ, w) ∈ {t,b}
and V(�ψ, w) and V(�ψ, w) are defined as follows:

V(�ψ, w) := inf≤t
{R(w, w ′) −→ V(ψ, w ′), w ′ ∈ W}

V(�ψ, w) := sup
≤t

{R(w, w ′) ∗ V(ψ, w ′), w ′ ∈ W}

where −→ and ∗ are defined by the following matrices:

−→ t f b n
t t f f n
f t t t t
b t f b n
n t n n t

∗ t f b n
t t f t n
f f f f f
b t f b n
n n f n f

Compare with the definitions in DBHL∗ (Fig. 4). Observe that in this case V(�ψ, w) = V(¬�¬ψ, w).
A curious thing about this system is that when we add nominals to it in order to extend it to hybrid logic, the following 

happens when ψ is a nominal (which behaves classically):

∗ t f
t t f
f f f
b t f
n n f

So, even though we can obtain the value n for the valuation of �i, it is never the case that one can obtain the value 
b. Furthermore, V(� j, w) �= R(w, w ′) where w ′ is the state such that V( j, w) = t. That is clear when R(w, w ′) = b and 
V(� j, w) = t. Therefore an extension of MBL with nominals is not enough to syntactically express the simultaneous infor-
mation about the presence and absence of transitions.
6
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The second comparison we make is between DBHL∗ and BKFS [17]. The satisfaction relation � defined between a 
BKFS-model S = (W, R, R′, V+, V−), where W �= ∅, R, R′ ⊆ W × W, V+, V− : Prop → P(W), a state w and a formula is such 
that:

S, w � ¬¬ϕ iff S, w � ϕ

S, w � �ϕ iff ∃u ∈ W(wRu and S, u � ϕ);
S, w � ¬�ϕ iff ∀u ∈ W(wR′u implies S, u � ¬ϕ);
S, w � �ϕ iff S, w � ¬�¬ϕ; and
S, w � ¬�ϕ iff S, w � �¬ϕ.

This definition associates � with R and � with R′ which means that the modal operators are not interpreted over the 
same relation. Thus, contrary to our expectations, �¬p and �p do not mean that p and ¬p are found simultaneously in 
a certain state. Take the following example: W = {w, w ′}, R = {(w, w)}, R′ = {(w, w ′)}, V+(p) = {w ′} and V−(p) = {w}; we 
can check that S, w � �¬p and S, w � �p. In opposition, in DBHL∗ when in a multistructure �¬p and �p hold at the 
same state, it means that there is a state w ′ such that there is evidence of a transition from w to w ′ , where p and ¬p
hold.

Our last comparison is between DBHL∗ and MVHL [16]. We restrict MVHL to four values, using Belnap’s t-lattice, as 
follows:

A model is defined as a tuple M = (
W,R, V

)
such that W �= ∅, R : W × W → 4, and V : Prop × W → 4. V is extended to 

all formulas in a way such that V(�ψ, w) and V(�ψ, w) are defined as follows:

V(�ψ, w) := inf≤t
{R(w, w ′) ⇒ V(ψ, w ′), w ′ ∈ W}

V(�ψ, w) := sup
≤t

{R(w, w ′) � V(ψ, w ′), w ′ ∈ W}

where, for values a, b ∈ 4, a ⇒ b is the greatest element x ∈ 4 such that a � x ≤t b.
Now consider a model in MVHL where W = {w, w ′}, R(w, w ′) = t and R(w, w) = R(w ′, w) = R(w ′, w ′) = f, and 

V(p, w ′) = b and V(p, w) = n. It follows that V(�p, w) = b = V(¬�p, w) = V(�¬p, w). In DBHL∗, taking W = W, 
R = R,V = V, implies that V(�p, w) = t, V(¬�p, w) = f, and V(�¬p, w) = t. The interpretations of � and � for MVHL
and DBHL∗ are thus incomparable.

3. A tableau system for DBHL∗

In this section we will introduce a sound, complete and terminating tableau system for DBHL∗ and a decision procedure 
that checks if a formula is a consequence of a set of formulas, called a database. In order to do it, we consider an extra-
logical operator ∗ that acts on the satisfaction relation in the following sense: for a multistructure G, a state w and a 
formula ϕ ∈ Form(Lπ ),

G, w � ϕ∗ ⇔ G, w � ϕ

and, analogously,

G � ϕ∗ ⇔ G� ϕ.

It is easy to check that G � ϕ∗ if and only if it is false that ∀w ∈ W, G, w � ϕ if and only if ∃w ∈ W : G, w � ϕ if and only 
if ∃w ∈ W : G, w � ϕ∗ . For convenience we will call ϕ∗ a starred formula, and the set Form∗(Lπ ) = Form(Lπ ) ∪ {ϕ∗ | ϕ ∈
Form(Lπ )} the set of all signed formulas over Lπ .

The tableau system T is composed by the rules in Figs. 5 and 6, where the latter deals with the interaction of ∗ with 
formulas. A tableau in this system will be denoted T.

The rules (@I), (Id), (Nom), ([π ]), (¬〈π〉), (〈π〉∗) and (¬[π ]∗) are called non-destructive rules and the remaining ones 
are called destructive. This distinction is made so that in the systematic tableau construction algorithm a destructive rule is 
applied at most once to a formula (a destructive rule has exactly one formula in the premise; the converse is not true). As 
in [7], the classification of rules as destructive and non-destructive corresponds to a classification of formulas according to 
their form.

Definition 7. A subformula is defined by the following conditions:

– ϕ is a subformula of ϕ ∈ Form(Lπ ), and ψ is a subformula of the starred formula ψ∗;
– if ψ ∧ δ, ψ ∨ δ, or ψ ⊃ δ is a subformula of χ (χ is whether a formula or a starred version), then so are ψ and δ;
– if @iψ , ¬ψ , [π ]ψ , or 〈π〉ψ is a subformula of χ , then so is ψ .
7
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ϕ

@iϕ
(@I)(i)

@i @ jϕ

@ jϕ
(@E)

@i(ϕ ∧ ψ)

@iϕ
@iψ

(∧)
@i(ϕ ⊃ ψ)

(@iϕ)∗ @iψ
(⊃)

@i(ϕ ∨ ψ)

@iϕ @iϕ @iϕ @iϕ @iψ @iψ @iψ

(@i¬ϕ)∗ (@i¬ϕ)∗ (@i¬ψ)∗ @iψ (@i¬ϕ)∗ (@i¬ψ)∗ (@i¬ϕ)∗
(@i¬ψ)∗ @iψ (@i¬ψ)∗ @iϕ

(∨)

@i [π ]ϕ,@i〈π 〉 j

@ jϕ
([π ]) @i〈π 〉ϕ

@i〈π 〉t
@tϕ

(〈π 〉)(ii)
@i¬@ jϕ

@ j¬ϕ
(¬@)

@i¬(ϕ ∧ ψ)

@i¬ϕ @i¬ψ
(¬∧)

@i¬(ϕ ∨ ψ)

@i¬ϕ
@i¬ψ

(¬∨)
@i¬(ϕ ⊃ ψ)

@iϕ
@i¬ψ

(¬⊃)

@i¬[π ]ϕ
@i¬[π ]¬t
(@tϕ)∗

(¬[π ])(iii)
@i¬〈π 〉ϕ,@i¬[π ]¬ j

(@ jϕ)∗
(¬〈π 〉) @i¬¬ϕ

@iϕ
(¬¬)

@i j,@iϕ

@ jϕ
(Nom)(iv)

@i i
(Id)(v)

(i) ϕ is not a satisfaction statement, i is in the branch;
(ii) ϕ /∈ Nom, t is a new nominal;

(iii) ϕ �= ¬i for all i ∈ Nom, t is a new nominal;
(iv) for @iϕ a literal;
(v) for i in the branch.

Fig. 5. Tableau rules for (non-starred) formulas.

ϕ∗

(@tϕ)∗
(@∗

I )(vi)
(@i @ jϕ)∗

(@ jϕ)∗
(@∗

E)
(@i(ϕ ∧ ψ))∗

(@iϕ)∗ (@iψ)∗
(∧∗)

(@i(ϕ ⊃ ψ))∗

@iϕ
(@iψ)∗

(⊃∗) (@i(ϕ ∨ ψ))∗

(@iϕ)∗ @i¬ϕ @i¬ψ

(@iψ)∗ (@iψ)∗ (@iϕ)∗
(∨∗) (@i [π ]ϕ)∗

@i〈π 〉t
(@tϕ)∗

([π ]∗)(vii)

(@i〈π 〉ϕ)∗,@i〈π 〉 j

(@ jϕ)∗
(〈π 〉∗) (@i¬(@ jϕ))∗

(@ j¬ϕ)∗
(¬@∗) (@i¬(ϕ ∧ ψ))∗

(@i¬ϕ)∗
(@i¬ψ)∗

(¬∧∗)

(@i¬(ϕ ⊃ ψ))∗

(@iϕ)∗ (@i¬ψ)∗
(¬⊃∗) (@i¬(ϕ ∨ ψ))∗

(@i¬ϕ)∗ (@i¬ψ)∗
(¬∨∗) (@i¬¬ϕ)∗

(@iϕ)∗
(¬¬∗)

(@i¬[π ]ϕ)∗,@i¬[π ]¬ j

@ jϕ
(¬[π ]∗) (@i¬〈π 〉ϕ)∗

@i¬[π ]¬t
@tϕ

(¬〈π 〉∗)(vii)
(@iϕ)∗

@i¬ϕ
(Id∗)(viii)

(vi) ϕ is not a satisfaction statement, t is a new nominal;
(vii) t is a new nominal;

(viii) ϕ = j or ϕ = ¬ j, where j ∈ Nom.

Fig. 6. Tableau rules for starred formulas.

