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In this paper we introduce a language of first-order hybrid logic in which function 
symbols are interpreted by partial functions and prove a number of completeness results. 
Syntactically, our language builds on the basic propositional hybrid language, has a 
primitive unary predicate symbol DEN which tests whether a term denotes or not, and 
permits satisfaction operators to rigidify predicate and function symbols. Semantically, our 
system is actualist, allows terms to be undefined, and has no truth-value gaps. But should 
we follow Fitting and Mendelsohn and rule out domain elements not belonging to any 
world, or should we tolerate them? Here we explore both options. As we shall see, while 
the choice makes no difference when it comes to validity, it has consequences for richer 
logics.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Fitting and Mendelsohn’s textbook First-Order Modal Logic [1] has deservedly become a standard reference. But given the 
wide range of topics and tools it discusses (for example, tableau systems, predicate abstraction, and definite descriptions) 
one detail is easily overlooked: when discussing actualist semantics, the authors insist that the members of the domain of 
the entire model, or to use their own words, the “things it makes sense to talk about” [1, page 102], must belong to the local 
domain of some world. That is: their varying domain models are not permitted to contain what we call a phantom zone, 
a region inhabited by entities beyond the reach of any actualist quantifier. This paper explores the technical consequences 
of this choice in first-order hybrid logic when function symbols are interpreted by partial functions, and in particular, its 
consequences for completeness results involving pure-extensions.

The basic propositional hybrid language extends propositional modal logic with: (a) special atomic formulas, usually 
written i, j and k, and called nominals, and (b) propositional rigidifiers, usually written @i , @ j and @k , and called satisfaction 
operators. Nominals must be true at exactly one world in any model; they act as “names” for the unique world they are 
true at. Satisfaction operators transform arbitrary propositional information ϕ into rigid propositions; while ϕ may vary in 
truth value from world to word, @iϕ has the same truth value at all worlds, namely the truth value that ϕ has at the world 
picked out by the nominal i. The completeness theory of the propositional hybrid language has been intensively studied 
(see, for example [2–4]). Completeness is typically proved using a variant of the Henkin method for first-order logic, with 
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nominals acting as “Henkin witnesses” for �-formulas. Moreover — a central theme in this paper — the model construction 
allows completeness to be proved not merely for the basic logic (that is: the set of all validities), but for any pure extension 
(that is: for any axiomatic extension where only nominals are used in the axioms).

In this paper we define a language of first-order hybrid logic in which function symbols are interpreted by partial 
functions, and prove a number of completeness results. Syntactically, the key features of our language are: (a) it builds on 
the basic propositional hybrid language, (b) it has a primitive unary predicate symbol DEN which tests whether a first-order 
term t is defined or not, and (c) it permits satisfaction operators to rigidify not only propositions, but also any predicate 
or function symbol. Semantically, we use a varying domain semantics with the quantifiers ranging over local domains, that 
allows terms to be undefined without giving rise to truth-value gaps.1 But one interesting choice remains: do we follow 
Fitting and Mendelsohn and exorcise the phantom zone ghosts or not? As we shall see, while the choice is irrelevant to the 
minimal logic, it makes a difference when we turn to richer systems.

This paper stems from our earlier work on higher-order hybrid logic (see [5–9]), which allowed satisfaction operators 
to rigidify constants of all types. We first used the DEN predicate in [9] where we worked with partial type theory; there, 
however, we worked with a more powerful hybrid logic in which DEN was definable, whereas in this paper we will work 
with the basic hybrid language. We say more about these choices in the paper’s conclusion.

We proceed as follows. In Section 2 we define our language, paying particular attention to the rigidity notation. In 
Section 3 we define our semantics, in Section 4 we note some results relating rigidity, denotation, existence, and phantom 
zones, and in Section 5 we show that our rigidification map works as expected. In Section 6 we axiomatize the basic logic, 
in Section 7 we prove a Lindenbaum lemma, and in Section 8 we prove our basic completeness results. With this done, 
we turn to pure extensions, and the distinction between models with and without phantom zones begins to bite: Section 9
shows how to prove pure extension results when phantom zones are permitted, and Section 10 shows how to prove them 
when they are not. Section 11 concludes.

2. Syntactic preliminaries

We start with the underlying first-order language. Suppose we are given a first-order signature, consisting of n-ary 
function and relation symbols.

Definition 2.1 (Signatures). We call a pair � = ((Funcn)n∈N , (Reln)n∈N), where Funcn and Reln are countable sets of func-
tional and relational symbols of arity n, a first-order signature. We typically write elements of Funcn using symbols like f
and h, and write elements of Reln using symbols like P and Q , possibly superscripted or subscripted. The indexed elements 
in either family may be empty, and if they are all empty, we have the empty signature. The elements of Func0 (if any) are 
called constants, and the elements of Rel0 (if any) are called propositional symbols. We usually write constants using symbols 
like b and c, and propositional symbols using p, q and r, adding superscripts or subscripts as required.

We then add first-order variables and nominals and rigidify the signature by allowing any function or relation symbol 
(including any constants or propositional symbols) to be preceded by rigidifying operators of the form @i . That is, we 
generalize the rigidification-of-first-order-constants notation used in [10] (which allowed us to form the rigid constant 
(@ic) out of an arbitrary first-order constant c and nominal i) to all the symbols in the first-order signature.2

Definition 2.2 (Similarity types). A first-order hybrid similarity type τ is a tuple 〈�, X, Nom〉 where � is first-order signature, 
X is a countably infinite set of variables, and Nom is a countably infinite set of symbols called nominals. We typically write 
variables as x, y and z, and nominals as i, j and k, adding superscripts or subscripts as required. We assume that X , Nom, 
and the sets of function and relation symbols in � are pairwise distinct. The Nom-rigidification of � (with respect to the 
similarity type τ ) is the first-order signature:

@� = ((@Funcn)n∈N , (@Reln)n∈N),

where @Funcn = {(@i f ) : i ∈ Nom, f ∈ Funcn} and @Reln = {(@i P ) : i ∈ Nom, P ∈ Reln}.

These new symbols provide a stock of symbols that carry a syntactic guarantee of rigidity. The symbols in the original 
first-order signature don’t carry any such guarantee: an ordinary function symbol f , predicate symbol Q , constant c, or 
propositional symbol q (in short, any item in �) may receive different interpretations in different worlds — that is, all 
these symbols may be interpreted non-rigidly. However, in the partial function semantics defined in the following section, 
(@i f ) will be interpreted as a rigid function: at all worlds it will denote the function that f denotes at the world named i. 

1 Thus while we use partial functions in our semantics and have undefined terms, we do not call the logic(s) presented here “partial logics”. The systems 
presented here are probably better described as “negative” or “Russellian” rather than “partial”.

2 This generalization was first presented at the 26th Workshop on Logic, Language, Information and Computation (WoLLIC 2019), and the proceedings 
paper [11] axiomatizes validity for a language with total function symbols.
2
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Similarly, (@ j Q ) will be interpreted as a rigid predicate: at all worlds it will denote the predicate that Q denotes at the 
world named j.

Given a similarity type, we define the set of rigid terms, and the set of terms, as follows:

Definition 2.3 (Terms). Let τ = 〈�, X, Nom〉 be a first-order hybrid similarity type. The set of rigid �-terms over τ , @Term(τ ), 
is recursively defined by:

• for any x ∈ X , x ∈ @Term(τ );
• for any f @ ∈ @Funcn , and all terms tm ∈ @Term(τ ), where 1 ≤ m ≤ n,

f @(t1, . . . , tn) ∈ @Term(τ ).

The set of �-terms over τ , Term(τ ), is recursively defined by:

• for any x ∈ X , x ∈ Term(τ );
• for any f ∈ Funcn ∪ @Funcn , and all terms tm ∈ Term(τ ), where 1 ≤ m ≤ n,

f (t1, . . . , tn) ∈ Term(τ ).

Clearly every rigid term is a term, that is, @Term(τ ) ⊆ Term(τ ). We say that a term is ground if it contains no variables.

For example, if f is a one-place function symbol, h is a three-place function symbol, and b and c are constants, then 
h(b, f ( f (c)), (@i f )(x)) is a term. It is not a rigid term (as neither h, b, c nor the first two occurrences of f are rigid) and 
it is not ground (because it contains the variable x). On the other hand, (@kh)((@ib), (@i f )((@k f )(@kc)), (@i f )(x)) is rigid, 
though not ground. Note that elements of the form (@ib) and (@kc), where b and c are constant symbols, are indeed rigid 
terms (that is, elements of @Term(τ )) as all such expressions belong to @Func0 by Definition 2.2. Rigid constants like these 
will play an important role in our completeness proofs, as we will use them as Henkin-style witness constants to prove a 
Lindenbaum lemma.

Now for a key definition. Given any nominal (say i) and any term t , we want to map it to a rigid term ⇓i(t) in which any 
non-rigid subterms in t have been “anchored” to the value they take in the i-world.3 This rigidification map should respect 
any guarantees concerning rigidity that t already possesses, so if t contains variables or rigidified function symbols, these 
should be ignored. But any non-rigid subterms should be rigidified with respect to i. We define the required rigidification 
map as follows:

Definition 2.4 (Rigidification map). Let Term(τ ) and @Term(τ ) be the set of terms and the set of rigid terms over some first-
order signature. For any nominal i in the signature, the rigidification map ⇓i is the mapping from Term(τ ) onto @Term(τ )

recursively defined as follows:

• if t ∈ X , ⇓i(t) := t;
• if t = f (t1, . . . , tn) with f ∈ @Funcn , then ⇓i(t) := f (⇓i(t1), . . . , ⇓i(tn)); and
• if t = f (t1, . . . , tn) with f ∈ Funcn , then ⇓i(t) := (@i f )(⇓i(t1), . . . , ⇓i(tn)).

We call ⇓i(t) the rigidification of t at i.

Consider the three clauses in turn. First, the rigidification map ignores variables, as they will always be interpreted rigidly. 
Second, if the functor prefixing a term is of the form (@ j f ), which means that we already have a syntactic guarantee of 
rigidity, we ignore it and go on to recursively rigidify its arguments. Third, if the functor prefixing a term is of the form f
(which means that we have no syntactic guarantee of rigidity) then we replace the functor f by the rigid form (@i f ) and 
go on to recursively rigidify its arguments. For example, consider again the term h(b, f ( f (c)), (@i f )(x)). Then:

⇓k(h(b, f ( f (c)), (@i f )(x)))) = (@kh)((@kb), (@k f )((@k f )((@kc))), (@i f )(x)).

Note that for the special case of constants (functions of arity 0) we have: given a constant c, and a nominal i, the 
rigidification of c with respect to i is (@ic). So the base case of the recursion is simply the rigidification-of-first-order-
constants used in [10]. Also note that when a term t ∈ @Term(τ ) is rigid, the result is simply t itself. That is, for any 
nominal i in the signature, the map ⇓i is the identity map on @Term(τ ), so rigidification always maps Term(τ ) onto 
@Term(τ ).

