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Abstract
Boolean models of physical or biological systems describe the global dynamics of the system and their attractors typically

represent asymptotic behaviors. In the case of large networks composed of several modules, it may be difficult to identify

all the attractors. To explore Boolean dynamics from a novel viewpoint, we will analyse the dynamics emerging from the

composition of two known Boolean modules. The state transition graphs and attractors for each of the modules can be

combined to construct a new asymptotic graph which will (1) provide a reliable method for attractor computation with

partial information; (2) illustrate the differences in dynamical behavior induced by the updating strategy (asynchronous,

synchronous, or mixed); and (3) show the inherited organization/structure of the original network’s state transition graph.

Keywords Boolean models � Feedback interconnections � Attractor computation � Asynchronous versus synchronous
updates

1 Introduction

The effect of network topology in a system’s dynamics and

stability has long been a problem of interest (Kauffman

et al. 2004; Demongeot et al. 2008, 2010). In the presence

of very large networks of interaction with uncertain

knowledge or data involving large maps of activation/in-

activation effects, Boolean models with their qualitative

On/Off description, provide a practical framework to

analyse and model such data (Zhang et al. 2008; Saez-

Rodriguez et al. 2007). Therefore, it is very useful to

develop new techniques to analyse and render Boolean

models more realistic [software (Klamt et al. 2006; Abou-

Jaoudé et al. 2016), asynchronous analysis (Chaves et al.

2005; Fauré et al. 2006; Tournier and Chaves 2013),

probabilistic approaches (Shmulevich et al. 2002; Stoll

et al. 2017), or stochastic approaches (Mori et al. 2015)].

A Boolean network is defined by a set of logical rules

and a strategy for generating the dynamics, such as syn-

chronous or asynchronous updates, or intermediate com-

binations (Wang et al. 2012; Garg et al. 2008). The state

transititon graph and its dynamics depend not only on the

network topology but also on the updating strategy. In fact,

different modes of update encompass fundamentally dis-

tinct hypotheses regarding the dynamics of the network,

and lead to distinct dynamical behavior and attractors

(Demongeot et al. 2008, 2010). Synchronous updates are

commonly used but they assume simultaneous timescales

for all phenomena, and typically generate cyclic attractors

which have no biological meaning. Asynchronous updates

are arguably more realistic, consider different timescales

for the variables in the system, but they have the disad-

vantage of involving high calculation costs to obtain the

state transition graph for large networks (for instance, those

containing above 20 vertices).

The study of large networks, in particular the compu-

tation of its steady states and attractors, remains a hard

problem. Several algorithms have been proposed to deter-

mine the singletons in a Boolean network, using approa-

ches such as constrained programming (Devloo et al.

2003), SAT formulas for special classes of functions
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(Akutsu et al. 2011), or partitioning the system into smaller

networks (Hong et al. 2015). Using computational algebra,

Veliz-Cuba et al. (2014) construct a very cost-efficient

algorithm to compute all singletons in a Boolean network.

Finding cyclic attractors is an even more complex task and

generally needs computation of the successors of all states

(typically unfeasible for networks above 20 vertices), or at

least the evaluation of certain partial states (Irons 2006).

The notion of seeds, for representing dynamically closed

subspaces, is used in Klarner et al. (2014), Klarner and

Siebert (2015) to aproximately compute attractors of a

network. A new network reduction method in Zañudo and

Albert (2013) was shown to be very effective for compu-

tation of all types of attractors. Another approach, also

based on network partitioning, was proposed by Chaves

and Tournier (2011, 2018), and Tournier and Chaves

(2013): this uses a control theory framework to represent a

large network as the feedback interconnection between two

or more modules and is guaranteed to find not only the

singletons but actually all the attractors of the large net-

work, under asynchronous updates.

Some of these methods can be very efficient for analysis

of large networks (Zañudo and Albert 2013; Veliz-Cuba

et al. 2014), but our aim is to study an algorithm that

allows to link together two known models and observe how

the new dynamics emerges from each of the two network’s

attractors. Feedback interconnections are a widely used

concept in control theory (Sontag 1998) and essentially

mean that two systems with outputs and inputs may be

composed into a large system by connecting each system’s

output to the input of the other system. Interconnection

algorithms are especially relevant in physical and biolog-

ical sciences, when the aim is to understand the behavior of

a large system in terms of its different parts, such as the

interactions between metabolic and genetic networks

(Baldazzi et al. 2010), or between two fundamental bio-

logical modules such as the cell cycle and circadian clock

(Gerard and Goldbeter 2009). Simultaneously, new disci-

plines like synthetic biology aim at the construction of

synthetic ‘‘biological bricks’’ that perform a well defined

function (Purnick and Weiss 2009) and can then be

assembled together. In this context, the behavior of a sys-

tem must be analysed in the light of its interactions with

other systems [the question of retroactivity (Vecchio et al.

2008) may arise], and the study of large networks as the

interconnection of one or more smaller modules gains full

significance.

The goal of this paper is to revisit the dynamical anal-

ysis of Boolean networks in the light of modular feedback

interconnections. In particular, the following perspectives

will be analysed: (1) develop an algorithm allowing to

compute the attractors and asymptotic dynamics for the

composition of (already known) networks (see Sects. 3, 4,

and 5); (2) understand the dynamical behavior of a network

as the feedback interconnection of two modules; gain

insight on the structure and organization of the whole state

space (see Sect. 2) and its dependence on the updating

strategy. The method proposed in Chaves and Tournier

(2011), and Tournier and Chaves (2013) is based on the

computation of a new object, the asymptotic graph, a

directed graph whose vertices are the products of attractors

of the two (or more) modules that constitute the Boolean

network and the edges are computed from the state tran-

sition graphs of these modules. This method is guaranteed

to recover all the attractors of the large network (Sect. 3)

but, for very particular cases, new spurious attractors may

also be generated. Here, we will first show how to extend

this method to avoid spurious attractors (Sect. 3.2). Sec-

ond, we will show how to compute an asymptotic graph in

the case of synchronous (Sect. 4) or mixed updating

strategies (Sect. 5). Finally, several examples of intercon-

nections of biological systems will be analyzed to illustrate

our methods (Sect. 7).

2 Boolean module feedback
interconnections and useful notation

Our objective is to study the dynamics of Boolean net-

works and their asymptotic behavior, as emergent proper-

ties of the interactions between two smaller separate

networks. Throughout this paper, we would like to answer

the following questions: How are the pathways con-

structed, in a Boolean network composed of different

modules? How to compute the attractors of the large net-

work, depending on updating strategies?

Here, the focus is on synchronous versus asynchronous

strategies, the comparison of their respective dynamical

properties, and implications for the computation of the

network’s pathways and attractors.

Our approach is based on the representation of a Boo-

lean network as the feedback interconnection of two sep-

arate Boolean modules. In fact, in physical and biological

systems, a larger network is often constructed by putting

together smaller, already known modules. To connect the

modules, entry nodes and outgoing variables are needed, so

we will start by introducing input/output Boolean modules

(a notion which is common in control theory (Sontag

1998), for instance).

An input/output Boolean module

RX ¼ ðXX;UX;HX; fX; hXÞ, with nX state variables, pX input

variables, and qX output variables is characterized by:

– state space, XX ¼ f0; 1gnX ,
– input space UX ¼ f0; 1gpX ,
– output space HX ¼ f0; 1gqX ,
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– set of Boolean rules fX : XX � UX ! XX ,

– output function hX : XX ! HX .

For each u 2 UX , the synchronous successor of state x 2
XX is given by xþ ¼ fXðx; uÞ and the output associated to

this state is y ¼ hXðxÞ.
Given two such modules, RA and RB, we will use the

objects above with subscript A or B and the notation

a 2 XA, b 2 XB for the states of each module. Assuming

without loss of generality that pA ¼ qB and pB ¼ qA, a

larger network can be formed by connecting the input of

one system to the output of the other system, i.e., uA ¼
hBðbÞ and uB ¼ hAðaÞ (see Fig. 1). The feedback inter-

connection of the two modules is defined as the system

without outputs or inputs RI ¼ ðXI ;FIÞ with

XI ¼ f0; 1gnAþnB , states x ¼ ða; bÞ and:
FI :¼ XI ! XI ; FIðxÞ ¼ FIða; bÞ ¼ ðfAða; hBðbÞÞ;
fBðb; hAðaÞÞÞ;

ð1Þ

in other words, the synchronous sucessor of x ¼ ða; bÞ is
xþ ¼ ðaþ; bþÞ with aþ ¼ fAða; hBðbÞÞ and

bþ ¼ fBðb; hAðaÞÞ. The dynamical behavior of Boolean

model RI (either synchronous or asynchronous) can be

fully described by a state transition graph, GI , which can

in turn be represented by a 2nI ¼ 2nAþnB matrix. The

asymptotic behavior of the network is given by the at-

tractors of GI , which are sets of states from which trajec-

tories cannot escape.

In the case of large networks (eg., nI [ 20), the exact

computation of the graph GI becomes very costly and not

feasible in practice. Hence, we propose to characterize the

dynamical behavior of RI from the behavior of the two

individual modules RA and RB, by constructing a new

object called the asymptotic graph, Ga. This new graph is

based on a much smaller number of vertices and is less

costly to compute. To do this we will first compute their

state transition graphs denoted by GA;u, one for each input

u 2 UA and GB;v, for each v 2 UB. These graphs can be

constructed either for the asynchronous or synchronous

strategies (see Sects. 3 and 4, respectively).