The tableau system T satisfies the following subformula property:

Theorem 1 (Subformula property). Suppose that @iϕ ∈ T, where ϕ is not a nominal, ϕ �= 〈π〉 j and ϕ �= ¬[π ]¬ j for π ∈ Mod, 
j ∈ Nom or that (@iϕ)∗ ∈ T. If ϕ = ¬ψ then either ϕ or ψ is a subformula of a root formula. Otherwise, ϕ is a subformula of a root 
formula.

Proof. The proof can be obtained by checking each rule. �
Note the following consequence of Theorem 1:
8
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Lemma 2. For any tableau T and nominal i, the following sets are finite:
	i = {ϕ | @iϕ ∈ T, where ϕ �= 〈π〉 j,¬[π ]¬ j, for j ∈ Nom,π ∈ Mod};
	∗

i = {ϕ | (@iϕ)∗ ∈ T}

We define a binary relation between nominals naming the same states and another binary relation to establish the 
precedence of nominals as follows:

Definition 8. Let 
 be a branch of a tableau and let Nom
 be the set of nominals occurring in the formulas of 
. Define a 
binary relation ∼
 on Nom
 by i ∼
 j if and only if the formula @i j ∈ 
.

Definition 9. Let i and j be nominals occurring on a branch 
 of a tableau in T. The nominal i is included in the nominal j
with respect to 
 if, for any subformula ϕ of a root formula, the following holds:

– if @iϕ ∈ 
, then @ jϕ ∈ 
;
– if (@iϕ)∗ ∈ 
, then (@ jϕ)∗ ∈ 
;
– if @i¬ϕ ∈ 
, then @ j¬ϕ ∈ 
;
– if (@i¬ϕ)∗ ∈ 
, then (@ j¬ϕ)∗ ∈ 
.

If i is included in j with respect to 
, and the first occurrence of j on 
 is before the first occurrence of i, then we 
write i ⊆
 j.

A tableau is built following this construction:

Definition 10 (Tableau construction). Let � be a finite set of signed formulas in Form∗(Lπ ). A tableau for � is built induc-
tively according to the following rules:

– The one branch tableau T0 composed of the formulas in � is a tableau for �;
– The tableau Tn+1 is obtained from the tableau Tn if it is possible to apply an arbitrary rule to Tn which obeys the 

following three restrictions:
(1) If a formula that result from the application of a rule already occurs in the branch, then its addition is simply 

omitted;
(2) A destructive rule is only applied once to the same formula in each branch;
(3) The existential rules (〈π〉), (¬[π ]), ([π ]∗) and (¬〈π〉∗) are not applied to @i〈π〉ϕ , @i¬[π ]ϕ , (@i[π ]ϕ)∗ nor 

(@i¬〈π〉ϕ)∗ on a branch 
 if there exists a nominal j such that i ⊆
 j.

Therefore a formula cannot occur more than once on a branch, a destructive rule cannot be applied more than once to 
the same formula in a branch and the third restriction are loop-check conditions.

Before proving termination of the tableau construction algorithm, let us observe that the only way new satisfaction 
operators may be introduced in a tableau is by using one of the following rules: (@∗

I ), (〈π〉), (¬[π ]), ([π ]∗), (¬〈π〉∗) and 
(@I). The rule (@∗

I ) introduces a new satisfaction operator @t ; whenever a nominal i occurs in the branch but @i does not, 
the rule (@I) introduces it. The formulas in the premises of these rules are not satisfaction statements nor starred satisfaction 
statements. On the other hand, the rules (〈π〉), (¬[π ]), ([π ]∗) and (¬〈π〉∗) introduce a new satisfaction operator @t and 
the premises in these rules are either a satisfaction statement or a starred satisfaction statement. We distinguish between 
these two cases as follows:

Definition 11. Let 
 be a branch of a tableau. If a new satisfaction operator @t is introduced by applying one of the rules 
(〈π〉), (¬[π ]), ([π ]∗) or (¬〈π〉∗) on the branch 
 to the formulas @i〈π〉ϕ , @i¬[π ]ϕ , (@i[π ]ϕ)∗ or (@i¬〈π〉ϕ)∗ , respectively, 
then we say that t is generated by i with respect to 
; otherwise, if @t is a new satisfaction operator obtained from (@I) or 
(@∗

I ), then we say that the nominal t is self-generated.

We introduce a (partial) binary relation between nominals to keep track of the introduction of new satisfaction operators:

Definition 12. Let Nom
 be the set of nominals occurring in 
. We define a (partial) binary relation <
 over elements in 
Nom
 ∪ {�}, where � is a new symbol to denote the origin, as follows:

– i <
 j, with i, j ∈ Nom
 , if and only if j is generated by i with respect to 
;
– � <
 j, with j ∈ Nom
 , if and only if @ j appears in a root formula or the nominal j is self-generated;
– x ≮
 �, for all x ∈ Nom
 ∪ {�}.

The following result plays a central role in the proof of termination that will ensue next.
9
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Proposition 1. Let 
 be a branch of a tableau. Let Nom
 be the set of nominals occurring in 
. The graph 
(
Nom
 ∪ {�},<


)
is a 

well-founded (i.e. has no infinite descending chain), finitely branching tree.

Proof. That the graph is well-founded follows from the observation that if x <
 i, then either (i) the first occurrence of 
@x in 
 is before the first occurrence of @i , if x ∈ Nom
 , or (ii) if x = �, there is no nominal in 
 which generates an 
occurrence of a satisfaction statement @iϕ .

That the graph is a tree follows from the fact that each nominal i in 
 is generated by at most one other nominal, and 
that all nominals have � as an ancestor.

That the graph is finitely branching follows from the fact that for any given nominal i, the sets 	i , 	∗
i are finite (Lemma 2) 

and each of the finitely many formulas in these sets can generate at most one new satisfaction operator @t (when one of 
the rules (〈π〉), (¬[π ]), ([π ]∗) or (¬〈π〉∗) is applied). �

Termination is proved as follows:

Theorem 2 (Termination). The systematic tableau construction algorithm terminates.

Proof. Let us prove this by contradiction, so let us start by assuming that this is not the case. If the algorithm does not 
terminate, then the tableau must be infinite. Thus it contains an infinite branch, call it 
. By restriction (1) in Definition 10, 
all formulas in 
 are distinct. By Theorem 1 and Lemma 2, every satisfaction statement or starred satisfaction statement in 
the branch of the form @iϕ where ϕ �= 〈π〉 j, ¬[π ]¬ j, j ∈ Nom, π ∈ Mod or (@iϕ)∗ is such that, if ϕ = ¬ψ , then either ϕ
or ψ is a subformula of a root formula; or otherwise ϕ is a subformula of a root formula. Since the number of subformulas 
of root formulas is finite and we assumed that the branch is infinite, then it must be the case that there are infinitely many 
satisfaction operators @i . Therefore, the graph 

(
Nom
 ∪ {�},<


)
must be infinite. Since by Proposition 1 the graph is a 

well-founded, finitely branching tree, it must contain an infinite path t1 <
 t2 <
 t3 <
 . . ..
For each n > 0 let 
n be the initial segment of 
 up to, but not including, the first satisfaction statement of the form 

@tn+1ϕ .
Also, for each n > 0, consider the following sets:

�n = {ϕ | @tnϕ ∈ 
n, where ϕ �= 〈π〉 j,¬[π ]¬ j, for j ∈ Nom,π ∈ Mod}; and
�∗

n = {ϕ | (@tnϕ)∗ ∈ 
n}.
All formulas ϕ in �n and �∗

n are such that either ϕ or ∼ϕ (a formula equivalent to ¬ϕ where the negation symbol 
appears only directly before propositional variables, nominals or modal operators) are subformulas of a root formula, by 
Theorem 1. Since there are only finitely many such formulas, not all �n can be distinct and the same happens for �∗

n . Thus 
eventually there exists l, m ∈N with l < m such that �l = �m and �∗

l = �∗
m .

We will now prove that tm is included in tl with respect to 
m:
Let ψ be an arbitrary formula (as long as ϕ �= 〈π〉 j, ¬[π ]¬ j for π ∈ Mod, j ∈ Nom) for which @tm ψ occurs in 
m , i.e., 

such that ψ ∈ �m . Since �l = �m , ψ ∈ �l and thus @tl ψ ∈ 
l . Since 
l is an initial segment of 
m , we get that @tl ψ ∈ 
m . 
From an analogous reasoning for formulas in �∗

m , it is proved that tm is included in tl with respect to 
m . It follows that 
tm ⊆
m tl , since the first occurrence of @tl is before the first occurrence of @tm .

Now consider the first satisfaction statement of the form @tm+1 δ. By definition, @tm+1δ /∈ 
m . However the nominal tm+1
is generated by tm so it must be introduced by applying one of the rules (〈π〉), (¬[π ]), ([π ]∗) or (¬〈π〉∗) to a formula 
@tmχ or (@tmχ)∗ in 
m . But this is in contradiction with restriction (3) in Definition 10 by which none of the rules 
(〈π〉), (¬[π ]), ([π ]∗), (¬〈π〉∗) can be applied to @tmχ and (@tmχ)∗ (for appropriate formulas χ ) on the branch 
m since 
tm ⊆
m tl . �

We move on to showing that the tableau system is sound and complete.

Theorem 3 (Soundness). The tableau rules are sound in the following sense: for any rule 
�


1 · · · 
n
, n ≥ 1, and any multistructure 

G,

G � � ⇒ G� 
1 or . . . or G� 
n

where �, 
1, . . . , 
n ⊂ Form∗(Lπ ).