We are now ready to define the formulas of our first-order hybrid language with partial function symbols. Given the 
terms we have just defined, these are pretty much what might be expected — but there is one further syntactic novelty. We 

3 In the WoLLIC proceedings paper [11] we re-used @ as a metalinguistic symbol, and wrote @i t instead of ⇓i(t) for the rigidification map. The ⇓-notation 
used here is clearer and less confusing.
3
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introduce a special primitive unary predicate called DEN. This is a “test predicate” that decides whether or not terms in our 
logic denote (that is, pick out a domain entity) or are undefined.

Definition 2.5 (Formulas). The set Fm(τ ) of formulas of first-order hybrid logic with partial function symbols is the smallest 
set such that:

1. Nom ⊆ Fm(τ );
2. DEN(t) ∈ Fm(τ ), for any t ∈ Term(τ )

3. t1 ≈ t2 ∈ Fm(τ ), for any t1, t2 ∈ Term(τ )

4. P (t1, . . . , tn) ∈ Fm(τ ), for any P ∈ Reln ∪ @Reln and t1, . . . , tn ∈ Term(τ );
5. if ϕ ∈ Fm(τ ) and i is a nominal, then @iϕ ∈ Fm(τ );
6. if ϕ ∈ Fm(τ ), then ¬ϕ, �ϕ ∈ Fm(τ );
7. if ϕ ∈ Fm(τ ) and ψ ∈ Fm(τ ) then ϕ ∧ ψ ∈ Fm(τ ) and ϕ ∨ ψ ∈ Fm(τ ).
8. if x ∈ X and ϕ ∈ Fm(τ ), then ∀xϕ ∈ Fm(τ ).

We use familiar abbreviations: �ϕ is ¬�¬ϕ , ∃xϕ is ¬∀x¬ϕ , ϕ → ψ is ¬(ϕ ∧ ¬ψ), and so on. As is standard in varying 
domain first-order modal logic, we also define EXISTS(t) to be ∃x(x ≈ t), where x is a variable not occurring in t . We 
assume the familiar first-order distinction between free and bound variables, and call any formula with no free variables a 
sentence. We also assume the usual first-order notion of a term t being substitutable for variable x in a formula ϕ (that is: 
being substitutable without accidental variable capture).

Here are some examples illustrating our bracketing conventions. Let i and j be nominals, let b and c be constant sym-
bols, and let P be a two-place predicate symbol. Then P (b, c) is a formula, one with no syntactic guarantees of rigidity. 
P ((@ib), (@ jc)) is also a formula, though this time the two constants in it have been rigidified. Similarly, (@i P )(b, c) is also 
a formula, though here it is the initial predicate has been rigidified. Indeed, (@i P )((@ib), (@ jc)) is a formula too, though this 
time the predicate and both constants have been rigidified. But there are other possibilities. In particular, note that @i P (b, c)
is also a formula: it is the formula P (b, c) preceded by @i . This is not the same formula as (@i P )(b, c), as @i P (c, d) is guar-
anteed to be a rigid proposition (it will either be true at all worlds or false at all worlds) while (@i P )(b, c) may vary in 
truth value from world to world, depending on the interpretation of b and c.

We can sum up our conventions as follows: when we combine @i with any formula ϕ (that is: with propositional 
information) we write the resulting formula as @iϕ (that is: with no enclosing brackets). However, when we combine @i
with either a function symbol f , a constant symbol c, or a predicate symbol P of arity ≥ 1, then we write the resulting 
rigidifications as (@i f ), (@ic) and (@i P ) respectively (that is: with enclosing brackets). In the case of a predicate symbol p
of arity 0 (that is: the propositional symbol p) note that it is possible to write either @i p, as this is the result of applying @i
to the non-rigid formula p, or (@i p), which is the rigidified version of the 0-ary relation symbol p, which is also a formula. 
Our semantics will ensure that the two formulas @i p and (@i p) mean exactly the same thing (they both pick out the same 
rigid proposition) and we normally use the simpler @i p.

3. Semantics

With the syntactic preliminaries out of the way, we turn to semantics. Our main aims in this section are to define 
a semantics for our language, to give a semantic definition of rigidity, and to prove some simple results about rigidity, 
denotation, existence, and phantom zones.

Definition 3.1 (Skeletons). A skeleton S is a tuple (W , Dom, D, R), where W �= ∅ is called the set of worlds, Dom �= ∅ is 
called the global domain, D : W → P (Dom) assigns a non-empty local domain to each world w (we usually write D w

instead of D(w) for a local domain), and R ⊆ W 2 is the accessibility relation between worlds. If S is a skeleton such that 
Dom = ⋃

w∈W D w , then we call it an FM-skeleton (a Fitting-Mendelsohn skeleton).

We next need to define interpretations in a way that handles partial functions. We shall model partial functions by 
adding an extra “undefined element” �, and work with total functions which take this special value to signal their unde-
finedness on certain input.

Definition 3.2 (First-order hybrid models with partial functions). Given a skeleton S and a first-order hybrid similarity type τ , 
choose some new entity � (that is: some set-theoretic entity not belonging to either S or τ ) to act as the “undefined” 
value. Then a first-order hybrid model with partial functions over S and τ is a pair M = (S, I), where I is an interpretation 
function defined by:

1. I(i) ∈ W .
2. For any f ∈ Funcn , I w( f ) is a total function from Domn to Dom ∪ {�}.
4
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3. For any P ∈ Reln , I w(P ) ⊆ Domn .

If f is an n-ary function symbol, and for all d1, . . . , dn ∈ Dom, I w( f )(d1, . . . , dn) = �, then we say that f is vacuous at w .

First, note that we are following Fitting and Mendelsohn [1] in locally interpreting function symbols f and relation 
symbols P in a way that gives them global reach. That is, any n-ary function symbol is interpreted at any world as a 
function with domain Domn that may return domain elements from outside the local domain. Similarly, relational symbols 
can be interpreted as relations involving both local and non-local domain elements. Second, consider what this definition 
means for constants: if n = 0 then I w( f ) is a total function from Dom0 = {∅} to Dom ∪ {�}. So at any world w , a constant 
either picks out an element of Dom or is vacuous, which is what we want. But again, note the globality: the element 
denoted by a constant at w need not be an element of D w — it may belong to D w ′ for some w ′ �= w , and if we are not 
working with an FM-skeleton, it may even belong to Dom\ 

⋃
w∈W D w , the phantom zone. Finally, note that in the first 

clause we simply wrote I(i) ∈ W to emphasize that the interpretation of every nominal is the same in every world: that is, 
I(i) = I w(i) = I w ′ (i) for all w, w ′ ∈ W , and all nominals i.

Definition 3.3. Let f : A → B . Def( f ) is {a ∈ A | ∃b ∈ B : b �= � and f (a) = b}. Applied to a function f in a model, Def( f )
returns the set of inputs that pick out a “genuine entity”, one belonging to the model’s domain. Note that Def(I w( f )) = ∅
means that f is vacuous at w .

Definition 3.4. Let M = (S, I) be a model and g : X → Dom be a variable assignment (that is: g is a function from the 
set of variables X in the language to the elements in the domain of the model). The interpretation of terms is recursively 
defined as follows:

• if t ∈ X , [t]M,w,g = g(t);
• if t ∈ Func0, [t]M,w,g = I w(t);
• if t = (@i f ) ∈ @Func0, [t]M,w,g = I I(i)( f );
• if t = f (t1, . . . , tn), f ∈ Funcn , where n > 0 then:

[t]M,w,g =
⎧⎨
⎩

I w( f )([t1]M,w,g, . . . , [tn]M,w,g) , if [t1]M,w,g �= �, . . . , [tn]M,w,g �= � and
([t1]M,w,g, . . . , [tn]M,w,g) ∈ Def(I w( f ))

� ,otherwise.

• if t = (@i f )(t1, . . . , tn), f ∈ Funcn ,

[t]M,w,g =
⎧⎨
⎩

I I(i)( f )([t1]M,w,g, . . . , [tn]M,w,g) , if [t1]M,w,g �= �, . . . , [tn]M,w,g �= � and
([t1]M,w,g, . . . , [tn]M,w,g) ∈ Def(I I(i)( f ))

� ,otherwise.

Note that the only difference between the two clauses for function application is that when interpreting a term of the 
form h(t1, . . . , tn) at a world w , we interpret the h as I w( f ) when h is a non-rigid function symbol f , and as I I(i)( f ) when 
h is a rigid function symbol (@i f ).

Definition 3.5 (Variant assignment). Let g : X → Dom be an assignment and let d ∈ Dom. Then g[x �→ d] is the function such 
that g[x �→ d](x) = d, and g[x �→ d](y) = g(y) for all y �= x.

Definition 3.6 (Satisfaction). Let M = (S, I) be a model, let g : X → Dom be an assignment, and let w ∈ W . Then we define:

M, g, w � i iff I(i) = w .
M, w, g � DEN(t) iff [t]M,w,g �= �.
M, w, g � t1 ≈ t2 iff [t1]M,w,g = [t2]M,w,g .

M, w, g � P (t1, . . . , tn) iff [t1]M,w,g �= �, . . . , [tn]M,w,g �= � and
([t1]M,w,g, . . . , [tn]M,w,g) ∈ I w(P ),
for P ∈ Reln and t1, . . . , tn ∈ Term(τ ).

M, w, g � (@i P )(t1, . . . , tn) iff [t1]M,w,g �= �, . . . , [tn]M,w,g �= � and
([t1]M,w,g, . . . , [tn]M,w,g) ∈ I I(i)(P ),
for P ∈ Reln and t1, . . . , tn ∈ Term(τ ).

M, w, g � @iϕ iff M, I(i), g � ϕ.
M, w, g �¬ϕ iff M, w, g � ϕ.

M, w, g � ϕ ∧ ψ iff M, w, g � ϕ and M, w, g �ψ .
M, w, g ��ϕ iff for all v, if w R v then M, v, g � ϕ.
M, w, g � ∀xϕ iff for all d ∈ D , M, w, g[x �→ d] � ϕ.
w

5
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A formula ϕ is satisfied at a world w in a model M under the assignment g iff M, w, g � ϕ . It is valid in a model
M (notation: M � ϕ) iff, for every world w and every assignment g , we have that M, w, g � ϕ . It is valid on a skeleton
S (notation: S � ϕ) iff, for every world w , every assignment g , and every interpretation I , we have that (S, I), w, g � ϕ . 
A formula ϕ is valid (notation: � ϕ) if and only if, for every skeleton S we have that S � ϕ . We extend this notation to 
sets of formulas and classes of skeletons in the familiar way. In particular, M, w, g � � means that for all formulas γ ∈ �, 
M, w, g � γ , and S � ϕ means that ϕ is valid on every skeleton S from S.

Some remarks. First, note that DEN is indeed a test predicate which signals whether or not a term denotes at a world. 
Second, note that the logical equality symbol ≈ judges two terms to be equal if they both denote the same entity in the 
model, or if they are both undefined. That is, ≈ judges using set-theoretic equality: no matter what set-theoretic entity 
we chose for �, we have that � = �. Third, note that for any relational symbol (whether of the form P or (@i P )), a single 
undefined term guarantees its falsity; this contrasts with the special symbol ≈, which is true when both its arguments are 
undefined. Fourth, note that for any nominal i and any formula ϕ , we have that @iϕ is either true at all worlds or false at 
all worlds. Fifth, as previously remarked, though based on partial functions, this semantics does not give rise to truth-value 
gaps.