2.1 Basic definitions and notation

Some notions used through the text are now recalled [see,

for instance, Diestel (2005)]. A directed graph, G ¼ ðV; EÞ
is defined by a set of vertices, V and a set of directed edges,

E, where a directed edge is a pair of ordered vertices,

V1 ! V2.

A directed graph is strongly connected if any pair of

vertices in V is connected by a path (where a path is a

sequence of distinct edges V1 ! V2 ! � � �Vi). Any direc-

ted graph G can be organized into strongly connected

components (SCCs), where an SCC is a maximal strongly

connected subgraph of G. An SCC can contain either a

single vertex or a subset of vertices (it can also contain the

full graph). An SCC C can have incoming or outgoing

pathways, that is a pathway from (or towards) a vertex

V 62 C. An SCC without any outgoing pathways is called

an attractor. In other words, when a trajectory reaches an

attractor it remains inside for all subsequent updating times

and, therefore, distinct attractors represent distinct asymp-

totic behaviors of the system.

The set of attractors of a given graph G is denoted

AðGÞ. The reachable set of a vertex a in G, Rða;GÞ, is the
set of all vertices ~a such that there exists a path connecting

a to ~a in G, a,
G
~a. The reachable set of a subset S � V in G

is the unionRðS;GÞ ¼ [a2SRða;GÞ. Conversely, the basin
of attraction of A 2 AðGÞ in G, BðA;GÞ, is the set of all

vertices a such that there exists a path connecting it to A in

G, a,
G
A.

For a system RX with input m, the state transition graph is
a directed graph, denoted by GX;m ¼ ðXX; EXÞ where the set
of edges is computed from the Boolean rules fX and the

updating strategy. To facilitate notation, m takes values in

lexicographic order, i.e., m 2 f1; 2; . . .; 2pXg where

‘‘1 ¼ 0. . .00’’,‘‘2 ¼ 0. . .01’’, and ‘‘2pX ¼ 11 � � � 1’’.
For each module RX , the state transition graphs GX;m will

have LX;m� 1 attractors denoted Xi
m. To avoid introducing

heavy notation, we will use a 2 Ai
u (or b 2 Bj

v) to name the

elements of GA;u (or GB;v) contained in each attractor.

Table 1 summarizes the notation used for the state

transition graphs and attractors for different modules and

updating strategies.

2.2 A working example

To illustrate our methodology and the differences gener-

ated by the three updating strategies, consider the inter-

connection between two modules, one negative loop and

one double-negative loop:

Fig. 1 A dynamical system RI viewed as the feedback interconnec-

tion of two modules RA and RB
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RA : aþ1 ¼:a2; aþ2 ¼ :u ^ :a1; hAðaÞ ¼ ða1; a2Þ0;
RB : bþ1 ¼v1 ^ :b2; bþ2 ¼ :v2 ^ b1; hBðbÞ ¼ b2;

ð2Þ

where NA ¼ NB ¼ 2, pA ¼ qB ¼ 1, pB ¼ qA ¼ 2. The

interconnected system RI is obtained by setting

u ¼ b2; v1 ¼ a1; v2 ¼ a2: ð3Þ

The state transition graphs under an asynchronous or a

synchronous strategy are shown in Fig. 2. The graphs Ga or

GI will be constructed throughout the following sections.

3 The asynchronous asymptotic graph
method for attractor computation

Once the attractors of all the transition graphs are known, a

new object will be constructed, called the asymptotic

graph, Ga
�, a graph where the vertices are basically all

products of attractors of the form Ai
u � Bj

v and the edges are

computed based on the transition graphs GA;u
� and GB;v

� . The

Ga
� ¼ ðV�; E�Þ is constructed differently depending on the

updating strategy and is next detailed. Note that this

method can be generalized to the interconnection between

three or more modules by appropriately defining input and

output functions (see Tournier and Chaves 2013). For

simplicity, we will discuss only the interconnection

between two modules.

The main results in this paper establish that there is a

correspondence between AðGa
�Þ and AðGI

�Þ which depends

on the updating strategy.

The asymptotic graph for asynchronous updates was first

proposed in Chaves and Tournier (2011) and then further

studied in Tournier and Chaves (2013), and Chaves and

Carta (2015). This section briefly reviews the main results.

3.1 Step-by-step construction

The asynchronous strategy consists in changing exactly one

coordinate at each time step. More precisely, fix u, for each

state compute xþ ¼ fXðx; uÞ and define the set of indices

whose coordinates change:

Iðx; uÞ ¼ fi : xþi � xi 6¼ 0g:

Then, the possible asynchronous successors of x in GX;u
�

are:

Table 1 Summary of notation

used throughout the paper to

name state transition graphs

Updates Modules Full network Asymptotic graph

Graphs Semi-attractors Graph Attractors Graph Attractors

Synchronous GA;u,GB;v
Ai
ua,B

j
vb

GI Qk Ga Qa;k

Mixed GA;u,GB;v
Ai
ua,B

j
vb

GI
mx Qk

mx
Ga

mx Qa;k
mx

Asynchronous GA;u
� ,GB;v

� Ai
ua,B

j
vb

GI
� Qk

� Ga
� Qa;k

�

Three updating strategies will be compared for the analysis of the interconnection of two Boolean modules.

These yield different transition graphs for each module and for the full network and asymptotic graphs. In

the mixed strategy, the modules are synchronously updated. In general, a subscript � will be used for

asynchronous updates, mx will be used for a mixed strategy, and no subscript for synchronous updates. To

avoid an overcharged notation, the semi-attractors are similarly labeled for both asynchronous and syn-

chronous updates, but this is usually clear from the context

Fig. 2 The state transition graphs for modules RA and RB of (2), using a asynchronous or b synchronous updates
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yðx;uÞ 2 fx̂ : x̂i¼ 1� xi; for some i2Iðx;uÞ; x̂j¼ xj; j 6¼ ig:

Step 1: Construct the set of vertices V� The first step of the

asympotic graph method is to divide each attractor of the

modules into subsets of states that have the same output.

These are called semi-attractors of the modules and are

defined as follows. Given A�ı
u 2AðGA;u

� Þ and B�|
v 2BðGB;v

� Þ,
define:

Ai
ua ¼fa 2 A�ı

u : hAðaÞ ¼ boolðaÞg
B
j
vb ¼fb 2 B�|

v : hBðbÞ ¼ boolðbÞg;

where the superscripts i, j range over the total number of

semi-attractors for the module (over all inputs),

i 2 f1; . . .; LA� g, j 2 f1; . . .; LB� g. (Note that i and �ı are not

related but we have u ¼ uðiÞ and a ¼ aðiÞ; we drop these

dependences to simplify notation. A similar observation

holds for j.) The subscripts range over v; a 2 f1; . . .; 2pBg
and u; b 2 f1; . . .; 2pAg, and bool ðmÞ denotes the Boolean
representation of integer m. Observe that some of the semi-

attractors may be empty and are neglected. As an example,

the counting of semi-attractors for system (2) is given in (6)

below.

The vertices of Ga
� are the cross-products of non-empty

semi-attractors:

V� ¼ fAi
ua � B

j
vb : i ¼ 1; . . .; LA� ; j ¼ 1; . . .; LB� g; ð4Þ

where LA� and LB� are the total number of semi-attractors for

modules A and B (respectively), under asynchronous

updates (and the dependences u ¼ uðiÞ,a ¼
aðiÞ,v ¼ vðjÞ,b ¼ bðjÞ are omitted for simplicity).

Step 2: Construct the set of edges E� To satisfy an asyn-

chronous updating strategy, each edge corresponds to the

update of a single module, i.e., only the a (or b) variables

are allowed to change at each edge. Accordingly, only

edges of the following form are considered

Ai
ua � B

j
vb ! Ai

ua � B
~|

a~b
or Ai

ua � B
j
vb ! A~ı

b~a � B
j
vb

ð5Þ

such that one of the modules is fixed at a semi-attractor,

while the dynamics of the other module evolves: in the first

case, the semi-attractor of GA;u
� is fixed while the dynamics

of RB follows the path(s) of b 2 B
j
vb along the graph with

input v ¼ a, GB;a
� . Therefore, there is an edge between the

two vertices if there is a path in the graph GB;a
� that leads

from some state in B
j
vb to some state in B

~|

a~b
. Similarly for

an edge Ai
ua � B

j
vb ! A~ı

b~a � B
j
vb. The set of edges can be

written:

E� ¼ fðV;WÞ 2 V� : V ¼ Ai
ua � B

j
vb and

ðW ¼ Ai
ua � B

~|

a~b
or W ¼ A~ı

b~a � B
j
vbÞ g;

where A~ı
b~a is in the reachable set of Ai

ua in the graph GA;b
�

and B
~|

a~b
is in the reachable set of B

j
vb in the graph GB;a

� .

Step 3: Attractor computation In the asynchronous case,

AðGa
�Þ contains a representative of each of the attractors of

GI
� as was shown in Chaves and Tournier (2011), Tournier

and Chaves (2013):

Theorem 1 (Chaves and Tournier 2011) In the case of

asynchronous networks, if Q� is an attractor of GI
�, then

there exists at least one corresponding attractor in Ga
�,

Qa
� ¼ Qa

�ðQ�Þ. Moreover, if Q1
� 6¼ Q2

� are two distinct

attractors of GI
�, then Qa;1

� ðQ1
�Þ 6¼ Qa;2

� ðQ2
�Þ.