Proof. The proof can be obtained by checking each rule.
As an example, we will prove soundness for the rules (∨), (〈π〉) and (¬[π ]∗):

• @i(ϕ ∨ ψ)

@iϕ @iϕ @iϕ @iϕ @iψ @iψ @iψ

(@i¬ϕ)∗ (@i¬ϕ)∗ (@i¬ψ)∗ @iψ (@i¬ϕ)∗ (@i¬ψ)∗ (@i¬ϕ)∗
(@ ¬ψ)∗ @ ψ (@ ¬ψ)∗ @ ϕ

(∨)
i i i i

10
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Let G be a multistructure such that G � @i(ϕ ∨ ψ). Then:
G � @i(ϕ ∨ ψ)

⇔ G, w � @i(ϕ ∨ ψ), for all w ∈ W
⇔ G,N(i) � (ϕ ∨ ψ)

⇔ (G,N(i) � ϕ or G,N(i) � ψ)

and (G,N(i) � ¬ϕ implies G,N(i) � ψ)

and (G,N(i) � ¬ψ implies G,N(i) � ϕ)

⇔ (G,N(i) � ϕ or G, N(i) � ψ)

and (G,N(i) �¬ϕ or G,N(i) � ψ)

and (G,N(i) �¬ψ or G,N(i) � ϕ)

⇔ (G,N(i) � ϕ and G,N(i) �¬ϕ and G,N(i) � ¬ψ)

or (G,N(i) � ϕ and G,N(i) �¬ϕ and G,N(i) � ϕ)

or (G,N(i) � ϕ and G,N(i) � ψ and G,N(i) �¬ψ)

or (G,N(i) � ϕ and G,N(i) � ψ and G,N(i) � ϕ)

or (G,N(i) � ψ and G,N(i) �¬ϕ and G,N(i) � ¬ψ)

or (G,N(i) � ψ and G,N(i) �¬ϕ and G,N(i) � ϕ)

or (G,N(i) � ψ and G,N(i) � ψ and G,N(i) �¬ψ)

or (G,N(i) � ψ and G,N(i) � ψ and G,N(i) � ϕ)

⇔ (G,N(i) � ϕ and G,N(i) � (¬ϕ)∗ and G,N(i) � (¬ψ)∗)
or (G,N(i) � ϕ and G,N(i) � (¬ϕ)∗)
or (G,N(i) � ϕ and G,N(i) � ψ and G,N(i) � (¬ψ)∗)
or (G,N(i) � ϕ and G,N(i) � ψ)

or (G,N(i) � ψ and G,N(i) � (¬ϕ)∗ and G,N(i) � (¬ψ)∗)
or (G,N(i) � ψ and G,N(i) � (¬ϕ)∗ and G,N(i) � ϕ)

or (G,N(i) � ψ and G,N(i) � (¬ψ)∗)
⇔ (G � @iϕ and G� (@i¬ϕ)∗ and G� (@i¬ψ)∗)

or (G� @iϕ and G � (@i¬ϕ)∗)
or (G� @iϕ and G � @iψ and G� (@i¬ψ)∗)
or (G� @iϕ and G � @iψ)

or (G� @iψ and G� (@i¬ϕ)∗ and G� (@i¬ψ)∗)
or (G� @iψ and G� (@i¬ϕ)∗ and G� @iϕ)

or (G� @iψ and G� (@i¬ψ)∗)

• @i〈π〉ϕ
@i〈π〉t

@tϕ

(〈π〉), for t a new nominal, ϕ /∈ Nom.

Let G be a multistructure such that G � @i〈π〉ϕ . Then:
G � @i〈π〉ϕ

⇔ G, w � @i〈π〉ϕ, for all w ∈ W
⇔ G, N(i) � 〈π〉ϕ
⇔ ∃w ′ ∈ W

(
N(i)R+

π w ′ and G, w ′ � ϕ
)

⇔ G � @i〈π〉t and G, w ′ � ϕ, where t is a new nominal such that N(t) = w ′
⇔ G � @i〈π〉t and G� @tϕ, where t is a new nominal such that N(t) = w ′
⇒ G � @i〈π〉t and G� @tϕ, for a new nominal t

• (@i¬[π ]ϕ)∗,@i¬[π ]¬ j

@ jϕ
(¬[π ]∗)

Let G be a multistructure such that G � (@i¬[π ]ϕ)∗ and G � @i¬[π ]¬ j. Then:
G � (@i¬[π ]ϕ)∗ and G� @i¬[π ]¬ j

⇔ G� @i¬[π ]ϕ and G� @i¬[π ]¬ j
⇔ G, w � @i¬[π ]ϕ, for some w ∈ W and G, w ′ � @i¬[π ]¬ j, for all w ′ ∈ W
⇔ G, N(i) �¬[π ]ϕ and G, N(i) � ¬[π ]¬ j
⇔ false(G, N(i) � ¬[π ]ϕ) and G, N(i) � ¬[π ]¬ j
⇔ false(∃w ′ ∈ W (N(i)�R−

π w ′ and G, w ′ � ϕ))

and ∃w ′′ ∈ W (N(i)�R−
π w ′′ and G, w ′′ �¬ j)

⇔ ∀w ′ ∈ W (N(i)R−
π w ′ or G, w ′ � ϕ)

and ∃w ′′ ∈ W (N(i)�R−
π w ′′ and w ′′ = N( j))

⇔ ∀w ′ ∈ W (N(i)�R−
π w ′ implies G, w ′ � ϕ)

and ∃w ′′ ∈ W (N(i)�R−
π w ′′ and w ′′ = N( j))

⇒ G, w ′′ � ϕ and w ′′ = N( j)
⇔ G � @ ϕ
j

11
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The remaining cases are proved analogously. �
A branch is closed if and only if there is a formula ψ for which ψ and ψ∗ are in that branch or if @i⊥ or @i¬i is in the 

branch for some nominal i. Otherwise the branch is open. A tableau is closed if and only if all of its branches are closed; 
otherwise the tableau is open.

In order to prove completeness, we prove that if a terminal tableau has an open branch 
, then there exists a model G


and a state w where all root formulas are satisfied.
From now on, 
 is a branch of a terminal tableau.
Let U be the subset of Nom
 that contains every nominal i for which there is no nominal j such that i ⊆
 j. Let ≈ be 

the restriction of ∼
 (Definition 8) to U. Note that U contains all nominals appearing in the root formulas. Observe also 
that 
 is closed under the rules (Id) and (Nom), so both ∼
 and ≈ are equivalence relations.

Given a nominal i in U, we let [i]≈ denote the equivalence class of i with respect to ≈ and we let U/≈ denote the set 
of equivalence classes.

We let R+
π be the binary relation on U defined by iR+

π j if and only if there exists a nominal j′ ≈ j such that one of the 
following conditions is satisfied:

1. @i〈π〉 j′ ∈ 
; or if
2. there exists a nominal k ∈ Nom
 such that @i〈π〉k ∈ 
 and k ⊆
 j′ .

On the other hand, we let R−
π be the binary relation on U such that iR−

π j if and only if i�̂R−
π j (observe that R̂−

π is the 
complement of R−

π ), and îR−
π j if and only if there exists a nominal j′ ≈ j such that one of the following conditions is 

satisfied:

1. @i¬[π ]¬ j′ ∈ 
; or if
2. there exists a nominal k ∈ Nom
 such that @i¬[π ]¬k ∈ 
 and k ⊆
 j′ .

Note that the nominal k referred to in the second items is not an element of U. It follows from 
 being closed under 
the rule (Nom) that R+

π and R−
π are compatible with ≈ in the first argument and it is trivial that they are compatible with 

≈ in the second argument. We let R+
π , respectively R−

π , be the binary relation on U/≈ defined by [i]≈ R+
π [ j]≈ , respectively 

[i]≈ R−
π [ j]≈ , if and only if iR+

π j, respectively iR−
π j. Analogously, we let [i]≈ R̂−

π [ j]≈ be the binary relation on U/≈ defined 
by [i]≈ R̂−

π [ j]≈ if and only if îR−
π j.

Let N : U → U/≈ be defined such that N(i) = [i]≈ .
Let V+ be the function that to each ordinary propositional variable assigns the set of elements of U where that propo-

sitional variable occurs, i.e., i ∈ V+(p) if and only if @i p ∈ 
. Conversely i /∈ V+(p) if and only if @i p /∈ 
. Analogously, let 
V− be the function that to each ordinary propositional variable assigns the set of elements of U where the negation of that 
propositional variable occurs, i.e., i ∈ V−(p) if and only if @i¬p ∈ 
. Conversely i /∈ V−(p) if and only if @i¬p /∈ 
. We let 
V+ be defined by V+(p) = {[i]≈ | i ∈ V+(p)}. We define V− analogously: V−(p) = {[i]≈ | i ∈ V−(p)}.

Given a branch 
, let G
 =
(

U/≈,
(

R+
π

)
π∈Mod

,
(

R−
π

)
π∈Mod

, N,V+,V−
)

.

We will omit the reference to the branch in G
 if it is clear from the context.

Theorem 4 (Model Existence). Let 
 be an open branch of a terminal tableau T. The model extracted from the branch, G
 , is such that 
the following conditions hold:

(i) if @iϕ ∈ 
, then G
, [i]≈ � ϕ;
(ii) if (@iϕ)∗ ∈ 
, then G
, [i]≈ � ϕ .

whenever @iϕ contains only nominals from U.

Proof. The proof is by induction on the complexity of ϕ:

• The base step for the cases when ϕ is either a nominal or the negation of a nominal, a propositional variable or the 
negation of a propositional variable follows from the definition of G.

• The case when ϕ is ⊥ is trivial.

Induction Hypothesis (I.H.): the result holds for the formulas ψ, δ, ¬ψ, ¬δ.

• ϕ = ¬¬ψ

(i) @i¬¬ψ ∈ 
, then, by applying the rule (¬¬), @iψ ∈ 
. By I.H. G, [i]≈ � ψ and equivalently G, [i]≈ � ¬¬ψ .
(ii) (@i¬¬ψ)∗ ∈ 
, then, by applying the rule (¬¬∗), (@iψ)∗ ∈ 
. By I.H. G, [i]≈ �ψ and equivalently G, [i]≈ �¬¬ψ .
12
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• ϕ = ψ ∧ δ

(i) @i(ψ ∧ δ) ∈ 
, then, by applying the rule (∧), @iψ, @iδ ∈ 
. By I.H. G, [i]≈ � ψ and G, [i]≈ � δ. Therefore 
G, [i]≈ � ψ ∧ δ.