Definition 3.7 (Semantic consequence). Let τ be a hybrid similarity type, S a class of skeletons, � a set of formulas, and ϕ a 
formula. Then � �S ϕ iff for all models M = (S, I) where S is from S, all worlds w in M, and all assignments g on M we 
have that: if M, w, g � �, then M, w, g � ϕ . If this holds then we say that γ is a semantic consequence of � over S. If S is 
the class of all skeletons, then we just write � � ϕ and say that γ is a semantic consequence of �.

We will use pure extensions later in the paper to axiomatize semantic consequence over various classes of skeletons, 
paying particular attention to the changes required when working with skeletons belonging to FM, the class of all FM-
skeletons.

4. Rigidity, denotation, existence, and phantom zones

What does rigidity mean when we work with partial functions? Informally, rigidity means “has the same value in all 
worlds in a model”. It seems natural that “same value” should include the � value, thus what we will call semantic rigidity 
means having the same interpretation, including being undefined, at every world. Here are three distinctions we find useful:

Definition 4.1. Suppose we have a model M and an assignment g on M. Then we say:

• A term t is semantically rigid with respect to M and g iff for all worlds w and w ′ we have that [t]M,w,g = [t]M,w ′,g .
• A term t denotes everywhere with respect to M and g iff for all worlds w , we have that M, w, g � DEN(t), that is, iff 

[t]M,w,g �= �.
• A term t denotes nowhere with respect to M and g iff for all worlds w , we have that M, w, g � DEN(t), that is, iff 

[t]M,w,g = �.

In any model, with respect to any variable assignment, variables are both semantically rigid and denote everywhere. Note 
that there are many terms that denote nowhere: if c is interpreted as � at the i-world in some model (that is: I I(i)(c) = �) 
then (@ic) denotes nowhere in that model, and is semantically rigid. We next show that terms syntactically guaranteed to 
be rigid, are indeed semantically rigid:

Lemma 4.2. If t is a term in @Term(τ ), then t is semantically rigid in any model M, under any variable assignment g on M.

Proof. We will show by induction on term structure that for any t ∈ @Term(τ ), any model M, any assignment g on M
and any w, w ′ ∈ W we have that:

[t]M,w,g = [t]M,w ′,g .

Base case: t ∈ X . Then [x]M,w,g = g(x) = [x]M,w ′,g .

Inductive step: t = (@ j f )(t1, . . . , tn), where f ∈ Funcn , n ≥ 0 and tm ∈ @Term(τ ), where 1 ≤ m ≤ n. Then we have that:
[(@ j f )(t1, . . . , tn)]M,w,g = I I( j)( f )([t1]M,w,g, . . . , [tn]M,w,g)

= I I( j)( f )([t1]M,w ′,g, . . . , [tn]M,w ′,g) (by IH)
= [(@ j f )(t1, . . . , tn)]M,w ′,g .

This establishes the result. �
How are “denotes” and “exists” related? Recall that we defined EXISTS(t) to be ∃x(x ≈ t). This is the standard definition 

in ordinary (total function based) first-order varying-domain modal logic, and it is easy to see that under our partial function 
6
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based semantics we still have that EXISTS(t) is true at a world w iff t is interpreted in w by a domain entity that belongs 
to D w . Thus if EXISTS(t) is true at w , then t is not interpreted by � in w , hence DEN(t) is true at w too. So:

� EXISTS(t) → DEN(t).

It is also easy to see that the converse implication does not hold: DEN(t) may be true at w because t is interpreted at 
w as an entity d that does not belong to D w , but to D ′

w , the local domain of a different world w ′ . This suffices to falsify 
DEN(t) → EXISTS(t) at w .

But there is another way to falsify DEN(t) → EXISTS(t). As we have defined it, DEN(t) does not mean “exists at some 
local domain in the model”, it simply tests whether t is � or not. So to make the antecedent true we could instead have 
interpreted t at w as an entity d ∈ Dom that does not exist at D w , or at any other local domain D w ′ ; as we do not have to 
work with FM-skeletons, our models can be based on skeletons containing a non-empty phantom zone Dom\ 

⋃
w∈W D w .

It is easy to see that if we are only concerned with validity, it makes no difference whether there is a non-empty 
phantom zone or not. Recall that FM is the class of all FM-skeletons. Trivially, if ϕ is valid, then it is valid on every FM-
skeleton. We now show that the converse is true as well.

Definition 4.3. Let S = (W , Dom, D, R) be a skeleton where Z = (Dom\ 
⋃

w∈W D w) �= ∅, and let I be an interpretation on S . 
Choose some new entity z and define:

1. Sz is the skeleton (W ∪ {z}, Dom, Dz, R), where Dz = D ∪ {(z, Z)}.
2. I z is any extension of interpretation I that supplies values for the function symbols f and relation symbols P at the 

new world z.

Any such model (Sz, I z) is called a phantom world version of (S, I).

Lemma 4.4. Let (S, I) be a model with non-empty phantom zone Z , and let (Sz, I z) be any phantom world version of (S, I). Then for 
any assignment g on S, any world w in S, and any term t:

[t](S,I),w,g = [t](Sz,I z),w,g .

Furthermore, for any formula ϕ:

(S, I), w, g � ϕ iff (Sz, I z), w, g � ϕ.

Proof. Note that as w is a world in S , w �= z. Furthermore, note that any variable assignment g on S is also an assignment 
on Sz . The results follow by an easy induction — we have simply gathered the entities in the phantom zone Z into a special 
world z. �

It follows that if we can falsify a formula ϕ on an arbitrary skeleton, then we can also falsify it on an FM-skeleton; hence 
if a formula is valid on every skeleton in FM, then it is valid on every skeleton, so validity and FM-validity coincide. But it 
is not always so easy to exorcise the phantom zone, as we shall show later in the paper.

5. Three useful lemmas

We are ready to turn to axiomatization and completeness, but first we note three lemmas that will be useful later. The 
first lemma, and the corollary that follows, are familiar from many other kinds of logic:

Lemma 5.1 (Coincidence lemma). Let S be a skeleton. Then:

1. Let I and I ′ be interpretations that agree on all symbols in term t. Then, for any assignment g and world w in S: [t](S,I),w,g =
[t](S,I ′),w,g .

2. Let g and g′ be assignments that agree on all variables in term t. Then, for any interpretation I and world w in S: [t](S,I),w,g =
[t](S,I),w,g′

.
3. Let I and I ′ be interpretations that agree on all symbols in formula ϕ . Then, for any assignment g and world w in S: (S, I), w, g �

ϕ iff (S, I ′), w, g � ϕ .
4. Let g and g′ be assignments that agree on all free variables in formula ϕ . Then, for any interpretation I and world w in S: 

(S, I), w, g � ϕ iff (S, I), w, g′ � ϕ .

As a corollary we have that for sentences ϕ , in any model M at any world w , we can simply write M, w � ϕ rather 
that M, w, g � ϕ , because clauses 2 and 4 imply that the choice of g is irrelevant for formulas with no free variables. The 
next lemma tells us that if all constants and function symbols in some term t are defined at all worlds, then, irrespective of 
the valuation or the world of evaluation, the term denotes. More precisely:
7
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Lemma 5.2. Let t ∈ Term(τ ), and let (S, I) be a model such that for all function symbols f ∈ Funcn in t, and all worlds w in S, we 
have that I w( f ) is a total function from Domn to Dom. Then for all assignments g and worlds w we have [t](S,I),x,g �= �.

Proof. By induction on term structure. �
Lastly, we informally discussed the rigidification map ⇓i(t) in Section 2, but that was before we defined the partial 

function semantics. So we need to check that:

Lemma 5.3. For any t ∈ Term(τ ) and any assignment g on M we have

[t]M,I(i),g = [⇓i(t)]M,w,g, for any w ∈ W

Proof. By induction on term structure.

Base case: Suppose t ∈ X . Then [x]M,I(i),g = g(x) = [x]M,w,g = [⇓i(x)]M,w,g .
Inductive step for t = f (t1, . . . , tn), f ∈ Funcn , n ≥ 0: Suppose [ f (t1, . . . , tn)]M,I(i),g = �. This means that:

[t1]M,I(i),g = �, or . . . or [tn]M,I(i),g = �, or ([t1]M,I(i),g, . . . , [tn]M,I(i),g) /∈ Def(I I(i)( f )).
So by the inductive hypothesis:
[⇓i(t1)]M,w,g = �, or . . . or [⇓i(tn)]M,w,g = �, or ([⇓i(t1)]M,w,g, · · · , [⇓i(tn)]M,w,g /∈ Def(I I(i)( f ))

Thus [⇓i( f (t1, . . . , tn))]M,I(i),g = [(@i f )(⇓i(t1), . . . , ⇓i(t1))]M,w,g = � as required.
So suppose instead that [ f (t1, . . . , tn)]M,I(i),g �= �. Then:
[ f (t1, . . . , tn)]M,I(i),g = I I(i)( f )([t1]M,I(i),g, . . . , [tn]M,I(i),g)

= I(i)( f )([⇓i(t1)]M,w,g, . . . , [⇓i(tn)]M,w,g) (IH)
= [(@i f )(⇓i(t1), . . . ,⇓i(tn))]M,w,g

= [⇓i(( f (t1, . . . , tn)))]M,w,g,as required.

Inductive step for t = (@ j f )(t1, . . . , tn), f ∈ Funcn , n ≥ 0: If [(@ j f )(t1, . . . , tn)]M,I(i),g = �, the argument is much the same 
as in the previous step. We handle the other case as follows:

[@ j f (t1, . . . , tn)]M,I(i),g = I I( j)( f )([t1]M,I(i),g, . . . , [tn]M,I(i),g)

= I( j)( f )([⇓i(t1)]M,w,g, . . . , [⇓i(tn)]M,w,g) (IH)
= [(@ j f )(⇓i(t1), . . . ,⇓i(tn))]M,w,g

= [⇓i((@ j f )(t1, . . . , tn))]M,w,g,as required

Thus the rigidification maps works as we expect. �
6. The Kτ axiomatisation

We now present Kτ , our basic axiomatisation for first-order hybrid logic with partial function symbols over hybrid 
similarity type τ . We take all propositional tautologies as axioms, and in addition:

Distributivity axioms
(K�) �(ϕ → ψ) → (�ϕ → �ψ).
(K@) @i(ϕ → ψ) → (@iϕ → @iψ).

Quantifier axioms
(Q1) ∀x(ϕ → ψ) → (ϕ → ∀xψ), where x does not occur free in ϕ.
(Q2) ∀xϕ → (EXISTS(t) → ϕ( t

x )), where t ∈ @Term(τ ), and t is substitutable for x in ϕ.
(Q3) ∃yEXISTS(y)

Basic hybrid axioms
(Ref @) @i i.
(Agree) @i@ jϕ ↔ @ jϕ.
(Selfdual@) @iϕ ↔ ¬@i¬ϕ.
(Intro) i → (ϕ ↔ @iϕ).
(Back) �@iϕ → @iϕ.