Therefore, all the attractors of the asynchronous GI
� can

be obtained from the attractors of Ga
�. However, it may

happen that some of the attractors of Ga
� are not true

attractors of GI
�, also called ‘‘spurious’’ attractors. The

formation of such attractors is illustrated with the mixed

updating strategy (Sect. 5).

Example For the network (2), the corresponding asyn-

chronous graphs GA;u
� and GB;u

� are shown in Fig. 2a and the

sets of semi-attractors are:

AðGA;1
� Þ : A1

12 ¼f01g;A2
13 ¼ f10g

AðGA;2
� Þ : A3

23 ¼f10g
AðGB;1

� Þ : B1
11 ¼f00g

AðGB;2
� Þ : B2

21 ¼f00g
AðGB;3

� Þ : B3
31 ¼f00; 10g;B4

32 ¼ f01; 11g
AðGB;4

� Þ : B5
41 ¼f10g:

ð6Þ

All semi-attractors are also true attractors, except for B3
31

and B4
32 each containing the states with same output of the

attractor f00; 01; 10; 11g of GB;3
� . There are thus 3� 5 ¼

15 vertices in V�, corresponding to all possible products of

semi-attractors Ai
ua and B

j
vb.

To compute the edges according to (5) consider the

vertex A3
23 � B5

41, for instance, which has three outgoing

edges. First, fix the part A3
23, which is ‘‘forcing’’ system RB

with input 3; hence we need to compute the successor of

B5
41 ¼ f10g in the state transition graph GB;3

� . This graph

contains a cyclic attractor, divided into two semi-attractors

(see Fig. 2a) so trajectories of system RB cycle between

these two, B3
31 and B4

33. This gives the two edges A3
23 �

B5
41 ! A3

23 � B3
31 and A3

23 � B5
41 ! A3

23 � B4
32.

Second, fix the part B5
41 which is forcing system RA with

input 1; the only successor of state A3
23 ¼ f10g in GA;1

� is

A2
13 ¼ f10g. This gives an edge A3

23 � B5
41 ! A2

13 � B5
41.
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In this way, obtain the asymptotic graph shown in

Fig. 3a, which has two attractors:

Qa;1
� ¼ fA1

12 � B2
21g ¼ f0100g

Qa;2
� ¼ fA2

13 � B3
31;A

2
13 � B4

32;A
3
23 � B3

31;A
3
23 � B4

32g
¼ f1000; 1010; 1001; 1011g:

Comparison with GI
� (Fig. 3b) shows that the asymptotic

graph exactly recovers the two attractors of the full inter-

connected system, as expected.

3.2 Extending the asynchronous asymptotic
graph, Gext

*

In the case of the asynchronous asymptotic graph, to

improve its construction and avoid the generation of spu-

rious attractors, the idea is to extend the vertex set V� to
include further components. This new set will be called �V�
and the new asymptotic graph is denoted Gext

� .

An analysis of asynchronous asymptotic graphs with

failures shows that spurious attractors may appear due to

output changes along the pathways followed by the states

of an attractor Ai
u in a state transition graph GA;~u

� with ~u 6¼ u

(see the example in Sect. 5). These pathways and the

corresponding sequence of outputs are ‘‘forgotten’’ in the

construction of Ga
� (which keeps only the final state of the

pathway, by definition).

To identify the appropriate new components, the idea is

to analyze the pathways of each state of each attractor Xi
m

along the other partial graphs GX;~m
� , with ~m 6¼ m, until a

change in the output is detected, as follows (for clarity, the

case of module X ¼ A will be described):

(i) Compute the strongly connected components

(SCCs) of each state transition graph GA;u
� and

its terminal SCCs (or attractors). Collect its

attractors in Au ¼ fAi
u : i ¼ 1; . . .; LA;ug.

(ii) Pick an attractor Ai
u, suppose it contains the states

fr1; . . .; rkg, and look at all the possible forward

pathways for each r‘ in the other graphs GA;~u
� with

~u 6¼ u, for instance,

P‘1 : r‘ ! s1 ! s2 ! � � � ; in GA;~u
� ;

Along each path, each state has its own output

hAðsiÞ.
(iii) For each pathway P‘k of each state r‘, pick the first

state sı̂ that has a different output from r‘, that is

hAðsı̂Þ ¼ ~a 6¼ hAðr‘Þ ¼ a.
(iv) This state sı̂ belongs to some strongly connected

component Su of the graph GA;u
� . Add this SCC to

the set of attractors: Au ¼ Au [ fSug.
Repeat steps (i)–(iv) for all u 2 f1; . . .; 2pAg and then for

module B, for all v 2 f1; . . .; 2pBg, to produce the extended

sets Au and Bv. The next step is to divide each component

of these sets into semi-SCCs with the same output: �Ai
ua ¼

fa 2 �A
�ı
u : hAðaÞ ¼ boolðaÞg and �B

j
vb ¼ fb 2 �B

�|
v : hBðbÞ

¼ boolðbÞg. Collecting all the semi-SCCs into:

SA ¼ f�Ai

ua : i ¼ 1; . . .; �L
Ag; SB ¼ f�Bj

vb : j ¼ 1; . . .; �L
Bg;

the set of vertices for the extended asynchronous asymp-

totic graph is thus:

�V� ¼ f�Ai

ua � �B
j
vb : i ¼ 1; . . .; �L

A
; j ¼ 1; . . .; �L

Bg:

Fig. 3 a The asynchronous asymptotic graph and b the full network state transition graph for the interconnection of modules RA and RB in (2)
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The new set of edges �E� is computed as before (5).

To test this method, we applied it to 750 randomly

generated pairs of modules. The modules have NA ¼ NB 2
f2; 3; 4; 5; 6g and inputs pA ¼ pB 2 f1; 2; 3g. Each module

was obtained by randomly generating the Boolean truth

tables for GX;m
� , m 2 f1; . . .; 2pXg. The results obtained with

this extended method (Fig. 4) indicate that the spurious

attractor problem is solved for about 99.8% of the cases.

However, the new Gext
� is still not exact and it is much

larger to calculate, since jGext
� j[ jGI

�j, except for modules

with larger dimension.

These results also suggest that the addition of other

SCCs to the sets SA and SB will further improve the

asymptotic graph. For instance, by successively adding the

SCCs corresponding to a second or third change of output

along the pathways P‘k .

Indeed, this joins the result shown in Tournier and

Chaves (2013) for another graph construction, called the

cross-graph, Gcr: this graph is constructed from all pairs of

all SCCs of GX;m
� . A theorem shows that there is a bijection

between the attractors of Gcr and GI
� (i.e. Gcr recovers

exactly all attractors of GI
�). This is not surprising, since

Gcr virtually contains all states of GI
�.

The difficulty is that Gcr (and possibly other extensions

of Gext
� ) is as costly to compute as the graph GI

� itself, so it

is not an efficient method for large networks. Nevertheless,

the successive constructions Ga
�, G

ext
� ,..., Gcr provide a clear

illustration of the organization of asynchronous dynamical

behavior.

4 The synchronous asymptotic graph, Ga

To construct the asymptotic graph in the synchronous case,

one could follow a similar reasoning and define the edges

of the asymptotic graph by asking that both the a and b

states change simultaneously:

ðAi
ua;B

j
vbÞ ! ðA

~ı
b~a;B

~|

a~b
Þ:

However, a few examples showed that this strategy may

not only generate spurious attractors (as in the asyn-

chronous case), but also miss finding some of the attractors

of the synchronous GI . This is therefore not a favorable

strategy for constructing a synchronous asymptotic graph.

To improve the construction and guarantee some result,

the asymptotic graph can be constructed according to an

iterative procedure, as follows.

Step 1: Construct the set of verticesW The initial set of

vertices isW0, constructed as in the asynchronous case (4).

Then, given a set of nodes Wk, compute their direct suc-

cessors according to (1) to form Wkþ1:

W0 :¼ fAi
ua � B

j
vb : i ¼ 1; . . .; LA; j ¼ 1; . . .; LBg;

Wkþ1 :¼ fW : W ¼ ðaþ; bþÞ; for ða; bÞ 2 V ;

all V 2 Wkg n ð[k‘¼0W‘Þ
ð7Þ

where LA, LB are the total number of semi-attractors of

modules A and B (respectively) under synchronous

updates, and aþ ¼ fAða; hBðbÞÞ and bþ ¼ fBðb; hAðaÞÞ.
(Since the state space is finite there will eventually be some

k̂ such that W k̂ ¼ ;.) The set of nodes for the synchronous
asymptotic graph Ga is then:

Fig. 4 Performance of the extended asymptotic graph method for

asynchronous networks (darker curves, Gext
� ) and comparison with

original method (lighter curves, Ga
�), for randomly generated modules,

and interconnected networks with pA ¼ 1; 2; 3. Left: the percentage of

failure (i.e., the generation of spurious). Right: the sizes of both

asymptotic graphs relative to the size of the full network GI
�
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W ¼ [k̂�1k¼0 Wk: ð8Þ

Step 2: Construct the set of edges E The set of edges is

based on synchronous updates:

E ¼ fðV ;WÞ 2 W : V ¼ ða; bÞ and W ¼ ðaþ; bþÞ;
V;W 2 Wg:

ð9Þ

As a last remark, in theory, the graph Ga may be as long to

compute as the full graph GI . This is however not the case

in practice (see examples below).