(ii) (@i(ψ ∧δ))∗ ∈ 
, then, by applying the rule (∧∗), (@iψ)∗ ∈ 
 or (@iδ)
∗ ∈ 
. Hence, by I.H., G, [i]≈ �ψ or G, [i]≈ � δ. 

Therefore G, [i]≈ �ψ ∧ δ.
• ϕ = ¬(ψ ∧ δ)

(i) @i¬(ψ ∧ δ) ∈ 
, then, by applying the rule (¬∧), @i¬ψ ∈ 
 or @i¬δ ∈ 
. By I.H. G, [i]≈ � ¬ψ or G, [i]≈ � ¬δ. 
Therefore G, [i]≈ � ¬(ψ ∧ δ).

(ii) (@i¬(ψ ∧ δ))∗ ∈ 
, then, by applying the rule (¬∧∗), (@i¬ψ)∗, (@i¬δ)∗ ∈ 
. Hence, by I.H. G, [i]≈ � ¬ψ and 
G, [i]≈ �¬δ. Therefore G, [i]≈ �¬(ψ ∧ δ).

• ϕ = ψ ⊃ δ

(i) @i(ψ ⊃ δ) ∈ 
, then, by applying the rule (⊃), (@iψ)∗ ∈ 
 or @iδ ∈ 
. By I.H. G, [i]≈ � ψ or G, [i]≈ � δ. Thus 
G, [i]≈ � ψ ⊃ δ.

(ii) (@i(ψ ⊃ δ))∗ ∈ 
, then, by applying the rule (⊃∗), @iψ, (@iδ)
∗ ∈ 
. Hence, by I.H., G, [i]≈ � ψ and G, [i]≈ � δ. So 

G, [i]≈ �ψ ⊃ δ.
• ϕ = ¬(ψ ⊃ δ)

(i) @i¬(ψ ⊃ δ) ∈ 
, then, by applying the rule (¬ ⊃), @iψ, @i¬δ ∈ 
. By I.H., G, [i]≈ � ψ and G, [i]≈ � ¬δ. So 
G, [i]≈ � ¬(ψ ⊃ δ).

(ii) (@i¬(ψ ⊃ δ))∗ ∈ 
, then, by applying the rule (¬⊃∗), (@iψ)∗ ∈ 
 or (@i¬δ)∗ ∈ 
. Hence, by I.H., G, [i]≈ � ψ or 
G, [i]≈ � ¬δ. Therefore G, [i]≈ � ¬(ψ ⊃ δ).

• ϕ = @ jψ

(i) @i@ jψ ∈ 
, then, by applying the rule (@E), @ jψ ∈ 
. By I.H. G, [ j]≈ � ψ . Thus G, [i]≈ � @ jψ .
(ii) (@i@ jψ)∗ ∈ 
, then, by applying the rule (@∗

E), (@ jψ)∗ ∈ 
. By I.H. G, [ j]≈ � ψ and it follows that G, [i]≈ � @ jψ .
• ϕ = ¬(@ jψ)

(i) @i¬(@ jψ) ∈ 
, then, by applying the rule (¬@), @ j¬ψ ∈ 
. By I.H. G, [ j]≈ � ¬ψ . Therefore G, [i]≈ � @ j¬ψ , so 
G, [i]≈ � ¬@ jψ .

(ii) (@i¬(@ jψ))∗ ∈ 
, then, by applying the rule (¬@∗), (@ j¬ψ)∗ ∈ 
. By I.H. G, [ j]≈ �¬ψ and it follows that G, [i]≈ �
@ j¬ψ and so G, [i]≈ �¬@ jψ .

• ϕ = ψ ∨ δ

(i) @i(ψ ∨ δ) ∈ 
, then from applying rule (∨), one of the following happens:
1. @iψ, (@i¬ψ)∗, (@i¬δ)∗ ∈ 
; or
2. @iψ, (@i¬ψ)∗ ∈ 
; or
3. @iψ, @iδ, (@i¬δ)∗ ∈ 
; or
4. @iψ, @iδ ∈ 
; or
5. @iδ, (@i¬ψ)∗, (@i¬δ)∗ ∈ 
; or
6. @iδ, (@i¬δ)∗ ∈ 
; or
7. @iδ, (@i¬ψ)∗, @iψ ∈ 
.
Recall that

G, [i]≈ � ψ ∨ δ

⇔ (G, [i]≈ � ψ or G, [i]≈ � δ)

and (G, [i]≈ � ¬ψ implies G, [i]≈ � δ)

and (G, [i]≈ � ¬δ implies G, [i]≈ � ψ)

In the first case, by I.H. G, [i]≈ �¬ψ , G, [i]≈ �¬δ, and G, [i]≈ � ψ . Therefore, G, [i]≈ � ψ ∨ δ.
Cases 2.–7. follow a similar approach.
Thus if @i(ψ ∨ δ) ∈ 
 then G, [i]≈ � ψ ∨ δ.

(ii) (@i(ψ ∨ δ))∗ ∈ 
, then by applying rule (∨∗), either:
1. (@iψ)∗, (@iδ)

∗ ∈ 
; or
2. @i¬ψ, (@iδ)

∗ ∈ 
; or
3. @i¬δ, (@iψ)∗ ∈ 
.
In case 1. by I.H. G, [i]≈ �ψ and G, [i]≈ � δ. Thus, G, [i]≈ �ψ ∨ δ.
In cases 2. and 3. the reasoning is analogous.
In conclusion, if (@i(ψ ∨ δ))∗ ∈ 
 then G, [i]≈ �ψ ∨ δ.

• ϕ = ¬(ψ ∨ δ)

(i) @i¬(ψ ∨ δ) ∈ 
, then from applying rule (¬∨), @i¬ψ, @i¬δ ∈ 
. By I.H. G, [i]≈ � ¬ψ , and G, [i]≈ � ¬δ. Therefore, 
G, [i]≈ � ¬(ψ ∨ δ).

(ii) (@i¬(ψ ∨ δ))∗ ∈ 
, then by applying rule (¬∨∗), it follows that (@i¬ψ)∗ ∈ 
 or (@i¬δ)∗ ∈ 
. By I.H. G, [i]≈ � ¬ψ

or G, [i]≈ �¬δ. It follows that G, [i]≈ � ¬(ψ ∨ δ).
• ϕ = 〈π〉ψ

(i) ∗ if ψ = j, j ∈ Nom:

@i〈π〉 j ∈ 
, then [i]≈R+
π [ j]≈ and by definition G, [i]≈ � 〈π〉 j.
13
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∗ if ψ is not a nominal:
@i〈π〉ψ ∈ 
, then by the application of the rule (〈π〉), @i〈π〉t and @tψ ∈ 
, for a new nominal t . Then:

· if t ∈ U, [i]≈R+
π [t]≈ . By I.H., G, [t]≈ � ψ , so G, [i]≈ � 〈π〉ψ .

· if t /∈ U, ∃a such that t ⊆
 a. Assume that there is no b such that a ⊆
 b, i.e., a ∈ U. Since @tψ ∈ 
, from 
Theorem 1 it follows that if ψ = ¬δ then either ψ or δ is a subformula of a root formula, otherwise ψ is a sub-

formula of a root formula; Definition 9 implies that @aψ ∈ 
. By I.H. G, [a]≈ � ψ and by definition [i]≈R+
π [a]≈ . 

So, G, [i]≈ � 〈π〉ψ .

(ii) (@i〈π〉ψ)∗ ∈ 
. We want to prove that G, [i]≈ � 〈π〉ψ , i.e., that for all [k]≈ such that [i]≈R+
π [k]≈ , G, [k]≈ �ψ .

Let k be a nominal such that [i]≈R+
π [k]≈; by definition exists k′ with k′≈k that satisfies one of the following 

conditions:
∗ @i〈π〉k′ ∈ 
, which then by applying the rule (〈π〉∗), implies that (@k′ψ)∗ ∈ 
. By I.H. G, [k′]≈ �ψ . Since [k′]≈ =

[k]≈ , then G, [k]≈ � ψ . Or:
∗ ∃a ∈ Nom
 such that @i〈π〉a ∈ 
 and a ⊆
 k′ , then by applying (〈π〉∗) it follows that (@aψ)∗ ∈ 
. From Theo-

rem 1, if ψ = ¬δ either ψ or δ is a subformula of a root formula otherwise ψ is a subformula of a root formula. 
Since a ⊆
 k′ , (@k′ψ)∗ ∈ 
. By I.H. G, [k′]≈ �ψ . Since [k′]≈ = [k]≈ , then G, [k]≈ � ψ .

It follows that G, [i]≈ � 〈π〉ψ .
• ϕ = ¬〈π〉ψ

(i) @i¬〈π〉ψ ∈ 
. We want to prove that G, [i]≈ � ¬〈π〉ψ , i.e., that for all [k]≈ such that [i]≈��R
−
π [k]≈ , G, [k]≈ � ψ .

Let k be a nominal such that [i]≈��R
−
π [k]≈ . That is the case if and only if [i]≈R̂−

π [k]≈ , which by definition implies that 
exists k′ with k′≈k that satisfies one of the following two conditions:
∗ @i¬[π ]¬k′ ∈ 
 which then by applying the rule (¬〈π〉) implies that (@k′ψ)∗ ∈ 
 and by I.H. G, [k′]≈ � ψ . Since 

[k′]≈ = [k]≈ , G, [k]≈ �ψ . Or:
∗ ∃a ∈ Nom
 such that @i¬[π ]¬a ∈ 
 and a ⊆
 k′ , then by applying the rule (¬〈π〉), (@aψ)∗ ∈ 
. From Theorem 1

if ψ = ¬δ then either ψ or δ is a subformula of a root formula, otherwise ψ is a subformula of a root formula. 
Since a ⊆
 k′ , (@k′ψ)∗ ∈ 
. By I.H. G, [k′]≈ �ψ . Since [k]≈ = [k′]≈ , G, [k]≈ � ψ .