Axioms for ≈
(Ref ≈) t ≈ t, for all t ∈ Term(τ ).
(Sym≈) (t1 ≈ t2) → (t2 ≈ t1), for all t1, t2 ∈ Term(τ ).
(Trans≈)

(
(t1 ≈ t2) ∧ (t2 ≈ t3)

) → (t1 ≈ t3), for all t1, t2, t3 ∈ Term(τ ).
(Func) (t1 ≈ t′

1 ∧ ... ∧ tn ≈ t′
n) → f (t1, . . . , tn) ≈ f (t′

1, . . . , t′
n),

where f ∈ Func ∪ @Func, and ti, t′
i ∈ Term(τ ), for i = 1, . . . ,n, n ≥ 0.

(Pred) (t1 ≈ t′
1 ∧ ... ∧ tn ≈ t′

n) → P (t1, . . . , tn) ↔ P (t′
1 . . . , t′

n),
where P ∈ Rel ∪ @Rel, and t , t′ ∈ Term(τ ), for i = 1, . . . ,n, n ≥ 0.
i i

8
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Interactions between @ and ≈
(Rigidify) @i(c ≈ (@ic)), for any constant c.
(K@≈) @i(t1 ≈ t2) ↔ (⇓i(t1) ≈⇓i(t2)), for all t1, t2 ∈ Term(τ ).
(Nom≈) @i j → (⇓i(t) ≈⇓ j(t)), t ∈ Term(τ ).
(Agree≈) @i(t1 ≈ t2) ↔ (t1 ≈ t2), for all t1, t2 ∈ @Term(τ ).

Linking Formula rigidity and predicate-and-term rigidity
(Shuffle-1) @i P (t1, . . . , tn) ↔ (@i P )(⇓i(t1), . . . ,⇓i(tn)).
(Shuffle-2) @i(@ j P )(t1, . . . , tn) ↔ (@ j P )(⇓i(t1), . . . ,⇓i(tn)).

Denotation axioms
(DenVar) DEN(x), x ∈ X
(DenArgF) DEN( f (t1, . . . , tn)) → (DEN(t1) ∧ · · · ∧ DEN(tn))

(DenArgP) P (t1, . . . , tn)) → (DEN(t1) ∧ · · · ∧ DEN(tn))

Other link axioms
(DenRig) DEN(⇓i(t)) ↔ @iDEN(t)
(ExRig) @iEXISTS(⇓i(t)) ↔ @iEXISTS(t)
(ExDen) EXISTS(t) → DEN(t)
(DenDen) t1 ≈ t2 → (DEN(t1) ↔ DEN(t2))

Now for the rules of proof. We take modus ponens and the following rule of substitution: if � ϕ then � ϕ′ , where ϕ′ is 
any formula obtained from ϕ′ by replacing nominals by nominals, and variables by substitutable rigidified term (that is: we 
should avoid accidental variable binding when substituting rigidified terms). We also take:

1. Generalizations: If � ϕ then � �ϕ , � @iϕ , and � ∀xϕ .
2. Name: If � i → ϕ , then � ϕ , where i does not occur in ϕ .
3. Paste: If � @i� j ∧ @ jϕ → θ then � @i�ϕ → θ , where j �= i does not occur in ϕ or θ .

The generalization rules are probably familiar to most readers, but as the Name and Paste rules play such an important 
role in our Lindenbaum construction, the following remarks may be helpful. The Name rule can be read as (something like) 
a natural deduction rule saying:

If ϕ can be proved to hold at an arbitrary world named i mentioned in ϕ , then we can (so to speak) discharge i and prove ϕ .

The Paste rule is best thought of as (something like) a sequent or tableau rule. If we read it from right-to-left it says:

To prove θ from @i�ϕ , introduce a new nominal j, and try to prove θ from @i� j and @ jϕ instead.

The Paste rule will be used to license the introduction of Henkin-style witness nominals and rigidified constants in our 
Lindenbaum construction. For more on these rules, see [3].

We assume the usual definition of formal proof, and write � ϕ to indicate that ϕ is provable in Kτ , and say that ϕ is 
a Kτ -theorem. For any set of Kτ -formulas �, we write � � ϕ to indicate that for some finite subset {γ1, . . . , γn} of �, we 
have that � (γ1 ∧ · · · ∧ γn) → ϕ .

Proposition 6.1. The following is a list of Kτ theorems:

(K −1
@) � (@iϕ → @iψ) → @i(ϕ → ψ)

(Nom) � @i j → (@iϕ → @ jϕ)

(S ym) � @i j → @ j i
(Bridge) � @i� j ∧ @ jϕ → @i�ϕ

(Conj) � @i(ϕ ∧ ψ) ↔ (@iϕ ∧ @iψ)

(Elim) � (i ∧ @iϕ) → ϕ

Proof. These are standard; see [3] for axiomatic proofs. �
Proposition 6.2. The following rule, Paste∀ , is derivable in Kτ :

� (@iEXISTS(c) ∧ @iϕ(
(@i c)

x )) → ψ

� @i∃xϕ → ψ
, where c does not occur in ψ .

Proof. In effect this licences the use of first-order Henkin witnesses. See [3] for further discussion and the derivability 
proof. �
9
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Theorem 6.3 (Soundness). Every Kτ -theorem is valid: that is, for any formula ϕ ∈ Fm(τ ), we have that � ϕ ⇒ � ϕ .

Proof. The rules of proof all preserve validity, so proving soundness boils down to checking the validity of the axioms. Here 
are some examples.

(K@≈) On the one hand:
M, w, g |= @i(t1 ≈ t2) iff M, I(i), g |= t1 ≈ t2 iff [t1]M,I(i),g = [t2]M,I(i),g

On the other hand, with the help of Lemma 4.2 we have:
M, w, g |= ⇓i(t1) ≈ ⇓i(t2) iff [⇓i(t1)]M,w,g = [⇓i(t2)]M,w,g iff [t1]M,I(i),g = [t2]M,I(i),g .

(Nom≈) Suppose that M, w, g |= @i j. That is, I(i) = I( j). Then, [t]M,I(i),g = [t]M,I( j),g . So, again using Lemma 4.2, 
[⇓i(t)]M,w,g = [⇓ j(t)]M,w,g . Therefore, M, w, g |= ⇓i(t) ≈ ⇓ j(t)

(Shuffle-1)
M, w, g |= @i P (t1, . . . , tn) iff M, I(i), g |= P (t1, . . . , tn)

iff [t1]M,I(i),g �= �, . . . , [tn]M,I(i),g �= � and
([t1]M,I(i),g, . . . , [tn]M,I(i),g) ∈ I I(i)(P )

iff [⇓i(t1)]M,w,g �= �, . . . , [⇓i(tn)]M,w,g �= � and
([⇓i(t1)]M,w,g, . . . , [⇓i(tn)]M,w,g) ∈ I I(i)(P )

iff M, w, g |= P (⇓i(t1), . . . ,⇓i(tn))

(DenRig)
M, w, g |= DEN(⇓i(t)) iff [⇓i(t)]M,w,g �= �

iff [t]M,I(i),g �= �

iff M, I(i), g |= DEN(t)
iff M, w, g |= @iDEN(t)

Note that Lemma 4.2 was also needed for both the (Shuffle-1) and (DenRig) proof, at steps 3–4, and 1–2, respectively. �
7. A Lindenbaum lemma

We now prove the Lindenbaum lemma we need. First some background concepts and notation.

Definition 7.1. Let � ⊆ Fm(τ ).

• � is Kτ -inconsistent iff � � ϕ for any ϕ ∈ Fm(τ ), otherwise � is Kτ -consistent. When it is clear from context, we 
sometimes drop the Kτ and simply say consistent and inconsistent.

• � is maximal Kτ -consistent iff � is consistent and any set of formulas that properly extends � is inconsistent. We often 
call such a set an MCS.

• � is named iff it contains at least one nominal.
• � is ♦-saturated iff for all @i♦ϕ ∈ �, there is a nominal j such that @i� j and @ jϕ belongs to � (note the similarity of 

this to the Paste rule, and note that j is essentially a “Henkin witness nominal” for the �).
• � is ∃-saturated iff for all formula @i∃xϕ ∈ � there is a constant c such that @iEXISTS(c) ∈ � and @iϕ(

(@i c)
x ) ∈ �. Here 

ϕ(
(@i c)

x ) is the formula obtained by substituting (@ic) for all free occurrences of x in ϕ (note the similarity to this to 
the Paste∀ rule of Proposition 6.2, and note that (@ic) is essentially a “rigid Henkin witness constant” for the ∃).

Lemma 7.2. Let � ⊆ Fm(τ ). Then:

1. � ∪ {ϕ} is inconsistent iff � � ⊥.
2. If � is maximal consistent then: if � � ϕ then ϕ ∈ �.
3. � ∪ {ϕ} � ψ iff � � ϕ → ψ ; that is, the deduction theorem (DDT) holds.

Proof. Standard. Note that DDT holds because θ is defined to be a logical consequence of � iff � γ → θ , where γ is 
a conjunction of (finitely many) formulas from �. And in propositional logic we have that � (ϕ ∧ γ1 ∧ · · · ∧ γn) → ψ iff 
� (γ1 ∧ · · · ∧ γn) → (ϕ → ψ). �
Lemma 7.3 (Lindenbaum). Let (in)n∈N and (cn)n∈N be countably infinite sets of new nominals and new constants, and let τ be the 
hybrid similarity type obtained by extending Nom and � with these new symbols. Then Kτ is the basic axiomatisation for first-order 
hybrid logic with partial function symbols over hybrid similarity type τ . Every Kτ -consistent set of formulas � can be extended to a 
named, ♦-saturated, ∃-saturated and maximal Kτ -consistent set.

Proof. Let � be a Kτ -consistent set of formulas and let (in)n∈N and (cn)n∈N be countably infinite sets of new nominals 
and new constants, respectively. We define �∗ to be 

⋃
n∈N �n , where:
10
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�0 = � ∪ {i0};

�n+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

�n , if �n ∪ {ϕn} is inconsistent

�n ∪ {ϕn,@i�im,@imψ} , if ϕn = @i�ψ

and �n ∪ {ϕn} is consistent

�n ∪ {ϕn,@iEXISTS(cm),@iψ(
(@i cm)

x )} , if ϕn := @i∃xψ

and �n ∪ {ϕn} is consistent

�n ∪ {ϕn} ,otherwise

Here im is the first new nominal not occurring in �n or in ϕn and cm is the first new constant not in �n or in ϕn .
We first prove by induction that �∗ is Kτ -consistent. So suppose that �0 is inconsistent. Then � ∪ {i0} � ⊥. So for some 

finite conjunction γ of formulas from �, we have � γ → ¬i0, and hence, � i0 → ¬γ . But i0 is new, so it does not occur 
in γ , so we apply the Name rule obtaining � ¬γ , contradicting the consistency of �. We conclude that �0 = � ∪ {i0} is 
consistent after all.