Step 3: Attractor computation In the synchronous case,

since Ga is a subgraph of GI , all attractors of Ga are

guaranteed to be true attractors of GI . It may, however,

happen that not all attractors of the full network are

recovered, in contrast to the asynchronous case.

Theorem 2 In the case of synchronous networks, if Qa is

an attractor of Ga, then Qa contains an attractor of GI .

Proof Let Qa be an attractor of Ga and let BðQaÞ represent
its basin of attraction. Then, by definition of the syn-

chronous asymptotic graph, there is at least one element of

XI of the form V ¼ ðAi
ua;B

j
vbÞ 2 BðQaÞ [since the set of

vertices of Ga containsW0, (7)]. Again, by definition of the

synchronous asymptotic graph, all reachable states from V

in GI , RðV;GIÞ, are also contained in W and, namely, Qa

contains the attractor corresponding to the path in

RðV ;GIÞ. In other words, Qa contains an attractor of GI .h

Example For the network (2), the synchronous transition

graphs GA;u and GB;u are shown in Fig. 2b and the sets of

semi-attractors are:

AðGA;1Þ : A1
11 ¼f00g;A2

14 ¼ f11g;A3
12 ¼ f01g;A4

13 ¼ f10g
AðGA;2Þ : A5

23 ¼f10g
AðGB;1Þ : B1

11 ¼f00g
AðGB;2Þ : B2

21 ¼f00g
AðGB;3Þ : B3

31 ¼f00; 10g;B4
32 ¼ f01; 11g

AðGB;4Þ : B5
41 ¼f10g:

ð10Þ

All semi-attractors are also true attractors, except for two

pairs A1
11 [ A2

14 ¼ f00; 11g and B3
31 [ B4

32 ¼
f00; 01; 10; 11g organized into same-output semi-attrac-

tors. There are thus 5� 5 ¼ 25 vertices in V. According to

the iterative procedure (7), the following four vertices need

to be added: 00� 00, 00� B2
21, A

2
14 � 01, A5

23 � 01. Fig-

ure 5a, represents depicts the synchronous asymptotic

graph which has three attractors:

Qa;1 ¼ A3
12 � B2

21 ¼ f0100g
Qa;2 ¼ fA1

11 � B5
41;A

2
14 � 01;A2

14 � B1
11; 00� 00g

¼ f0000; 0010; 1100; 1101g;
Qa;3 ¼ fA4

13 � B4
32;A

5
23 � B3

31g ¼ f1000; 1010; 1001; 1011g:

Comparison with GI (Fig. 5b) shows that the synchronous

asymptotic graph exactly recovers the attractors of the full

interconnected system.

5 The asymptotic graph for mixed strategy
networks, Ga

mx

The results in Sects. 3 and 4 suggest a natural application

of the asymptotic graph method for mixed-strategy net-

works. Assume that a network RM with graph GI
mx is syn-

chronous in blocks, for instance composed of two groups of

variables, x ¼ ða; bÞ, and within each group a1; . . .; ak or

b1; . . .; b‘ the variables are synchronously updated. The

choice to update either group a or group b is according to

an asynchronous strategy.

To apply the asymptotic graph method, it is intuitive to

partition the network into two modules, each containing

one of the synchronous blocks of variables. For each

module compute the synchronous graphs GX;u and their

corresponding attractors AðGX;uÞ. Using these attractors,

construct the asymptotic graph as in the asynchronous case,

Ga
mx ¼ ðVmx; EmxÞ.
Then, the attractors of Ga

mx will contain (a representative

of) all attractors of GI
mx: AðGa

mxÞ � AðGI
mxÞ. Intuitively,

this is because the attractors of GX;u represent each basin of

attraction of each of the synchronous blocks.

To facilitate the analysis, we now introduce a projection

function, p : AðGX;uÞ ! XX which returns all the states

contained in a given attractor of GX;u and a grouping

function, w : AðGI
mxÞ ! Vmx, which returns all the vertices

of Ga
mx ‘‘contained’’ in an attractor of GI

mx:

wðQÞ ¼ fðAua;BvbÞ 2 Vmx : ða; bÞ 2 Q

where a 2 pðAuaÞ; b 2 pðBvbÞg:

The equivalent of Theorem 1 for a mixed block-syn-

chronous strategy can now be stated. The proof follows the

same argument as in Chaves and Tournier (2011).

Theorem 3 If Q is an attractor of GI
mx, then wðQÞ contains

an attractor of Ga
mx.

Proof Let ða; bÞ 2 Q with a a vertex of RA and b a vertex

of RB. Let a ¼ hAðaÞ, b ¼ hBðbÞ and consider the attractors

Aba0 , Bab0 such that a 2 BðAba0 ;G
A;bÞ, b 2 BðBab0 ;G

B;aÞ.
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Part (a). First, show that wðQÞ is not empty: by the

block-synchronous strategy, we have Rða;GA;bÞ � fbg �
Q and also fag � Rðb;GB;aÞ � Q, which implies

Aba0 � Bab0 2 wðQÞ.
Part (b). To show that wðQÞ contains an attractor of Ga

mx,

it suffices to show that wðQÞ contains all successors of its
elements (in Ga

mx). So let Aua � Bvb 2 wðQÞ. By definition

of the mixed-mode asymptotic graph, its successors are of

the form Aba1 � Bvb or Aua � Bab1 . But, if ða0; b0Þ 2
pðAuaÞ � pðBvbÞ then also ða0; b0Þ 2 Q and, from Part (a),

we have Rða0;GA;bÞ � fb0g � Q and also

fa0g �Rðb0;GB;aÞ � Q. But this implies Aba1 � Bvb 2
wðQÞ and Aua � Bab1 2 wðQÞ, as wanted. h

Example Suppose that the two modules RA and RB given

in (2) are both synchronously updated, but their intercon-

nection is asynchronous. To construct the asymptotic graph

Ga
mx, use the synchronous modules transition graphs GX;u

shown in Fig. 2b and then construct the asymptotic graph

using an asynchronous strategy. In this case, the sets of

semi-attractors are the same as in the synchronous case

(10), so that V has 5� 5 ¼ 25 vertices in Ga
mx. Figure 6a

shows the mixed strategy asymptotic graph which has

three attractors:

Qa;1
mx ¼ fA3

12 � B2
21g ¼ f0100g;

Qa;2
mx ¼ fA1

11 � B1
11;A

1
11 � B5

41;A
2
14 � B1

11;A
2
14 � B5

41g
¼ f0000; 0010; 1100; 1110g;

Qa;3
mx ¼ fA4

13 � B3
31;A

4
13 � B4

32;A
5
23 � B3

31;A
5
23 � B4

32g
¼ f1000; 1010; 1001; 1011g:

However, Fig. 6b shows that the full network GI
mx has only

two attractors, corresponding to Qa;1
mx and Qa;3

mx . It follows

that Qa;2
mx is a spurious attractor, which does not correspond

to any true attractor of GI
mx. To understand the origin of this

spurious result, compare the edges linking the following

equivalent vertices in GI
mx and Ga

mx:

0010 0000

& "
0001

#
1001

A1
11 � B5

41 ! A1
11 � B1

11

"
A1
11 � B4

32

#
A5
23 � B4

32

and note that the edge A1
11 � B5

41 ! A1
11 � B4

32 is not

allowed in Ga
mx, by definition [see edge rule (5)]. Note also

that 0010! 0001! 1001 is the only pathway in GI
mx that

allows transitions from the states in set Qa;2
mx to those in set

Qa;3
mx . The definition of the edges of Ga

mx together with the

lack of redundancy among pathways in GI
mx originates a

spurious attractor in Ga
mx.

As before, this result can be extended to the intercon-

nection between 3 or more synchronous blocks. Further-

more, if the strategy among blocks is asynchronous, it is

clear that each block could follow any updating strategy,

since only its state transition graphs GX;u,

u 2 f1; 2; . . .; 2pXg, are needed to construct the asymptotic

graph.

6 The synchronous versus asynchronous
dynamics dichotomy

The different dynamics induced by synchronous or asyn-

chronous updating strategies is well illustrated through the

construction of the asymptotic graphs.

In practice, we can compute all or most of the attractors

of the interconnected network using only the knowlegde of

the two individual modules, through the computation of a

new graph of (much) reduced dimension, the asymptotic

graph. Each strategy—either updating all variables simul-

taneouly or only one at a time—leads to a different

Fig. 5 a The synchronous asymptotic graph and b the full network state transition graph for the interconnection of modules RA and RB in (2)
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construction for the asymptotic graph and to two appar-

ently opposite results:

AðGIÞ 	 AðGaÞ; AðGI
mxÞ 
 AðGa

mxÞ; AðGI
�Þ 
 AðGa

�Þ:

In asynchronously interconnected networks, it appears that

the information on the asymptotic behavior is completely

included in the state transition graphs of the two separate

modules, and this for any possible pair of modules. The

asymptotic graph scheme may sometimes introduce a false

attractor. Roughly speaking, the asynchronous nature of the

dynamics is reminiscent of a slow/fast timescale separa-

tion: the dynamics within each module is ‘‘fast’’ when

compared to the timescale of the interconnection. Thus, the

asynchronous asymptotic graph contains one representative

of each family of pathways leading to any given attractor.