Therefore G, [i]≈ � ¬〈π〉ψ
(ii) (@i¬〈π〉ψ)∗ ∈ 
, thus by applying rule (¬〈π〉∗), @i¬[π ]¬t,@tψ ∈ 
, for a new nominal t . Then:

∗ if t ∈ U, [i]≈R̂−
π [t]≈ . By I.H. G, [t]≈ � ψ . Thus G, [i]≈ �¬〈π〉ψ .

∗ if t /∈ U, ∃a such that t ⊆
 a. Assume that there is no b such that a ⊆
 b, i.e., a ∈ U. By Theorem 1 on @tψ ∈ 
, 
if ψ = ¬δ then either ψ or δ is a subformula of a root formula, otherwise ψ is a subformula of a root formula. 
Since t ⊆
 a, @aψ ∈ 
. By I.H. G, [a]≈ � ψ and by definition [i]≈R̂−

π [a]≈ . It follows that G, [i]≈ � ¬〈π〉ψ .
• ϕ = [π ]ψ

(i) @i[π ]ψ ∈ 
. We want to prove that G, [i]≈ � [π ]ψ , i.e., that for all [k]≈ such that [i]≈R+
π [k]≈ , G, [k]≈ � ψ .

Let k be a nominal such that [i]≈R+
π [k]≈ . By definition it implies that exists k′ with k′≈k which satisfies one of the 

following two conditions:
∗ @i〈π〉k′ ∈ 
 which then, by applying the rule ([π ]), implies that @k′ψ ∈ 
 and by I.H. G, [k′]≈ � ψ . Since [k′]≈ =

[k]≈ , then G, [k]≈ � ψ . Or:
∗ ∃a ∈ Nom
 such that @i〈π〉a ∈ 
 and a ⊆
 k′ , then by applying the rule ([π ]), @aψ ∈ 
. From Theorem 1 if 

ψ = ¬δ either ψ or δ is a subformula of a root formula, otherwise ψ is a subformula of a root formula. Since 
a ⊆
 k′ , @k′ψ ∈ 
. By I.H. G, [k′]≈ � ψ . Since [k]≈ = [k′]≈ , G, [k]≈ � ψ .

It follows that G, [i]≈ � [π ]ψ .
(ii) (@i[π ]ψ)∗ ∈ 
, thus by applying the rule ([π ]∗), @i〈π〉t, (@tψ)∗ ∈ 
, for a new nominal t . Then:

∗ if t ∈ U, [i]≈R+
π [t]≈ . By I.H. G, [t]≈ �ψ , thus G, [i]≈ � [π ]ψ .

∗ if t /∈ U, ∃a such that t ⊆
 a. Assume that there is no b such that a ⊆
 b, i.e., a ∈ U. By Theorem 1 on (@tψ)∗ ∈ 
, 
if ψ = ¬δ either ψ or δ is a subformula of a root formula, otherwise ψ is a subformula of a root formula. Since 
t ⊆
 a, (@aψ)∗ ∈ 
. By I.H. G, [a]≈ � ψ and by definition [i]≈R+

π [a]≈ . It follows that G, [i]≈ � [π ]ψ .
• ϕ = ¬[π ]ψ

(i) @i¬[π ]ψ ∈ 
, then by applying the rule (¬[π ]), @i¬[π ]¬t, (@tψ)∗ ∈ 
, for a new nominal t . Then:

∗ if t ∈ U, [i]≈R̂−
π [t]≈ . By I.H. G, [t]≈ �ψ . Thus G, [i]≈ � ¬[π ]ψ .

∗ if t /∈ U , ∃a such that t ⊆
 a. Assume that there is no b such that a ⊆
 b, i.e., a ∈ U . By Theorem 1 on (@tψ)∗ ∈ 
, 
if ψ = ¬δ either ψ or δ is a subformula of a root formula, otherwise ψ is a subformula of a root formula. Since 
t ⊆
 a, (@aψ)∗ ∈ 
. By I.H., G, [a]≈ �ψ and by definition [i]≈R̂−

π [a]≈ . It follows that G, [i]≈ � ¬[π ]ψ .

(ii) (@i¬[π ]ψ)∗ ∈ 
. We want to prove that G, [i]≈ �¬[π ]ψ , i.e., that for all [k]≈ such that [i]≈ R̂−
π [k]≈ , G, [k]≈ � ψ .

Let k be a nominal such that [i]≈ R̂−
π [k]≈ . By definition, exists k′ with k′≈k that satisfies one of the following two 

conditions:
∗ @i¬[π ]¬k′ ∈ 
, which then by applying the rule (¬[π ]∗), implies that @k′ψ ∈ 
. By I.H. G, [k′]≈ � ψ . Since 

[k′]≈ = [k]≈ , then G, [k]≈ � ψ . Or:
14
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∗ ∃a ∈ Nom
 such that @i¬[π ]¬a ∈ 
 and a ⊆
 k′ , then by applying (¬[π ]∗) it follows that @aψ ∈ 
. From 
Theorem 1 if ψ = ¬δ either ψ or δ is a subformula of a root formula, otherwise ψ is a subformula of a root 
formula. Since a ⊆
 k′ , @k′ψ ∈ 
. By I.H. G, [k′]≈ � ψ . Since [k′]≈ = [k]≈ , G, [k]≈ � ψ .

Thus G, [i]≈ � ¬[π ]ψ . �
Observe that root formulas that are satisfaction statements contain only nominals from U, therefore they are captured in 

this theorem. On the other hand, if a root formula ϕ (resp. ϕ∗) is not a satisfaction statement, the application of the rule 
(@I) (resp. (@∗

I )) turns it into one. Thus, by proving satisfiability of @iϕ (resp. (@iϕ)∗) in a model G, at a state w , where 
i ∈ U, we are proving that there exists a model and a state where ϕ (resp. ϕ∗) is satisfied. Note also that (@I) is applied to 
ϕ for every i in the branch so there is at least one state where all root formulas are satisfied.

There is a straightforward consequence relation in DBHL∗, defined as:

Definition 13. Let � be a finite set of signed formulas called database. The formula ϕ is a consequence of � if and only if 
for all multistructures G where all formulas in � are globally satisfied, ϕ is globally satisfied as well.

Formally,

� � ϕ ⇔ ∀G (G� � ⇒ G� ϕ)

In other words, ϕ is a consequence of � if and only if ϕ is globally satisfied in all multistructures that are models of 
�. It is clear that the consequence relation � is non-trivializable. Observe that � may include both non-starred as well as 
starred formulas.

The following result holds:

Proposition 2. For any finite set of signed formulas � = {δ1, . . . , δn} ⊂ Form∗(Lπ ) and any formula ϕ ∈ Form(Lπ ), there is a tableau 
τ for δ1, . . . , δn, ϕ∗ that is closed if and only if there is no multistructure G such that G � � and G � ϕ∗ .

Example 1. Let � = {@i〈π〉p, @i[π ] j, @i¬〈π〉p}. We will check if ϕ = @i¬〈π〉 j is a consequence of � using the 
tableau-based decision procedure described in Proposition 2:

@i〈π〉p, @i[π ] j, @i¬〈π〉p, (@i¬〈π〉 j)∗ 1.
@i〈π〉t, @t p 2. by (〈π〉) rule on 1

@t j 3. by ([π ]) rule on 1 and 2
@ j p 4. by (Nom) rule on 3 and 2

@i¬[π ]¬u,@u j 5. by (¬〈π〉∗) rule on 1
@i i,@ j j,@tt,@uu 6. by (Id) rule

@ ju 7. by (Nom) rule on 5 and 6
@u p 8. by (Nom) rule on 7 and 4

(@u p)∗ 9. by (¬〈π〉) rule on 1 and 5
×

Since the tableau is closed, ϕ is a consequence of �.
Let us give some intuition behind this result: the multistructure that satisfies the database is such that there is evidence 

of the presence of a transition from the state named by i to a state where p holds; there is also evidence that the only 
transition present from the state named by i leads to the state named by j, therefore p holds in that state. We also have 
evidence of the absence of transitions from the state named by i to states where p holds. Thus, we have evidence about the 
absence of the transition from the state named by i to the state named by j.

We can also show that, for all models, transitivity of equality between nominals is globally satisfied:

Example 2. Let � = {} and ϕ = (@i j ∧ @ jk) ⊃ @ik.
The tableau-based decision procedure described in Proposition 2 yields the following:

((@i j ∧ @ jk) ⊃ @ik)∗ 1.
(@t((@i j ∧ @ jk) ⊃ @ik))∗ 2. by (@∗

I ) rule on 1
@t(@i j ∧ @ jk), (@t(@ik))∗ 3. by (⊃∗) rule on 2

@t(@i j),@t(@ jk) 4. by (∧) rule on 3
@i j,@ jk, (@ik)∗ 5. by (@E) rule on 4, (@∗

E) rule on 3
@i i 6. by (Id) rule
@ j i 7. by (Nom) rule on 5 and 6 – @i j,@i i
@ik 8. by (Nom) rule on 7 and 5 – @ j i,@ jk
×
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Fig. 7. An inconsistent map.

Since the tableau is closed, ϕ is a consequence of � = {} which means that ϕ is globally satisfied in all models, i.e., ϕ is 
valid.

3.1. Representation of models via diagrams

From this point on, we will assume that Prop, Nom and Mod are finite sets for any hybrid multimodal similarity type 
Lπ = 〈Prop, Nom, Mod〉, as is the domain W of any multistructure.

Let Lπ (W) denote the expansion of Lπ that ensures that all states are named by a nominal and let G(W) denote the 
natural expansion of the multistructure G to the hybrid multimodal similarity type Lπ (W).

The diagram of a multistructure will be constituted by all evidence of what happens at specific states, all evidence about 
transitions and the lack of transitions, and finally all evidence about equalities between states.

We start by introducing the notion of DB-literal that will be used later:

Definition 14. We define the set of DB-literals over a hybrid (multimodal) similarity type Lπ = 〈Prop, Nom, Mod〉 as:

DBLit(Lπ ) = {@i p,@i¬p,@i〈π〉 j,@i¬〈π〉 j,@i j | i, j ∈ Nom, p ∈ Prop,π ∈ Mod}.