Suppose now that �n is Kτ -consistent, and consider ϕn of the form @i�ψ . We know that �n ∪ {@i�ψ} is consistent; let 
us suppose that �n+1 is inconsistent. Then:

�n ∪ {ϕn,@i�im,@imψ} � ⊥.

Using DDT we have �n ∪ {ϕn} � ¬(@i�im ∧ @im ψ), so for some finite conjunction γ of formulas from �, � γ → ¬(@i�im ∧
@im ψ), hence, � (@i�im ∧ @im ψ) → ¬γ . But im is the first new nominal that does not occur in �n or ϕn so we can apply 
the Paste rule obtaining � @i�ψ → ⊥ and contradicting the consistency of �n ∪ {ϕn}.

Suppose now that �n is Kτ -consistent and consider ϕn of the form @i∃xψ . We know that �n ∪ {@i∃xψ} is consistent; let 
us suppose that �n+1 is inconsistent. Then:

�n ∪ {@i∃xψ,@i(EXISTS(cm)),@iψ(
(@icm)

x
)} � ⊥.

The argument showing that this too leads to contradiction is the same as in the previous case, but using the Paste∀ rule 
rather than Paste.

Since �n is Kτ -consistent for n ∈N , �∗ := ⋃
n∈N �n is also Kτ -consistent.

We now prove that �∗ is maximal. For suppose it is not. Then there exists a formula ϕ /∈ �∗ such that �∗ ∪ {ϕ} is Kτ -
consistent. Then ϕ = ϕn , for some n ∈N , and �n ∪ {ϕn} is consistent. Consequently, ϕn ∈ �n+1 which is an absurd since we 
assumed that ϕ /∈ �∗ . �
8. Completeness

In this section we will show how to build models out of the sets of sentences that our Lindenbaum lemma gives us: 
maximal, named, ♦-saturated, ∃-saturated, Kτ -consistent sets of formulas.

Definition 8.1. Let � be a maximal, named, ♦-saturated, ∃-saturated, Kτ -consistent set of formulas. We define binary rela-
tions ∼n and ∼r , over Nom and @Term(τ ), respectively, by:

• i ∼n j ⇔ @i j ∈ �, where i, j ∈ Nom
• t ∼r t′ ⇔ t ≈ t′ ∈ �, where t, t′ ∈ @Term(τ )

Lemma 8.2. Both ∼n and ∼r are equivalence relations. Moreover, if tm ∼r t′
m for m = 1, . . . , n, then (@i f )(t1, . . . , tn) ∼r

(@i f )(t′
1 . . . , t′

n).

Proof. The result for ∼n is standard. The axioms for ≈ give the result for ∼r . �
We build our models using equivalence classes |i|n of nominals and |t|r of terms; we suppress subscripts as it should be 

clear which equivalence class is meant:

Definition 8.3 (Canonical Kτ -models). Let � be a maximal, named, �-saturated, and ∃-saturated Kτ -consistent set of formu-
las. Then M� = ((W �, Dom�, D�, R�), I�) is defined as follows:

• W � = {|i| : i is a nominal}.
• Dom� = {|t| : t ∈ @Term(τ ) and t is ground and DEN(t) ∈ �}.
• D�

|i| = {|t| ∈ Dom� : @iEXISTS(t) ∈ �}.

• |i|R�| j| iff @i� j ∈ �.
11
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• I�(i) = |i|, for each nominal i.
• For each f ∈ Funcn and |t1|, . . . , |tn| ∈ Dom� ,

I�|i|( f )(|t1|, . . . , |tn|) =
{

|(@i f )(t1, . . . , tn)| if DEN((@i f )(t1, . . . , tn)) ∈ �

� otherwise.

• For each P ∈ Reln ,
I�|i|(P ) = {(|t1|, . . . , |tn|) ∈ (Dom�)n : (@i P )(t1, . . . , tn) ∈ �)}.

We call M� the canonical model over �. Note that any assignment g on a canonical model is a map from X to equivalence 
classes of ground terms t from @Term(τ ) such that DEN(t) �= �.

Before going further, we check that the items in this definition make sense:

• R� is well defined. Suppose i′ ∈ |i|, then @i i′ ∈ � so, if @i♦ j ∈ �, by (Nom), @i′♦ j ∈ �. Now suppose j′ ∈ | j|, then 
@ j j′ ∈ � so, if @i♦ j ∈ �, by (Bridge), @i♦ j′ .

• I�|i|( f ) is well defined. Suppose tm ∼r t′
m , m = 1, . . . , n. Hence, tm ≈ t′

m ∈ �. By axiom (Func), (@i f )(t1, . . . , tn) ≈
(@i f )(t′

1, . . . , t
′
n) ∈ �. That is, I�|i|( f )(t1, . . . , tn) = I�|i|( f )(t′

1, . . . , t
′
n).

• I�|i|(P ) is well defined. Suppose tm ∼r t′
m , m = 1, . . . , n. Hence, tm ≈ t′

m ∈ �. By axiom (Pred), (@i P )(t1, . . . , tn) ∈ � iff 
(@i P )(t′

1, . . . , t
′
n) ∈ �. That is, I�|i|(P )(t1, . . . , tn) iff I�|i|(P )(t′

1, . . . , t
′
n).

• D�
i ⊆ Dom� . By definition.

Our completeness proof will make use of variable substitutions of ground terms for free variables. We already have a 
notation for indicating substitutions for a single variable, namely the ϕ( θ

x ) notation we used in Axiom Q2 and the proof 
of the Lindenbaum lemma. However in our completeness proof we will need to carry out simultaneous substitution on 
multiple variables, and this motivates the following definition:

Definition 8.4 (Substitutions). Let σ : X → @Term(τ ). We define tσ for any term t as follows:

• if t ∈ X then tσ = σ(x)
• if t = f (t1, . . . , tn) then tσ = f (tσ1 , . . . , tσn ).

This extends to formulas in the following way:

• iσ := i, i ∈ Nom
• DEN(t)σ := DEN(tσ ), t ∈ Term(τ )

• (t1 ≈ t2)
σ := (tσ1 ≈ tσ2 ), t1, t2 ∈ Term(τ )

• (P (t1, . . . , tn))
σ := P (tσ1 , . . . , tσn ), P ∈ Reln ∪ @Reln and t1, . . . , tn ∈ Term(τ );

• (@iϕ)σ := @i(ϕ
σ ) ∈ Fm(τ ), ϕ ∈ Fm(τ ) and i ∈ Nom

• (¬ϕ)σ := ¬(ϕσ ) and (�ϕ)σ := �(ϕσ ), ϕ ∈ Fm(τ );
• (ϕ ∧ ψ)σ := ϕσ ∧ ψσ and (ϕ ∨ ψ)σ := ϕσ ∨ ψσ , for ϕ ∈ Fm(τ ) and ψ ∈ Fm(τ )

• (∀xϕ)σ := ∀x(ϕσ x
x ), x ∈ X and ϕ ∈ Fm(τ ) (σ x

x = σ \ {(x, σ(x))}) ∪ {(x, x)})

Two more pieces of notation will be useful. First we write id for the substitution mapping every variable to itself (that 
is, for the identity map on X). Second, for any function f : A → B , and any a ∈ A and b ∈ B , we define f a

b : A → B by:

f a
b (u) =

{
b, if u = a

f (u), otherwise

Note that for any rigid term t , we can write ϕ( t
x ) as ϕ idx

t .

Definition 8.5 (Equivalent assignments). Let � be a maximal, named, �-saturated, ∃-saturated, Kτ -consistent set of formulas, 
and let g and h be two assignments on its canonical model. We say g ∼r h iff for all x ∈ X we have that g(x) ∼r h(x).

The definition makes sense, as an assignment g on a canonical model maps all variables to ground terms in @Term(τ ). 
This brings us to a key lemma. Roughly speaking: τ -equivalent assignments respect ≈ and @. More precisely:

Lemma 8.6. Let � be a maximal named, �-saturated, and ∃-saturated Kτ -consistent set of formulas. Let g, h : X → @Term(τ ) be 
assignments such that g ∼r h. Then:
12
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1. t g ≈ th ∈ �

2. @iϕ
g ∈ � iff @iϕ

h ∈ �.

Proof. Claim (1) follows by induction on term structure. For t ∈ X we have: xg = g(x) ∼r h(x) = xh , thus xg ≈ xh ∈ �. For 
complex terms, we use the induction hypothesis and congruence axioms. Consider t = f (t1, . . . , tn) where f ∈ Funcn ∪
@Funcn , n ≥ 0. By IH we have that t g

m ≈ th
m ∈ �, for m = 1, . . . , n. By the Func axiom, f (t g

1 , . . . , t g
n ) ≈ f (th

1, . . . , th
n) ∈ �. That 

is:

( f (t1, . . . , tn))g ≈ ( f (t1, . . . , tn))h ∈ �.

Claim (2) follows by induction on the complexity of ϕ .

• ϕ = @i j. Trivial, as this expression contains no variables.
• ϕ = @i@ jψ . Then ϕ = @i(@ jψ)g = @i@ j(ψ)g = @i@ j(ψ)h (by IH) = @i(@ jψ)h .
• ϕ = @iDEN(t). First, by (1), t g ≈ th ∈ �, and t g ≈ th → (DEN(t g) ↔ DEN(th)) ∈ � as well, since this is an instance of 

the (DenDen) axiom, and thus DEN(t g) ↔ DEN(th) ∈ � too. Hence ϕ = @iDEN(t)g ∈ � iff @iDEN(t g) ∈ � iff (by IH) 
@iDEN(th) ∈ � iff @iDEN(t)h ∈ �.

• ϕ = @i(t1 ≈ t2). Suppose that @i(t
g
1 ≈ t g

2 ) ∈ �. As t g
1 , t g

2 ∈ Term(τ ) we can use the (Agree≈) axiom, which tells us that 
@i(t

g
1 ≈ t g

2 ) ∈ � iff t g
1 ≈ t g

2 ∈ �. By IH this happens iff th
1 ≈ th

2 ∈ � iff (using (Agree≈) again) @i(th
1 ≈ th

2) ∈ �.
• ϕ = @i P (t1, . . . , tn), with P ∈ Reln ∪ @Reln and t1, . . . , tn ∈ Term(τ ). First, by (1), we have that t g

m ≈ th
m ∈ �, for 

m = 1, . . . , n, and since it is an instance of the (Pred) axiom, we have P (t g
1 , . . . , t g

n ) ↔ P (th
1, . . . , th

n) ∈ � too. So 
ϕ = @i P (t1, . . . , tn)g ∈ � iff @i P (t g

1 , . . . , t g
n ) ∈ � iff (by IH) @i P (th

1, . . . , th
n) ∈ � iff @i P (t1, . . . , tn)

h ∈ �.
• ϕ = @i(ψ1 ∧ ψ2). We have @i(ψ1 ∧ ψ2)

g ∈ � iff @iψ
g
1 ∧ @iψ

g
2 ∈ � iff @iψ

g
1 and @iψ

g
2 ∈ � iff @iψ

h
1 and @iψ

h
2 ∈ � (IH) iff 

@iψ
h
1 ∧ @iψ

h
2 ∈ � iff @i(ψ1 ∧ ψ2)

h ∈ �. The cases for the other booleans are similar.
• ϕ = @i♦ψ .