In some particular cases, the families of pathways are not

adequately represented in Ga
�, thereby leading to the

appearance of a spurious attractor as illustrated by the

example in Sect. 5.

In contrast, in synchronously interconnected networks,

by construction the asymptotic graph contains actual

pathways of GI (those starting from an initial choice of

vertices, W0), so it cannot introduce any spurious attrac-

tors. In synchronous networks, each state has a unique

successor and converges to a single attractor. The basins of

attraction are pairwise disjoint and deterministically asso-

ciated with a unique attractor. So, in general, the attractors

associated to a pair of modules RA, RB for RI may not

sample appropriately all the basins of attraction, hence

some attractors of GI will be ‘‘forgotten’’ in Ga. This is the

case even in straigthforward networks such as the positive

loop of size n� 4.

This difference in the structure of asynchronous and

synchronous networks joins the work of Demongeot et al.

(2010) who have analysed the basins of attraction of syn-

chronous networks, their sizes and the distances between

them, as indicators of robustness. A small distance between

two basins of attraction means that perturbations to an

initial configuration are more likely to induce a switch from

one basin to another, and hence to change the asymptotic

behavior of the network.

The main disadvantage of the asymptotic graph con-

struction is the possibility of generating spurious attractors

in the case of asynchronous updates, or the failure to

recover all attractors under synchronous updates. However,

our tests with randomly generated networks show that these

errors are very small and decrease with size for networks

with some structure (below 2%, see Fig. 7).

A quick comparison of the three stategies is shown in

Fig. 7. Two classes of Boolean functions were considered:

unate cascade functions as characterized in Jarrah et al.

(2007), and Horn functions as characterized in Crama and

Hammer (2011), for n variables:

Unate cascades: f ðxÞ ¼ x̂rð1Þ�1
x̂rð2Þ �2 . . . x̂rðn�1Þ �n�1 x̂rðnÞ

� �
. . .

� �� �
;

Horn functions: f ðxÞ ¼
_m

i¼1

^

j2Pi

xj
^

k2Qi

:xk

 !

where r is a permutation of f1; . . .; ng, x̂ is either x or:x, and
�i represents either the logical AND or the logical OR; for

Horn functions 1�m� 6, 0� jPij � n and 0� jQij � 1, that

is, each term in a Horn function has at most one negated

variable. To generate Horn functions, the integers m, jPij,

Fig. 6 a The mixed updates asymptotic graph and b the full network state transition graph for the interconnection of modules RA and RB in (2)
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and jQijwere randomly chosen out of a uniform distribution

in the given intervals. To obtain unate cascade functions, a

permutation and a sequence of n� 1 logical operations were

randomly generated from uniform distributions. A total of

500� 5 networks were randomly generated as pairs of

modules with NA ¼ NB 2 f3; 4; 5; 6; 7g and Nin ¼ 2, for

each class (each symbol corresponds to an average over 500

networks). For each of these networks, we computed the

three asymptotic graphs and the full interconnected graph

and compared the attractors. It is immediate to observe that

the asynchronous strategy gives the most accurate results,

with the lowest percentage of errors.

For the analysis of large networks, it is clear that syn-

chronous updates have a lower computational cost. Thus, in

view of Sect. 5, the most advantageous solution is to use a

mixed strategy for analysis of interconnections: consider

synchronous individual modules and then construct an

asynchronous asymptotic graph. In cases where each indi-

vidual module has its own time-scale and their communi-

cation happens at a slower pace, mixed strategies are a good

option.

7 Composition of biological networks
by feedback interconnection

A recurrent problem in biology is to study the emergent

dynamics arising from the coupling of two or more dif-

ferent phenomena (Gerard and Goldbeter 2009; Baldazzi

et al. 2010). Although many biological phenomena are

currently represented by mathematical models, there are no

specific tools to systematically explore the interconnections

between two existing models. Our asymptotic graph

method addresses this problem by providing a framework

to analyse the joint dynamics of two known networks.

Given two or more previously developed models, our

method requires only an investigation of the input-output

connections between the two networks (in Fig. 1, finding

u ¼ hBðbÞ and v ¼ hAðaÞ).
To illustrate our method, four pairs of Boolean networks

that model distinct phenomena in several organisms have

been coupled to analyze the corresponding joint dynamics.

These pairs are listed in Table 2 by order of size/com-

plexity. (For a complete description and construction of the

models, please refer to the bibliography cited in the Table.)

Following the discussion on Sect. 6, we will consider

synchronous modules and then compare the synchronous

and mixed asymptotic graphs.

The notation used throughout these examples is the

same as before, using the lexicographical order for Boolean

numbers: A3
25 means that this semi-attractor belongs to the

graph GA;2, it has input ‘‘2’’ (Boolean 001) and output ‘‘5’’

(Boolean 100). The superscript ‘‘3’’ means that it is semi-

attractor number 3 in the total count of semi-attractors of

module A.

Fig. 7 Performance of the

asymptotic graph method for

synchronous (blue curves),

mixed (black curves), or

asynchronous (red curves)

interconnected networks. We

considered two classes of

networks: Horn Boolean

functions (left column) and

unate cascade functions (right

column). For each class and

each NA, 500 networks were

generated, formed by a pair of

modules of equal size NA ¼
NB 2 f3; 4; 5; 6; 7g and Nin ¼ 2.

For the three strategies, the

corresponding full graphs and

asymptotic graphs were

computed. The plots compare

percentage of failures (top) and

the sizes of the asymptotic

graph relative to the size of the

full network, jGaj=jGI j
(bottom). (Color figure online)
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7.1 The cyanobacteria example

Circadian rhythms in cyanobacteria are widely studied and

the corresponding mechanism is very well known: it is

characterized by an ordered sequence of phosphorylations

in the protein Kai C under the regulation of another protein,

Kai A. This mechanism can be faithfully reproduced

in vitro [see Rust et al. (2007) and references therein]. In

living cyanobacteria, the clock mechanism interacts with

the transcription/translation cycle (TTC) (Dong et al.

2010).

The two cyanobacteria modules The Boolean clock

mechanism (RA) was developed in Chaves and Preto

(2013) and a simple TTC circuit is composed by unphos-

phorylated protein Kaic C (CU) and its mRNA (R), and a

‘‘lumped’’ protein P closes the circuit:

RA :

Aþ1 ¼ :CS _ A2

Aþ2 ¼ :CS ^ A2

CþT ¼ u ^ A1

CþTS ¼ A1 ^ CT

CþS ¼ :A2 ^ CTS

RB :

Rþ ¼ :v ^ :P
CþU ¼ R

Pþ ¼ CU

Based on (Dong et al. 2010), the interactions are as fol-

lows (see Fig. 8):

u ¼ hBðbÞ ¼ CU ; v ¼ hAðaÞ ¼ CT _ CTS:

Computation of the state transition graphs for each module

shows that there are five semi-attractors for each module,

as follows:

GA;1 : A1
11 ¼ f10000g; A2

11 ¼ f11000g;
GA;2 : A3

21 ¼ f00000; 00001; 10000g;
A4
22 ¼ f00111; 10100; 10110; 10111g;

A5
22 ¼ f11110g;

ð11Þ

and

GB;1 : B1
11 ¼ f000; 001; 100g; B2

12 ¼ f011; 110; 111g;
B3
11 ¼ f101g; B4

12 ¼ f010g;
GB;2 : B5

21 ¼ f000g;
ð12Þ

Note that A3
21 [ A4

22 form an attractor of RA (under input 2),

which corresponds to the circadian clock oscillatory orbit:

00000! 10000! 10100! 10110! 10111! 00111

! 00001! 00000

where the Kai C protein is sequencially phosphorylated on

its site T (10100), then T and S (10110), then only on site

S (10111), which inhibits Kai A (00111), leading to repeat

the cycle. Similarly, the attractor B1
11 [ B2

12 represents the

full TTC cycle with Kai C mRNA production (100) fol-

lowed by protein production (110), which induces the full

pathway (111) and leads to cycle repetition.

The cyanobacteria synchronous asymptotic graph

Computation of the synchronous asymptotic graph leads to

the transition graph shown in Fig. 9. This graph contains 52

states (instead of the 28 ¼ 256 of the full interconnected

system), represented by products of semi-attractors or

states a� b (i.e., Boolean states a of RA and b of RB) and

two cyclic attractors:

Table 2 Composition of pairs of Boolean networks

Organism System A (NA) System B (NB) References

Cyanobacteria Clock (5) TTC (3) Chaves and Preto (2013), Dong et al. (2010)

Mammalians Cell cycle (10) Clock (7) Fauré et al. (2006), Comet et al. (2012)

Vertebrates T helper A (10) T helper B (13) Mendoza and Xenarios (2006)

Arabidopsis thaliana Cell cycle (14) GHRN (16) Ortiz-Gutiérrez et al. (2015), Garcı́a-Gomez et al. (2017)

The size of each module is given in parentheses (NA and NB state the number of variables). The last column lists the references where the original

Boolean networks are constructed

Fig. 8 The interconnected cyanobacteria clock (left) and transcrip-

tion/translation cycle (right). Bold blue arrows denote input/output

connections. The protein KaiA affects KaiC-S (CS) at a different rate

than KaiC-T (CT ) and KaiC-TS (CTS). Therefore, KaiA is represented

by two variables, A1 (low KaiA level) and A2 (high KaiA level). The

unphosphorylated protein Kai C is denoted by CU . (Color

figure online)
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Qa;1 : 00000 � 100! 10000� 110! 10100� 111

! 10110� 011! 10111� 001!
! 00011� 000! 00001� 000! � � �

Qa;2 : 11000� 100! 11000� 110! 11100� 111

! 11110� 011! 11110� 001!
! 11010� 000! 11000� 000! � � � :

The first attractor oscillates simultaneaously through the

clock and TTC orbits (except that 00111 is replaced by

00011, an equivalent state at this step), showing that the

interconnected system has synchronized clock and tran-

scription/translation oscillations, as expected for wild type

cells.