Definition 15. Let Lπ = 〈Prop, Nom, Mod〉 be a hybrid (multimodal) similarity type, and G = (W, (R+
π )π∈Mod, (R−

π )π∈Mod, N,

V+, V−) be a multistructure over Lπ . The diagram of G, denoted by Diag(G), is the set of DB-literals over Lπ (W) that hold 
in G(W), i.e.,

Diag(G) = {α ∈ DBLit(Lπ (W)) | G(W) � α}.

Two distinct multistructures over Lπ with the same domain W induce two distinct diagrams (over Lπ (W)). Thus the 
diagram Diag(G) uniquely defines the multistructure G.

We will use D(�, W) to denote the set of diagrams of multistructures that are models of �, with domain W, over the 
hybrid (multimodal) similarity type Lπ (W), where Lπ contains the symbols occurring in �.

The following example deals with a single modality which for the sake of simplicity is omitted.

Example 3. In Fig. 7 are represented five different (named) locations, evidence of the presence (full line) and absence 
(dashed line) of transitions between pairs of locations as well as some local properties.

This multistructure is represented by the following diagram:

{@i i,@ j j,@kk,@ll,@mm, // nominal equalities
@ j p,@k¬q,@l p,@l¬p, // local properties
@i� j,@i¬� j,@i¬�k,@ j�i, // transitions
@ j�l,@k� j,@l�k}

Note that there is a difference between checking if a formula is satisfied in a multistructure and checking if a formula is a 
consequence of the diagram of a multistructure. Recall that a formula is a consequence of a set of formulas � if it is globally 
satisfied in every model of �. Observe also that there are multistructures that satisfy all the formulas in the diagram of 
a particular multistructure G, apart from G itself; this happens for every multistructure of which G is a substructure (we 
consider that G is a substructure of G′ if the domain of G is a subset of or equal to the domain of G′ , for each modality π , 
the associated positive and negative accessibility relations R+

π and R−
π in G are a subset or equal to those in G′ , each state 

in G′ is named by at least the same nominal as in G, and finally, for each propositional variable p the positive and negative 
valuations V+(p) and V−(p) are a subset or equal to those in G′). In order to check if a formula is globally satisfied in a 
multistructure, we must check if it is a consequence of its diagram together with the following set of formulas:

{α∗ | α ∈ DBLit(Lπ )\Diag(G)}
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where Lπ is the hybrid (multimodal) similarity type that contains all symbols appearing in Diag(G). This construction is 
always feasible since the multistructures we are considering are finite.

In Example 3, the formula @i�p is a consequence of the diagram of the multistructure presented, call it G. However, 
even though @i¬�¬q holds in the multistructure, it is not a consequence of its diagram: take a multistructure whose 
diagram is Diag(G) ∪ {@l¬q} – it is a model for the diagram of G and nonetheless @i¬�¬q does not hold there.

In order to avoid dealing with unnecessary information, we introduce the notion of minimal model. Minimal models are 
those where each formula in its diagram is absolutely necessary to keep it a model, according to the following definition:

Definition 16. The set of minimal models with domain W for a set of signed formulas � is the set MinD(�, W) defined as:

MinD(�,W) = {M ∈D(�,W) | if M⊂ M then M /∈D(�,W)}.

Clearly, every model contains a minimal model, i.e., for every model M1, there is a minimal model M2 such that 
M2 ⊆M1.

No useful information is lost when we use MinD(�, W) instead of D(�, W).
Given a set � of signed formulas, there is an algorithm that allows us to extract minimal models for �, each of them 

already represented by its diagram. The algorithm will resort to the tableau system introduced and works as follows:

Algorithm 1. In order to extract minimal models for � proceed as follows:

1. Build a terminal tableau for � by applying the tableau rules of system T, where condition (iv) is restated as follows:
(iv) for @iϕ a DB-literal;

together with the following extra rule:

@i j,@kψ

@k(ψ[i/ j]) (Bridge)(i)

(i) @kψ is a DB-literal; ψ[i/ j] is the result of replacing in ψ all occurrences of i with j.
This extra rule is sound and ensures that we have all DB-literals that are satisfied in our model.
Consider only the open branches from now on.

2. In order to determine minimal models with a certain number of states, introduce formulas of the form @i j, @i¬ j for 
nominals already occurring; introduce new nominals only if necessary to suit the number of states desired. (If, for 
example, i and j are the only nominals occurring in the tableau and we want to determine minimal models with a 
single state, we must add the condition @i j; if we want models with two states, we can either add the condition @i¬ j, 
or consider the case where @i j is added and a new nominal k is introduced by adding @i¬k as well. The number of 
combinations grows very rapidly.)

3. Apply the rules mentioned in step 1., treating the formulas introduced in step 2. as if they were root formulas, until a 
terminal tableau is reached.
Repeat the instructions on step 2. about combining nominals in order to suit the number of states previously set.
Consider only the open branches.

4. Finally, with the purpose of defining the positive and negative transitions between states, split each branch into sub-
branches such that each sub-branch contains one way of combining the formulas @i〈π〉 j, @i[π ]¬ j and @i¬〈π〉 j, 
@i¬[π ]¬ j for all nominals i and j and modalities π occurring on the branch.
Apply the rules indicated in step 1. until a terminal tableau is reached. Each new open branch defines the families of 
positive and negative accessibility relations 

(
R+

π

)
π∈Mod and 

(
R−

π

)
π∈Mod.

For each open branch copy the DB-literals into a set which will be the diagram of a model for �. Take the minimal 
models from amongst those.

Proposition 3. There are no minimal models for � other than those that are obtained from this algorithm.

Proof. Suppose that M is the diagram of a multistructure G which is a minimal model for � and is such that M � 
 for 
all open branches 
, in the sense that for each branch 
 there exists a literal ϕ such that ϕ ∈ 
 and ϕ /∈M.

Thus, for M under the conditions described, G � 
 for all 
.

Recall that by Theorem 3 (Soundness), for each rule 
�


1| . . . |
n
and any multistructure G, G � � implies G � 
1 or . . .

or G � 
n . Therefore it follows that G � �. So G is not a model for �, and therefore G cannot be a minimal model. Hence 
there is no such M. �

We present an example as a means to illustrate the algorithm developed:
17
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Example 4. Let � = {@i〈π〉p, @i¬〈π〉q, @iq}. Let us use the algorithm introduced in order to determine minimal models of 
� with only one state:

◦ Step 1.
The terminal tableau with root � comes as follows:

@i〈π〉p, @i¬〈π〉q, @iq 1.
@i〈π〉t, @t p 2. by (〈π〉) rule on 1

@i i, @tt 3. by (Id)

�
◦ Steps 2. and 3.
Now, given that two nominals occur in the tableau, if we want to determine minimal models with a single state, we 

must add to the tableau the formula @it , meaning that the nominals i and t name the same state. In this case the tableau 
is extended as follows:

@it 4. by step 2. of the algorithm
@t i, @tq, @t〈π〉t 5. by (Nom) rule on 4 and 3/1/2

@i p 6. by (Nom) rule on 5 and 2
@i〈π〉i, @t〈π〉i 7. by (Bridge) rule on 5 and 2/5

�
◦ Step 4.
Last step is to determine the positive and negative transitions between states. From the tableau constructed so far, we 

have that there is a positive transition from the state named by both i and t to itself. Thus the only information missing is 
if there is or there is not a negative transition from the state named by both i and t to itself. So we split the open branch 
of the tableau into two in the following way:

@i¬〈π〉i @i¬[π ]¬i 8. by step 4. of the algorithm
(@tq)∗ 9. by rule (¬〈π〉) on 8 and 1

@i¬〈π〉t × 10. by rule (Bridge) on 8 and 4
@t¬〈π〉i 11. by rule (Nom) on 8 and 4
@t¬〈π〉t 12. by rule (Bridge) on 11 and 4

�
The minimal model for � with one state is:

M = {@iq,@tq,@i p,@t p,@i i,@tt,@it,@t i,
@i〈π〉i,@i〈π〉t,@t〈π〉i,@t〈π〉t,
@i¬〈π〉t,@i¬〈π〉t,@t¬〈π〉i,@t¬〈π〉t}

Its graphical representation is as follows:

In the graphical representation the full line represents R+
π and the dashed one represents R−

π .

Note that this algorithm produces very large tableaux – in step 4, when considering n states, we split each open branch 
into 4n×n branches. However, dealing with each branch separately is as simple as before.

4. Inconsistency measures

The idea of measuring the amount of inconsistent information in paraconsistent structures has been widely addressed 
in [13], [14] and [15], where a variety of different measures have been proposed. An inconsistency measure is simply a 
function that assigns a non-negative real value to sets of formulas. Each inconsistency measure is a strategy for analysing 
inconsistent information by showing how conflicting a set of formulas is. Some measures are more fine-grained than others, 
but in general what they do is they allow us to compare sets of information.

Inconsistency measures can be classified in various ways and may satisfy certain properties. One distinction is between 
absolute measures that measure the total amount of contradictions and relative measures that use a ratio to determine how 
much of the database is inconsistent. A few inconsistency measures for multistructures represented by their diagrams will 
be presented next, as well as a couple of inconsistency measures for databases.
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4.1. Absolute measures for multistructures

Given a multistructure G whose diagram Diag(G) we will represent by M, an absolute measure that counts how many 
inconsistencies are in M is given as follows:

MInc1(M) = ∣∣{(p, w) ∈ Prop × W : {@i p,@i¬p} ⊆ M where N(i) = w
}∣∣

+ ∑
π∈Mod

∣∣{(w, w ′) ∈ W × W : {@i〈π〉 j,@i¬〈π〉 j} ⊆ M where

N(i) = w and N( j) = w ′}∣∣.
Observe that each component of this measure could be considered as an absolute measure by itself.
MInc1 is monotonic:

Lemma 3. Let G1, G2 be two multistructures and M1, M2 be their representations. If M1 ⊆M2 , then MInc1(M1) ≤ MInc1(M2).