@i(�ψ)g ∈ � iff @i�(ψ)g ∈ �

iff exists j s.t. @i� j ∈ � and @ jψ
g ∈ � , by �- saturation

iff exists j s.t. @i� j ∈ � and (@ jψ)g ∈ �

iff exists j s.t. @i� j ∈ � and (@ jψ)h ∈ � , by IH
iff exists j s.t. @i� j ∈ � and @ j(ψ)h ∈ �

iff @i�(ψ)h ∈ � , by �- saturation
iff @i(�ψ)h ∈ �

• ϕ = @i∃xψ .
@i(∃xψ)g ∈ � iff @i∃x(ψ)gx

x ∈ �

iff exists c s.t. @iEXISTS(c) ∈ � and @iψ
gx

x (
@i c

x ) ∈ �

iff exists c s.t. @iEXISTS(c) ∈ � and @iψ
gx

@i c ∈ �

iff exists c s.t. @iEXISTS(c) ∈ � and @iψ
hx

@i c ∈ � by IH
iff exists c s.t. @iEXISTS(c) ∈ � and @iψ

hx
x (

@i c
x ) ∈ �

iff @i(∃xψ)h = @i∃x(ψ)hx
x ∈ �

Let us look closer at the steps involved in this last case. First, note that while g is an assignment function, gx
x is not. 

However gx
x just plays a “dummy” role, allowing us to form ψ gx

x (
@i c

x ), that is, ψ gx
@i c , which is an assignment as it sends x

to the ground term @ic. Crucially, gx
@i c

∼r hx
@i c

, so we can apply the inductive hypothesis. With this case established, the 
lemma follows. �

For each assignment g into M� , we now define a substitution function σg : X → @Term(τ ). We do so as follows. Suppose 
g(x) = |t|. As every element t of |t| is ground, every element has the form (@kc) or (@k f )(t1, . . . , tn). Pick any of these terms 
tl as the representative of |t| (for example, pick the term tl such that DEN(tl) is first in the formula enumeration). Note that 
we can write any representative tl in the form ⇓ik(tl) for some nominal k, as ⇓ is the identity map on @Term(τ ). Finally, 
define σg(x) =⇓ik(tl) = tl . So σg(x) is always the representative of g(x).

Corollary 8.7. Let g : X → Dom� and θ ∈ @Term(τ ) such that |θ | ∈ Dom� . Then

@iϕ
((σg)x

x)(
θ

x
) ∈ � iff @iϕ

σg[x�→|θ |] ∈ �

Proof. Recall that ϕ( θ
x ) = ϕ idx

θ . Since σg sends variables to ground terms, (ϕ(σg )x
x )idx

θ = ϕ(σg )x
θ . So by the previous lemma, it 

suffices to prove that (σg)
x ∼r σg[x�→|θ |] . On the one hand:
θ

13
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(σg)
x
θ (u) =

{
θ if u = x
⇓ik(tl) otherwise,

where ⇓ik(tl) is the representative of g(u).
On the other hand, σg[x�→|θ |](u) =⇓im(ts), the representative of g[x �→ |θ |](u). Moreover,

g[x �→ |θ |](u) =
{ |θ | if u = x

g(u) otherwise.

Thus σg[x�→|θ |](x) ∼r θ and for u �= x, |σg[x�→|θ |](u)| = g(u). Hence (σg)
x
θ ∼r σg[x�→|θ |] . �

Lemma 8.8. For any t ∈ Term(τ ), any assignment g on M� and any nominal i, we have

[t]M�,|i|,g = | ⇓i(t
σg )|

Proof. By induction on term structure.

(t ∈ X)

[x]M�,|i|,g = g(x)
= |tk|, where tk is the representative of g(x).
= | ⇓i(tk)|, since tk ∈ @Term(τ ), so ⇓i(tk) = tk
= | ⇓i(xσg )|

(t = f (t1, . . . , tn), f ∈ Funcn , n ≥ 0)

[ f (t1, . . . , tn)]M�,|i|,g = I|i|( f )([t1]M,|i|,g, . . . , [tn]M,|i|,g)

= I|i|( f )(| ⇓i(t
σg
1 )|, . . . , | ⇓i(t

σg
n )|) (by IH)

= |(@i f )(⇓i(t
σg
1 ), . . . ,⇓i(t

σg
n ))|

= | ⇓i(( f (t
σg
1 , . . . , t

σg
n )))|

= | ⇓i(tσg )|

(t = (@ j f )(t1, . . . , tn), f ∈ Funcn , n ≥ 0)

[(@ j f )(t1, . . . , tn)]M�,|i|,g = I| j|( f )([t1]M,|i|,g, . . . , [tn]M,|i|,g)

= I| j|( f )(| ⇓i(t
σg
1 )|, . . . , | ⇓i(t

σg
n )|) (by IH)

= |(@ j f )(⇓i(t
σg
1 ), . . . ,⇓i(t

σg
n ))|

= | ⇓i(((@ j f )(t
σg
1 , . . . , t

σg
n )))|

= | ⇓i(tσg )|

�

Lemma 8.9 (Truth Lemma). For every nominal i, any assignment g on M� and every formula ϕ

M�, |i|, g � ϕ ⇔ @iϕ
σg ∈ �

Proof. The proof proceeds by induction on the complexity of ϕ .

• ϕ = j
M�, |i|, g � j iff |i| = | j| iff @i j ∈ � iff @i jσg ∈ �.

• ϕ = DEN(t),
M�, |i|, g � DEN(t) iff [t]M,|i|,g �= �

iff [⇓i(t)]M,|i|,g �= �

iff | ⇓i(tσg )| ∈ Dom
iff DEN(⇓i(tσg )) ∈ �

iff @iDEN(tσg ) ∈ �

(by axiom DEN(⇓i(t)) ↔ @iDEN(t))
iff @iDEN(t)σg ∈ �

• ϕ = t1 ≈ t2,
14
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M�, |i|, g � t1 ≈ t2 iff [t1]M,|i|,g = [t2]M,|i|,g

iff | ⇓i(t
σg
1 )| = | ⇓i(t

σg
2 )|, by Lemma 8.8

iff ⇓i(t
σg
1 ) ∼r⇓i(t

σg

2 )

iff ⇓i(t
σg
1 ) ≈⇓i(t

σg
2 ) ∈ �

iff @i(t
σg
1 ≈ t

σg
2 ) ∈ �, by axiom K@≈

iff @i(t1 ≈ t2)
σg ∈ �

• ϕ = P (t1, . . . , tn), with P ∈ Reln ∪ @Reln and t1, . . . , tn ∈ Term(τ );

If P ∈ Reln:
M�, |i|, g � P (t1, . . . , tn) iff ([t1]M,|i|,g, . . . , [tn]M,|i|,g) ∈ I|i|(P )

iff (| ⇓i(t
σg
1 )|, . . . , | ⇓i(t

σg
n )|) ∈ I|i|(P ), by Lemma 8.8

iff (@i P )(⇓i(t
σg
1 ), . . . ,⇓i(t

σg
n )) ∈ �

iff @i(P (t
σg
1 , . . . , t

σg
n )) ∈ �,

by the Shuffle-1 Axiom
(@i P )(⇓i(t1), . . . ,⇓i(tn)) ↔ @i(P (t1, . . . , tn)

iff @i((P (t1, . . . , tn)σg ) ∈ �

If P = (@ j S), with S ∈ Reln:
M�, |i|, g � (@ j S)(t1, . . . , tn) iff ([t1]M,|i|,g, . . . , [tn]M,|i|,g) ∈ I| j|(S)

iff (| ⇓i(t
σg
1 )|, . . . , | ⇓i(t

σg
n )|) ∈ I| j|(S), by Lemma 8.8

iff (@ j S)(⇓i(t
σg
1 ), . . . ,⇓i(t

σg
n )) ∈ �

iff @i((@ j S)(t
σg
1 , . . . , t

σg
n )) ∈ �,

by the Shuffle-2 axiom
(@ j S)(⇓i(t1), . . . ,⇓i(tn)) ↔ @i((@ j S)(t1, . . . , tn))

iff @i((@ j S)(t1, . . . , tn)σg ) ∈ �

• ϕ = @ jψ .
M�, |i|, g � @ jψ iff M�, | j|, g � ψ

iff @ j(ψ)σg ∈ �, IH
iff (@ jψ)σg ∈ �

iff @i(@ jψ)σg ∈ �, by Agree
• ϕ = ¬ψ .

M�, |i|, g � ¬ψ iff M�, |i|, g � ψ

iff @i(ψ)σg /∈ �, IH
iff ¬@i(ψ)σg ∈ �, as � is maximal consistent
iff @i¬(ψ)σg ∈ �, by Selfdual@
iff @i(¬ψ)σg ∈ �

• ϕ = ♦ψ .
M�, |i|, g � ♦ψ iff there is j such that |i|R�| j| and M�, | j|, g � ψ

iff there is j such that |i|R�| j| and @iψ
σg ∈ �, by IH

iff @i♦ψσg ∈ �,
by Bridge (since @i� j ∈ �) and �-saturation

iff @i(♦ψ)σg ∈ �

• ϕ = ψ1 ∧ ψ2
M�, |i|, g � ψ1 ∧ ψ2 iff M�, |i|, g � ψ1 and M�, |i|, g �ψ2

iff @i(ψ1)
σg ∈ � and @i(ψ2)

σg ∈ �, IH
iff @i(ψ1)

σg ∧ @i(ψ2)
σg ∈ �, as � is maximal consistent

iff @i((ψ1)
σg ∧ (ψ2)

σg ) ∈ �

iff @i((ψ1 ∧ ψ2)
σg ) ∈ �

• ϕ = ∃xψ .
M�, |i|, g � ∃xψ iff exists a = |θ | ∈ D�

|i| s.t M, |i|, g[x �→ |θ |] �ψ

iff exists a = |θ | ∈ D�
|i| s.t @iψ

σg[x�→|θ |] ∈ �, IH

iff exists a = |θ | ∈ D�
|i| s.t @iψ

((σg )x
x)( θ

x ) ∈ �, by Corollary 8.7

iff(∗) @i∃x(ψ)(σg )x
x ∈ �

iff @i(∃xψ)σg ∈ �

Let’s check the detail of the (∗) step. For the “⇒” implication, note that |θ | ∈ D�
|i| means that @iEXISTS(θ) ∈ �. There-

fore, by the axiom (Q 2) and (Intro), @i∃x(ψ)(σg )x
x ∈ �.
15
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The“⇐” implication holds by ∃-saturation. Because @i∃x(ψ(σg )x
x ) ∈ �, there is a constant c such that @iEXISTS(c) ∈ �

and @iψ
((σg )x

x)(
@i c

x ) = @iψ
((σg )x

x)
x
@i c ∈ �. By axiom (ExRig), @iEXISTS(⇓i(c)) ∈ � and so | ⇓i(c)| := |@ic| ∈ D |i| . Therefore, 

there is a θ := |@ic| ∈ D�
|i| such that @iψ

((σg )x
x)(

@i c
x ) ∈ �. �

Corollary 8.10. Every Kτ -consistent set of sentences � is satisfiable on a named model.