The second attractor still cycles through TTC but the

clock evolves among states which contain a high concen-

tration of protein Kai A (A2
11 and A5

22), thus preventing the

formation of CS and subsequent re-initialization of the Kai

proteins phosphorylation cycle. Such dynamics can indeed

be observed experimentally (Rust et al. 2007): a high

expression of Kai A prevents circadian clock oscillations.

The cyanobacteria mixed mode asymptotic graph To

compare updating strategies, the mixed mode asymptotic

graph is shown in Fig. 10. It is composed of 25 states (only

products of semi-attractors) and also contains two

attractors:

Fig. 9 The synchronous asymptotic graph of the Kai proteins interconnection. Dark shaded states belong to an attractor

Fig. 10 The mixed mode asymptotic graph of the Kai proteins interconnection. Dark shaded states belong to an attractor
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Qa;1
mx ¼fA1

11 � B1
11;A

1
11 � B2

12;A
1
11

� B5
21;A

3
21 � B2

12;A
3
21 � B1

11;A
4
22 � B2

12;A
4
22 � B5

21g
Qa;2

mx ¼fA5
22 � B2

12;A
5
22 � B5

21;A
2
11 � B2

12;A
2
11

� B5
21;A

2
11 � B1

11g:

From Eqs. (11) and (12), observe that attractors Qa;i
mx corre-

spond to attractorsQa;i.Merging semi-attractors that belong to

the same attractor,Qa;1
mx has the following compact dynamics:

A4
22 � B5

21  A3
2� � B1

1�
# "#

A1
11 � B5

21 ! A1
11 � B1

1�

meaning that there is (as in the synchronous asymptotic

graph) a simultaneous clock and TTC oscillation (A3
2� � B1

1�),

but also the possibility that the clock oscillator still follows a

clear sequence with Kai C successively phosphorylated in its

three possible combinations (A4
22) and then all unphospho-

rylated (A1
11), while the TTC is arrested (fixed at B5

21). This

last case may represent a situation where protein production

is slower or has a higher period than the clock.

7.2 Mammalian example

The interactions between the mammalian cell cycle and

circadian clock are currently generating a large amount of

interest in biology, as the progress in single cell measure-

ments allows answering specific questions (Feillet et al.

2014). These new experiments are uncovering unexpected

bi-directional links between the two modules.

The two mammalian modules The cell cycle Boolean

model (module RA) is taken from Fauré et al. (2006) and

has the following variables:

CycDþ¼CycD

Rbþ¼ð:CycD^:CycE^:CycA^:CycBÞ
_ðp27^:CycD^:CycBÞ

E2Fþ¼ð:Rb^:CycA^:CycBÞ_ðp27^:Rb^:CycBÞ
CycEþ¼:u^ðE2F^:RbÞ
CycAþ¼ðE2F^:Rb^:Cdc20^:ðCdh1^UbcÞÞ

_ðCycA^:Rb^:Cdc20^:ðCdh1^UbcÞÞ
p27þ¼:CycD^:CycE^:CycA^:CycB

Cdc20þ¼CycB

Cdh1þ¼ð:CycA^:CycBÞ_Cdc20_ðp27^:CycBÞ
Ubcþ¼:Cdh1_ðCdh1^Ubc^ðCdc20_CycA_CycBÞÞ

CycBþ¼:Cdc20^:Cdh1;
ð13Þ

as described in Fauré et al. (2006), where CycX represent

the four cyclins involved in the cell cycle. The clock model

(module RB) is based on (Comet et al. 2012):

BMALþ ¼ :PCnuc
mPERþ ¼ :v ^ BMAL

mCRYþ ¼ :v ^ BMAL

pPERþ ¼ mPER

pCRYþ ¼ mCRY

PCþ ¼ pPER ^ pCRY

PCnucþ ¼ PC:

In the clock model, mX and pX denotes mRNA and protein

corresponding to gene X, while PC denotes the complex

formed by the proteins PER and CRY, and PCnuc denotes

this complex in the nucleus.

Testing interactions between modules Although there

are currently many questions on the form of interaction

between mammalian cell cycle and circadian clock (Feillet

et al. 2015), it seems clear that clock’s BMAL acts on the

cell cycle, possibly at different stages. Conversely, no

conclusive biological knowledge exists on how the cell

cycle may affect the clock. To include a basic link, we have

considered that during mitosis all gene expression is

arrested (in this model, mitosis can be modeled as

Cdc20 ^ CycB). The interconnection between modules is

thus given by (see Fig. 11):

u ¼ hBðbÞ ¼ BMAL; v ¼ hAðaÞ ¼ Cdc20 ^ CycB:

BMAL acts negatively during G1, S or M-phases of the cell

cycle. We analyzed three different interconnection models,

one for each of these possibilities, and compared the results

(see Table 4). The three cases give similar results in terms

of joint behavior. For a closer analysis consider, for

instance, BMAL acting during G1 (here represented by a

Fig. 11 The interconnected mammalian cell cycle [left, adapted from

(Fauré et al. 2006)] and clock [right, adapted from (Comet et al.

2012)]. Bold blue arrows denote input/output connections. (Color

figure online)
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negative efect on cyclin E). In this case, the attractors of

each module are:

GA;1 :A1
11 ¼ f0100010100g;

A2
11 ¼ f1000001110; 1000100011; 1001100000;

1010000110; 1011000100; 1011100100g;
A3
12 ¼ f1000101011g;

GA;2 :A4
21 ¼ f0100010100g;

A5
21 ¼ f1000001110; 1000100000; 1000100011;

1010000100; 1010000110; 1010100100g;
A6
22 ¼ f1000101011g;

GB;1 :B1
11 ¼ f0000000; 0000001; 0000011; 0001111; 0111111g;

B2
12 ¼ f1000000; 1110000; 1111100; 1111110; 1111111g;

B3
11 ¼ f0000010; 0001101; 0110000; 0110011; 0111110g;

B4
12 ¼ f1000001; 1001100; 1001111; 1110010; 1111101g;

B5
11 ¼ f0001100; 0001110; 0110001; 0111100; 0111101g;

B6
12 ¼ f1000010; 1000011; 1001110; 1110001; 1110011g;

B7
11 ¼ f0110010g;B8

12 ¼ f1001101g;
GB;2 :B9

22 ¼ f1000000g

As expected, the attractors of the graph GA;1 correspond

exactly to those listed in Fauré et al. (2006). Attractors A1
11

and A4
21 correspond to the quiescent cell state while the

(full) attractor A2
11 [ A3

12 corresponds to the known cell

cycle progression. A similar cycle is also recovered in GA;2,

with the difference that states 1001100000, 1011000100,

and 1011100100 are replaced, respectively, by

1000100000, 1010000100, and 1010100100: the Boolean

sequence of the latter three equals that of the former three

except in the 4th digit, which is set to 0. This is because

u ¼ 2 implies CycEþ 
 0 (and CycE is the 4th variable). In

both cases, the semi-attractors A3
12 and A6

22 represent

mitosis.

The clock mechanism admits a single steady state (B9
22)

in the case v ¼ 2, which corresponds to mitosis. This

makes sense, as all gene expression is arrested. Outside

mitosis (case v ¼ 1), there are four different oscillatory

cycles (B1
11 [ B2

12, B3
11 [ B4

12, B5
11 [ B6

12, and B7
11 [ B8

12)

where only the first two correspond to circadian

oscillations.

Mammalian synchronous and mixed mode asymptotic

graphs Among the different interaction schemes tested, all

allow at least one cycle that captures joint oscillations of

cell cycle and clock. For the scheme where BMAL affects

CycE (13), the synchronous asymptotic graph has five

attractors, but only one of these recovers joint oscillations

(Q2), all others corresponding to a quiescent cell with

oscillatory clock (see Fig. 12):

Fig. 12 The five attractors of the synchronous asymptotic graph of the mammalian modules interconnection
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Qa;1 ¼ A4
21 � ðB7

11 [ B8
12Þ

Qa;2 ¼ 1000100000� 1110001; 1000100011f
� 0111100; 1000101011� 1001110; 1000001110

� 1000011;

1010000110� 0110001; 1011000100

� 0001100; 1011100100� 1000010g
Qa;3 ¼ ðA1

11 [ A4
21Þ � ðB3

11 [ B4
12Þ

Qa;4 ¼ ðA1
11 [ A4

21Þ � ðB1
11 n f0000000g [ B5

11 [ B9
22 [ B2

12Þ
Qa;5 ¼ ðA1

11 [ A4
21Þ � ðB5

11 [ B6
12Þ

Attractor Qa;2 represents a joint oscillatory solution taking

specific pairs (a, b) with a 2 A2
11 [ A3

12 or a 2 A5
21 [ A6

22

and b 2 B5
11 [ B6

12.