The next measure counts the number of inconsistencies in a particular connected component of a multistructure, whose 
definition comes as follows:

Con(G,N(i)) =
{

u ∈ W | ∃ j1, . . . , jn ∈ Nom :
((∃π ∈ Mod : @i〈π〉 j1 ∈ M or @ j1〈π〉i ∈M)

and (∃π ∈ Mod : @ j1〈π〉 j2 ∈M or @ j2〈π〉 j1 ∈M),

. . . ,

and (∃π ∈ Mod : @ jn−1〈π〉 jn ∈M or @ jn 〈π〉 jn−1 ∈ M)

and N( jn) = u)
}

∪ {N(i)}.
Clearly 

⋃
i∈Nom

Con(G, N(i)) = W.

Then MInc2 comes as:

MInc2(M,N(i)) = ∣∣{(p, u) ∈ Prop × Con(G,N(i)) :
{@t p,@t¬p} ⊆ M where N(t) = u

}∣∣
+ ∑

π∈Mod

∣∣{(w, w ′) ∈ Con(G,N(i)) × Con(G,N(i)) :
{@i〈π〉 j,@i¬〈π〉 j} ⊆ M where N(i) = w and N( j) = w ′}∣∣.

As MInc1, MInc2 is monotonic too.
A third measure counts the number of inconsistencies in a particular path via a modality π , whose definition comes as 

follows:

Path(G,N(i)) =
{

u ∈ W | ∃ j1, . . . , jn ∈ Nom, ∃π1, . . . ,πn ∈ Mod :
(@i〈π1〉 j1,@ j1〈π2〉 j2, . . . ,@ jn−1〈πn〉 jn ∈M)

and N( jn) = u
)} ∪ {N(i)}.

The measure is given as:

MInc3(M, N(i)) = ∣∣{(p, u) ∈ Prop × Path(G,N(i)) : {@t p,@t¬p} ⊆ M,

where N(t) = u
}∣∣

+ ∑
π∈Mod

∣∣{(w, w ′) ∈ Path(G,N(i)) × Path(G,N(i)) :
{@i〈π〉 j,@i¬〈π〉 j} ⊆ M where N(i) = w and N( j) = w ′}∣∣.

Once again, this measure is monotonic.
This type of measure may be useful in the future to explore the least inconsistent path in problems that resemble the 

travelling salesman problem, adapted to deal with inconsistent maps.
Observe that Path(G, N(i)) ⊆ Con(G, N(i)), thus the following lemma holds:

Lemma 4. Let G be a multistructure represented by M. Then

MInc3(M, N(i)) ≤ MInc2(M, N(i)) ≤ MInc1(M), for all i ∈ Nom.
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A weighted measure requires weight vectors for propositional variables and states and a matrix detailing the weight of 
each transition:

weightProp =
[

weightp1
. . . weightp|Prop|

]
and

weightW =
[

weightw1
. . . weightw |W|

]
and

weightW×W =

⎡⎢⎢⎢⎣
weightw1,w1

weightw1,w2
. . . weightw1,w |W|

weightw2,w1
weightw2,w2

. . . weightw2,w |W|
...

...
...

weightw |W|,w1
weightw |W|,w2

. . . weightw |W|,w |W|

⎤⎥⎥⎥⎦
where all entries are non-negative real numbers.

Let MInc4 be such that:

MInc4(M) =
∑

(p,w): @i p,@i¬p∈M,
where N(i)=w

weightProp p × weightW w

+
∑

π∈Mod

⎛⎜⎜⎝ ∑
(w,w ′): @i〈π 〉 j,@i¬〈π 〉 j∈M,

where N(i)=w,N( j)=w′

weightW×W w,w ′

⎞⎟⎟⎠ .

4.2. Relative measures for multistructures

Taking the number of inconsistencies in a multistructure and dividing it by the number of possible inconsistencies gives 
us a relative measure whose result is a ratio between 0 and 1 that tells us how much of a portion of the multistructure is 
inconsistent.

Given a multistructure G represented by M, this inconsistency measure comes in the form:

MInc5(M) = MInc1(M)

|Prop| × |W| + |Mod| × |W| × |W| .

This measure is neither monotonic nor anti-monotonic for the following reason:

• if M1 ⊆M2 and the multistructures that are represented by M1 and M2 have the same domain W and are built over 
the same hybrid (multimodal) similarity type, then

MInc5(M1) = MInc1(M1)

|Prop| × |W| + |Mod| × |W| × |W|

≤ MInc1(M2)

|Prop| × |W| + |Mod| × |W| × |W| = MInc5(M2)

since from previous results we already had that MInc1(M1) ≤ MInc1(M2);
• if, however that is not the case, monotonicity can be broken:

Let G1 and G2 be two multistructures over L1
π = ({p}, {i}, {π}) and L2

π = ({p}, {i, j}, {π}), respectively, such that
– W1 = {w1} and W2 = {w1, w2},
– R+

1 = R−
1 = R+

2 = R−
2 = ∅,

– N1(i) = N2(i) = w1, N2( j) = w2,
– V+

1 (p) = V−
1 (p) = V+

2 (p) = V−
2 (p) = {w1}.

Then M1 = {@i p, @i¬p, @i i} and M2 = {@i p, @i¬p, @i i, @ j j}. Clearly M1 ⊂ M2 and MInc1(M1) = MInc1(M2) = 1. 

Therefore, MInc5(M1) = 1

1
≥ 1

6
= MInc5(M2).

We can also take the weighted measure MInc4 and divide it by the sum of the weights of the elements of the multi-
structure. This inconsistency measure comes as follows:
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MInc6(M) = MInc4(M)∑
p∈Prop,w∈W

weightp × weightw + |Mod| × ∑
w,w ′∈W

weightw,w ′
.

MInc6 is also neither monotonic nor anti-monotonic.

Example 5. Let us calculate some measures of inconsistency for the multistructure in Example 3. We refer to the diagram 
of the multistructure as M.

|W| = 5, |Prop| = 2, |Mod| = 1

• MInc1(M) = 2.
• MInc2(M, N(i)) = 2.
• MInc3(M, N(m)) = 0.

• MInc5(M) = 2

10 + 25
= 2

35
.

4.3. Measures for databases

We may want to know whether one source is more inconsistent than another. In particular we would like to determine 
which is the least inconsistent source of information we have in our hands, which will intuitively be thought of as the least 
problematical or most reliable source.

First, let us consider minimal models with the least number of inconsistencies, which we will call preferred models.

Definition 17. The set of preferred models with domain W for a set of signed formulas � is the set PrefD(�, W) defined 
as:

PrefD(�,W) = {M ∈ MinD(�,W) | for all M ∈ MinD(�,W),MInc1(M) ≤ MInc1(M)}.

We define MInc7(�, D), as a sequence 〈r1, . . . , rn, . . .〉 where rn = MInc5(M) if there exists a model M ∈ PrefD(�, Wn)

with Wn a domain of size n, and rn = ∗ otherwise. We use ∗ as kind of a null value.
The measure MInc7(�, D) captures how the relative measure of inconsistency of preferred models for a database �

evolves with increasing domain size. There are databases � for which all minimal models contain no inconsistencies at all, 
and others for which all minimal models are inconsistent.

We adopt a lexicographic ordering over the tuples generated by the MInc7 function as follows:

Definition 18. Let �1, �2 be two databases. Let MInc7(�1, D) = 〈r1, r2, . . . 〉 and MInc7(�2, D) = 〈s1, s2, . . . 〉.

MInc7(�1,D) � MInc7(�2,D) ⇔ for all i ≥ 1, ri ≤ si or ri = ∗ or si = ∗.

In case MInc7(�1, D) � MInc7(�2, D), one says that �1 is less or as inconsistent as �2 and denote this by �1 ≤inc �2.

Example 6. Let �1 = {@i〈π〉p, @i¬〈π〉q, @ jq} and �2 = {@i p, @i¬p}. Then:

MInc7(�1,D) =
〈

1

3
,0,0, . . . ,0, . . .

〉
,

MInc7(�2,D) =
〈

1

2
,

1

6
,

1

12
, . . .

1

n × (n + 1)
, . . .

〉
.

Thus �1 ≤inc �2.

MInc7 is monotonic: given �1, �2 such that �1 ⊆ �2, and since additional statements may add but cannot subtract 
inconsistencies, it follows that MInc7(�1,D) � MInc7(�2,D).

We define equivalence between databases in the next definition:

Definition 19. Let �1, �2 be two databases. �1 and �2 are equivalent if for all M

M is a model of �1 ⇔ M is a model of �2.

The following result holds:
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Fig. 8. Multi-bisimulation between G and G.

Proposition 4. Let �1, �2 be two databases. If �1 and �2 are equivalent, then

MInc7(�1,D) = MInc7(�2,D).

Proof. Let MInc7(�1, D) = 〈r1, r2, . . .〉 and MInc7(�2, D) = 〈s1, s2, . . .〉.
Since �1 and �2 are equivalent, any preferred model M of �1 with a domain of size n is a model of �2. In fact, M is 

a preferred model for �2 as well, for if it were not, then it could not be a preferred model of �1.
Therefore, rn = sn for all n and thus MInc7(�1, D) = MInc7(�2, D). �

5. DB-bisimulation

Bisimulation is the fundamental notion of equivalence between models in Modal logic and extensions to Hybrid logic 
are not a novelty, [1]. In this section the notion of bisimulation is extended to multistructures. Curiously, the classical 
construction will not preserve satisfiability of formulas between bisimilar models. However, that will be the case for a 
posterior definition of DB-bisimulation, which performs a small, yet significant, change in the previous definition.