Proof. Given any Kτ -consistent set of sentences �, use the Lindenbaum lemma to expand it to maximal, named, �-
saturated, and ∃-saturated Kτ -consistent set of sentences �� . There is at least one nominal in ��; call it k. Build the 
canonical model M��

. Then M��
, |k| � �. �

Theorem 8.11 (Completeness for Kτ ). Let τ be a first-order hybrid similarity type, let ϕ be a sentence and � a set of sentences. Then:

� � ϕ ⇒ � � ϕ.

Proof. The standard consequence of the previous corollary. �
Moreover, every Kτ -consistent set of sentences � is also satisfiable on a model based on a skeleton in FM: simply take 

the canonical model M��
of Corollary 8.10 and form a phantom world version of it (recall Lemma 4.4). This immediately 

yields:

Theorem 8.12 (FM-completeness for Kτ ). Let τ be a first-order hybrid similarity type, ϕ a sentence and � a set of sentences. Then:

� �FM ϕ ⇒ � � ϕ.

Proof. An easy consequence of the preceding remarks. �
9. Pure extensions of Kτ

In this section we prove a semantic result about pure sentences. This will allow us to extend Theorem 8.11 in a simple 
and uniform way to the cover the logics of many modally interesting classes of skeletons. However, using pure formulas to 
extend Theorem 8.12 to uniformly cover classes of FM-skeletons is not so straightforward, and we will deal with that task 
in the following section.

First, what is a pure formula? In propositional hybrid logic it is formula that does not contain any ordinary propositional 
symbols, or put positively, a formula built using only nominals. In our first-order language, we define them as follows:

Definition 9.1 (Pure formulas). Fix a hybrid similarity type τ . A formula over this similarity type is pure iff it contains no 
relation or function symbols of any arity.

Note that the ban on relation symbols means that pure formulas cannot contain ordinary propositional symbols. More-
over, the ban on function symbols means that the only terms we have are variables. Put positively: pure formulas are built 
using nominals, and atomic formulas of the form DEN(x) and x ≈ y. We can still use EXISTS (for variables) as EXISTS(y)

is shorthand for ∃x(x ≈ y).
Pure formulas allow us to define some interesting classes of skeletons. Recall from Definition 3.6 that S � ϕ means that 

for every world w , every assignment g , and every interpretation I , we have (S, I), w, g � ϕ . Then:

Definition 9.2 (Defining skeletons). A formula ϕ defines a class of skeletons S iff

S � ϕ iff S ∈ S.

A class of skeletons is definable iff it can be defined by some formula. Skeleton classes are often specified by some property 
shared by all skeletons in the class (for example, having a transitive accessibility relation). Thus we often talk of properties 
(like transitivity) being definable too.

Here we are interested in properties definable by pure sentences. We list some examples of properties and pure sentences 
that define them:
16
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Reflexivity @i�i
Symmetry @i��i

Transitivity ��i → �i
Irreflexivity @i¬�i

Antisymmetry @i�(�i → i)
Asymmetry @i� j → ¬@ j�i

Expanding domains ∀y(EXISTS(y) → �EXISTS(y))

Contracting domains ∀y(�EXISTS(y) → EXISTS(y))

Constant domains ∀y(@iEXISTS(y) → @ jEXISTS(y))

Disjoint domains ∀y(@iEXISTS(y) ∧ @ jEXISTS(y) → @i j)
Convex domains ∀y(EXISTS(y) → �(�EXISTS(y) → EXISTS(y)))

The first six items are standard examples from propositional hybrid logic and define properties of the accessibility relation 
R; the last five define conditions on local domains.4 It is easy to check that these all define the stated conditions.

Now for the key observation: when pure sentences are added as additional axioms to Kτ , the resulting system (which 
we call a pure extension) is complete with respect to the class of skeletons that the axioms define (that is, the class of 
skeletons on which every axiom is valid). We first make this claim precise, and then prove it.

Definition 9.3 (Pure extensions of Kτ ). Let PE be a set of pure sentences that is closed under uniformly replacing nominals 
by nominals; that is, if ρ ∈ PE, and ρ ′ is obtainable from ρ by uniformly replacing nominals by nominals, then ρ ′ ∈ PE too. 
Then Kτ + PE, the pure extension of Kτ by PE, has all the rules and axioms of Kτ , and all the sentences in PE are axioms 
as well.

For example, we might add all instances of @i¬�i as additional axioms, or all instances of ∀y(@iEXISTS(y) →
@ jEXISTS(y)), or all instances of both these sentences (by “instances” we mean any sentence obtained by uniformly re-
placing nominals by nominals). And now for the semantic lemma that leads to the desired completeness results.5 This tells 
us that if all instances of a pure sentence are valid on a named model, then they are valid on the skeleton underlying the 
model as well.

Lemma 9.4 (Purity and skeleton validity). Let PE be a set of pure sentences that is closed under uniformly replacing nominals by 
nominals. Let M = (S, I) be a named model such that for all ρ ∈ PE we have that M � ρ . Then S � ρ .

Proof. Let M = (S, I) be a named model such that for all ρ ∈ PE we have that M � ρ . Assume for the sake of contradiction 
that for some ρ ∈ PE we have S � ρ . That is, for some world w and some interpretation I ′ we have (S, I ′), w � ρ; as ρ is a 
sentence the choice of assignment is irrelevant. Let i1, . . . , in be the nominals in ρ , and suppose I ′(i1) = {w1}, . . . , I ′(in) =
{wn}. Because M is named, there are nominals j1, . . . , jn such that I( j1) = {w1}, . . . , I( jn) = {wn}. Let ρ ′ be the result of 
uniformly substituting j1 . . . , jn for i1, . . . , in in ρ . It follows that M, w � ρ ′ , which is impossible as ρ ′ ∈ PE. We conclude 
that S � ρ after all. �
Corollary 9.5. Every Kτ + PE-consistent set of sentences is satisfiable on a named model based on a skeleton that belongs to the class 
that PE defines.

Proof. The proof of Corollary 8.10 showing that every Kτ -consistent set of sentences has a model goes through unchanged 
for Kτ + PE-consistent sets of sentences: we simply work with Kτ + PE-MCSs instead of Kτ -MCSs. Crucially, the canonical 
model this gives us is named and it makes all the axioms true at every world, including the axioms in PE (which are 
closed under uniformly replacing nominals by nominals). Thus the criteria of the previous lemma are satisfied, and so the 
underlying skeleton belongs to the class defined by PE. �
Theorem 9.6 (Completeness for Kτ + PE). Let τ be a first-order hybrid similarity type, ϕ be a sentence and � a set of sentences. Then:

� �PE ϕ ⇒ � �PE ϕ.

Proof. The standard consequence of the previous corollary. �
4 In their discussion of constant domain models, Fitting and Mendelsohn [1, Chapter 4.6] call expanding domains monotonic, and contracting domains 

anti-monotonic. A disjoint domain model is one in which any pair of distinct worlds has distinct local domains. A convex domain model is one in which: if 
an individual d exists at a world w , then at all world w ′ such that w R w ′ , if d also exists at some world w ′′ such that w ′ R w ′′ , then d exists at w ′ too.

5 Various forms of this result for propositional hybrid logic have been known since the early 1970s: see for example [12–14].
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To return to our previous example, this tells us that if we add all instances @i¬�i as additional axioms, then the resulting 
logic is complete with respect to irreflexive skeletons, and if we add all instances of ∀y(@iEXISTS(y) → @ jEXISTS(y)), then 
we have a logic complete with respect to skeletons with constant domains. The results are additive: if we add all instances 
of both sentences we have a completeness result for irreflexive skeletons with constant domains. In short, Theorem 9.6 gives 
us automatic completeness results for many modally interesting properties.

10. Pure extensions of Kτ + FM

So far so good — but Theorem 9.6 has a weakness. Recall that an FM-skeleton is a skeleton S = (W , Dom, D, R) such 
that Dom = ⋃

w∈W D w , or equivalently, for every d ∈ Dom there is some w ∈ W such that d ∈ D w . That is, an FM-skeleton 
is one with no phantom zone. Unfortunately, in general we have no idea whether the models built using the methods of 
the previous section have phantom zones or not. Thus it would be useful to have an analog of Theorem 9.6 that provided 
automatic completeness proofs for pure formulas with respect to FM-skeletons. However, this is trickier. For a start, there is 
no formula (pure or otherwise) that defines the class of FM-skeletons: this is an immediate consequence of Lemma 4.4. 
Moreover the method used to prove this lemma was simply to glue on a new “phantom world” that gathered all the 
phantom zone entities together. This simple model transformation works for plain validity, and for some simple properties 
(for example: irreflexivity) but it won’t provide the sort of general analog of Theorem 9.6 that we would like.

In this section we will show how to strengthen the base logic so that we can prove an analogous completeness result 
for pure extensions with respect to FM-skeletons. We shall strengthen Kτ by adding the FM rule:6

� @iEXISTS(t) → ϕ

� ϕ

where t ∈ @Term(τ ), t is ground, i does not occur in either t or ϕ , and no symbol in t occurs in ϕ . Call the resulting system 
Kτ + FM.

Lemma 10.1. If S is an FM-skeleton, then S admits the above rule. That is: if the premiss of the rule is valid on S, then so is the 
conclusion.

Proof. Assume that S is an FM-skeleton, and further assume that S validates the premiss of this rule. That is, assume that:

S � @iEXISTS(t) → ϕ.

We need to show that S � ϕ . So, let I be an interpretation on S , let w ∈ W , and let g be an assignment. As S validates the 
premiss, we have:

(S, I), w, g � @iEXISTS(t) → ϕ.

We now show that (S, I), w, g � ϕ . There are three cases to consider.

1. Suppose (S, I), w, g � @iEXISTS(t). Then (S, I), w, g � ϕ .
2. Suppose (S, I), w, g � @iEXISTS(t), and t is defined. This means that [t](S,I),I(i),g (the interpretation of t at the world 

named i) does not belong to the domain of the i-world. However it does belong to the domain of some world v , as 
S is an FM-skeleton. Let I ′ be the interpretation that is exactly like I except that I ′(i) = v . This means that I and I ′
agree on all symbols in t and ϕ , as i belongs to neither. So by Lemma 5.1(1) we have [t](S,I),I(i),g = [t](S,I ′),I(i),g hence 
(S, I ′), w, g � @iEXISTS(t), as i now names v . Thus, as S � @iEXISTS(t) → ϕ is valid on S , we have that (S, I ′), w, g � ϕ . 
But now, using Lemma 5.1(3), we again conclude that (S, I), w, g � ϕ .