The mixed mode graph has also five attractors, which

correspond to each of Qa;i. In fact, we can see from Fig. 13

that there is set equality Qa;i ¼ Qa;i
mx for i ¼ 1; 3; 4; 5 but

strictly inequality for Qa;2 � Qa;2
mx .

The attractors Qa;i i ¼ 1; 3; 4; 5 represent quiescent cells

with ongoing circadian oscillations [as observed in hair

cells (Plikus et al. 2013)], while Qa;2 represents the joint

cell division cycle and clock oscillatory behavior. The

mixed mode asymptotic graph shows how this joint

behavior emerges from the combination of the module’s

periodic orbits (see left attractor in Fig. 13). Merging semi-

attractors that belong to the same attractor, Qa;2
mx can be

represented in the compact form:

A3
12 � B9

22  A2
1� � B1

1�
# "#

A5
2� � B9

22 � A5
2� � B1

1�

where A2
1� ¼ A2

11 [ A3
12, A5

2� ¼ A5
21 [ A6

22, and

B1
1� ¼ B1

11 [ B2
12. The cell cycle and clock may jointly

oscillate and alternate states with a regular cycle of cyclin

E (present mostly through S phase and mitosis) or even-

tually switch to a joint cycle with absence of cyclin E.

However, at mitosis (A3
12), the clock may switch to its

steady state (B9
22), which leads directly to a full degradation

of cyclin E in the cell cycle (A5
2�).

7.3 T helper cells regulatory network

The third example analyzes the regulatory network devel-

oped in Mendoza and Xenarios (2006) to describe the

differentiation of T helper cells, which are part of the

vertebrate immune system, into one of three classes: Th0

precursor cells and Th1, Th2 effector cells. Network

reconstruction is discussed in Mendoza and Xenarios

(2006), it involves 19 variables and four external input

variables, Xe 2 fIFNb; IL12; IL18; TCRg. For the analysis

in Mendoza and Xenarios (2006), these four inputs are all

set to 0 but here, these external inputs are treated as con-

stant variables, setting Xþe ¼ Xe to allow for greater gen-

erality in the results. Thus, the 23 variable network was

first split into two modules, of 10 and 13 variables,

respectively:

Fig. 13 The five attractors of the mixed mode asymptotic graph of the mammalian modules interconnection. Left: Q2
mx
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RA :

GATA3þ ¼ ðGATA3 _ STAT6Þ ^ :Tbet
IFNbþ ¼ IFNb

IFNbRþ ¼ IFNb

IL4þ ¼ GATA3 ^ :STAT1
IL4Rþ ¼ IL4 ^ :SOCS1
JAK1þ ¼ u ^ :SOCS1
SOCS1þ ¼ STAT1 _ Tbet

STAT1þ ¼ IFNbR _ JAK1

STAT6þ ¼ IL4R

Tbetþ ¼ ðSTAT1 _ TbetÞ ^ :GATA3

RB :

IFNcþ ¼ ðIRAK _ NFAT _ STAT4 _ v3Þ ^ :STAT3
IFNcRþ ¼ IFNc

IL10þ ¼ v1

IL10Rþ ¼ IL10

IL12þ ¼ IL12

IL12Rþ ¼ IL12

IL18þ ¼ IL18

IL18Rþ ¼ IL18 ^ :v2
IRAKþ ¼ IL18R

NFATþ ¼ TCR

STAT3þ ¼ IL10R

STAT4þ ¼ IL12R ^ :v1
TCRþ ¼ TCR

where the interconnection between modules is given by:

u¼ hBðbÞ¼ IFNcR; v¼ hAðaÞ¼ ðGATA3;STAT6;TbetÞ0:

Module A is single input and has the following 12 semi-

attractors:

GA;1 : A1
11 ¼ f0000000000g; A2

12 ¼ f0000001001g;
A3
12 ¼ f0110001101g; A4

17 ¼ f1001100010g;
A5
15 ¼ f1110001100g;

GA;2 : A6
22 ¼ f0000001001g; A7

22 ¼ f0110001101g;
A8
25 ¼ f1000001000; 1001000000; 1001110000g;

A9
27 ¼ f1000001110; 1000111110; 1001110110g;

A10
25 ¼ f1000111000g; A11

27 ¼ f1001000110g;
A12
25 ¼ f1110001100g:

Module B has 3 inputs, and therefore eight fixed input

graphs GB;v, with altogether 64 single state attractors (not

listed here).

For the interconnection of the two systems, the syn-

chronous and mixed asymptotic graphs give similar results,

both with 33 single state attractors, which can be divided

into the following five groups:

A1
11 � B1

11 ¼ f0000000000g � f0000000000000g;
A4
17 � f0011 � � � 00 � 10�g; A5

15 � f0011 � � � � � �10�g;
A6
22 � f1100 � � � � � �0 � �g; A7

22 � f1100 � � � � � �0 � �g;

where the symbol � indicates that the corresponding digit

may equal either 0 or 1. In the particular case where all the

external input variables are set to 0, Xe 
 0, there are only

3 attractors for the full T helper cell regulatory network, as

expected. Indeed, this was the only case considered in

Mendoza and Xenarios (2006), which lists the three

attractors corresponding to the three T helper cell pheno-

types, Th0, Th1, and Th2.

Our analysis was more general, since the four external

input variables (Xe) were allowed to take all possible

combinations of 0,1 values, leading to a total of 33 distinct

attractors for the T helper cell network. However, notice

that these attractors follow some specific patterns, and five

distinct groups can be identified, according to the cytokines

expressed or not in each attractor. Furthermore, each group

of attractors can then be classified as a representative of a

distinct T helper cell phenotype, as a function of 10

cytokines and proteins that typically discriminate between

the phenotypes.

As summarized in Mendoza and Xenarios (2006), pre-

cursor T helper cells, or Th0, do not produce any of the

cytokines represented in this model. The interconnected

network ðRA;RBÞ describes the differentiation into the two

types of effector cells. Th1 type cells are characterized by

high expression of cytokine IFNc, protein SOCS1, and

transcription factor Tbet. In contrast, the dominant char-

acteristic of Th2 cells is a high expression of cytokine IL4

and its receptor IL4R. It is known that SOCS1 inhibits the

IL4 pathway, hence SOCS1 is hardly present in Th2 cells.

Moreover, it appears that GATA3 forms a positive feed-

back loop with IL4, hence it is also expressed in Th2 cells.

Another cytokine, IL10, is also observed in Th2 cells: its

expression is enhanced by IL4 and depends on the presence

of STAT3.

Indeed, all the cytokines and proteins that distinguish

between effector cell types are constant in each of the five

attractor families, as seen in Table 3. Concerning the

external inputs, only IFNb has constant expression in each

group.

It is clear that A1
11 � B1

11 represents precursor cells, Th0,

with no expressed variables. There are two attractor groups

(columns five and six) that correspond to Th1 phenotype,

with all the required proteins expressed: IFNc, IFNc,
SOCS1, and Tbet. There is one group (column three) which

exactly corresponds to phenotype Th2, as it expresses both

IL4, IL10 and their receptors, as well as GATA3 and

STAT3.
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A fifth attractor group (column four) is identified, rep-

resenting an intermediate type of cell which we classified

as ‘‘pre-Th1’’ cell phenotype. While this group expresses

most of Th2 characteristic proteins, it also expresses the

Th1 protein SOCS1, which inhibits the dominant protein in

Th2, IL4. Therefore, this group of attractors cannot be said

to represent Th2. One of the differences between Th2 and

Th1p is in the fact that Th1p is stimulated by external input

IFNb. Experimental evidence (Baccala et al. 2008) shows

that IFNb promotes Th1 cell maturation, by increasing

IFNc production.

The T helper cell network does reproduce this fact, as

shown in Fig. 14: since both GATA3 and Tbet have self-

loops, it suffices to apply a perturbation (to Tbet for

instance) to invert the expression levels of GATA3 and

Tbet, which will in turn lead to the expression of the other

proteins in a Th1 phenotype. Conversely, it can also be

remarked that suppression of external input IFNb will lead

to loss of SOCS1 expression and subsequent de-repression

of IL4R, which would determine a Th2 phenotype.

As a final remark, it can be noted that Th1 phenotype

exists both in the presence and absence of the external

input IFNb. However, Th2 phenotype can only exist in the

absence of IFNb, as expected from experimental evidence

(Baccala et al. 2008).