Definition 20. Let G = (
W,

(
R+

π

)
π∈Mod ,

(
R−

π

)
π∈Mod ,N,V+,V−)

and G =
(

W,
(

R+
π

)
π∈Mod

,
(

R−
π

)
π∈Mod

, N,V+,V−
)

be two hy-

brid multistructures over the same hybrid (multimodal) similarity type Lπ = 〈Prop, Nom, Mod〉.
A relation Z ⊆ W × W is a multi-bisimulation if Z is a bisimulation (in the classical sense) between the hybrid structures 

H = (
W,

(
R∗

π

)
π∈Mod ,N,V◦) and H = (

W,
(
R∗

π

)
π∈Mod , N,V◦), for each combination ∗, ◦ ∈ {+, −}.

In more detail, Z is a multi-bisimulation if the following conditions are met:

• (N(i), N(i)) ∈ Z for all i ∈ Nom;
• if (w, w) ∈ Z , then:

– atomic conditions:
� w ∈ V◦(p) iff w ∈ V◦(p), for all ◦ ∈ {+, −} and p ∈ Prop;
� N(i) = w iff N(i) = w ′ , for all i ∈ Nom;

– if wR∗
π u for some u ∈ W, then there is some u ∈ W such that wR∗

π u and (u, u) ∈ Z (Zig∗), for ∗ ∈ {+, −};
– if wR∗

π u for some u ∈ W, then there is some u ∈ W such that wR∗
π u and (u, u) ∈ Z (Zag∗), for ∗ ∈ {+, −}.

Two pointed hybrid multistructures (G, w) and (G, w) are multi-bisimilar if there is a multi-bisimulation Z between G
and G′ such that (w, w) ∈ Z .

Theorem 5. DBHL∗ is not invariant under multi-bisimulation.

Proof. Take the following pointed hybrid multistructures over Lπ = 〈{p}, ∅, {π}〉:

– (G, w), where G is such that W = {w}, R+
π = ∅, R−

π = {(w, w)}, N is the empty function, V+(p) = {w} and V−(p) = ∅; 
and

– (G, w), where G is such that W = {w, v}, R+
π = ∅, R−

π = {(w, v), (v, v)}, N is the empty function, V+(p) = {w, v} and 
V−(p) = ∅.

Observe that (G, w) and (G, w) are multi-bisimilar. The multi-bisimulation Z = {(w, w), (w, v)} is represented in Fig. 8.
Nonetheless, G, w � ¬〈π〉p whereas G, w �¬〈π〉p. �
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So, although this seems like a natural definition for multi-bisimulation, it is clearly not the best since invariance is lost. 
Note also that a multistructure where all states are named is only multi-bisimilar to itself.

We change Definition 20 and introduce a DB-bisimulation as follows:

Definition 21. Let G = (
W,

(
R+

π

)
π∈Mod ,

(
R−

π

)
π∈Mod ,N,V+,V−)

and G=
(

W,
(

R+
π

)
π∈Mod

,
(

R−
π

)
π∈Mod

, N,V+,V−
)

be two 
hybrid multistructures over the same hybrid (multimodal) similarity type Lπ = 〈Prop, Nom, Mod〉.

A relation Z ⊆ W × W is a DB-bisimulation if:

• (N(i), N(i)) ∈ Z for all i ∈ Nom;
• if (w, w) ∈ Z , then:

– atomic conditions:
� w ∈ V+(p) iff w ∈ V+(p), for all p ∈ Prop;
� w ∈ V−(p) iff w ∈ V−(p), for all p ∈ Prop;
� N(i) = w iff N(i) = w ′ , for all i ∈ Nom;

– if wR+
π u for some u ∈ W, then there is some u ∈ W such that wR+

π u and (u, u) ∈ Z (Zig+);

– if w 
(
R−

π

)c
u for some u ∈ W, then there is some u ∈ W such that w

(
R−

π

)c
u and (u, u) ∈ Z (Zig−);

– if wR+
π u for some u ∈ W, then there is some u ∈ W such that wR+

π u and (u, u) ∈ Z (Zag+);

– if w
(

R−
π

)c
u for some u ∈ W, then there is some u ∈ W such that w 

(
R−

π

)c
u and (u, u) ∈ Z (Zag−).

Two pointed hybrid multistructures are DB-bisimilar in an analogous fashion to the definition of multi-bisimilar pointed 
multistructures.

We conclude with the proof of invariance:

Theorem 6. DBHL∗ is invariant under DB-bisimulation.

Proof. Let (G, w) and (G, w) be two DB-bisimilar pointed hybrid multistructures over Lπ . We prove that, for every formula 
ϕ ∈ Form(Lπ ), G, w � ϕ ⇔ G, w � ϕ .

The proof is by induction on the structure of ϕ:

• ϕ = p:

G, w � p ⇔ w ∈ V+(p)

⇔ w ∈ V+(p) (w, w) ∈ Z : atomic condition
⇔ G, w � p

• ϕ = ¬p:

G, w � ¬p ⇔ w ∈ V−(p)

⇔ w ∈ V−(p) (w, w) ∈ Z : atomic condition
⇔ G, w � ¬p

• ϕ = i:

G, w � i ⇔ w = N(i)
⇔ w = N(i) (w, w) ∈ Z : atomic condition
⇔ G, w � i

• ϕ = ¬i:

G, w � ¬i ⇔ w �= N(i)
⇔ w �= N(i) (w, w) ∈ Z : atomic condition
⇔ G, w � ¬i

Induction Hypothesis (I.H.): the result holds for subformulas ψ, δ of ϕ , as well as for ¬ψ, ¬δ.
23



D. Costa and M.A. Martins Journal of Logical and Algebraic Methods in Programming 121 (2021) 100679
• ϕ = ψ ∨ δ:

G, w � ψ ∨ δ ⇔ (G, w � ψ or G, w � δ)

and (G, w � ¬ψ implies G, w � δ)

and (G, w � ¬δ implies G, w � ψ)

⇔
(
G, w � ψ or G, w � δ

)
(I.H.)

and
(
G, w � ¬ψ implies G, w � δ

)
and

(
G, w � ¬δ implies G, w � ψ

)
⇔ G, w � ψ ∨ δ

• ϕ = ¬(ψ ∨ δ), ψ ∧ δ, ¬(ψ ∧ δ), ψ ⊃ δ, ¬(ψ ⊃ δ) follow an analogous reasoning.
• ϕ = 〈π〉ψ :

In order to give full details, we prove this case in two steps.

G, w � 〈π〉ψ ⇔ ∃u ∈ W : wR+
π u and G, u � ψ

⇒ ∃u ∈ W : wR+
π u and (u, u) ∈ Z (Zig+)

⇒ ∃u ∈ W : wR+
π u and G, u � ψ (I.H.)

⇔ G, w � 〈π〉ψ
G, w � 〈π〉ψ ⇔ ∃u ∈ W : wR+

π u and G, u � ψ

⇒ ∃u ∈ W : wR+
π u and (u, u) ∈ Z (Zag+)

⇒ ∃u ∈ W : wR+
π u and G, u � ψ (I.H.)

⇔ G, w � 〈π〉ψ
• ϕ = [π ]ψ :

Suppose that G, w � [π ]ψ and G, w � [π ]ψ . Then for all u ∈ W, wR+
π u implies G, u � ψ . On the other hand, there exists 

u ∈ W such that wR+
π u and G, u � ψ . From this, and by (Zag+), there exists s ∈ W such that wR+

π s and (s, u) ∈ Z . Thus, 
by I.H., G, s �ψ and therefore G, w � [π ]ψ , which is a contradiction.
If we assume that G, w � [π ]ψ and G, w � [π ]ψ we reach a contradiction in an analogous fashion, by using (Zig+) 
instead. So, G, w � [π ]ψ if and only if G, w � [π ]ψ .

• ϕ = ¬〈π〉ψ :
Suppose that G, w � ¬〈π〉ψ and G, w � ¬〈π〉ψ . Then for all u ∈ W, G, u � ψ implies wR−

π u, or equivalently, for all 

u ∈ W, w 
(
R−

π

)c
u implies G, u �ψ . On the other hand, there exists u ∈ W such that G, u � ψ and w

(
R−

π

)c
u. From this, 

and by (Zag−), there exists s ∈ W such that w 
(
R−

π

)c
s and (s, u) ∈ Z . Thus, by I.H., G, s � ψ and therefore G, w �¬〈π〉ψ , 

which is a contradiction. So, G, w � ¬〈π〉ψ if and only if G, w � ¬〈π〉ψ .
If we assume that G, w � ¬〈π〉ψ and G, w � ¬〈π〉ψ we reach a contradiction in an analogous fashion, by using (Zig−) 
instead. So, G, w � ¬〈π〉ψ if and only if G, w � ¬〈π〉ψ .

• ϕ = ¬[π ]ψ :

G, w � ¬[π ]ψ ⇔ ∃u ∈ W : w
(
R−
π

)c
u and G, u �ψ

⇔ ∃u ∈ W : w
(

R−
π

)c
u and G, u � ψ (Zig−/Zag−) + (I.H.)

⇔ G, w � ¬[π ]ψ �
6. Conclusion

The paper presents a four-valued Hybrid logic where propositional variables and accessibility relations are paraconsistent 
and paracomplete. The major novelty about this work is the fact that the duality between modal operators is no longer 
valid. However, the multistructures with which we work are such that they can be described by a set of atomic formulas, 
a diagram, just like structures can in standard Hybrid logic. We also introduced a sound and complete tableau system, 
discussed inconsistency measures and notions of bisimulation. This formal system is possibly the key to deal with graph-
related problems where inconsistent information regarding local data and transitions is provided. We intend to continue 
looking for applications of this logic, namely in problems such as the travelling salesman when the underlying map is 
inconsistent. We also plan on studying fuzzy versions of DBHL∗, as well as an extension to dynamic logic in order to check 
the influence of our four-valued accessibility relations in the behaviour of the composition of actions.

The topic of paraconsistency at the level of nominals should also be addressed in the future. This seemingly easy feature 
carries a lot of implications and requires a lot of care in many ways. Let us not forget that we cannot simply assign one of 
four values to pairs (i, w), otherwise nothing would distinguish them from ordinary propositional variables.
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