3. (S, I), w, g � @iEXISTS(t), and t is undefined. That is, [t](S,I),I(i),g = �. But there is an interpretation I ′ that differs from 
I only on symbols in t such that [t](S,I ′),I(i),g is defined: by Lemma 5.2 it suffices to choose an I ′ that assigns a total 
function from Domn to Dom for every function symbol in t . Let d be [t](S,I ′),I(i),g . Then:
• If d is in the domain of the world named i, (S, I ′), w, g � @iEXISTS(t), hence reasoning as in Case 1 we have 

(S, I ′), w, g � ϕ . Lemma 5.1(3) then yields (S, I), w, g � ϕ .
• If d is not in the domain of the world named i, (S, I ′), w, g � @iEXISTS(t), but t is now defined, hence reasoning as 

in Case 2 we have (S, I ′), w, g � ϕ . Lemma 5.1(3) then yields (S, I), w, g � ϕ .

So in all three cases we have that (S, I), w, g � ϕ . As our choices of I , w and g were arbitrary, this means we have 
S � ϕ , as required. �
Theorem 10.2. Kτ + FM is sound with respect to the class of FM-skeletons.

6 A variant of this rule was suggested in the concluding remarks of [3] for handling FM-skeletons in first-order hybrid logic. It does not seem to have 
been explored since.
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Proof. The axioms and rules of Kτ are sound with respect to all skeletons. Lemma 10.1 shows that the FM rule is sound 
with respect to FM-skeletons. �

Now, we immediately have an easy completeness result for Kτ + FM: Theorem 8.12 tells us that Kτ is complete with 
respect to the class of FM-skeletons, thus (trivially) Kτ + FM is complete with respect to this class too; adding a sound 
rule does not diminish its deductive power. However, the completeness result for Kτ was proved using Kτ -MCSs that were 
named, �-saturated, and ∃-saturated. We will now prove a more useful completeness result for Kτ + FM using Kτ + FM-
MCSs which have all these properties, and which, in addition are FM-saturated. As we shall see, this will let us put pure 
sentences to work and generalize Theorem 8.12 in a way that applies to FM-skeletons. This is the concept we need:

Definition 10.3 (FM-saturation). An MCS � is FM-saturated iff for all ground terms t ∈ @Term(τ ) in �, there is a nominal i
such that @iEXISTS(t) ∈ �.

Now, potentially there are many ways that we could use Kτ + FM-MCSs to build a model, but the next lemma tells 
us that as long as we do so in a way that satisfies the first three conditions used to define canonical Kτ models (recall 
Definition 8.3), then the resulting model will be based on an FM-skeleton:

Lemma 10.4. Let � be a Kτ + FM-MCS that is FM-saturated. Suppose we use � to build a canonical model M� in a way that satisfies 
the following three conditions:

1. W � = {|i| : i is a nominal}.
2. Dom� = {|t| : t ∈ @Term(τ ) and t is ground and DEN(t) ∈ �}.
3. D�

|i| = {|t| ∈ Dom� : @iEXISTS(t) ∈ �}.

Then for every d ∈ Dom� there is some w ∈ W such that d ∈ D�
w . That is, the model we construct will be based on an FM-skeleton.

Proof. For suppose not. Then there is some d ∈ Dom� such that d does not belong to the local domain of any world w . 
But by condition 2, any such d is of the form |t| for some ground rigid term t , and furthermore DEN(t) ∈ �. Hence, as � is
FM-saturated we have, for some nominal i, that @iEXISTS(t) ∈ �. Hence, by conditions 1 and 3, d = |t| belongs to the local 
domain D�

|i| of world |i|. �
This explains our interest in FM-saturation, and a new completeness result is now in sight. But we still need to show 

that there are MCSs with all four properties we need. The Lindenbaum lemma tells us how to form an MCS that is named, �-saturated, and ∃-saturated, but we need to do some extra work to obtain an MCS that has these three properties and is
FM-saturated as well.

Lemma 10.5. Let � be Kτ + FM-consistent set of formulas, let t be a ground rigid term occurring in �, and let i be a nominal not 
occurring in � (a “new nominal”). Then � ∪ {@iEXISTS(t)} is consistent.

Proof. Suppose � ∪ {@iEXISTS(t)} is inconsistent. Thus � ∪ {@iEXISTS(t)} � ⊥. Hence � � ¬@iEXISTS(t). So for some finite 
conjunction θ of formulas from �, we have � θ → ¬@iEXISTS(t), and hence, � @iEXISTS(t) → ¬θ . But as i is new it 
does not occur in �, hence it does not occur in θ , so we can apply the FM rule and deduce that � ¬θ , contradicting the 
consistency of �. Thus � ∪ {@iEXISTS(t)} was consistent after all. �
Lemma 10.6 (FM-presaturation). Let � be a finite or countably infinite Kτ + FM-consistent set of formulas. Then � can be extended to 
a finite or countably infinite Kτ + FM-consistent set (�)FMP (an FM-presaturated set) in which for every rigid constant t that occurs 
in �, there is a formula of the form @iEXISTS(t).

Proof. Let � be such a set. If no rigid constants t occur in � there is nothing to do. Otherwise, enumerate the distinct 
ground rigid constants t occurring in � as tn , where n > 0. This enumeration will either be countably infinite or of length 
m > 0 for some natural number m. Then choose enough new nominals in (either m or countably many) to match this 
enumeration and use them as follows: Define �0 to be �. Suppose �k has been defined. Then define �k+1 to be:

�k+1 = �k ∪ {@ik+1 EXISTS(tk+1)}.
By assumption, �0 = � is consistent, and the previous lemma shows that each expansion step preserves consistency. Define 
(�)FMP to be �m if � was finite, and 

⋃
k∈ω �k otherwise. Either way, (�)FMP is consistent, and we have a finite or countably 

infinite FM-presaturated set. �
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Lemma 10.7. Let � be a finite or countably infinite Kτ + FM-consistent set of formulas. Then we can extend � to a countably infinite 
Kτ (FM)-consistent set of formulas that is maximal, named, �-saturated, ∃-saturated, and also FM-saturated.

Proof. First, define �0 to be �, and �1 to be (�1)
FMP . Then, for all odd numbers n, define �n+1 to be the Lindenbaum 

expansion of �n , and for all even numbers n define �n+1 to be (�n)FMP . That is, alternate the Lindenbaum expansion and 
the presaturation process countably many times. Finally, define �ω to be the union of this chain of sets. �ω is the countably 
infinite MCS we need. �

And we now have the desired completeness result. First, we define the canonical model for Kτ + FM + PE as we did for 
Kτ in Definition 8.3, but we now use the MCS guaranteed to exist by the previous lemma. As our definition of canonical 
model is unchanged, Lemma 10.4 applies, thus the model is based on an FM-skeleton. As before we have a named model, 
so we can prove an analog of Corollary 9.5:

Corollary 10.8. Every Kτ +FM+PE-consistent set of sentences is satisfiable on a named model based on an FM-skeleton that belongs 
to the class that PE defines.

Proof. As for Corollary 9.5. �
This immediately yields the desired analog of Theorem 9.6:

Theorem 10.9 (FM-Completeness for Kτ + FM + PE). Let τ be a first-order hybrid similarity type, ϕ be a sentence and � a set of 
sentences. Then

� �FM+PE ϕ ⇒ � �FM+PE ϕ.

Proof. Immediate by the previous corollary. �
11. Concluding remarks

In this paper we proved a number of completeness results for a first-order language with partial function symbols built 
over the basic hybrid language. There were two main syntactic enrichments: allowing all predicate and functions symbols 
to be rigidified, and including a DEN predicate to detect undefined terms. We think that the language of this paper, and the 
results we have proved here, are useful tools for exploring first-order modal logic further — but to close this paper we want 
to focus more on where this paper came from rather than where we plan to take it next.

As we mentioned earlier, it was our experience with higher-order hybrid logic that led us to a “rigidify everything!” 
policy. Moreover, our experience with partial type theory suggested the usefulness of DEN-like operators. However it also 
made us aware that there were some interesting issues involving phantom zones, partial functions, and the definition of 
DEN, and that it could be useful to explore them in the simpler setting of first-order hybrid logic.

When we hybridized partial type theory, we did not work over the basic hybrid language, and we did not use the 
primitive DEN operator used here; rather, we worked with a stronger hybrid logic in which a variant of the DEN operator 
was definable. This logic contained two standard hybrid logical tools: the universal modality, and the ↓-binder. For a detailed 
discussion of these extensions, the interested reader should consult [4]; here we will say just enough to make our main 
point clear.

The universal modality is an additional modality that explores the universal relation W × W on worlds. Its box-form 
Aϕ is true at a world w iff ϕ is true at all worlds, and its diamond-form Eϕ is true at w iff there exists some world that 
makes ϕ true. Adding the universal modality increases the expressive power at our disposal. For a start, we can now define 
the satisfaction operators: either A(i → ϕ) or E(i ∧ ϕ) captures the effect of @iϕ . Indeed, we can now define the class of 
FM-skeletons using a pure sentence:

DEN(@ic) → E(EXISTS(@ic)).

This says: if the constant (@i c) is defined, then there is some world at which the domain element d that (@ic) denotes exists. 
That is: because the universal modality sees all worlds, d cannot hide inside the phantom zone.

We also added the hybrid ↓-binder and defined:

DENw(c) :=↓i.E(EXISTS((@ic))).

That is: the ↓-binder binds the nominal i to the evaluation world (it “remembers” where the evaluation started). Then E
looks for a world with a local domain in which the entity that c picks out at the world of evaluation exists.7 To spell this out: 

7 So DENw , unlike DEN, does not directly test for � at the world of evaluation.
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c denotesw (at some world of evaluation, which we label i) iff there is some world w where the value that c received (at 
the i-world) exists in the local domain of w . As this makes clear, ↓ is powerful. Indeed ↓ is why hybrid logical approaches to 
first-order modal logic don’t need the predicate abstraction used in Fitting and Mendelsohn’s textbook [1]: the combination 
of ↓ and @ offers an alternative way of capturing modal scope distinctions. Consider an utterance of “It is necessary that the 
President of France likes wine”. The sentence � ↓i.LW ((@i p f )) captures one reading: in all possible worlds, whoever happens 
to be the President of France there, likes wine. On the other hand, ↓ i.�LW ((@i p f )) captures: in all possible worlds, the individual 
who is the President of France in the utterance world, likes wine.

In forthcoming work we plan to further explore the similarities and differences between FM-style and hybrid approaches 
to first-order modal logic — but, for now, back to the phantom zone. The completeness theory of A and ↓ are well under-
stood, and the defined DENw operator worked well in the higher-order setting. But we wanted something simpler, which 
led to the primitive “test for �” version of DEN and the questions underlying this paper: how to make such a DEN work 
in a first-order logic with partial function symbols built over the basic hybrid language (that is: without A and ↓), and, in 
particular, how to make it work with pure extensions while avoiding problems with phantom zones. And as we have seen, 
partial functions and pure extensions work together just fine, whether you choose to exorcise the phantom zone or not.
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