7.4 Arabidopsis thaliana example

In the last two years, two fundamental Arabidopsis thali-

ana signaling networks have been developed using Boo-

lean models, one comprehensively representing the cell

cycle (Ortiz-Gutiérrez et al. 2015) and another studying the

formation of the root apical meristem (RAM) through a

genetic-hormonal regulatory network (GHRN) (Garcı́a-

Gomez et al. 2017). Both have about 15 Boolean variables

(we will not reproduce the Boolean networks here, as they

are easily accessible through these references) the first has

only one attractor while the later has 17. Several points of

possible interactions between these two networks are dis-

cussed in Garcı́a-Gomez et al. (2017), notably two main

actions of components of GHRN on the cell cycle: the first

through auxin which modulates the transition from mitotic

to endocycle in Arabidopsis, and the second through

cytokinin which promotes the expression of an APC acti-

vator in the root meristem. In the GHRN1 model, auxin is

represented by WOX5 (transcription factor Wuschel-re-

lated-homeobox-5) and cytokinin by ARR2 (Arabidopsis

Response Regulator 2) . The action of the cell cycle on the

GHRN was again represented by arresting all gene

expression during mitosis, here modeled by APC ^ CycB.

The interconnection between modules is thus given by:

u ¼ hBðbÞ ¼ ½ARR2;WOX5�0; v ¼ hAðaÞ ¼ APC ^ CycB

where u inhibits expression of the five genes in GHRN1:

SHORT-HYPOCOTYL2 (SHY2), SHORTROOT (SHR),

SCARECROW (SCR), JACKDAW (JKD), and MAGPIE

(MGP). Conversely, v1 positively affects APC and v2
negatively affects cyclin D.

Table 3 Classification of

attractors into T helper cell

phenotypes

Variable A1
11 � B1

11 A4
17� A5

15� A6
22� A7

22�
f0011 � � � 00 � 10�g f0011 � � � � � �10�g f1100 � � � � � �0 � �g f1100 � � � � � �0 � �g

IFNc 0 0 0 1 1

IFNcR 0 0 0 1 1

IL10 0 1 1 0 0

IL10R 0 1 1 0 0

IL4 0 1 0 0 0

IL4R 0 1 0 0 0

STAT3 0 1 1 0 0

GATA3 0 1 1 0 0

SOCS1 0 0 1 1 1

Tbet 0 0 0 1 1

IFNb 0 0 1 0 1

Cell type Th0 Th2 Th1p Th1 Th1

Fig. 14 Partial visualization of the T helper cell network, containing

only the nodes and edges involved in maturation of Th1p towards Th1

or Th2, as discussed in Sect. 7.3. RA nodes are coloured red and RB

nodes are coloured green. Dashed arrows denote a simplified

pathway, composed of several steps. (Color figure online)
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As expected, the transition graphs GA;1 and GB;1 have

exactly the same attractors obtained in Ortiz-Gutiérrez

et al. (2015), and Garcı́a-Gomez et al. (2017). The mixed

mode asymptotic graph Ga
mx has seven attractors, of the

form:

Qa;k‘
mx :

A1
11 � Bk

11  A1
11 � B‘

21

"# "#
A2
12 � Bk

11 ! A2
12 � B‘

21

;

Qa;QC
mx ¼ A3

21 � B6
12

ð14Þ

where A1
11 [ A2

12 is the cell cycle attractor (Ortiz-Gutiérrez

et al. 2015) and A3
21 is an attractor representing quiescent

cells, and satisfying E2Fa ¼ 1, SCF ¼ CycB ¼ CycA ¼ 0.

The attractors B‘
vb represent some well known hormonal

activity profiles, as listed in Garcı́a-Gomez et al. (2017):

B6
12 : Quiescent center cells, QC

B13
11;B

20
21 : Central pro-vascular tissues, in

Meristem Transition Domain (C. Prov. TD3)

B14
11;B

21
21 : Root Cap (R.C. 2)

B15
11;B

22
21 : Cyclic attractor 2

B16
11 : Central pro-vascular tissues, in Meristem

Transition Domain (C. Prov. TD1)

B17
11 : Root Cap (R.C. 1)

B18
11 : Cyclic attractor 1

B23
11 : C. Prov. TD1, with SHY2=0

B24
11 : R.C. 1, with SHY2=0

B25
11 : Cyclic attractor 1, with SHY2=0

The mixed mode asymptotic graph thus predicts that the

interconnected cell cycle / GHRN1 network will have

seven possible types of asymptotic behavior, character-

ized by (14), where the pairs ðk; ‘Þ 2 fð13; 20Þ;
ð14; 21Þ; ð15; 22Þ; ð16; 24Þ; ð17; 25Þ; ð18; 23Þg . There is a

quiescent cell steady state A3
21 � B6

12, where cell cycle is

arrested. All other dynamical behaviors consist of a normal

cell cycle together with a hormonal profile coresponding

either to Root Cap formation or to central pro-vascular

tissues, in the transition domain (TD) of the root apical

meristem. The synchronous asymptotic graph obtains all

attractors in (14) as well as some variations around the

quiescent cell state Qa;QC
mx (not shown).

8 Discussion and conclusions

The state transition graph of a large network is a compu-

tationaly expensive object, especially for asynchronous

networks. Likewise, computing the attractors of large

Boolean networks is a NP-hard problem (Akutsu et al.

2011; Hong et al. 2015). Here, we proposed a new method

that computes the attractors of large Boolean networks

which are constructed by assembling together sets of

smaller, already known, modules, as is often the case in

physics or biology, for instance.

Theoretical advantages The asymptotic graph for the

feedback interconnection of two modules is a new object

computed using only the state transition graphs and

attractors of each of the modules. This is a much less

demanding state transition graph to compute, as attested by

our studies.

Other methods are very fast in computing all singletons

for very large networks (up to � 1000 variables) (Veliz-

Cuba et al. 2014), or very efficient in computing most

types of attractors (up to � 100 under variables) (Zañudo

and Albert 2013) but our method is guaranteed to recover

all attractors both singletons and cyclic attractors in the

case of asynchronous updates. In addition, it sheds light on

Boolean organization and the role of synchronous, asyn-

chronous, or mixed updates.

An interesting observation is the complementarity of the

synchronous and mixed mode asymptotic graphs, as par-

ticularly illlustrated by the mammalian example: the mixed

mode asymptotic graph recovers the general structure of

the atttractors in terms of the modules’ attractors, while the

synchronous asymptotic graph provides details of the state

sequence within an attractor. The mixed asymptotic graph

can be interpreted as the graph of a network, formed by an

interconnection of two modules, where the dynamical

timescale of each module is faster relative to the timescale

of communication between modules. This property is often

observed in the analysis of biological processes: fast

metabolism / slow gene expression; fast post-translational

processes/slow transcription.

Synchronous modules with asynchronous interconnec-

tions The dichotomy between asynchronous and syn-

chronous networks shows that, from a dynamical point of

view, the asymptotic behavior of an asynchronous network

can be fully predicted by that of its component modules

(any pair). In contrast, a synchronous interconnection can

generate new asymptotic behavior, not predicted by its

component modules (some pairs). In fact, the asynchronous

strategy ensures that any partition of a network contains

representatives of each basin of attraction while under the

synchronous strategy some network partitions fail to rep-

resent all basins of attraction, hence some attractors are
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‘‘forgotten’’. In other words, the asymptotic graph method

is guaranteed to give exact results whenever W0 (of Ga)

contains a representative of each basin of attraction in the

synchronous case or Ga
� contains a representative of each

family of pathways leading to an attractor.

The dynamical behavior of large networks is less costly

to evaluate with synchronous updates. Our results suggest

that an interesting coupling strategy is to use the mixed

asymptotic graph method: each network module is evalu-

ated according to a synchronous updating strategy (or any

other, since only the state transition graphs of the modules

are needed), and then the two networks are interconnected

through an asynchronous asymptotic graph, which guar-

antees computation of all attractors of the full network and

is much smaller than a synchronous asymptotic graph (see

Table 4).

A method for analysis of emergent behaviors State-of-

the-art mathematical models are presently available for a

large selection of biological phenomena. One of the next

steps in mathematical biology is to study the emergent

dynamics arising from the coupling of two or more dif-

ferent models and thus predict the joint effects of two

known biological processes. Our asymptotic graph method

is an ideal framework to analyse emergent phenomena due

to the coupling of previously studied networks. Indeed,

given the state transition graphs of each module network

(computed according to any updating strategy), an advan-

tageous method is to adopt an asynchronous strategy for

the coupling of the two modules. This will preserve the

specific dynamics of each module and construct an

asymptotic graph that recovers all the emergent behavior of

the fully interconnected network. As illustrated by several

examples throughout different organisms, the (mixed)

asymptotic graph method is a powerful tool for studying

the interaction between two known networks and predict-

ing their joint behavior. As in the mammalian or vertebrate

T helper cell examples, our method is also useful for

interrogating models and testing new hypotheses, thereby

checking the validity of the proposed interaction

mechanisms.

Acknowledgements M. Chaves was partially supported by the French

agency for research through Project ICycle ANR-16-CE33-0016-01.

D. Figueiredo and M. A. Martins are partially supported by the ERDF

European Regional Development Fund through the Operational Pro-

gramme for Competitiveness and Internationalisation - COMPETE

2020 and by National Funds through the Portuguese funding agency,

FCT - Fundação para a Ciência e a Tecnologia within Projects POCI-

01-0145-FEDER-016692, POCI-01-0145-FEDER-030947 and pro-

ject UID/MAT/ 04106/2013 at CIDMA. D. Figueiredo acknowledges

the support of FCT via the Ph.D scholarship PD/BD/114186/2016.

This work was partially supported by a France-Portugal partnership

PHC PESSOA 2018 between M. Chaves (Campus France #40823SD)

and M. A. Martins.

References
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